for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> CHEMISTRY (Total: 886 journals)
    - ANALYTICAL CHEMISTRY (55 journals)
    - CHEMISTRY (619 journals)
    - CRYSTALLOGRAPHY (21 journals)
    - ELECTROCHEMISTRY (28 journals)
    - INORGANIC CHEMISTRY (43 journals)
    - ORGANIC CHEMISTRY (49 journals)
    - PHYSICAL CHEMISTRY (71 journals)

CHEMISTRY (619 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 735 Journals sorted alphabetically
2D Materials     Hybrid Journal   (Followers: 14)
Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 27)
ACS Catalysis     Hybrid Journal   (Followers: 44)
ACS Chemical Neuroscience     Hybrid Journal   (Followers: 22)
ACS Combinatorial Science     Hybrid Journal   (Followers: 23)
ACS Macro Letters     Hybrid Journal   (Followers: 26)
ACS Medicinal Chemistry Letters     Hybrid Journal   (Followers: 43)
ACS Nano     Hybrid Journal   (Followers: 299)
ACS Photonics     Hybrid Journal   (Followers: 14)
ACS Symposium Series     Full-text available via subscription  
ACS Synthetic Biology     Hybrid Journal   (Followers: 25)
Acta Chemica Iasi     Open Access   (Followers: 5)
Acta Chimica Slovaca     Open Access   (Followers: 2)
Acta Chimica Slovenica     Open Access   (Followers: 1)
Acta Chromatographica     Full-text available via subscription   (Followers: 8)
Acta Facultatis Medicae Naissensis     Open Access  
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 7)
Acta Scientifica Naturalis     Open Access   (Followers: 3)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 8)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 9)
Adsorption Science & Technology     Open Access   (Followers: 6)
Advanced Functional Materials     Hybrid Journal   (Followers: 60)
Advanced Science Focus     Free   (Followers: 5)
Advances in Chemical Engineering and Science     Open Access   (Followers: 69)
Advances in Chemical Science     Open Access   (Followers: 18)
Advances in Chemistry     Open Access   (Followers: 23)
Advances in Colloid and Interface Science     Full-text available via subscription   (Followers: 19)
Advances in Drug Research     Full-text available via subscription   (Followers: 24)
Advances in Environmental Chemistry     Open Access   (Followers: 7)
Advances in Enzyme Research     Open Access   (Followers: 10)
Advances in Fluorine Science     Full-text available via subscription   (Followers: 9)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 16)
Advances in Heterocyclic Chemistry     Full-text available via subscription   (Followers: 12)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 26)
Advances in Nanoparticles     Open Access   (Followers: 15)
Advances in Organometallic Chemistry     Full-text available via subscription   (Followers: 17)
Advances in Polymer Science     Hybrid Journal   (Followers: 45)
Advances in Protein Chemistry     Full-text available via subscription   (Followers: 18)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 20)
Advances in Quantum Chemistry     Full-text available via subscription   (Followers: 6)
Advances in Science and Technology     Full-text available via subscription   (Followers: 12)
African Journal of Bacteriology Research     Open Access  
African Journal of Chemical Education     Open Access   (Followers: 3)
African Journal of Pure and Applied Chemistry     Open Access   (Followers: 8)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Al-Kimia : Jurnal Penelitian Sains Kimia     Open Access  
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 2)
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 68)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 21)
American Journal of Chemistry     Open Access   (Followers: 32)
American Journal of Plant Physiology     Open Access   (Followers: 11)
American Mineralogist     Hybrid Journal   (Followers: 15)
Analyst     Full-text available via subscription   (Followers: 38)
Angewandte Chemie     Hybrid Journal   (Followers: 172)
Angewandte Chemie International Edition     Hybrid Journal   (Followers: 255)
Annales UMCS, Chemia     Open Access   (Followers: 1)
Annals of Clinical Chemistry and Laboratory Medicine     Open Access   (Followers: 5)
Annual Reports in Computational Chemistry     Full-text available via subscription   (Followers: 3)
Annual Reports Section A (Inorganic Chemistry)     Full-text available via subscription   (Followers: 4)
Annual Reports Section B (Organic Chemistry)     Full-text available via subscription   (Followers: 9)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 12)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 13)
Anti-Infective Agents     Hybrid Journal   (Followers: 3)
Antiviral Chemistry and Chemotherapy     Open Access   (Followers: 2)
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 9)
Applied Spectroscopy     Full-text available via subscription   (Followers: 24)
Applied Surface Science     Hybrid Journal   (Followers: 32)
Arabian Journal of Chemistry     Open Access   (Followers: 6)
ARKIVOC     Open Access   (Followers: 1)
Asian Journal of Biochemistry     Open Access   (Followers: 2)
Asian Journal of Chemistry and Pharmaceutical Sciences     Open Access  
Atomization and Sprays     Full-text available via subscription   (Followers: 4)
Australian Journal of Chemistry     Hybrid Journal   (Followers: 7)
Autophagy     Hybrid Journal   (Followers: 3)
Avances en Quimica     Open Access  
Biochemical Pharmacology     Hybrid Journal   (Followers: 10)
Biochemistry     Hybrid Journal   (Followers: 371)
Biochemistry Insights     Open Access   (Followers: 6)
Biochemistry Research International     Open Access   (Followers: 6)
BioChip Journal     Hybrid Journal  
Bioinorganic Chemistry and Applications     Open Access   (Followers: 11)
Bioinspired Materials     Open Access   (Followers: 5)
Biointerface Research in Applied Chemistry     Open Access   (Followers: 2)
Biointerphases     Open Access   (Followers: 1)
Biology, Medicine, & Natural Product Chemistry     Open Access   (Followers: 2)
Biomacromolecules     Hybrid Journal   (Followers: 22)
Biomass Conversion and Biorefinery     Partially Free   (Followers: 10)
Biomedical Chromatography     Hybrid Journal   (Followers: 6)
Biomolecular NMR Assignments     Hybrid Journal   (Followers: 3)
BioNanoScience     Partially Free   (Followers: 5)
Bioorganic & Medicinal Chemistry     Hybrid Journal   (Followers: 133)
Bioorganic & Medicinal Chemistry Letters     Hybrid Journal   (Followers: 87)
Bioorganic Chemistry     Hybrid Journal   (Followers: 10)
Biopolymers     Hybrid Journal   (Followers: 18)
Biosensors     Open Access   (Followers: 2)
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 1)
Bitácora Digital     Open Access  
Boletin de la Sociedad Chilena de Quimica     Open Access  
Bulletin of the Chemical Society of Ethiopia     Open Access   (Followers: 1)
Bulletin of the Chemical Society of Japan     Full-text available via subscription   (Followers: 24)
Bulletin of the Korean Chemical Society     Hybrid Journal   (Followers: 1)
C - Journal of Carbon Research     Open Access   (Followers: 3)
Cakra Kimia (Indonesian E-Journal of Applied Chemistry)     Open Access  
Canadian Association of Radiologists Journal     Full-text available via subscription   (Followers: 2)
Canadian Journal of Chemistry     Hybrid Journal   (Followers: 11)
Canadian Mineralogist     Full-text available via subscription   (Followers: 6)
Carbohydrate Research     Hybrid Journal   (Followers: 26)
Carbon     Hybrid Journal   (Followers: 70)
Catalysis for Sustainable Energy     Open Access   (Followers: 8)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 7)
Catalysis Science and Technology     Free   (Followers: 8)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysts     Open Access   (Followers: 10)
Cellulose     Hybrid Journal   (Followers: 7)
Cereal Chemistry     Full-text available via subscription   (Followers: 5)
ChemBioEng Reviews     Full-text available via subscription   (Followers: 1)
ChemCatChem     Hybrid Journal   (Followers: 8)
Chemical and Engineering News     Free   (Followers: 22)
Chemical Bulletin of Kazakh National University     Open Access  
Chemical Communications     Full-text available via subscription   (Followers: 75)
Chemical Engineering Research and Design     Hybrid Journal   (Followers: 27)
Chemical Research in Chinese Universities     Hybrid Journal   (Followers: 3)
Chemical Research in Toxicology     Hybrid Journal   (Followers: 22)
Chemical Reviews     Hybrid Journal   (Followers: 200)
Chemical Science     Open Access   (Followers: 27)
Chemical Technology     Open Access   (Followers: 28)
Chemical Vapor Deposition     Hybrid Journal   (Followers: 5)
Chemie in Unserer Zeit     Hybrid Journal   (Followers: 57)
Chemie-Ingenieur-Technik (Cit)     Hybrid Journal   (Followers: 24)
ChemInform     Hybrid Journal   (Followers: 8)
Chemistry & Biodiversity     Hybrid Journal   (Followers: 7)
Chemistry & Biology     Full-text available via subscription   (Followers: 33)
Chemistry & Industry     Hybrid Journal   (Followers: 8)
Chemistry - A European Journal     Hybrid Journal   (Followers: 163)
Chemistry - An Asian Journal     Hybrid Journal   (Followers: 16)
Chemistry and Materials Research     Open Access   (Followers: 21)
Chemistry Central Journal     Open Access   (Followers: 4)
Chemistry Education Research and Practice     Free   (Followers: 4)
Chemistry in Education     Open Access   (Followers: 9)
Chemistry International     Open Access   (Followers: 3)
Chemistry Letters     Full-text available via subscription   (Followers: 45)
Chemistry of Materials     Hybrid Journal   (Followers: 262)
Chemistry of Natural Compounds     Hybrid Journal   (Followers: 9)
Chemistry World     Full-text available via subscription   (Followers: 20)
Chemistry-Didactics-Ecology-Metrology     Open Access   (Followers: 1)
ChemistryOpen     Open Access   (Followers: 1)
Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik     Hybrid Journal  
Chemoecology     Hybrid Journal   (Followers: 4)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 15)
Chemosensors     Open Access  
ChemPhysChem     Hybrid Journal   (Followers: 12)
ChemPlusChem     Hybrid Journal   (Followers: 2)
ChemTexts     Hybrid Journal  
CHIMIA International Journal for Chemistry     Full-text available via subscription   (Followers: 2)
Chinese Journal of Chemistry     Hybrid Journal   (Followers: 6)
Chinese Journal of Polymer Science     Hybrid Journal   (Followers: 11)
Chromatographia     Hybrid Journal   (Followers: 23)
Chromatography     Open Access   (Followers: 2)
Chromatography Research International     Open Access   (Followers: 6)
Cogent Chemistry     Open Access   (Followers: 2)
Colloid and Interface Science Communications     Open Access  
Colloid and Polymer Science     Hybrid Journal   (Followers: 11)
Colloids and Interfaces     Open Access  
Colloids and Surfaces B: Biointerfaces     Hybrid Journal   (Followers: 6)
Combinatorial Chemistry & High Throughput Screening     Hybrid Journal   (Followers: 4)
Combustion Science and Technology     Hybrid Journal   (Followers: 22)
Comments on Inorganic Chemistry: A Journal of Critical Discussion of the Current Literature     Hybrid Journal   (Followers: 2)
Communications Chemistry     Open Access  
Composite Interfaces     Hybrid Journal   (Followers: 7)
Comprehensive Chemical Kinetics     Full-text available via subscription   (Followers: 1)
Comptes Rendus Chimie     Full-text available via subscription  
Comptes Rendus Physique     Full-text available via subscription   (Followers: 1)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 12)
Computational Chemistry     Open Access   (Followers: 2)
Computers & Chemical Engineering     Hybrid Journal   (Followers: 10)
Coordination Chemistry Reviews     Full-text available via subscription   (Followers: 4)
Copernican Letters     Open Access   (Followers: 1)
Corrosion Series     Full-text available via subscription   (Followers: 6)
Critical Reviews in Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 7)
Croatica Chemica Acta     Open Access  
Crystal Structure Theory and Applications     Open Access   (Followers: 4)
CrystEngComm     Full-text available via subscription   (Followers: 13)
Current Catalysis     Hybrid Journal   (Followers: 2)
Current Chromatography     Hybrid Journal  
Current Green Chemistry     Hybrid Journal   (Followers: 1)
Current Metabolomics     Hybrid Journal   (Followers: 5)
Current Microwave Chemistry     Hybrid Journal  
Current Opinion in Colloid & Interface Science     Hybrid Journal   (Followers: 9)
Current Opinion in Molecular Therapeutics     Full-text available via subscription   (Followers: 14)
Current Research in Chemistry     Open Access   (Followers: 9)
Current Science     Open Access   (Followers: 73)
Current Trends in Biotechnology and Chemical Research     Open Access   (Followers: 3)
Dalton Transactions     Full-text available via subscription   (Followers: 23)
Detection     Open Access   (Followers: 4)
Developments in Geochemistry     Full-text available via subscription   (Followers: 2)
Diamond and Related Materials     Hybrid Journal   (Followers: 12)
Dislocations in Solids     Full-text available via subscription  

        1 2 3 4 | Last

Journal Cover
Bioinorganic Chemistry and Applications
Journal Prestige (SJR): 0.419
Citation Impact (citeScore): 2
Number of Followers: 11  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1565-3633 - ISSN (Online) 1687-479X
Published by Hindawi Homepage  [338 journals]
  • Optimization Studies on Recovery of Metals from Printed Circuit Board
           Waste

    • Abstract: The aim of the study was to recover copper and lead metal from waste printed circuit boards (PCBs). The electrowinning method is found to be an effective recycling process to recover copper and lead metal from printed circuit board wastes. In order to simplify the process with affordable equipment, a simple ammonical leaching operation method was adopted. The selected PCBs were incinerated into fine ash powder at 500°C for 1 hour in the pyrolysis reactor. Then, the fine ash powder was subjected to acid-leaching process to recover the metals with varying conditions like acid-base concentration, electrode combination, and leaching time. The relative electrolysis solution of 0.1 M lead nitrate for lead and 0.1 M copper sulphate for copper was used to extract metals from PCBs at room temperature. The amount of lead and copper extracted from the process was determined by an atomic absorption spectrophotometer, and results found were 73.29% and 82.17%, respectively. Further, the optimum conditions for the recovery of metals were determined by using RSM software. The results showed that the percentage of lead and copper recovery were 78.25% and 89.1% should be 4 hrs 10 A/dm2.
      PubDate: Thu, 01 Nov 2018 00:00:00 +000
       
  • Anticancer Potential of Green Synthesized Silver Nanoparticles Using
           Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA)

    • Abstract: In this study, silver nanoparticles (AgNPs) were synthesized using aqueous extract of Nepeta deflersiana plant. The prepared AgNPs (ND-AgNPs) were examined by ultraviolet-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), and energy dispersive spectroscopy (EDX). The results obtained from various characterizations revealed that average size of synthesized AgNPs was 33 nm and in face-centered-cubic structure. The anticancer potential of ND-AgNPs was investigated against human cervical cancer cells (HeLa). The cytotoxic response was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), neutral red uptake (NRU) assays, and morphological changes. Further, the influence of cytotoxic concentrations of ND-AgNPs on oxidative stress markers, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest and apoptosis/necrosis was studied. The cytotoxic response observed was in a concentration-dependent manner. Furthermore, the results also showed a significant increase in ROS and lipid peroxidation (LPO), along with a decrease in MMP and glutathione (GSH) levels. The cell cycle analysis and apoptosis/necrosis assay data exhibited ND-AgNPs-induced SubG1 arrest and apoptotic/necrotic cell death. The biosynthesized AgNPs-induced cell death in HeLA cells suggested the anticancer potential of ND-AgNPs. Therefore, they may be used to treat the cervical cancer cells.
      PubDate: Thu, 01 Nov 2018 00:00:00 +000
       
  • Bioremoval of Different Heavy Metals by the Resistant Fungal Strain
           Aspergillus niger

    • Abstract: The objective of this work was to study the resistance and removal capacity of heavy metals by the fungus Aspergillus niger. We analyzed the resistance to some heavy metals by dry weight and plate: the fungus grew in 2000 ppm of zinc, lead, and mercury, 1200 and 1000 ppm of arsenic (III) and (VI), 800 ppm of fluor and cobalt, and least in cadmium (400 ppm). With respect to their potential of removal of heavy metals, this removal was achieved for zinc (100%), mercury (83.2%), fluor (83%), cobalt (71.4%), fairly silver (48%), and copper (37%). The ideal conditions for the removal of 100 mg/L of the heavy metals were 28°C, pH between 4.0 and 5.5, 100 ppm of heavy metal, and 1 g of fungal biomass.
      PubDate: Thu, 01 Nov 2018 00:00:00 +000
       
  • Corrigendum to “Effect of Carboxylic Functional Group Functionalized on
           Carbon Nanotubes Surface on the Removal of Lead from Water”

    • PubDate: Mon, 22 Oct 2018 00:00:00 +000
       
  • Biogenic Synthesis of Copper and Silver Nanoparticles Using Green Alga
           Botryococcus braunii and Its Antimicrobial Activity

    • Abstract: The spread of infectious diseases and the increase in the drug resistance among microbes has forced the researchers to synthesize biologically active nanoparticles. Improvement of the ecofriendly procedure for the synthesis of nanoparticles is growing day-by-day in the field of nanobiotechnology. In the present study, we use the extract of green alga Botryococcus braunii for the synthesis of copper and silver nanoparticles. The characterization of copper and silver nanoparticles was carried out by using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron spectroscopy (SEM). FTIR measurements showed all functional groups having control over reduction and stabilization of the nanoparticles. The X-ray diffraction pattern revealed that the particles were crystalline in nature with a face-centred cubic (FCC) geometry. SEM micrographs have shown the morphology of biogenically synthesized metal nanoparticles. Furthermore, these biosynthesized nanoparticles were found to be highly toxic against two Gram-negative bacterial strains Pseudomonas aeruginosa (MTCC 441) and Escherichia coli (MTCC 442), two Gram-positive bacterial strains Klebsiella pneumoniae (MTCC 109) and Staphylococcus aureus (MTCC 96), and a fungal strain Fusarium oxysporum (MTCC 2087). The zone of inhibition was measured by the agar well plate method, and furthermore, minimum inhibitory concentration was determined by the broth dilution assay.
      PubDate: Sun, 21 Oct 2018 00:00:00 +000
       
  • Cytotoxic and Bactericidal Effect of Silver Nanoparticles Obtained by
           Green Synthesis Method Using Annona muricata Aqueous Extract and
           Functionalized with 5-Fluorouracil

    • Abstract: Nanomaterials obtained by green synthesis technologies have been widely studied in recent years owing to constitute cost-effective and environmental-friendly methods. In addition, there are several works that report the simultaneous performance of the reducer agent as a functionalizing agent, modifying the properties of the nanomaterial. As a simple and economical synthesis methodology, this work presents a method to synthesize silver nanoparticles (AgNPs) using Annona muricata aqueous extract and functionalized with 5-fluorouracil (5-FU). The processes of reduction, nucleation, and functionalization of the nanoparticles were analyzed by UV-Vis absorption spectroscopy, and it was found that they are the function of the contact time of the metal ions with the extract. The structural characterization was carried out by transmission electron microscopy (TEM) and X-ray diffraction patterns (XRD). The antibacterial properties of the synthetized nanomaterials were tested using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Enterococcus faecalis, Staphylococcus aureus, and Escherichia coli growth.
      PubDate: Mon, 15 Oct 2018 00:00:00 +000
       
  • Current Developments in Pt(IV) Prodrugs Conjugated with Bioactive Ligands

    • Abstract: To overcome the side effects of and resistance to cisplatin, a variety of Pt(IV) prodrugs were designed and synthesized via different modifications including combination with lipid chains to increase hydrophobicity, conjugation with short peptide chains or nanoparticles to improve drug delivery, or addition of bioactive ligands to the axial positions of Pt(IV) complexes to exert dual-function effects. This review summarizes the recent progress in the development of Pt(IV) prodrugs conjugated with bioactive-targeting ligands, including histone deacetylase inhibitors, p53 agonists, alkylating agents, and nonsteroidal anti-inflammatory agents. Although Pt(IV) complexes that conjugated with bioactive ligands show satisfactory anticancer effects, none has been approved for clinical use. Therefore, we hope that this review will contribute to further study and development of Pt(IV) complexes conjugated with bioactive and other ligands.
      PubDate: Mon, 01 Oct 2018 00:00:00 +000
       
  • Structural Properties and Reactive Site Selectivity of Some Transition
           Metal Complexes of
           2,2′(1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(phenylmethan-1-yl-1-ylidene)dibenzoic
           Acid: DFT, Conceptual DFT, QTAIM, and MEP Studies

    • Abstract: Herein is presented a density functional theory (DFT) study of reactivity and structural properties of transition metal complexes of the Schiff base ligand 2,2′(1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(phenylmethan-1-yl-1-ylidene)dibenzoic acid (hereafter denoted EDA2BB) with Cu(II), Mn(II), Ni(II), and Co(II). The quantum theory of atoms-in-molecules (QTAIM), conceptual DFT, natural population analysis (NPA), and molecular electrostatic potential (MEP) methods have been used. Results have revealed a distorted octahedral geometry around the central metal ion in each gas phase complex. In the DMSO solvent, a general axial elongation of metal-oxygen bonds involving ancillary water ligands has been observed, suggestive of loosely bound water molecules to the central metal ion that may be acting as solvent molecules. Weak, medium, and strong intramolecular hydrogen bonds along with hydrogen-hydrogen and van der Waals interactions have been elucidated in the complexes investigated via geometric and QTAIM analyses. From the chemical hardness values, the complex [Co(EDA2BB)(OH2)2] is the hardest, while [Cu(EDA2BB)(OH2)2] is the softest. Based on the global electrophilicity index, the complexes [Ni(EDA2BB)(OH2)2] and [Cu(EDA2BB)(OH2)2] are the strongest and weakest electrophiles, respectively, among the complexes studied. In conclusion, the reactivity of the complexes is improved vis-à-vis the ligand, and stable geometries of the complexes are identified, alongside their prominent electrophilic and nucleophilic sites.
      PubDate: Wed, 26 Sep 2018 00:00:00 +000
       
  • Study on Adsorption of Cu and Ba from Aqueous Solutions Using
           Nanoparticles of Origanum (OR) and Lavandula (LV)

    • Abstract: Wild herbs (Origanum (OR) and Lavandula (LV)) were used as environment-friendly adsorbents in this study. The adsorbents were used for adsorption of Cu and Ba from water. The adsorption of heavy metals onto OR and LV was dependent on particle size, dose, and solution pH. The diameter of adsorbent particles was less than 282.8 nm. The adsorption follows second-order kinetics. Langmuir and Freundlich models have been applied to describe the equilibrium data, and the thermodynamic parameters, the Gibbs free energy, ∆G°, enthalpy, ∆H°, and entropy, ∆S°, have been determined. The positive value of ∆H° suggests that the adsorption of heavy metals by the wild herbs is endothermic. The negative values of ∆G° at all the studied temperatures indicate that the adsorption is a spontaneous process. It can be concluded that OR and LV are promising adsorbents for the removal of heavy metals from aqueous solutions over a range of concentrations.
      PubDate: Sun, 09 Sep 2018 00:00:00 +000
       
  • Synthesis of Novel VO(II)-Perimidine Complexes: Spectral, Computational,
           and Antitumor Studies

    • Abstract: A series of perimidine derivatives (L1–5) were prepared and characterized by IR, 1H·NMR, mass spectroscopy, UV-Vis, XRD, thermal, and SEM analysis. Five VO(II) complexes were synthesized and investigated by most previous tools besides the theoretical usage. A neutral tetradentate mode of bonding is the general approach for all binding ligands towards bi-vanadyl atoms. A square-pyramidal is the configuration proposed for all complexes. XRD analysis introduces the nanocrystalline nature of the ligand while the amorphous appearance of its metal ion complexes. The rocky shape is the observable surface morphology from SEM images. Thermal analysis verifies the presence of water of crystallization with all coordination spheres. The optimization process was accomplished using the Gaussian 09 software by different methods. The most stable configurations were extracted and displayed. Essential parameters were computed based on frontier energy gaps with all compounds. QSAR parameters were also obtained to give another side of view about the biological approach with the priority of the L3 ligand. Applying AutoDockTools 4.2 program over all perimidine derivatives introduces efficiency against 4c3p protein of breast cancer. Antitumor activity was screened for all compounds by a comparative view over breast, colon, and liver carcinoma cell lines. IC50 values represent promising efficiency of the L4-VO(II) complex against breast, colon, and liver carcinoma cell lines. The binding efficiency of ligands towards CT-DNA was tested. Binding constant (Kb) values are in agreement with the electron-drawing character of the p-substituent which offers high Kb values. Also, variable Hammett’s relations were drawn.
      PubDate: Thu, 06 Sep 2018 00:00:00 +000
       
  • Synthesis and Characterization of
           trans-Dichlorotetrakis(imidazole)cobalt(III) Chloride: A New Cobalt(III)
           Coordination Complex with Potential Prodrug Properties

    • Abstract: Numerous therapies for the treatment of cancer have been explored with increasing evidence that the use of metal-containing compounds could prove advantageous as anticancer therapeutics. Previous works on Ru(III) complexes suggest that structurally similar Co(III) complexes may provide good alternative, low-cost, effective prodrugs. Herein, a new complex, trans-[Co(imidazole)4Cl2]Cl (2), has been synthesized in high yields utilizing ligand exchange under refluxing conditions. The structure of 2 has been characterized by elemental analysis, 1H and 13C·NMR, ESI-MS, CV, and UV-Vis. The ability of 2 to become reduced in the presence of ascorbic acid was probed demonstrating the likely reduction of the Co(III) metal center to Co(II). In addition, preliminary cell line testing on 2 shows a lack of cytotoxicity.
      PubDate: Mon, 03 Sep 2018 00:00:00 +000
       
  • Synthesis, Characterization, and Antimicrobial Activity of Novel
           Sulfonated Copper-Triazine Complexes

    • Abstract: Metallotriazine complexes possess interesting biological and medicinal properties, and the present study focuses on the synthesis, characterization, and antimicrobial activity of four novel copper-triazine derivatives in search of potent antibacterial and antifungal drug leads. In this study, 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-4,4′-disulfonic acid monosodium salt (L1, ferrozine) and 3-(2-pyridyl)-5,6-di(2-furyl)-1,2,4-triazine-5,5′-disulfonic acid disodium salt (L2, ferene) have been used as ligands to study the complexation towards copper(II). The synthesized complexes, [CuCl2(ferrozine)]·7H2O·MeOH (1), [CuCl2(ferrozine)2]·5H2O·MeOH (2), [CuCl2(ferene)]·H2O·MeOH (3), and [CuCl2(ferene)2]·H2O·MeOH (4), have been characterized spectroscopically, and preliminary bioassays have been carried out. FTIR spectroscopic data have shown that N=N and C=N stretching frequencies of complexes have been shifted towards lower frequencies in comparison with that of the ligands, confirming new bond formation between Cu and N, which in turn lowers the strength of N=N and C=N bonds. In addition, a bathochromic shift has been observed for UV-visible spectra of complexes (1), (2), (3), and (4). Furthermore, elemental analysis data have been useful to obtain empirical formulas of these complexes and to establish the purity of each complex. Complexes (1) and (2) have shown antibacterial activity for both S. aureus (ATCC® 25923) and E. coli (ATCC® 25922) at 1 mg/disc concentration, and ferrozine has shown a larger inhibition zone against the clinical sample of C. albicans at 1 mg/disc concentration in comparison with the positive control, fluconazole.
      PubDate: Wed, 29 Aug 2018 06:56:45 +000
       
  • An Overview of the Potential Therapeutic Applications of CO-Releasing
           Molecules

    • Abstract: Carbon monoxide (CO) has long been known as the “silent killer” owing to its ability to form carboxyhemoglobin—the main cause of CO poisoning in humans. Its role as an endogenous neurotransmitter, however, was suggested in the early 1990s. Since then, the biological activity of CO has been widely examined via both the direct administration of CO and in the form of so-called “carbon monoxide releasing molecules (CORMs).” This overview will explore the general physiological effects and potential therapeutic applications of CO when delivered in the form of CORMs.
      PubDate: Sun, 12 Aug 2018 00:00:00 +000
       
  • Luminescent Iridium Complex-Peptide Hybrids (IPHs) for Therapeutics of
           Cancer: Design and Synthesis of IPHs for Detection of Cancer Cells and
           Induction of Their Necrosis-Type Cell Death

    • Abstract: Death receptors (DR4 and DR5) offer attractive targets for cancer treatment because cancer cell death can be induced by apoptotic signal upon binding of death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with death receptors. Cyclometalated iridium(III) complexes such as fac-Ir(tpy)3 (tpy = 2-(4-tolyl)pyridine) possess a C3-symmetric structure like TRAIL and exhibit excellent luminescence properties. Therefore, cyclometalated Ir complexes functionalized with DR-binding peptide motifs would be potent TRAIL mimics to detect cancer cells and induce their cell death. In this study, we report on the design and synthesis of C3-symmetric and luminescent Ir complex-peptide hybrids (IPHs), which possess cyclic peptide that had been reported to bind DR5. The results of 27 MHz quartz-crystal microbalance (QCM) measurements of DR5 with IPHs and costaining experiments of IPHs and anti-DR5 antibody, suggest that IPHs bind with DR5 and undergo internalization into cytoplasm, possibly via endocytosis. It was also found that IPHs induce slow cell death of these cancer cells in a parallel manner to the DR5 expression level. These results indicate that IPHs may offer a promising tool as artificial luminescent mimics of death ligands to develop a new category of anticancer agents that detect and kill cancer cells.
      PubDate: Wed, 01 Aug 2018 10:48:17 +000
       
  • A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies
           of ZnO NPs

    • Abstract: The advance of reliable and eco-friendly strategies for the development of nanoparticles is a fundamental key to the discipline of nanotechnology. Nanoparticles have been continuously evaluated and have been used in many industrial applications for a decade. In particular, the role of zinc oxide nanoparticles (ZnO NPs) has received a great interest because of various properties such as UV filter properties and photochemical, antifungal, high catalyst, and antimicrobial activities. Because of the high rate of poisonous chemicals and the extreme surroundings used within the chemical and physical methods, the green techniques have been adopted using plants, fungi, bacteria, and algae for the synthesis of nanoparticles. Therefore, this paper considers various green synthesis methods to provide the evidence of ZnO NP role to several applications, and in addition, biomedical applications and toxic effect were reviewed. Therefore, the paper used various secondary sources to collect the relevant review articles. From the findings, the green route of synthesis is rather safe and eco-friendly when compared to physical and chemical means of synthesis. On the other hand, its biomedical applications in this sector are increased day by day in various processes including bioimaging, drug delivery, biosensors, and gene delivery. With respect to its toxicity properties, ZnO NPs can act as smart weapons against multiple drug-resistant microorganisms and as a talented substitute for antibiotics.
      PubDate: Wed, 01 Aug 2018 00:00:00 +000
       
  • Biomimetic Approach to CO2 Reduction

    • Abstract: The development of artificial photosynthetic technologies able to produce solar-fuels from CO2 reduction is a fundamental task that requires the employment of specific catalysts being accomplished. Besides, effective catalysts are also demanded to capture atmospheric CO2, mitigating the effects of its constantly increasing emission. Biomimetic transition metal complexes are considered ideal platforms to develop efficient and selective catalysts to be implemented in electrocatalytic and photocatalytic devices. These catalysts, designed according to the inspiration provided by nature, are simple synthetic molecular systems capable of mimic features of the enzymatic activity. The present review aims to focus the attention on the mechanistic and structural aspects highlighted to be necessary to promote a proper catalytic activity. The determination of these characteristics is of interest both for clarifying aspects of the catalytic cycle of natural enzymes that are still unknown and for developing synthetic molecular catalysts that can readily be applied to artificial photosynthetic devices.
      PubDate: Wed, 01 Aug 2018 00:00:00 +000
       
  • Structure-Based Drug Design for Cytochrome P450 Family 1 Inhibitors

    • Abstract: Cytochromes P450 are a class of metalloproteins which are responsible for electron transfer in a wide spectrum of reactions including metabolic biotransformation of endogenous and exogenous substrates. The superfamily of cytochromes P450 consists of families and subfamilies which are characterized by a specific structure and substrate specificity. Cytochromes P450 family 1 (CYP1s) play a distinctive role in the metabolism of drugs and chemical procarcinogens. In recent decades, these hemoproteins have been intensively studied with the use of computational methods which have been recently developed remarkably to be used in the process of drug design by the virtual screening of compounds in order to find agents with desired properties. Moreover, the molecular modeling of proteins and ligand docking to their active sites provide an insight into the mechanism of enzyme action and enable us to predict the sites of drug metabolism. The review presents the current status of knowledge about the use of the computational approach in studies of ligand-enzyme interactions for CYP1s. Research on the metabolism of substrates and inhibitors of CYP1s and on the selectivity of their action is particularly valuable from the viewpoint of cancer chemoprevention, chemotherapy, and drug-drug interactions.
      PubDate: Wed, 25 Jul 2018 00:00:00 +000
       
  • Synthesis of N-Tetradecyl-1,10-phenathrolinium-Based New Salts for
           Biological Applications

    • Abstract: New organic salts were synthesized by quaternizing 1,10-phenanthroline using 1-bromotetradecane. The first step yielded an organic salt of formula [C26H37N2]Br. Anion exchange reaction using Li[(CF3SO2)2N] resulted in a more stable salt of formula [C26H37N2][(CF3SO2)2N]. The organic salts were investigated by spectrometry (1H, 13C, 19F NMR, X-ray photoelectron spectroscopy (XPS), UV-Vis, and matrix-assisted laser desorption/ionization mass spectroscopy (MALDI MS), CHNSBr elemental analysis, and thermal analysis (TGA and DSC). The thermal characterization showed the melting and decomposition points of [C26H37N2][(CF3SO2)2N] to be 48°C and 290°C, respectively, which indicates it is an ionic liquid with large liquidus range. The biological activities of the salts were investigated against two Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and two Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria, and they are found to be active against all of them. They were compared with [Cu(1,10-phenanthroline)2Cl]Cl. They are found more active against the Gram-negative bacteria. The salts demonstrated minimum inhibitory concentration as low as 50 µg/L. These results suggest the synthesized salts can be considered as a better alternative to certain transition metal complex drugs. This minimizes the concern of introducing metal ions into the organism.
      PubDate: Tue, 17 Jul 2018 04:45:36 +000
       
  • The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications

    • Abstract: Zinc oxide nanoparticles (ZnO NPs) are used in an increasing number of industrial products such as rubber, paint, coating, and cosmetics. In the past two decades, ZnO NPs have become one of the most popular metal oxide nanoparticles in biological applications due to their excellent biocompatibility, economic, and low toxicity. ZnO NPs have emerged a promising potential in biomedicine, especially in the fields of anticancer and antibacterial fields, which are involved with their potent ability to trigger excess reactive oxygen species (ROS) production, release zinc ions, and induce cell apoptosis. In addition, zinc is well known to keep the structural integrity of insulin. So, ZnO NPs also have been effectively developed for antidiabetic treatment. Moreover, ZnO NPs show excellent luminescent properties and have turned them into one of the main candidates for bioimaging. Here, we summarize the synthesis and recent advances of ZnO NPs in the biomedical fields, which will be helpful for facilitating their future research progress and focusing on biomedical fields.
      PubDate: Thu, 05 Jul 2018 00:00:00 +000
       
  • Synthesis, Structure, DNA Interaction, and SOD Activity of Three
           Nickel(II) Complexes Containing L-Phenylalanine Schiff Base and
           1,10-Phenanthroline

    • Abstract: Three hexacoordinated octahedral nickel(II) complexes, [Ni(sal-L-phe)(phen)(CH3OH)]⋅CH3OH (1), [Ni(naph-L-phe)(phen)(CH3OH)] (2), and [Ni(o-van-L-phe)(phen)(CH3OH)]⋅5CH3OH (3) (sal-L-phe = a Schiff base derived from salicylaldehyde and L-phenylalanine, naph-L-phe = a Schiff base derived from 2-hydroxy-1-naphthaldehyde and L-phenylalanine, o-van-L-phe = a Schiff base derived from o-vanillin and L-phenylalanine, and phen = 1,10-phenanthroline), have been synthesized and characterized by elemental analysis, IR spectra, and single-crystal X-ray diffraction. The interactions of these complexes with CT-DNA were studied by UV-Vis absorption spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy, and viscosity measurements. The binding constant (Kb) values of 1.82 × 104 M−1 for 1, 1.96 × 104 M−1 for 2, and 2.02 × 104 M−1 for 3 suggest that each of these complexes could bind with DNA in a moderate intercalative mode. Complex 3 exhibited a stronger interaction with CT-DNA than complexes 1 and 2. In addition, the superoxide scavenging activity of these complexes was investigated by the nitrotetrazolium blue chloride (NBT) light reduction method, and the results showed that they exhibited a significant superoxide scavenging activity with the IC50 values of 4.4 × 10−5 M for complex 1, 5.6 × 10−5 M for complex 2, and 3.1 × 10−5 M for complex 3, respectively.
      PubDate: Thu, 05 Jul 2018 00:00:00 +000
       
  • Study of Isothermal, Kinetic, and Thermodynamic Parameters for Adsorption
           of Cadmium: An Overview of Linear and Nonlinear Approach and Error
           Analysis

    • Abstract: Reports about presence and toxicity of Cd2+ in different chemical industrial effluents prompted the researchers to explore some economical, rapid, sensitive, and accurate methods for its determination and removal from aqueous systems. In continuation of series of investigations, adsorption of Cd2+ onto the stem of Saccharum arundinaceum is proposed in the present work. Optimization of parameters affecting sorption potential of Cd2+ including pH, contact time, temperature, sorbent dose, and concentration of sorbate was carried out to determine best suited conditions for maximum removal of sorbate. To understand the nature of sorption process, linear and nonlinear forms of five sorption isotherms including Freundlich and Langmuir models were employed. Feasibility and viability of sorption process were evaluated by calculating kinetics and thermodynamics of the process, while error analysis suggested best fitted sorption model on sorption data. Thermodynamic studies demonstrated exothermic nature of reaction, while kinetic studies suggested pseudo-second order of reaction.
      PubDate: Tue, 03 Jul 2018 06:00:32 +000
       
  • Gloriosa superba Mediated Synthesis of Platinum and Palladium
           Nanoparticles for Induction of Apoptosis in Breast Cancer

    • Abstract: Green chemistry approaches for designing therapeutically significant nanomedicine have gained considerable attention in the past decade. Herein, we report for the first time on anticancer potential of phytogenic platinum nanoparticles (PtNPs) and palladium nanoparticles (PdNPs) using a medicinal plant Gloriosa superba tuber extract (GSTE). The synthesis of the nanoparticles was completed within 5 hours at 100°C which was confirmed by development of dark brown and black colour for PtNPs and PdNPs, respectively, along with enhancement of the peak intensity in the UV-visible spectra. High-resolution transmission electron microscopy (HRTEM) showed that the monodispersed spherical nanoparticles were within a size range below 10 nm. Energy dispersive spectra (EDS) confirmed the elemental composition, while dynamic light scattering (DLS) helped to evaluate the hydrodynamic size of the particles. Anticancer activity against MCF-7 (human breast adenocarcinoma) cell lines was evaluated using MTT assay, flow cytometry, and confocal microscopy. PtNPs and PdNPs showed 49.65 ± 1.99% and 36.26 ± 0.91% of anticancer activity. Induction of apoptosis was most predominant in the underlying mechanism which was rationalized by externalization of phosphatidyl serine and membrane blebbing. These findings support the efficiency of phytogenic fabrication of nanoscale platinum and palladium drugs for management and therapy against breast cancer.
      PubDate: Mon, 02 Jul 2018 00:00:00 +000
       
  • A Diversified Spectrometric and Molecular Docking Technique to Biophysical
           Study of Interaction between Bovine Serum Albumin and Sodium Salt of
           Risedronic Acid, a Bisphosphonate for Skeletal Disorders

    • Abstract: The binding interaction between bovine serum albumin (BSA) and sodium salt of risedronic acid (RSN) was studied by using the FT-IR (Fourier transform infrared), UV-Vis (ultraviolet–visible), fluorescence (emission and synchronous), CD (circular dichroism) spectrometric, and computational (molecular docking) techniques at 289, 297, and 305 K temperatures with physiological buffer of pH 7.40. The conformational and secondary structural changes observed for BSA from CD spectra and by curve fitting procedure were applied to Fourier self-deconvolution in FT-IR spectra. The formation of a BSA-RSN complex was confirmed from UV-Vis spectroscopy. The static type of quenching shown for RSN to BSA was verified from Stern–Volmer and modified Stern–Volmer equations. The binding constant of order 105 was obtained to be confirming that there exists a strong binding interaction between BSA and RSN. Synchronous fluorescence shows that the microenvironment of tryptophan was altered, not tyrosine of BSA; in addition to this, the distance between tryptophan of BSA and RSN was found out from Forster’s theory of nonradiation energy transfer. The interaction between BSA and RSN mainly occurred as a result of hydrogen bonds and van der Waals forces, the process is exothermic and spontaneous, and it was achieved through van ’t Hoff equation. This interaction was affected by the presence of biologically active Fe2+, Ni2+, Ca2+, Mg2+, and Cd2+ ions and was also studied. The subdomain IIIA of BSA involved with RSN interaction was authenticated from molecular docking analysis.
      PubDate: Thu, 28 Jun 2018 00:00:00 +000
       
  • Synthesis and Characterization of Oxidovanadium(IV) Complexes of
           2-((E)-(6-Fluorobenzo[d]thiazol-2-ylimino)methyl)-6-methoxyphenol and
           Their Antimicrobial, Antioxidant, and DNA-Binding Studies

    • Abstract: Two novel oxidovanadium(IV) complexes with a new bidentate (O- and N-) imine-based ligand 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino)methyl)-6-methoxyphenol (HL) were synthesized under in situ experimental condition where VOSO4 acts as a kinetic template in the ratio 2 : 1 (L : M) and mixed ligand complex using 1,10-phenanthroline (phen) in 1 : 1 : 1 (L : M : phen) ratio. The synthesized compounds were structurally characterized by microanalysis, magnetic susceptibility, FTIR, electronic spectra, TG/DTA, ESR, and molar conductance studies. Based on the spectral studies, the complexes have the general composition [VO(L)2] (C1) and [VO(L)phen] (C2) in a square pyramid geometrical fashion. The synthesized compounds were primarily screened for their in vitro growth inhibiting activity against different strains of bacteria, namely, E. coli, B. subtilis, S. aureus, and P. aeruginosa by the disc diffusion method. Also, the antifungal activity was determined against C. albicans and A. niger by the Bateman poisoned technique. The in vitro antioxidant activity of all the compounds was determined by DPPH free radical-scavenging assay. Intercalative mode of DNA-binding properties of the oxidovanadium(IV) complexes with calf-thymus DNA (CT-DNA) was investigated using UV, fluorescence spectra, and viscosity measurements.
      PubDate: Wed, 27 Jun 2018 00:00:00 +000
       
  • Corrigendum to “Formation of Silver Nanoclusters from a DNA Template
           Containing Ag(I)-Mediated Base Pairs”

    • PubDate: Thu, 21 Jun 2018 00:00:00 +000
       
  • Pharmacological and Toxicological Threshold of Bisammonium Tetrakis
           4-(N,N-Dimethylamino)pyridinium Decavanadate in a Rat Model of Metabolic
           Syndrome and Insulin Resistance

    • Abstract: Vanadium(IV/V) compounds have been studied as possible metallopharmaceutical drugs against diabetes mellitus. However, mechanisms of action and toxicological threshold have been tackled poorly so far. In this paper, our purposes were to evaluate the metabolic activity on dyslipidemia and dysglycemia, insulin signaling in liver and adipose tissue, and toxicology of the title compound. To do so, the previously reported bisammonium tetrakis 4-(N,N-dimethylamino)pyridinium decavanadate, the formula of which is [DMAPH]4(NH4)2[V10O28]·8H2O (where DMAPH is 4-dimethylaminopyridinium ion), was synthesized, and its dose-response curve on hyperglycemic rats was evaluated. A Long–Evans rat model showing dyslipidemia and dysglycemia with parameters that reproduce metabolic syndrome and severe insulin resistance was generated. Two different dosages, 5 µmol and 10 µmol twice a week of the title compound (equivalent to 2.43 mg·V/kg/day and 4.86 mg·V/kg/day, resp.), were administered intraperitoneal (i.p.) for two months. Then, an improvement on each of the following parameters was observed at a 5 µmol dose: weight reduction, abdominal perimeter, fatty index, body mass index, oral glucose tolerance test, lipid profile, and adipokine and insulin resistance indexes. Nevertheless, when the toxicological profile was evaluated at a 10 µmol dose, it did not show complete improvement, tested by the liver and adipose histology, as well as by insulin receptor phosphorylation and GLUT-4 expression. In conclusion, the title compound administration produces regulation on lipids and carbohydrates, regardless of dose, but the pharmacological and toxicological threshold for cell regulation are suggested to be up to 5 µmol (2.43 mg·V/kg/day) dose twice per week.
      PubDate: Tue, 19 Jun 2018 00:00:00 +000
       
  • Exploration on the Interaction Ability of Antitumor Compound
           Bis-[2,6-difluoro-N-(hydroxyl-O)benzamidato-O]dibutylitin(IV) with Human
           Peroxisome Proliferator-Activated Receptor hPPARγ

    • Abstract: Diorganotin(IV) antitumor compound bis-[2,6-difluoro-N-(hydroxyl-O)benzamidato-O] (DBDF2,6T) was one of the novel patent organotin compounds with high antitumor activity and relatively low toxicity. In this study, several methods were used to study the interaction between DBDF2,6T and hPPARγ protein, including fluorescence quenching, three-dimensional (3D) fluorescence, drug affinity responsive target stability (DARTS), ultrafiltration-LC, and molecular docking. According to the experimental results, the quenching process of the hPPARγ protein was induced by static quenching mode to form a nonradiative ground-state complex with DBDF2,6T spontaneously, mainly through the hydrophobic force. DBDF2,6T could bind to the hPPARγ protein directly and give the protein the ability of antienzymatic hydrolysis. And the binding mode of DBDF2,6T into hPPARγ protein appeared to have an orientation towards residues of SER342 and GLY284. In conclusion, these methods could comprehensively reveal the interaction details of DBDF2,6T and the hPPARγ protein and established a feasible way to preliminarily identify the agonist compounds for the hPPARγ protein.
      PubDate: Sun, 10 Jun 2018 06:21:00 +000
       
  • The Anticancer Activities of Some Nitrogen Donor Ligands Containing
           

    • Abstract: The anticancer study of nitrogen-chelating ligands can be of tremendous help in choosing ligands for the anticancer metal complexes design especially with ruthenium(II). The inhibitory anticancer activities of some nitrogen-chelating ligands containing bis-pyrazole, bipyridine, and phenanthroline were studied using experimental screening against cancer cell and theoretical docking methods. In vitro anticancer activities showed compound 11 as the most promising inhibitor, and the computational docking further indicates its strong inhibitory activities towards some cancer-related receptors. Among the twenty-one modelled ligands, pyrazole-based compounds 7, 11, and 15 are the most promising inhibitors against the selected receptors followed by 18 and 21 which are derivatives of pyridine and phenanthroline, respectively. The presence of the carboxylic unit in the top five ligands that displayed stronger inhibitory activities against the selected receptors is an indication that the formation of noncovalent interactions such as hydrogen bonding and a strong electron-withdrawing group in these compounds are very important for their receptor interactions. The thermodynamic properties, the polarizabilities, and the LUMO energy of the compounds are in the same patterns as the observed inhibitory activities.
      PubDate: Mon, 04 Jun 2018 09:51:46 +000
       
  • Synthesis, Structural Analysis, and Biological Activities of Some
           Imidazolium Salts

    • Abstract: Four newly synthesized imidazolium salts were characterized by nuclear magnetic resonance, vibrational spectra, and mass spectra. Then, the density functional theory calculations were performed to obtain the molecular configurations on which the theoretical nuclear magnetic resonance and infrared spectra were consequently obtained. The comparison of calculated spectra with the experimental spectra for each molecule leads to the conclusion that the theoretical results can be assumed to be a good approach to their molecular configurations. The in vitro biological activities of the salts on the selected bacteria and cancer cell lines were determined by using the broth dilution method according to Clinical and Laboratory Standards Institute guidelines. The 1,3-bis(2-hydroxyethyl) imidazolidinium bromide and 3-(2-ethoxy-2-oxoethly)-1-(3-aminopropyl)-1H-imidazol-3-ium bromide showed efficiency on Bacillus cereus ATCC 11778. The 3-bis(2-carboxyethyl)-4-methyl-1-H-imidazol-3-ium bromide was effective on HeLa while a similar effect was observed on Hep G2 with 3-(2-carboxyethyl)-1-(3-aminopropyl)-1H-imidazol-3-ium bromide.
      PubDate: Tue, 22 May 2018 00:00:00 +000
       
  • Hydrothermal Synthesis, Structural Characterization, and Interaction
           Mechanism with DNA of Copper(II) Complex Containing 2,2′-Bipyridine

    • Abstract: A Cu(II) complex [Cu(bipy)(H2O)2(SO4)]n (bipy = 2,2′-bipyridine) was synthesized by hydrothermal method and characterized structurally by elemental analyses, single crystal X-ray diffraction, infrared spectra, and thermogravimetry and differential scanning calorimetry. The Cu(II) was hexacoordinated by two N atoms from bipy, two O atoms from different sulfate radical anions, and two O atoms from two water molecules, forming a slightly distorted octahedral geometry, and bridged by sulfato groups into polymeric chains. Under the condition of physiological pH, the interaction mechanism between the complex and hsDNA was explored with acridine orange as a fluorescence probe by spectroscopic methods. The binding modes between the complex and hsDNA were the electrostatic and embedded modes.
      PubDate: Tue, 22 May 2018 00:00:00 +000
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.90.185.120
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-