for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> CHEMISTRY (Total: 814 journals)
    - ANALYTICAL CHEMISTRY (49 journals)
    - CHEMISTRY (566 journals)
    - CRYSTALLOGRAPHY (22 journals)
    - ELECTROCHEMISTRY (25 journals)
    - INORGANIC CHEMISTRY (41 journals)
    - ORGANIC CHEMISTRY (46 journals)
    - PHYSICAL CHEMISTRY (65 journals)

CHEMISTRY (566 journals)                  1 2 3 4 5 6 | Last

2D Materials     Hybrid Journal   (Followers: 4)
Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 31)
ACS Catalysis     Full-text available via subscription   (Followers: 25)
ACS Chemical Neuroscience     Full-text available via subscription   (Followers: 13)
ACS Combinatorial Science     Full-text available via subscription   (Followers: 8)
ACS Macro Letters     Full-text available via subscription   (Followers: 20)
ACS Medicinal Chemistry Letters     Full-text available via subscription   (Followers: 25)
ACS Nano     Full-text available via subscription   (Followers: 354)
ACS Photonics     Full-text available via subscription   (Followers: 6)
ACS Synthetic Biology     Full-text available via subscription   (Followers: 10)
Acta Chemica Iasi     Open Access  
Acta Chimica Sinica     Full-text available via subscription  
Acta Chimica Slovaca     Open Access   (Followers: 6)
Acta Chromatographica     Full-text available via subscription   (Followers: 10)
Acta Facultatis Medicae Naissensis     Open Access   (Followers: 1)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 5)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 4)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 5)
Adsorption Science & Technology     Full-text available via subscription   (Followers: 10)
Advanced Functional Materials     Hybrid Journal   (Followers: 38)
Advances in Chemical Engineering and Science     Open Access   (Followers: 23)
Advances in Chemical Science     Open Access   (Followers: 9)
Advances in Colloid and Interface Science     Full-text available via subscription   (Followers: 15)
Advances in Drug Research     Full-text available via subscription   (Followers: 18)
Advances in Enzyme Research     Open Access  
Advances in Fluorine Science     Full-text available via subscription   (Followers: 7)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 13)
Advances in Heterocyclic Chemistry     Full-text available via subscription   (Followers: 8)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 16)
Advances in Nanoparticles     Open Access   (Followers: 12)
Advances in Organometallic Chemistry     Full-text available via subscription   (Followers: 9)
Advances in Polymer Science     Hybrid Journal   (Followers: 39)
Advances in Protein Chemistry     Full-text available via subscription   (Followers: 6)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 10)
Advances in Quantum Chemistry     Full-text available via subscription   (Followers: 4)
African Journal of Chemical Education     Open Access   (Followers: 1)
African Journal of Pure and Applied Chemistry     Open Access   (Followers: 5)
Afrique Science : Revue Internationale des Sciences et Technologie     Open Access   (Followers: 1)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 1)
Alchemy     Open Access   (Followers: 3)
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 4)
AMB Express     Open Access  
American Journal of Applied Sciences     Open Access   (Followers: 31)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 211)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 12)
American Journal of Chemistry     Open Access   (Followers: 18)
American Journal of Plant Physiology     Open Access   (Followers: 10)
American Mineralogist     Full-text available via subscription   (Followers: 7)
Analyst     Full-text available via subscription   (Followers: 36)
Angewandte Chemie     Hybrid Journal   (Followers: 18)
Angewandte Chemie International Edition     Hybrid Journal   (Followers: 272)
Annales UMCS, Chemia     Open Access   (Followers: 2)
Annual Reports in Computational Chemistry     Full-text available via subscription   (Followers: 1)
Annual Reports Section A (Inorganic Chemistry)     Full-text available via subscription   (Followers: 2)
Annual Reports Section B (Organic Chemistry)     Full-text available via subscription   (Followers: 4)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 10)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 11)
Anti-Infective Agents     Hybrid Journal   (Followers: 1)
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 4)
Applied Spectroscopy     Full-text available via subscription   (Followers: 12)
Applied Surface Science     Hybrid Journal   (Followers: 20)
Arabian Journal of Chemistry     Full-text available via subscription   (Followers: 6)
ARKIVOC     Open Access   (Followers: 1)
Asian Journal of Biochemistry     Open Access   (Followers: 1)
Australian Journal of Chemistry     Hybrid Journal   (Followers: 4)
Autophagy     Full-text available via subscription   (Followers: 1)
Avances en Quimica     Open Access   (Followers: 1)
Biochemical Pharmacology     Hybrid Journal   (Followers: 7)
Biochemistry     Full-text available via subscription   (Followers: 263)
Biochemistry Insights     Open Access   (Followers: 4)
Biochemistry Research International     Open Access   (Followers: 4)
BioChip Journal     Hybrid Journal   (Followers: 1)
Bioinorganic Chemistry and Applications     Open Access   (Followers: 4)
Bioinspired Materials     Open Access  
Biointerface Research in Applied Chemistry     Open Access   (Followers: 1)
Biointerphases     Open Access  
Biomacromolecules     Full-text available via subscription   (Followers: 17)
Biomass Conversion and Biorefinery     Partially Free   (Followers: 5)
Biomedical Chromatography     Hybrid Journal   (Followers: 7)
Biomolecular NMR Assignments     Hybrid Journal   (Followers: 2)
BioNanoScience     Partially Free   (Followers: 4)
Bioorganic & Medicinal Chemistry     Hybrid Journal   (Followers: 30)
Bioorganic & Medicinal Chemistry Letters     Hybrid Journal   (Followers: 24)
Bioorganic Chemistry     Hybrid Journal   (Followers: 5)
Biopolymers     Hybrid Journal   (Followers: 14)
Biosensors     Open Access   (Followers: 3)
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 1)
Boletin de la Sociedad Chilena de Quimica     Open Access  
Bulletin of the Chemical Society of Ethiopia     Open Access   (Followers: 1)
Bulletin of the Chemical Society of Japan     Full-text available via subscription   (Followers: 13)
Canadian Association of Radiologists Journal     Full-text available via subscription   (Followers: 3)
Canadian Journal of Chemistry     Full-text available via subscription   (Followers: 6)
Canadian Mineralogist     Full-text available via subscription   (Followers: 1)
Carbohydrate Research     Hybrid Journal   (Followers: 11)
Carbon     Hybrid Journal   (Followers: 55)
Catalysis for Sustainable Energy     Open Access   (Followers: 2)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 6)
Catalysis Science and Technology     Free   (Followers: 4)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 4)
Catalysts     Open Access   (Followers: 7)

        1 2 3 4 5 6 | Last

Journal Cover   Biomolecular NMR Assignments
  [SJR: 0.402]   [H-I: 7]   [4 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1874-270X - ISSN (Online) 1874-2718
   Published by Springer-Verlag Homepage  [2300 journals]
  • Backbone resonance assignments of the PRYSPRY domain of TRIM25
    • Abstract: Abstract TRIM25 is a member of the tripartite motif (TRIM) family and has been implicated in the regulation of innate immune signaling via the RIG-I (retinoic acid-inducible gene-I) pathway for antiviral defense. As the essential first step towards the structural and functional characterization of the TRIM25/RIG-I interaction, the backbone resonance of the PRYSPRY domain of TRIM25 is assigned here based on triple-resonance experiments using uniformly [2H, 13C, 15N]-labeled protein.
      PubDate: 2015-02-22
  • NMR assignments for the insertion domain of bacteriophage CUS-3 coat
    • Abstract: Abstract CUS-3 is a P22-like tailed dsDNA bacteriophage that infects Escherichia coli serotype K1. The CUS-3 coat protein, which forms the icosahedral capsid, has a conserved HK97-fold but with a non-conserved accessory domain known as the insertion domain (I-domain). Sequence alignment of the coat proteins from CUS-3 and P22 shows higher sequence similarity for the I-domains (35 %) than for the HK97-cores, suggesting the I-domains play important functional roles. The I-domain of the P22 coat protein, which has an NMR structure comprised of a six-stranded β-barrel, has been shown to govern the assembly, stability and size of the resulting capsid particles. Here, we report the 1H, 15N, and 13C assignments for the I-domain from the coat protein of bacteriophage CUS-3. The secondary structure and dynamics of the CUS-3 I-domain, predicted from the assigned NMR chemical shifts, agree with those of the P22 I-domain, suggesting the CUS-3 and P22 I-domains may have similar structures and functions in capsid assembly.
      PubDate: 2015-02-19
  • 1 H, 13 C and 15 N backbone and side-chain resonance assignment of the
           LAM–RRM1 N-terminal module of La protein from Dictyostelium
    • Abstract: Abstract The N-terminal half of La protein consists of two concatenated motifs: La motif (LAM) and the N-terminal RNA recognition motif (RRM1) both of which are responsible for poly(U) RNA binding. Here, we present the backbone and side-chain assignments of the 1H, 13C and 15N resonances of the 191-residue LAM–RRM1 region of the La protein from the lower eukaryote Dictyostelium discoideum and its secondary structure prediction.
      PubDate: 2015-02-18
  • Resonance assignments for the substrate binding domain of Hsp70 chaperone
           Ssa1 from Saccharomyces cerevisiae
    • Abstract: Abstract Hsp70 chaperone proteins play crucial roles in the cell. Extensive structural and functional studies have been performed for bacterial and mammalian Hsp70s. Ssa1 from Saccharomyces cerevisiae is a member of the Hsp70 family. In vivo and biochemical studies on Ssa1 have revealed that it regulates prion propagation and the cell cycle. However, no structural data has been obtained for Ssa1 up to now. Here we report the almost complete (96 %) 1H, 13C, 15N backbone and side chain NMR assignment of the 18.8 kDa Ssa1 substrate binding domain. The construct includes residues 382–554, which corresponds to the entire substrate binding domain and two following α-helices in homologous structures. The secondary structure predicted from the assigned chemical shifts is consistent with that of homologous Hsp70 substrate binding domains.
      PubDate: 2015-02-15
  • Resonance assignments of the periplasmic domain of a cellulose-sensing
           trans-membrane anti-sigma factor from Clostridium thermocellum
    • Abstract: Abstract The cellulosome of Clostridium thermocellum is an elegant and efficient multi-enzyme complex for degrading lignocellulose. The cellulosome contains several dozens of carbohydrate hydrolysis enzymes, which are regulated by the presence of environmental substrates through several pairs of sigma and anti-sigma factors. The anti-sigma factors sense the presence of substrates and transduce the signals into the cell. The sigma factors are then released from the corresponding anti-sigma factors, and they recruit RNA polymerase to transcribe specific cellulosomal genes. However, it is not clear how the extracellular signals are transduced into the cell by the anti-sigma factors. The anti-sigma factors of C. thermocellum contain an N-terminal intracellular domain, a trans-membrane helix, a periplasmic domain, a proline-rich region which is probably required for crossing the cell wall, and a C-terminal carbohydrate-binding domain or glycoside hydrolase domain. The periplasmic domain may play a key role in signal transduction; however, its three-dimensional structure is still unknown. Here we report the NMR resonance assignments of the periplasmic domain of anti-sigma factor RsgI2 from C. thermocellum as a basis for further structural determination and functional studies.
      PubDate: 2015-02-15
  • 1 H, 13 C and 15 N resonance assignment of the anti-HIV lectin from
           Oscillatoria agardhii
    • Abstract: Abstract Lectins from different sources are known to interfere with HIV infection. The anti-viral activity is mediated by binding to high mannose sugars present on the viral envelope, thereby inhibiting cell entry. The lectin from Oscillatoria agardhii agglutinin (OAA) specifically recognizes a unique substructure of high mannose sugars and exhibits broad anti-HIV activity. Here we report the assignment of backbone and side-chain 1H, 13C and 15N resonances of free OAA.
      PubDate: 2015-02-14
  • 1 H, 15 N and 13 C resonance assignments of translationally-controlled
           tumor protein from photosynthetic microalga Nannochloropsis oceanica
    • Abstract: Abstract Translationally-controlled tumor protein (TCTP) is a eukaryote-conserved protein with crucial roles in cellular growth. It has also been proposed that plant TCTP has functions specific to plant, while no structure of TCTP from photosynthetic organism has been reported. Nannochloropsis is a photosynthetic microalga with high yield of lipid and high-value polyunsaturated fatty acid, which is promising for biodiesel production. Study of growth-related proteins may provide new clue for improving the yield of lipid. TCTP from Nannochloropsis oceanica shares low sequence identity with structure-known TCTPs. Here we reported the NMR resonance assignments of TCTP from N. oceanica for further structural and functional studies.
      PubDate: 2015-02-14
  • Resonance assignments and secondary structure of a phytocystatin from
           Sesamum indicum
    • Abstract: Abstract A cDNA encoding a cysteine protease inhibitor, cystatin was cloned from sesame (Sesamum indicum L.) seed. This clone was constructed into an expression vector and expressed in E. coli and purified to homogeneous. The recombinant sesame cystatin (SiCYS) showed effectively inhibitory activity toward C1 cysteine proteases. In order to unravel its inhibitory action from structural point of view, multidimensional heteronuclear NMR techniques were used to characterize the structure of SiCYS. The full 1H, 15N, and 13C resonances of SiCYS were assigned. The secondary structure of SiCYS was identified by using the assigned chemical shifts of 1Hα, 13Cα, 13Cβ, and 13CO through the consensus chemical shift index (CSI). The results of CSI analysis of SiCYS suggest eight β-strands (residues 33–46, 51–61, 63–75, 80–87, 150–155, 157–169, 172–183, and 192–195) and two α-helices (residues 16–30, and 120–135).
      PubDate: 2015-02-12
  • 1 H, 15 N, 13 C resonance assignment of human osteopontin
    • Abstract: Abstract Osteopontin (OPN) is a 33.7 kDa intrinsically disordered protein and a member of the SIBLING family of proteins. OPN is bearing a signal peptide for secretion into the extracellular space, where it exerts its main physiological function, the control of calcium biomineralization. It is often involved in tumorigenic processes influencing proliferation, migration and survival, as well as the adhesive properties of cancer cells via CD44 and integrin signaling pathways. Here we report the nearly complete NMR chemical shift assignment of recombinant human osteopontin.
      PubDate: 2015-01-24
  • NMR resonance assignments of the lantibiotic immunity protein NisI from
           Lactococcus lactis
    • Abstract: Abstract The lantibiotic nisin is a small antimicrobial peptide which acts against a wide range of Gram-positive bacteria. Nisin-producing Lactococcus lactis strains express four genes for self-protection against their own antimicrobial compound. This immunity system consists of the lipoprotein NisI and the ABC transporter NisFEG. NisI is attached to the outside of the cytoplasmic membrane via a covalently linked diacylglycerol anchor. Both the lipoprotein and the ABC transporter are needed for full immunity but the exact immunity mechanism is still unclear. To gain insights into the highly specific immunity mechanism of nisin producing strains on a structural level we present here the backbone resonance assignment of NisI (25.8 kDa) as well as the virtually complete 1H,15N,13C chemical shift assignments for the isolated 12.7 kDa N-terminal and 14.6 kDa C-terminal domains of NisI.
      PubDate: 2015-01-23
  • Chemical shift perturbations induced by residue specific mutations of CaM
           interacting with NOS peptides
    • Abstract: Abstract The regulation of nitric oxide synthase (NOS) by calmodulin (CaM) plays a major role in a number of key physiological and pathological processes. A detailed molecular level picture of how this regulation is achieved is critical for drug development and for our understanding of protein regulation in general. CaM is a small acidic calcium binding protein and is required to fully activate NOS. The exact mechanism of how CaM activates NOS is not fully understood at this time. Studies have shown CaM to act like a switch that causes a conformational change in NOS to allow for the electron transfer between the reductase and oxygenase domains through a process that is thought to be highly dynamic. The interaction of CaM with NOS is modified by a number of post-translation modifications including phosphorylation. Here we present backbone and sidechain 1H, 15N NMR assignments of modified CaM interacting with NOS peptides which provides the basis for a detailed study of CaM–NOS interaction dynamics using 15N relaxation methods.
      PubDate: 2015-01-21
  • 1 H, 13 C and 15 N assignments of EGF domains 4 to 7 of human Notch-1
    • Abstract: Abstract The Notch pathway is a core cell–cell signaling system in Metazoa which plays a key role in development and adult homeostasis. Whereas most Notch structural biology research has focused on the negative regulatory region and the intracellular domain, relatively little structural information is available for the extracellular part of human Notch-1 (hN-1) which mediates ligand recognition. This region consists of 36 epidermal growth factor-like (EGF) domains, many of which contain a calcium-binding consensus sequence. The calcium-binding site in each case is located within the N-terminal portion of the domain, and is associated with both intra- and inter-domain rigidity. The absence of calcium-binding sites in EGF6, EGF10 and EGF22, however, suggests that these domains might represent regions of flexibility in the receptor which could influence the cell-surface architecture (usually depicted as an extended rod projecting from the cell surface). To probe this, we have purified a quadruple-domain construct from hN-1, in which the non-calcium-binding EGF6 is flanked by EGF4–5 and EGF7. Here, we report 1H, 13C and 15N resonance assignments for this four-domain 157 amino acid construct. The assignments presented here are the prerequisite for a detailed study of the structure and dynamics of this region of the Notch receptor.
      PubDate: 2014-12-13
  • NMR assignments of actin depolymerizing factor (ADF) like UNC-60A and
           cofilin like UNC-60B proteins of Caenorhabditis elegans
    • Abstract: Abstract The actin filament dynamics in nematode, Caenorhabditis elegans, is regulated by differential activity of two proteins UNC-60A and UNC-60B. UNC-60A exhibits strong pointed end depolymerization on C. elegans actin (Ce-actin), strong inhibition of polymerization, strong monomer sequestering activity, weak severing activity, and low affinity for F-actin binding, while UNC-60B exhibits strong pointed end depolymerization on rabbit muscle actin, strong severing activity, and high affinity for F-actin binding. Structural characterization of these proteins will help to understand (1) molecular mechanism of actin dynamics regulation and (2) the differential activity of these proteins. Here, we report 1H, 13C, and 15N chemical shift assignments of these two proteins as determined by heteronuclear NMR experiments (at pH 6.5 and temperature 298 K).
      PubDate: 2014-12-11
  • Chemical shift assignments and secondary structure determination of the
           ectodomain of Bacillus subtilis morphogenic protein RodZ
    • Abstract: Abstract RodZ (also known as YfgA) is a component of the core bacterial morphogenic apparatus. RodZ is a key cell shape determinant in rod-shaped bacteria and it interacts with the actin-like cytoskeletal protein MreB. In Bacillus subtilis, this 304-residue transmembrane protein is composed of three distinct domains: a cytoplasmic domain (RodZn), a transmembrane domain, and an extra-cytoplasmic domain (RodZc). Here we report the 1H, 13C and 15N backbone and side chain resonance assignments of the RodZc domain from B. subtilis by NMR spectroscopy, and the resulting secondary structure prediction.
      PubDate: 2014-12-11
  • Chemical shift assignments of mouse HOXD13 DNA binding domain bound to
           duplex DNA
    • Abstract: Abstract The homeobox gene (Hoxd13) codes for a transcription factor protein that binds to AT-rich DNA sequences and controls expression of proteins that control embryonic morphogenesis. We report NMR chemical shift assignments of mouse Hoxd13 DNA binding domain bound to an 11-residue DNA duplex (BMRB No. 25133).
      PubDate: 2014-12-10
  • 1 H, 15 N and 13 C resonance assignments of the RRM1 domain of the key
           post-transcriptional regulator HuR
    • Abstract: Abstract Human antigen R (HuR) is a ubiquitous protein that recognizes adenylate and uridylate-rich elements in mRNA, thereby interfering with the fate of protein translation. This protein plays a central role in the outcome of the inflammatory response as it may stabilize or silence mRNAs of key components of the immune system. HuR is able to interact with other RNA-binding proteins, reflecting a complex network that dictates mRNAs post-transcriptional control. HuR is composed of three functional domains, known as RNA-recognition motifs (RRM1, RRM2 and RRM3). It is known that RRM1 is the most important domain for mRNA-binding affinity. In this study, we completed the NMR chemical shift assignment of the RRM1 domain of HuR, as a first step to further establishing the structure, dynamics and function relationship for this protein.
      PubDate: 2014-12-09
  • Backbone resonance assignments of the 54 kDa dimeric C-terminal
           domain of murine STING in complex with DMXAA
    • Abstract: Abstract The mammalian ER protein STING (stimulators of interferon genes) is an important innate immunity protein for linking detection of novel secondary messengers c-di-GMP, c-di-AMP, cGAMP or cytosolic dsDNA to the activation of TANK kinase 1 and its downstream interferon regulator factor 3. Recently quite a few of crystal structures representing different states of the C-terminal domain (CTD) of human and murine STING (hSTING and mSTING) in complex with c-di-GMP, cGAMP or DMXAA have been reported. However, the C-terminal 42 residues of STING-CTD, which may be important in mediating the downstream reactions, is invisible or absent in all reported X-ray structures. In addition, X-ray crystal structures may be subject to crystal packing force. Hence an alternate method of determining the structure and function of STING in a near physiological condition is essential. We now report the near complete backbone resonance assignments of the 54 kDa dimeric mSTING-CTD in complex with DMXAA, which is the first step in determining its complex structure and understanding why DMXAA, which is a very efficient agent for curing mouse cancer, is totally ineffective in human.
      PubDate: 2014-12-09
  • 1 H, 13 C, and 15 N resonance assignments for the tandem PHD finger motifs
           of human CHD4
    • Abstract: Abstract The plant homeodomain (PHD) zinc finger is a structural motif of about 40–60 amino acid residues found in many eukaryotic proteins that are involved in chromatin-mediated gene regulation. The human chromodomain helicase DNA binding protein 4 (CHD4) is a multi-domain protein that harbours, at its N-terminal end, a pair of PHD finger motifs (dPHD) connected by a ~30 amino acid linker. This tandem PHD motif is thought to be involved in targeting CHD4 to chromatin via its interaction with histone tails. Here we report the 1H, 13C and 15N backbone and side-chain resonance assignment of the entire dPHD by heteronuclear multidimensional NMR spectroscopy. These assignments provide the starting point for the determination of the structure, dynamics and histone-binding properties of this tandem domain pair.
      PubDate: 2014-10-18
  • Resonance assignment of the ligand-free cyclic nucleotide-binding domain
           from the murine ion channel HCN2
    • Abstract: Abstract Hyperpolarization activated and cyclic nucleotide-gated (HCN) ion channels as well as cyclic nucleotide-gated (CNG) ion channels are essential for the regulation of cardiac cells, neuronal excitability, and signaling in sensory cells. Both classes are composed of four subunits. Each subunit comprises a transmembrane region, intracellular N- and C-termini, and a C-terminal cyclic nucleotide-binding domain (CNBD). Binding of cyclic nucleotides to the CNBD promotes opening of both CNG and HCN channels. In case of CNG channels, binding of cyclic nucleotides to the CNBD is sufficient to open the channel. In contrast, HCN channels open upon membrane hyperpolarization and their activity is modulated by binding of cyclic nucleotides shifting the activation potential to more positive values. Although several high-resolution structures of CNBDs from HCN and CNG channels are available, the gating mechanism for murine HCN2 channel, which leads to the opening of the channel pore, is still poorly understood. As part of a structural investigation, here, we report the complete backbone and side chain resonance assignments of the murine HCN2 CNBD with part of the C-linker.
      PubDate: 2014-10-17
  • Solid-state NMR resonance assignments of the filament-forming CARD domain
           of the innate immunity signaling protein MAVS
    • Abstract: Abstract The mitochondrial antiviral signalling protein (MAVS) is a central signal transduction hub in the innate immune response against viral infections. Viral RNA present in the cytoplasm is detected by retinoic acid inducible gene I like receptors, which then activate MAVS via heterotypic interactions between their respective caspase activation and recruitment domains (CARD). This leads to the formation of active, high molecular weight MAVS complexes formed by homotypic interactions between the single N-terminal CARDs of MAVS. Filaments formed by the N-terminal MAVSCARD alone are sufficient to induce the autocatalytic conversion from a monomeric to an aggregated state in a prion-like manner. Here, we present the nearly complete spectroscopic 13C and 15N resonance assignments of human MAVSCARD filaments obtained from a single sample by magic angle spinning solid-state NMR spectroscopy. The corresponding secondary chemical shifts suggest that the filamentous form of MAVSCARD retains an exclusively alpha-helical fold that is very similar to the X-ray structure determined previously from monomeric MAVSCARD-maltose binding protein fusion constructs.
      PubDate: 2014-10-10
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2014