for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> CHEMISTRY (Total: 839 journals)
    - ANALYTICAL CHEMISTRY (47 journals)
    - CHEMISTRY (590 journals)
    - CRYSTALLOGRAPHY (22 journals)
    - ELECTROCHEMISTRY (26 journals)
    - INORGANIC CHEMISTRY (41 journals)
    - ORGANIC CHEMISTRY (45 journals)
    - PHYSICAL CHEMISTRY (68 journals)

CHEMISTRY (590 journals)                  1 2 3 4 5 6 | Last

2D Materials     Hybrid Journal   (Followers: 5)
Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 26)
ACS Catalysis     Full-text available via subscription   (Followers: 28)
ACS Chemical Neuroscience     Full-text available via subscription   (Followers: 16)
ACS Combinatorial Science     Full-text available via subscription   (Followers: 18)
ACS Macro Letters     Full-text available via subscription   (Followers: 20)
ACS Medicinal Chemistry Letters     Full-text available via subscription   (Followers: 25)
ACS Nano     Full-text available via subscription   (Followers: 247)
ACS Photonics     Full-text available via subscription   (Followers: 5)
ACS Synthetic Biology     Full-text available via subscription   (Followers: 16)
Acta Chemica Iasi     Open Access  
Acta Chimica Sinica     Full-text available via subscription  
Acta Chimica Slovaca     Open Access   (Followers: 5)
Acta Chromatographica     Full-text available via subscription   (Followers: 9)
Acta Facultatis Medicae Naissensis     Open Access   (Followers: 1)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 7)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 5)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 5)
Adsorption Science & Technology     Full-text available via subscription   (Followers: 10)
Advanced Functional Materials     Hybrid Journal   (Followers: 43)
Advanced Science Focus     Free   (Followers: 2)
Advances in Chemical Engineering and Science     Open Access   (Followers: 26)
Advances in Chemical Science     Open Access   (Followers: 10)
Advances in Chemistry     Open Access  
Advances in Colloid and Interface Science     Full-text available via subscription   (Followers: 14)
Advances in Drug Research     Full-text available via subscription   (Followers: 19)
Advances in Environmental Chemistry     Open Access  
Advances in Enzyme Research     Open Access   (Followers: 1)
Advances in Fluorine Science     Full-text available via subscription   (Followers: 7)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 13)
Advances in Heterocyclic Chemistry     Full-text available via subscription   (Followers: 8)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 15)
Advances in Nanoparticles     Open Access   (Followers: 12)
Advances in Organometallic Chemistry     Full-text available via subscription   (Followers: 10)
Advances in Polymer Science     Hybrid Journal   (Followers: 37)
Advances in Protein Chemistry     Full-text available via subscription   (Followers: 7)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 11)
Advances in Quantum Chemistry     Full-text available via subscription   (Followers: 6)
African Journal of Chemical Education     Open Access   (Followers: 1)
African Journal of Pure and Applied Chemistry     Open Access   (Followers: 5)
Afrique Science : Revue Internationale des Sciences et Technologie     Open Access   (Followers: 1)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 1)
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 4)
AMB Express     Open Access  
Ambix     Hybrid Journal   (Followers: 2)
American Journal of Applied Sciences     Open Access   (Followers: 32)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 121)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 11)
American Journal of Chemistry     Open Access   (Followers: 23)
American Journal of Plant Physiology     Open Access   (Followers: 11)
American Mineralogist     Full-text available via subscription   (Followers: 7)
Analyst     Full-text available via subscription   (Followers: 38)
Angewandte Chemie     Hybrid Journal   (Followers: 22)
Angewandte Chemie International Edition     Hybrid Journal   (Followers: 183)
Annales UMCS, Chemia     Open Access   (Followers: 2)
Annals of Clinical Chemistry and Laboratory Medicine     Open Access   (Followers: 1)
Annual Reports in Computational Chemistry     Full-text available via subscription   (Followers: 1)
Annual Reports Section A (Inorganic Chemistry)     Full-text available via subscription   (Followers: 3)
Annual Reports Section B (Organic Chemistry)     Full-text available via subscription   (Followers: 7)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 10)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 13)
Anti-Infective Agents     Hybrid Journal   (Followers: 2)
Antiviral Chemistry and Chemotherapy     Full-text available via subscription  
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 4)
Applied Spectroscopy     Full-text available via subscription   (Followers: 16)
Applied Surface Science     Hybrid Journal   (Followers: 22)
Arabian Journal of Chemistry     Full-text available via subscription   (Followers: 6)
ARKIVOC     Open Access   (Followers: 1)
Asian Journal of Biochemistry     Open Access   (Followers: 1)
Australian Journal of Chemistry     Hybrid Journal   (Followers: 5)
Autophagy     Hybrid Journal   (Followers: 3)
Avances en Quimica     Open Access   (Followers: 1)
Biochemical Pharmacology     Hybrid Journal   (Followers: 6)
Biochemistry     Full-text available via subscription   (Followers: 199)
Biochemistry Insights     Open Access   (Followers: 4)
Biochemistry Research International     Open Access   (Followers: 5)
BioChip Journal     Hybrid Journal   (Followers: 1)
Bioinorganic Chemistry and Applications     Open Access   (Followers: 5)
Bioinspired Materials     Open Access   (Followers: 1)
Biointerface Research in Applied Chemistry     Open Access   (Followers: 1)
Biointerphases     Open Access   (Followers: 1)
Biology, Medicine, & Natural Product Chemistry     Open Access  
Biomacromolecules     Full-text available via subscription   (Followers: 19)
Biomass Conversion and Biorefinery     Partially Free   (Followers: 7)
Biomedical Chromatography     Hybrid Journal   (Followers: 7)
Biomolecular NMR Assignments     Hybrid Journal   (Followers: 2)
BioNanoScience     Partially Free   (Followers: 4)
Bioorganic & Medicinal Chemistry     Hybrid Journal   (Followers: 31)
Bioorganic & Medicinal Chemistry Letters     Hybrid Journal   (Followers: 25)
Bioorganic Chemistry     Hybrid Journal   (Followers: 5)
Biopolymers     Hybrid Journal   (Followers: 16)
Biosensors     Open Access   (Followers: 3)
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 3)
Boletin de la Sociedad Chilena de Quimica     Open Access  
Bulletin of the Chemical Society of Ethiopia     Open Access   (Followers: 3)
Bulletin of the Chemical Society of Japan     Full-text available via subscription   (Followers: 14)
C - Journal of Carbon Research     Open Access  
Cakra Kimia (Indonesian E-Journal of Applied Chemistry)     Open Access  
Canadian Association of Radiologists Journal     Full-text available via subscription   (Followers: 4)
Canadian Journal of Chemistry     Full-text available via subscription   (Followers: 5)

        1 2 3 4 5 6 | Last

Journal Cover   Biomolecular NMR Assignments
  [SJR: 0.393]   [H-I: 8]   [2 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1874-270X - ISSN (Online) 1874-2718
   Published by Springer-Verlag Homepage  [2276 journals]
  • Sequence-specific 1 H, 13 C and 15 N backbone resonance assignments of the
           plakin repeat domain of human envoplakin
    • Abstract: Abstract The plakin repeat domain is a distinctive hallmark of the plakin superfamily of proteins, which are found within all epithelial tissues. Plakin repeat domains mediate the interactions of these proteins with the cell cytoskeleton and are critical for the maintenance of tissue integrity. Despite their biological importance, no solution state resonance assignments are available for any homologue. Here we report the essentially complete 1H, 13C and 15N backbone chemical shift assignments of the singular 22 kDa plakin repeat domain of human envoplakin, providing the means to investigate its interactions with ligands including intermediate filaments.
      PubDate: 2015-11-21
  • 1 H, 15 N and 13 C chemical shift assignment of the Gram-positive
           conjugative transfer protein TraH pIP501
    • Abstract: Abstract Conjugative transfer of DNA represents the most important transmission pathway in terms of antibiotic resistance and virulence gene dissemination among bacteria. TraH is a putative transfer protein of the type IV secretion system (T4SS) encoded by the Gram-positive (G+) conjugative plasmid pIP501. This molecular machine involves a multi-protein core complex spanning the bacterial envelope thereby serving as a macromolecular secretion channel. Here, we report the near complete 1H, 13C and 15N resonance assignment of a soluble TraH variant comprising the C-terminal domain.
      PubDate: 2015-11-11
  • 1 H, 13 C and 15 N resonance assignments and secondary structure analysis
           of CmPI-II, a serine protease inhibitor isolated from marine snail
           Cenchritis muricatus
    • Abstract: Abstract A protease inhibitor (CmPI-II) (UNIPROT: IPK2_CENMR) from the marine mollusc Cenchritis muricatus, has been isolated and characterized. It is the first member of a new group (group 3) of non-classical Kazal-type inhibitors. CmPI-II is a tight-binding inhibitor of serine proteases: trypsin, human neutrophil elastase (HNE), subtilisin A and pancreatic elastase. This specificity is exceptional in the members of Kazal-type inhibitor family. Several models of three-dimensional structure of CmPI-II have been constructed by homology with other inhibitors of the family but its structure has not yet been solved experimentally. Here we report the 1H, 15N and 13C chemical shift assignments of CmPI-II as basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified three β-strands β1: residues 14–19, β2: 23–35 and β3: 43–45 and one helix α1: 28–37 arranged in the sequential order β1–β2–α1–β3. These secondary structure elements suggest that CmPI-II adopts the typical scaffold of a Kazal-type inhibitor.
      PubDate: 2015-11-07
  • Backbone and side-chain NMR assignments for the bromodomain of mouse BAZ1A
    • Abstract: Abstract BAZ1A, a non-catalytic subunit of the chromatin remodeler complexes ACF and CHRAC, is thought to modulate the ATPase’s activity of the complexes and participate in gene transcription, DNA damage checkpoint and double-strand break repair. Recently, the essential role of BAZ1A in mouse male fertility has also been reported. BAZ1A contains one C-terminal bromodomain, which specifically recognizes acetylation of lysine. Here, we report the backbone and side chain 1H, 13C and 15N resonance assignment of the mouse BAZ1A-bromodomain, as a basis for further functional studies and structure determination.
      PubDate: 2015-11-05
  • 1 H, 13 C, and 15 N chemical shift assignments of cyanobacteriochrome
           NpR6012g4 in the green-absorbing photoproduct state
    • Abstract: Abstract Cyanobacteriochromes (CBCRs) are cyanobacterial photosensory proteins with a tetrapyrrole (bilin) chromophore that belong to the phytochrome superfamily. Like phytochromes, CBCRs photoconvert between two photostates with distinct spectral properties. NpR6012g4 from Nostoc punctiforme is a model system for widespread CBCRs with conserved red/green photocycles. Atomic-level structural information for the photoproduct state in this subfamily is not known. Here, we report NMR backbone chemical shift assignments of the light-activated state of NpR6012g4 (BMRB no. 26577) as a first step toward determining its atomic resolution structure.
      PubDate: 2015-11-04
  • NMR assignments of the peptidyl-prolyl cis–trans isomerase domain of
           trigger factor from E. coli
    • Abstract: Abstract Trigger factor (TF) is a highly conserved multi-domain molecular chaperone in bacteria. It binds via its ribosome binding domain (RBD) to the ribosomal tunnel exit and facilitates co-translational folding of a broad range of protein substrates primarily through interactions with the substrate binding domain (SBD) adjacent to the RBD. Within the SBD, a peptidyl-prolyl cis–trans isomerase (PPIase) domain is inserted leading to an unusual domain insertion, which may provide stabilizing effect to the highly plastic SBD. Here we report the near complete NMR assignments of TF PPIase providing the basis for subsequent structural and folding in the context of the chaperone activity of TF.
      PubDate: 2015-11-02
  • Backbone and side chain chemical shift assignments of apolipophorin III
           from Galleria mellonella
    • Abstract: Abstract Apolipophorin III, a 163 residue monomeric protein from the greater wax moth Galleria mellonella (abbreviated as apoLp-IIIGM), has roles in upregulating expression of antimicrobial proteins as well as binding and deforming bacterial membranes. Due to its similarity to vertebrate apolipoproteins there is interest in performing atomic resolution analysis of apoLp-IIIGM as part of an effort to better understand its mechanism of action in innate immunity. In the first step towards structural characterization of apoLp-IIIGM, 99 % of backbone and 88 % of side chain 1H, 13C and 15N chemical shifts were assigned. TALOS+ analysis of the backbone resonances has predicted that the protein is composed of five long helices, which is consistent with the reported structures of apolipophorins from other insect species. The next stage in the characterization of apoLp-III from G. mellonella will be to utilize these resonance assignments in solving the solution structure of this protein.
      PubDate: 2015-10-22
  • 1 H, 15 N, and 13 C chemical shift assignments of cyanobacteriochrome
           NpR6012g4 in the red-absorbing dark state
    • Abstract: Abstract Cyanobacteriochrome (CBCR) photosensory proteins are phytochrome homologs using bilin chromophores for light sensing across the visible spectrum. NpR6012g4 is a CBCR from Nostoc punctiforme that serves as a model for a widespread CBCR subfamily with red/green photocycles. We report NMR chemical shift assignments for both the protein backbone and side-chain resonances of the red-absorbing dark state of NpR6012g4 (BMRB no. 26582).
      PubDate: 2015-10-19
  • Sequential backbone resonance assignments of the E. coli dihydrofolate
           reductase Gly67Val mutant: folate complex
    • Abstract: Abstract Occasionally, a mutation in an exposed loop region causes a significant change in protein function and/or stability. A single mutation Gly67Val of E. coli dihydrofolate reductase (DHFR) in the exposed CD loop is such an example. We have carried out the chemical shift assignments for HN, NH, Cα and Cβ atoms of the Gly67Val mutant of E. coli DHFR complexed with folate at pH 7.0, 35 °C, and then evaluated the HN, NH, Cα and Cβ chemical shift changes caused by the mutation. The result indicates that, while the overall secondary structure remains the same, the single mutation Gly67Val causes site-specific conformational changes of the polypeptide backbone restricted around the adenosine-binding subdomain (residues 38–88) and not in the distant catalytic domain.
      PubDate: 2015-10-19
  • Backbone assignment of the N-terminal 24-kDa fragment of Escherichia coli
           topoisomerase IV ParE subunit
    • Abstract: Abstract Bacterial DNA topoisomerases are important drug targets due to their importance in DNA replication and low homology to human topoisomerases. The N-terminal 24 kDa region of E. coli topoisomerase IV E subunit (eParE) contains the ATP binding pocket. Structure—based drug discovery has been proven to be an efficient way to develop potent ATP competitive inhibitors against ParEs. NMR spectroscopy is a powerful tool to understand protein and inhibitor interactions in solution. In this study, we report the backbone assignment for the N-terminal domain of E. coli ParE. The secondary structural information and the assignment will aid in structure—based antibacterial agents development targeting eParE.
      PubDate: 2015-10-19
  • 1 H, 13 C and 15 N assignments of EGF domains 8–11 of human Notch-1
    • Abstract: Abstract The Notch receptor is part of a core cell–cell signaling system crucial for development and tissue homeostasis in Metazoa. Structural information is available for the negative regulatory region, the ligand-binding region and the intracellular domain of Notch, but data for the remaining portions of the extracellular region which determine its overall shape at the cell surface are still lacking. This region consists of 36 EGF-like domains arranged as multiple tandem repeats. Most EGF-like domains near the ligand-binding domains EGF11 and 12 are of the calcium-binding type, with well-described, rigid and near-linear interdomain interfaces. However, EGF10 is a conserved, non-calcium-binding domain which may confer flexibility or a non-linear organization to the receptor. To probe this, we have expressed and purified a four-domain construct, EGF8–11, from human Notch-1, and report here the 1H, 13C and 15N resonance assignments. Differences in EGF11 chemical shifts between this construct and a previously assigned construct, EGF11–13, confirm the presence of hydrophobic interdomain contacts between the hairpin turn of the major β-sheet in EGF11 and the conserved aromatic residue within the C-terminal region of EGF10. This suggests that the EGF10–11 interface is rigid.
      PubDate: 2015-10-01
  • Resonance assignments and secondary structure of a phytocystatin from
           Sesamum indicum
    • Abstract: Abstract A cDNA encoding a cysteine protease inhibitor, cystatin was cloned from sesame (Sesamum indicum L.) seed. This clone was constructed into an expression vector and expressed in E. coli and purified to homogeneous. The recombinant sesame cystatin (SiCYS) showed effectively inhibitory activity toward C1 cysteine proteases. In order to unravel its inhibitory action from structural point of view, multidimensional heteronuclear NMR techniques were used to characterize the structure of SiCYS. The full 1H, 15N, and 13C resonances of SiCYS were assigned. The secondary structure of SiCYS was identified by using the assigned chemical shifts of 1Hα, 13Cα, 13Cβ, and 13CO through the consensus chemical shift index (CSI). The results of CSI analysis of SiCYS suggest eight β-strands (residues 33–46, 51–61, 63–75, 80–87, 150–155, 157–169, 172–183, and 192–195) and two α-helices (residues 16–30, and 120–135).
      PubDate: 2015-10-01
  • Resonance assignments for the substrate binding domain of Hsp70 chaperone
           Ssa1 from Saccharomyces cerevisiae
    • Abstract: Abstract Hsp70 chaperone proteins play crucial roles in the cell. Extensive structural and functional studies have been performed for bacterial and mammalian Hsp70s. Ssa1 from Saccharomyces cerevisiae is a member of the Hsp70 family. In vivo and biochemical studies on Ssa1 have revealed that it regulates prion propagation and the cell cycle. However, no structural data has been obtained for Ssa1 up to now. Here we report the almost complete (96 %) 1H, 13C, 15N backbone and side chain NMR assignment of the 18.8 kDa Ssa1 substrate binding domain. The construct includes residues 382–554, which corresponds to the entire substrate binding domain and two following α-helices in homologous structures. The secondary structure predicted from the assigned chemical shifts is consistent with that of homologous Hsp70 substrate binding domains.
      PubDate: 2015-10-01
  • NMR assignments of actin depolymerizing factor (ADF) like UNC-60A and
           cofilin like UNC-60B proteins of Caenorhabditis elegans
    • Abstract: Abstract The actin filament dynamics in nematode, Caenorhabditis elegans, is regulated by differential activity of two proteins UNC-60A and UNC-60B. UNC-60A exhibits strong pointed end depolymerization on C. elegans actin (Ce-actin), strong inhibition of polymerization, strong monomer sequestering activity, weak severing activity, and low affinity for F-actin binding, while UNC-60B exhibits strong pointed end depolymerization on rabbit muscle actin, strong severing activity, and high affinity for F-actin binding. Structural characterization of these proteins will help to understand (1) molecular mechanism of actin dynamics regulation and (2) the differential activity of these proteins. Here, we report 1H, 13C, and 15N chemical shift assignments of these two proteins as determined by heteronuclear NMR experiments (at pH 6.5 and temperature 298 K).
      PubDate: 2015-10-01
  • Resonance assignment of PsbP: an extrinsic protein from photosystem II of
           Spinacia oleracea
    • Abstract: Abstract PsbP (23 kDa) is an extrinsic eukaryotic protein of photosystem II found in the thylakoid membrane of higher plants and green algae. It has been proven to be indispensable for proper functioning of the oxygen evolving complex. By interaction with other extrinsic proteins (PsbQ, PsbO and PsbR), it modulates the concentration of two cofactors of the water splitting reaction, Ca2+ and Cl−. The crystallographic structure of PsbP from Spinacia oleracea lacks the N-terminal part as well as two inner regions which were modelled as loops. Those unresolved parts are believed to be functionally crucial for the binding of PsbP to the thylakoid membrane. In this NMR study we report 1H, 15N and 13C resonance assignments of the backbone and side chain atoms of the PsbP protein. Based on these data, an estimate of the secondary structure has been made. The structural motifs found fit the resolved parts of the crystallographic structure very well. In addition, the complete assignment set provides preliminary insight into the dynamic regions.
      PubDate: 2015-10-01
  • 1 H, 15 N and 13 C resonance assignments of the RRM1 domain of the key
           post-transcriptional regulator HuR
    • Abstract: Abstract Human antigen R (HuR) is a ubiquitous protein that recognizes adenylate and uridylate-rich elements in mRNA, thereby interfering with the fate of protein translation. This protein plays a central role in the outcome of the inflammatory response as it may stabilize or silence mRNAs of key components of the immune system. HuR is able to interact with other RNA-binding proteins, reflecting a complex network that dictates mRNAs post-transcriptional control. HuR is composed of three functional domains, known as RNA-recognition motifs (RRM1, RRM2 and RRM3). It is known that RRM1 is the most important domain for mRNA-binding affinity. In this study, we completed the NMR chemical shift assignment of the RRM1 domain of HuR, as a first step to further establishing the structure, dynamics and function relationship for this protein.
      PubDate: 2015-10-01
  • 1 H, 13 C and 15 N assignments of EGF domains 4 to 7 of human Notch-1
    • Abstract: Abstract The Notch pathway is a core cell–cell signaling system in Metazoa which plays a key role in development and adult homeostasis. Whereas most Notch structural biology research has focused on the negative regulatory region and the intracellular domain, relatively little structural information is available for the extracellular part of human Notch-1 (hN-1) which mediates ligand recognition. This region consists of 36 epidermal growth factor-like (EGF) domains, many of which contain a calcium-binding consensus sequence. The calcium-binding site in each case is located within the N-terminal portion of the domain, and is associated with both intra- and inter-domain rigidity. The absence of calcium-binding sites in EGF6, EGF10 and EGF22, however, suggests that these domains might represent regions of flexibility in the receptor which could influence the cell-surface architecture (usually depicted as an extended rod projecting from the cell surface). To probe this, we have purified a quadruple-domain construct from hN-1, in which the non-calcium-binding EGF6 is flanked by EGF4–5 and EGF7. Here, we report 1H, 13C and 15N resonance assignments for this four-domain 157 amino acid construct. The assignments presented here are the prerequisite for a detailed study of the structure and dynamics of this region of the Notch receptor.
      PubDate: 2015-10-01
  • Backbone assignment of the three dimers of HU from Escherichia coli at
           293 K: EcHUα 2 , EcHUβ 2 and EcHUαβ
    • Abstract: Abstract HU is one of the major nucleoid-associated proteins involved in bacterial chromosome structure and in all DNA-dependent cellular activities. Similarly to eukaryotic histones, this small dimeric basic protein wraps DNA in a non-sequence specific manner, promoting DNA super-structures. In most bacteria, HU is a homodimeric protein encoded by a single gene. However, in enterobacteria such as Escherichia coli, the presence of two genes coding for two peptidic chains, HUα and HUβ, lead to the coexistence of three forms: two homodimers EcHUα2 and EcHUβ2, as well as a heterodimer EcHUαβ. Genetic and biochemical investigation suggest that each EcHU dimer plays a specific physiological role in bacteria. Their relative abundance depends on the environmental conditions and is driven by an essential, yet unknown, fast outstanding chain-exchange mechanism at physiological temperature. Our goal is to understand this fundamental mechanism from a structural and kinetics standpoint using NMR. For this purpose, the first steps are the assignment of each dimer in their native and intermediate states. Here, we report the backbone assignment of each HU dimers from E. coli at 293 K in their native state.
      PubDate: 2015-10-01
  • Chemical shift assignments of DRB4 (1–153), a dsRNA binding protein
           in A. thaliana RNAi pathway
    • Abstract: Abstract RNA interference (RNAi) is a conserved biological response to dsRNA and regulates the expression of protein-coding genes to mediate resistance to both endogenous parasitic and exogenous pathogenic nucleic acids. In RNAi pathway, dsRNA binding proteins assists Dicer at various stages of RNAi. In plants, DRB4, is a multidomain protein containing two dsRNA binding domains that recognizes the long exogenous/endogenous dsRNA and presents it to Ribonuclease enzyme, Dicer like 4, resulting in the production of 21 nt small interfering RNA. Here, we report nearly complete backbone and sidechain chemical shift assignments of N-terminus of DRB4 (1–153, ~18 kDa), containing both double stranded RNA binding domains and the linker.
      PubDate: 2015-10-01
  • Chemical shift assignments of a new folded domain from yeast Pcf11
    • Abstract: Abstract The yeast protein Pcf11 is a component of the cleavage/polyadenylation factor IA (CF IA) complex involved in the 3′ processing of pre-mRNA. Pcf11 interacts with RNA and the C-terminal domain (CTD) of the largest subunit of RNA polymerase II via the CTD-interaction domain (CID), and other peptide regions mediate contacts with CF IA subunits Clp1 and Rna14/Rna15. We have identified a novel domain adjacent to the CID and have determined the backbone and sidechain 1H, 13C and 15N chemical shift assignments for the bacterially produced construct. Despite the reduced sequence complexity due to numerous glutamine and leucine residues, secondary chemical shift analysis indicates that the domain is composed of three well-defined helical regions with relaxation measurements consistent with a folded independent domain. The proximity of this previously uncharacterized domain close to the N-terminal CID prompts speculation for a putative role in modulating CTD and RNA binding, or possible intermolecular contacts within CF IA.
      PubDate: 2015-07-02
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2015