for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> CHEMISTRY (Total: 881 journals)
    - ANALYTICAL CHEMISTRY (54 journals)
    - CHEMISTRY (616 journals)
    - CRYSTALLOGRAPHY (21 journals)
    - ELECTROCHEMISTRY (28 journals)
    - INORGANIC CHEMISTRY (43 journals)
    - ORGANIC CHEMISTRY (48 journals)
    - PHYSICAL CHEMISTRY (71 journals)

CHEMISTRY (616 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 735 Journals sorted alphabetically
2D Materials     Hybrid Journal   (Followers: 14)
Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 27)
ACS Catalysis     Hybrid Journal   (Followers: 44)
ACS Chemical Neuroscience     Hybrid Journal   (Followers: 22)
ACS Combinatorial Science     Hybrid Journal   (Followers: 23)
ACS Macro Letters     Hybrid Journal   (Followers: 26)
ACS Medicinal Chemistry Letters     Hybrid Journal   (Followers: 41)
ACS Nano     Hybrid Journal   (Followers: 290)
ACS Photonics     Hybrid Journal   (Followers: 14)
ACS Symposium Series     Full-text available via subscription  
ACS Synthetic Biology     Hybrid Journal   (Followers: 24)
Acta Chemica Iasi     Open Access   (Followers: 5)
Acta Chimica Slovaca     Open Access   (Followers: 2)
Acta Chimica Slovenica     Open Access   (Followers: 1)
Acta Chromatographica     Full-text available via subscription   (Followers: 9)
Acta Facultatis Medicae Naissensis     Open Access  
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 7)
Acta Scientifica Naturalis     Open Access   (Followers: 3)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 8)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 9)
Adsorption Science & Technology     Open Access   (Followers: 6)
Advanced Functional Materials     Hybrid Journal   (Followers: 59)
Advanced Science Focus     Free   (Followers: 5)
Advances in Chemical Engineering and Science     Open Access   (Followers: 68)
Advances in Chemical Science     Open Access   (Followers: 18)
Advances in Chemistry     Open Access   (Followers: 22)
Advances in Colloid and Interface Science     Full-text available via subscription   (Followers: 19)
Advances in Drug Research     Full-text available via subscription   (Followers: 24)
Advances in Environmental Chemistry     Open Access   (Followers: 7)
Advances in Enzyme Research     Open Access   (Followers: 10)
Advances in Fluorine Science     Full-text available via subscription   (Followers: 9)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 16)
Advances in Heterocyclic Chemistry     Full-text available via subscription   (Followers: 12)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 25)
Advances in Nanoparticles     Open Access   (Followers: 15)
Advances in Organometallic Chemistry     Full-text available via subscription   (Followers: 17)
Advances in Polymer Science     Hybrid Journal   (Followers: 44)
Advances in Protein Chemistry     Full-text available via subscription   (Followers: 18)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 20)
Advances in Quantum Chemistry     Full-text available via subscription   (Followers: 6)
Advances in Science and Technology     Full-text available via subscription   (Followers: 12)
African Journal of Bacteriology Research     Open Access  
African Journal of Chemical Education     Open Access   (Followers: 3)
African Journal of Pure and Applied Chemistry     Open Access   (Followers: 8)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Al-Kimia : Jurnal Penelitian Sains Kimia     Open Access  
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 2)
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 66)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 21)
American Journal of Chemistry     Open Access   (Followers: 31)
American Journal of Plant Physiology     Open Access   (Followers: 11)
American Mineralogist     Hybrid Journal   (Followers: 15)
Analyst     Full-text available via subscription   (Followers: 38)
Angewandte Chemie     Hybrid Journal   (Followers: 169)
Angewandte Chemie International Edition     Hybrid Journal   (Followers: 253)
Annales UMCS, Chemia     Open Access   (Followers: 1)
Annals of Clinical Chemistry and Laboratory Medicine     Open Access   (Followers: 5)
Annual Reports in Computational Chemistry     Full-text available via subscription   (Followers: 3)
Annual Reports Section A (Inorganic Chemistry)     Full-text available via subscription   (Followers: 4)
Annual Reports Section B (Organic Chemistry)     Full-text available via subscription   (Followers: 9)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 12)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 14)
Anti-Infective Agents     Hybrid Journal   (Followers: 3)
Antiviral Chemistry and Chemotherapy     Open Access   (Followers: 2)
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 9)
Applied Spectroscopy     Full-text available via subscription   (Followers: 24)
Applied Surface Science     Hybrid Journal   (Followers: 32)
Arabian Journal of Chemistry     Open Access   (Followers: 6)
ARKIVOC     Open Access   (Followers: 1)
Asian Journal of Biochemistry     Open Access   (Followers: 2)
Atomization and Sprays     Full-text available via subscription   (Followers: 4)
Australian Journal of Chemistry     Hybrid Journal   (Followers: 7)
Autophagy     Hybrid Journal   (Followers: 2)
Avances en Quimica     Open Access  
Biochemical Pharmacology     Hybrid Journal   (Followers: 10)
Biochemistry     Hybrid Journal   (Followers: 364)
Biochemistry Insights     Open Access   (Followers: 6)
Biochemistry Research International     Open Access   (Followers: 6)
BioChip Journal     Hybrid Journal  
Bioinorganic Chemistry and Applications     Open Access   (Followers: 10)
Bioinspired Materials     Open Access   (Followers: 5)
Biointerface Research in Applied Chemistry     Open Access   (Followers: 2)
Biointerphases     Open Access   (Followers: 1)
Biology, Medicine, & Natural Product Chemistry     Open Access   (Followers: 2)
Biomacromolecules     Hybrid Journal   (Followers: 22)
Biomass Conversion and Biorefinery     Partially Free   (Followers: 10)
Biomedical Chromatography     Hybrid Journal   (Followers: 7)
Biomolecular NMR Assignments     Hybrid Journal   (Followers: 3)
BioNanoScience     Partially Free   (Followers: 5)
Bioorganic & Medicinal Chemistry     Hybrid Journal   (Followers: 133)
Bioorganic & Medicinal Chemistry Letters     Hybrid Journal   (Followers: 87)
Bioorganic Chemistry     Hybrid Journal   (Followers: 10)
Biopolymers     Hybrid Journal   (Followers: 18)
Biosensors     Open Access   (Followers: 2)
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 1)
Bitácora Digital     Open Access  
Boletin de la Sociedad Chilena de Quimica     Open Access  
Bulletin of the Chemical Society of Ethiopia     Open Access   (Followers: 1)
Bulletin of the Chemical Society of Japan     Full-text available via subscription   (Followers: 24)
Bulletin of the Korean Chemical Society     Hybrid Journal   (Followers: 1)
C - Journal of Carbon Research     Open Access   (Followers: 3)
Cakra Kimia (Indonesian E-Journal of Applied Chemistry)     Open Access  
Canadian Association of Radiologists Journal     Full-text available via subscription   (Followers: 2)
Canadian Journal of Chemistry     Hybrid Journal   (Followers: 10)
Canadian Mineralogist     Full-text available via subscription   (Followers: 6)
Carbohydrate Research     Hybrid Journal   (Followers: 26)
Carbon     Hybrid Journal   (Followers: 70)
Catalysis for Sustainable Energy     Open Access   (Followers: 8)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 7)
Catalysis Science and Technology     Free   (Followers: 8)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysts     Open Access   (Followers: 10)
Cellulose     Hybrid Journal   (Followers: 7)
Cereal Chemistry     Full-text available via subscription   (Followers: 4)
ChemBioEng Reviews     Full-text available via subscription   (Followers: 1)
ChemCatChem     Hybrid Journal   (Followers: 8)
Chemical and Engineering News     Free   (Followers: 22)
Chemical Bulletin of Kazakh National University     Open Access  
Chemical Communications     Full-text available via subscription   (Followers: 74)
Chemical Engineering Research and Design     Hybrid Journal   (Followers: 26)
Chemical Research in Chinese Universities     Hybrid Journal   (Followers: 3)
Chemical Research in Toxicology     Hybrid Journal   (Followers: 22)
Chemical Reviews     Hybrid Journal   (Followers: 194)
Chemical Science     Open Access   (Followers: 26)
Chemical Technology     Open Access   (Followers: 28)
Chemical Vapor Deposition     Hybrid Journal   (Followers: 5)
Chemie in Unserer Zeit     Hybrid Journal   (Followers: 57)
Chemie-Ingenieur-Technik (Cit)     Hybrid Journal   (Followers: 24)
ChemInform     Hybrid Journal   (Followers: 8)
Chemistry & Biodiversity     Hybrid Journal   (Followers: 7)
Chemistry & Biology     Full-text available via subscription   (Followers: 32)
Chemistry & Industry     Hybrid Journal   (Followers: 7)
Chemistry - A European Journal     Hybrid Journal   (Followers: 157)
Chemistry - An Asian Journal     Hybrid Journal   (Followers: 16)
Chemistry and Materials Research     Open Access   (Followers: 21)
Chemistry Central Journal     Open Access   (Followers: 4)
Chemistry Education Research and Practice     Free   (Followers: 5)
Chemistry in Education     Open Access   (Followers: 9)
Chemistry International     Open Access   (Followers: 3)
Chemistry Letters     Full-text available via subscription   (Followers: 44)
Chemistry of Materials     Hybrid Journal   (Followers: 262)
Chemistry of Natural Compounds     Hybrid Journal   (Followers: 9)
Chemistry World     Full-text available via subscription   (Followers: 20)
Chemistry-Didactics-Ecology-Metrology     Open Access   (Followers: 1)
ChemistryOpen     Open Access   (Followers: 1)
Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik     Hybrid Journal  
Chemoecology     Hybrid Journal   (Followers: 4)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 14)
Chemosensors     Open Access  
ChemPhysChem     Hybrid Journal   (Followers: 12)
ChemPlusChem     Hybrid Journal   (Followers: 2)
ChemTexts     Hybrid Journal  
CHIMIA International Journal for Chemistry     Full-text available via subscription   (Followers: 2)
Chinese Journal of Chemistry     Hybrid Journal   (Followers: 6)
Chinese Journal of Polymer Science     Hybrid Journal   (Followers: 11)
Chromatographia     Hybrid Journal   (Followers: 24)
Chromatography     Open Access   (Followers: 2)
Chromatography Research International     Open Access   (Followers: 6)
Clay Minerals     Full-text available via subscription   (Followers: 10)
Cogent Chemistry     Open Access   (Followers: 2)
Colloid and Interface Science Communications     Open Access  
Colloid and Polymer Science     Hybrid Journal   (Followers: 11)
Colloids and Interfaces     Open Access  
Colloids and Surfaces B: Biointerfaces     Hybrid Journal   (Followers: 6)
Combinatorial Chemistry & High Throughput Screening     Hybrid Journal   (Followers: 4)
Combustion Science and Technology     Hybrid Journal   (Followers: 22)
Comments on Inorganic Chemistry: A Journal of Critical Discussion of the Current Literature     Hybrid Journal   (Followers: 2)
Communications Chemistry     Open Access  
Composite Interfaces     Hybrid Journal   (Followers: 7)
Comprehensive Chemical Kinetics     Full-text available via subscription   (Followers: 1)
Comptes Rendus Chimie     Full-text available via subscription  
Comptes Rendus Physique     Full-text available via subscription   (Followers: 1)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 12)
Computational Chemistry     Open Access   (Followers: 2)
Computers & Chemical Engineering     Hybrid Journal   (Followers: 10)
Coordination Chemistry Reviews     Full-text available via subscription   (Followers: 4)
Copernican Letters     Open Access   (Followers: 1)
Corrosion Series     Full-text available via subscription   (Followers: 6)
Critical Reviews in Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 6)
Croatica Chemica Acta     Open Access  
Crystal Structure Theory and Applications     Open Access   (Followers: 4)
CrystEngComm     Full-text available via subscription   (Followers: 13)
Current Catalysis     Hybrid Journal   (Followers: 2)
Current Chromatography     Hybrid Journal  
Current Green Chemistry     Hybrid Journal   (Followers: 1)
Current Metabolomics     Hybrid Journal   (Followers: 5)
Current Microwave Chemistry     Hybrid Journal  
Current Opinion in Colloid & Interface Science     Hybrid Journal   (Followers: 9)
Current Opinion in Molecular Therapeutics     Full-text available via subscription   (Followers: 14)
Current Research in Chemistry     Open Access   (Followers: 9)
Current Science     Open Access   (Followers: 71)
Current Trends in Biotechnology and Chemical Research     Open Access   (Followers: 3)
Dalton Transactions     Full-text available via subscription   (Followers: 23)
Detection     Open Access   (Followers: 3)
Developments in Geochemistry     Full-text available via subscription   (Followers: 2)
Diamond and Related Materials     Hybrid Journal   (Followers: 12)
Dislocations in Solids     Full-text available via subscription  

        1 2 3 4 | Last

Journal Cover
Bioinorganic Chemistry and Applications
Journal Prestige (SJR): 0.419
Citation Impact (citeScore): 2
Number of Followers: 10  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1565-3633 - ISSN (Online) 1687-479X
Published by Hindawi Homepage  [338 journals]
  • Study on Adsorption of Cu and Ba from Aqueous Solutions Using
           Nanoparticles of Origanum (OR) and Lavandula (LV)

    • Abstract: Wild herbs (Origanum (OR) and Lavandula (LV)) were used as environment-friendly adsorbents in this study. The adsorbents were used for adsorption of Cu and Ba from water. The adsorption of heavy metals onto OR and LV was dependent on particle size, dose, and solution pH. The diameter of adsorbent particles was less than 282.8 nm. The adsorption follows second-order kinetics. Langmuir and Freundlich models have been applied to describe the equilibrium data, and the thermodynamic parameters, the Gibbs free energy, ∆G°, enthalpy, ∆H°, and entropy, ∆S°, have been determined. The positive value of ∆H° suggests that the adsorption of heavy metals by the wild herbs is endothermic. The negative values of ∆G° at all the studied temperatures indicate that the adsorption is a spontaneous process. It can be concluded that OR and LV are promising adsorbents for the removal of heavy metals from aqueous solutions over a range of concentrations.
      PubDate: Sun, 09 Sep 2018 00:00:00 +000
       
  • Synthesis of Novel VO(II)-Perimidine Complexes: Spectral, Computational,
           and Antitumor Studies

    • Abstract: A series of perimidine derivatives (L1–5) were prepared and characterized by IR, 1H·NMR, mass spectroscopy, UV-Vis, XRD, thermal, and SEM analysis. Five VO(II) complexes were synthesized and investigated by most previous tools besides the theoretical usage. A neutral tetradentate mode of bonding is the general approach for all binding ligands towards bi-vanadyl atoms. A square-pyramidal is the configuration proposed for all complexes. XRD analysis introduces the nanocrystalline nature of the ligand while the amorphous appearance of its metal ion complexes. The rocky shape is the observable surface morphology from SEM images. Thermal analysis verifies the presence of water of crystallization with all coordination spheres. The optimization process was accomplished using the Gaussian 09 software by different methods. The most stable configurations were extracted and displayed. Essential parameters were computed based on frontier energy gaps with all compounds. QSAR parameters were also obtained to give another side of view about the biological approach with the priority of the L3 ligand. Applying AutoDockTools 4.2 program over all perimidine derivatives introduces efficiency against 4c3p protein of breast cancer. Antitumor activity was screened for all compounds by a comparative view over breast, colon, and liver carcinoma cell lines. IC50 values represent promising efficiency of the L4-VO(II) complex against breast, colon, and liver carcinoma cell lines. The binding efficiency of ligands towards CT-DNA was tested. Binding constant (Kb) values are in agreement with the electron-drawing character of the p-substituent which offers high Kb values. Also, variable Hammett’s relations were drawn.
      PubDate: Thu, 06 Sep 2018 00:00:00 +000
       
  • Synthesis and Characterization of
           trans-Dichlorotetrakis(imidazole)cobalt(III) Chloride: A New Cobalt(III)
           Coordination Complex with Potential Prodrug Properties

    • Abstract: Numerous therapies for the treatment of cancer have been explored with increasing evidence that the use of metal-containing compounds could prove advantageous as anticancer therapeutics. Previous works on Ru(III) complexes suggest that structurally similar Co(III) complexes may provide good alternative, low-cost, effective prodrugs. Herein, a new complex, trans-[Co(imidazole)4Cl2]Cl (2), has been synthesized in high yields utilizing ligand exchange under refluxing conditions. The structure of 2 has been characterized by elemental analysis, 1H and 13C·NMR, ESI-MS, CV, and UV-Vis. The ability of 2 to become reduced in the presence of ascorbic acid was probed demonstrating the likely reduction of the Co(III) metal center to Co(II). In addition, preliminary cell line testing on 2 shows a lack of cytotoxicity.
      PubDate: Mon, 03 Sep 2018 00:00:00 +000
       
  • Synthesis, Characterization, and Antimicrobial Activity of Novel
           Sulfonated Copper-Triazine Complexes

    • Abstract: Metallotriazine complexes possess interesting biological and medicinal properties, and the present study focuses on the synthesis, characterization, and antimicrobial activity of four novel copper-triazine derivatives in search of potent antibacterial and antifungal drug leads. In this study, 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-4,4′-disulfonic acid monosodium salt (L1, ferrozine) and 3-(2-pyridyl)-5,6-di(2-furyl)-1,2,4-triazine-5,5′-disulfonic acid disodium salt (L2, ferene) have been used as ligands to study the complexation towards copper(II). The synthesized complexes, [CuCl2(ferrozine)]·7H2O·MeOH (1), [CuCl2(ferrozine)2]·5H2O·MeOH (2), [CuCl2(ferene)]·H2O·MeOH (3), and [CuCl2(ferene)2]·H2O·MeOH (4), have been characterized spectroscopically, and preliminary bioassays have been carried out. FTIR spectroscopic data have shown that N=N and C=N stretching frequencies of complexes have been shifted towards lower frequencies in comparison with that of the ligands, confirming new bond formation between Cu and N, which in turn lowers the strength of N=N and C=N bonds. In addition, a bathochromic shift has been observed for UV-visible spectra of complexes (1), (2), (3), and (4). Furthermore, elemental analysis data have been useful to obtain empirical formulas of these complexes and to establish the purity of each complex. Complexes (1) and (2) have shown antibacterial activity for both S. aureus (ATCC® 25923) and E. coli (ATCC® 25922) at 1 mg/disc concentration, and ferrozine has shown a larger inhibition zone against the clinical sample of C. albicans at 1 mg/disc concentration in comparison with the positive control, fluconazole.
      PubDate: Wed, 29 Aug 2018 06:56:45 +000
       
  • An Overview of the Potential Therapeutic Applications of CO-Releasing
           Molecules

    • Abstract: Carbon monoxide (CO) has long been known as the “silent killer” owing to its ability to form carboxyhemoglobin—the main cause of CO poisoning in humans. Its role as an endogenous neurotransmitter, however, was suggested in the early 1990s. Since then, the biological activity of CO has been widely examined via both the direct administration of CO and in the form of so-called “carbon monoxide releasing molecules (CORMs).” This overview will explore the general physiological effects and potential therapeutic applications of CO when delivered in the form of CORMs.
      PubDate: Sun, 12 Aug 2018 00:00:00 +000
       
  • Luminescent Iridium Complex-Peptide Hybrids (IPHs) for Therapeutics of
           Cancer: Design and Synthesis of IPHs for Detection of Cancer Cells and
           Induction of Their Necrosis-Type Cell Death

    • Abstract: Death receptors (DR4 and DR5) offer attractive targets for cancer treatment because cancer cell death can be induced by apoptotic signal upon binding of death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with death receptors. Cyclometalated iridium(III) complexes such as fac-Ir(tpy)3 (tpy = 2-(4-tolyl)pyridine) possess a C3-symmetric structure like TRAIL and exhibit excellent luminescence properties. Therefore, cyclometalated Ir complexes functionalized with DR-binding peptide motifs would be potent TRAIL mimics to detect cancer cells and induce their cell death. In this study, we report on the design and synthesis of C3-symmetric and luminescent Ir complex-peptide hybrids (IPHs), which possess cyclic peptide that had been reported to bind DR5. The results of 27 MHz quartz-crystal microbalance (QCM) measurements of DR5 with IPHs and costaining experiments of IPHs and anti-DR5 antibody, suggest that IPHs bind with DR5 and undergo internalization into cytoplasm, possibly via endocytosis. It was also found that IPHs induce slow cell death of these cancer cells in a parallel manner to the DR5 expression level. These results indicate that IPHs may offer a promising tool as artificial luminescent mimics of death ligands to develop a new category of anticancer agents that detect and kill cancer cells.
      PubDate: Wed, 01 Aug 2018 10:48:17 +000
       
  • A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies
           of ZnO NPs

    • Abstract: The advance of reliable and eco-friendly strategies for the development of nanoparticles is a fundamental key to the discipline of nanotechnology. Nanoparticles have been continuously evaluated and have been used in many industrial applications for a decade. In particular, the role of zinc oxide nanoparticles (ZnO NPs) has received a great interest because of various properties such as UV filter properties and photochemical, antifungal, high catalyst, and antimicrobial activities. Because of the high rate of poisonous chemicals and the extreme surroundings used within the chemical and physical methods, the green techniques have been adopted using plants, fungi, bacteria, and algae for the synthesis of nanoparticles. Therefore, this paper considers various green synthesis methods to provide the evidence of ZnO NP role to several applications, and in addition, biomedical applications and toxic effect were reviewed. Therefore, the paper used various secondary sources to collect the relevant review articles. From the findings, the green route of synthesis is rather safe and eco-friendly when compared to physical and chemical means of synthesis. On the other hand, its biomedical applications in this sector are increased day by day in various processes including bioimaging, drug delivery, biosensors, and gene delivery. With respect to its toxicity properties, ZnO NPs can act as smart weapons against multiple drug-resistant microorganisms and as a talented substitute for antibiotics.
      PubDate: Wed, 01 Aug 2018 00:00:00 +000
       
  • Biomimetic Approach to CO2 Reduction

    • Abstract: The development of artificial photosynthetic technologies able to produce solar-fuels from CO2 reduction is a fundamental task that requires the employment of specific catalysts being accomplished. Besides, effective catalysts are also demanded to capture atmospheric CO2, mitigating the effects of its constantly increasing emission. Biomimetic transition metal complexes are considered ideal platforms to develop efficient and selective catalysts to be implemented in electrocatalytic and photocatalytic devices. These catalysts, designed according to the inspiration provided by nature, are simple synthetic molecular systems capable of mimic features of the enzymatic activity. The present review aims to focus the attention on the mechanistic and structural aspects highlighted to be necessary to promote a proper catalytic activity. The determination of these characteristics is of interest both for clarifying aspects of the catalytic cycle of natural enzymes that are still unknown and for developing synthetic molecular catalysts that can readily be applied to artificial photosynthetic devices.
      PubDate: Wed, 01 Aug 2018 00:00:00 +000
       
  • Structure-Based Drug Design for Cytochrome P450 Family 1 Inhibitors

    • Abstract: Cytochromes P450 are a class of metalloproteins which are responsible for electron transfer in a wide spectrum of reactions including metabolic biotransformation of endogenous and exogenous substrates. The superfamily of cytochromes P450 consists of families and subfamilies which are characterized by a specific structure and substrate specificity. Cytochromes P450 family 1 (CYP1s) play a distinctive role in the metabolism of drugs and chemical procarcinogens. In recent decades, these hemoproteins have been intensively studied with the use of computational methods which have been recently developed remarkably to be used in the process of drug design by the virtual screening of compounds in order to find agents with desired properties. Moreover, the molecular modeling of proteins and ligand docking to their active sites provide an insight into the mechanism of enzyme action and enable us to predict the sites of drug metabolism. The review presents the current status of knowledge about the use of the computational approach in studies of ligand-enzyme interactions for CYP1s. Research on the metabolism of substrates and inhibitors of CYP1s and on the selectivity of their action is particularly valuable from the viewpoint of cancer chemoprevention, chemotherapy, and drug-drug interactions.
      PubDate: Wed, 25 Jul 2018 00:00:00 +000
       
  • Synthesis of N-Tetradecyl-1,10-phenathrolinium-Based New Salts for
           Biological Applications

    • Abstract: New organic salts were synthesized by quaternizing 1,10-phenanthroline using 1-bromotetradecane. The first step yielded an organic salt of formula [C26H37N2]Br. Anion exchange reaction using Li[(CF3SO2)2N] resulted in a more stable salt of formula [C26H37N2][(CF3SO2)2N]. The organic salts were investigated by spectrometry (1H, 13C, 19F NMR, X-ray photoelectron spectroscopy (XPS), UV-Vis, and matrix-assisted laser desorption/ionization mass spectroscopy (MALDI MS), CHNSBr elemental analysis, and thermal analysis (TGA and DSC). The thermal characterization showed the melting and decomposition points of [C26H37N2][(CF3SO2)2N] to be 48°C and 290°C, respectively, which indicates it is an ionic liquid with large liquidus range. The biological activities of the salts were investigated against two Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and two Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria, and they are found to be active against all of them. They were compared with [Cu(1,10-phenanthroline)2Cl]Cl. They are found more active against the Gram-negative bacteria. The salts demonstrated minimum inhibitory concentration as low as 50 µg/L. These results suggest the synthesized salts can be considered as a better alternative to certain transition metal complex drugs. This minimizes the concern of introducing metal ions into the organism.
      PubDate: Tue, 17 Jul 2018 04:45:36 +000
       
  • The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications

    • Abstract: Zinc oxide nanoparticles (ZnO NPs) are used in an increasing number of industrial products such as rubber, paint, coating, and cosmetics. In the past two decades, ZnO NPs have become one of the most popular metal oxide nanoparticles in biological applications due to their excellent biocompatibility, economic, and low toxicity. ZnO NPs have emerged a promising potential in biomedicine, especially in the fields of anticancer and antibacterial fields, which are involved with their potent ability to trigger excess reactive oxygen species (ROS) production, release zinc ions, and induce cell apoptosis. In addition, zinc is well known to keep the structural integrity of insulin. So, ZnO NPs also have been effectively developed for antidiabetic treatment. Moreover, ZnO NPs show excellent luminescent properties and have turned them into one of the main candidates for bioimaging. Here, we summarize the synthesis and recent advances of ZnO NPs in the biomedical fields, which will be helpful for facilitating their future research progress and focusing on biomedical fields.
      PubDate: Thu, 05 Jul 2018 00:00:00 +000
       
  • Synthesis, Structure, DNA Interaction, and SOD Activity of Three
           Nickel(II) Complexes Containing L-Phenylalanine Schiff Base and
           1,10-Phenanthroline

    • Abstract: Three hexacoordinated octahedral nickel(II) complexes, [Ni(sal-L-phe)(phen)(CH3OH)]⋅CH3OH (1), [Ni(naph-L-phe)(phen)(CH3OH)] (2), and [Ni(o-van-L-phe)(phen)(CH3OH)]⋅5CH3OH (3) (sal-L-phe = a Schiff base derived from salicylaldehyde and L-phenylalanine, naph-L-phe = a Schiff base derived from 2-hydroxy-1-naphthaldehyde and L-phenylalanine, o-van-L-phe = a Schiff base derived from o-vanillin and L-phenylalanine, and phen = 1,10-phenanthroline), have been synthesized and characterized by elemental analysis, IR spectra, and single-crystal X-ray diffraction. The interactions of these complexes with CT-DNA were studied by UV-Vis absorption spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy, and viscosity measurements. The binding constant (Kb) values of 1.82 × 104 M−1 for 1, 1.96 × 104 M−1 for 2, and 2.02 × 104 M−1 for 3 suggest that each of these complexes could bind with DNA in a moderate intercalative mode. Complex 3 exhibited a stronger interaction with CT-DNA than complexes 1 and 2. In addition, the superoxide scavenging activity of these complexes was investigated by the nitrotetrazolium blue chloride (NBT) light reduction method, and the results showed that they exhibited a significant superoxide scavenging activity with the IC50 values of 4.4 × 10−5 M for complex 1, 5.6 × 10−5 M for complex 2, and 3.1 × 10−5 M for complex 3, respectively.
      PubDate: Thu, 05 Jul 2018 00:00:00 +000
       
  • Study of Isothermal, Kinetic, and Thermodynamic Parameters for Adsorption
           of Cadmium: An Overview of Linear and Nonlinear Approach and Error
           Analysis

    • Abstract: Reports about presence and toxicity of Cd2+ in different chemical industrial effluents prompted the researchers to explore some economical, rapid, sensitive, and accurate methods for its determination and removal from aqueous systems. In continuation of series of investigations, adsorption of Cd2+ onto the stem of Saccharum arundinaceum is proposed in the present work. Optimization of parameters affecting sorption potential of Cd2+ including pH, contact time, temperature, sorbent dose, and concentration of sorbate was carried out to determine best suited conditions for maximum removal of sorbate. To understand the nature of sorption process, linear and nonlinear forms of five sorption isotherms including Freundlich and Langmuir models were employed. Feasibility and viability of sorption process were evaluated by calculating kinetics and thermodynamics of the process, while error analysis suggested best fitted sorption model on sorption data. Thermodynamic studies demonstrated exothermic nature of reaction, while kinetic studies suggested pseudo-second order of reaction.
      PubDate: Tue, 03 Jul 2018 06:00:32 +000
       
  • Gloriosa superba Mediated Synthesis of Platinum and Palladium
           Nanoparticles for Induction of Apoptosis in Breast Cancer

    • Abstract: Green chemistry approaches for designing therapeutically significant nanomedicine have gained considerable attention in the past decade. Herein, we report for the first time on anticancer potential of phytogenic platinum nanoparticles (PtNPs) and palladium nanoparticles (PdNPs) using a medicinal plant Gloriosa superba tuber extract (GSTE). The synthesis of the nanoparticles was completed within 5 hours at 100°C which was confirmed by development of dark brown and black colour for PtNPs and PdNPs, respectively, along with enhancement of the peak intensity in the UV-visible spectra. High-resolution transmission electron microscopy (HRTEM) showed that the monodispersed spherical nanoparticles were within a size range below 10 nm. Energy dispersive spectra (EDS) confirmed the elemental composition, while dynamic light scattering (DLS) helped to evaluate the hydrodynamic size of the particles. Anticancer activity against MCF-7 (human breast adenocarcinoma) cell lines was evaluated using MTT assay, flow cytometry, and confocal microscopy. PtNPs and PdNPs showed 49.65 ± 1.99% and 36.26 ± 0.91% of anticancer activity. Induction of apoptosis was most predominant in the underlying mechanism which was rationalized by externalization of phosphatidyl serine and membrane blebbing. These findings support the efficiency of phytogenic fabrication of nanoscale platinum and palladium drugs for management and therapy against breast cancer.
      PubDate: Mon, 02 Jul 2018 00:00:00 +000
       
  • A Diversified Spectrometric and Molecular Docking Technique to Biophysical
           Study of Interaction between Bovine Serum Albumin and Sodium Salt of
           Risedronic Acid, a Bisphosphonate for Skeletal Disorders

    • Abstract: The binding interaction between bovine serum albumin (BSA) and sodium salt of risedronic acid (RSN) was studied by using the FT-IR (Fourier transform infrared), UV-Vis (ultraviolet–visible), fluorescence (emission and synchronous), CD (circular dichroism) spectrometric, and computational (molecular docking) techniques at 289, 297, and 305 K temperatures with physiological buffer of pH 7.40. The conformational and secondary structural changes observed for BSA from CD spectra and by curve fitting procedure were applied to Fourier self-deconvolution in FT-IR spectra. The formation of a BSA-RSN complex was confirmed from UV-Vis spectroscopy. The static type of quenching shown for RSN to BSA was verified from Stern–Volmer and modified Stern–Volmer equations. The binding constant of order 105 was obtained to be confirming that there exists a strong binding interaction between BSA and RSN. Synchronous fluorescence shows that the microenvironment of tryptophan was altered, not tyrosine of BSA; in addition to this, the distance between tryptophan of BSA and RSN was found out from Forster’s theory of nonradiation energy transfer. The interaction between BSA and RSN mainly occurred as a result of hydrogen bonds and van der Waals forces, the process is exothermic and spontaneous, and it was achieved through van ’t Hoff equation. This interaction was affected by the presence of biologically active Fe2+, Ni2+, Ca2+, Mg2+, and Cd2+ ions and was also studied. The subdomain IIIA of BSA involved with RSN interaction was authenticated from molecular docking analysis.
      PubDate: Thu, 28 Jun 2018 00:00:00 +000
       
  • Synthesis and Characterization of Oxidovanadium(IV) Complexes of
           2-((E)-(6-Fluorobenzo[d]thiazol-2-ylimino)methyl)-6-methoxyphenol and
           Their Antimicrobial, Antioxidant, and DNA-Binding Studies

    • Abstract: Two novel oxidovanadium(IV) complexes with a new bidentate (O- and N-) imine-based ligand 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino)methyl)-6-methoxyphenol (HL) were synthesized under in situ experimental condition where VOSO4 acts as a kinetic template in the ratio 2 : 1 (L : M) and mixed ligand complex using 1,10-phenanthroline (phen) in 1 : 1 : 1 (L : M : phen) ratio. The synthesized compounds were structurally characterized by microanalysis, magnetic susceptibility, FTIR, electronic spectra, TG/DTA, ESR, and molar conductance studies. Based on the spectral studies, the complexes have the general composition [VO(L)2] (C1) and [VO(L)phen] (C2) in a square pyramid geometrical fashion. The synthesized compounds were primarily screened for their in vitro growth inhibiting activity against different strains of bacteria, namely, E. coli, B. subtilis, S. aureus, and P. aeruginosa by the disc diffusion method. Also, the antifungal activity was determined against C. albicans and A. niger by the Bateman poisoned technique. The in vitro antioxidant activity of all the compounds was determined by DPPH free radical-scavenging assay. Intercalative mode of DNA-binding properties of the oxidovanadium(IV) complexes with calf-thymus DNA (CT-DNA) was investigated using UV, fluorescence spectra, and viscosity measurements.
      PubDate: Wed, 27 Jun 2018 00:00:00 +000
       
  • Corrigendum to “Formation of Silver Nanoclusters from a DNA Template
           Containing Ag(I)-Mediated Base Pairs”

    • PubDate: Thu, 21 Jun 2018 00:00:00 +000
       
  • Pharmacological and Toxicological Threshold of Bisammonium Tetrakis
           4-(N,N-Dimethylamino)pyridinium Decavanadate in a Rat Model of Metabolic
           Syndrome and Insulin Resistance

    • Abstract: Vanadium(IV/V) compounds have been studied as possible metallopharmaceutical drugs against diabetes mellitus. However, mechanisms of action and toxicological threshold have been tackled poorly so far. In this paper, our purposes were to evaluate the metabolic activity on dyslipidemia and dysglycemia, insulin signaling in liver and adipose tissue, and toxicology of the title compound. To do so, the previously reported bisammonium tetrakis 4-(N,N-dimethylamino)pyridinium decavanadate, the formula of which is [DMAPH]4(NH4)2[V10O28]·8H2O (where DMAPH is 4-dimethylaminopyridinium ion), was synthesized, and its dose-response curve on hyperglycemic rats was evaluated. A Long–Evans rat model showing dyslipidemia and dysglycemia with parameters that reproduce metabolic syndrome and severe insulin resistance was generated. Two different dosages, 5 µmol and 10 µmol twice a week of the title compound (equivalent to 2.43 mg·V/kg/day and 4.86 mg·V/kg/day, resp.), were administered intraperitoneal (i.p.) for two months. Then, an improvement on each of the following parameters was observed at a 5 µmol dose: weight reduction, abdominal perimeter, fatty index, body mass index, oral glucose tolerance test, lipid profile, and adipokine and insulin resistance indexes. Nevertheless, when the toxicological profile was evaluated at a 10 µmol dose, it did not show complete improvement, tested by the liver and adipose histology, as well as by insulin receptor phosphorylation and GLUT-4 expression. In conclusion, the title compound administration produces regulation on lipids and carbohydrates, regardless of dose, but the pharmacological and toxicological threshold for cell regulation are suggested to be up to 5 µmol (2.43 mg·V/kg/day) dose twice per week.
      PubDate: Tue, 19 Jun 2018 00:00:00 +000
       
  • Exploration on the Interaction Ability of Antitumor Compound
           Bis-[2,6-difluoro-N-(hydroxyl-O)benzamidato-O]dibutylitin(IV) with Human
           Peroxisome Proliferator-Activated Receptor hPPARγ

    • Abstract: Diorganotin(IV) antitumor compound bis-[2,6-difluoro-N-(hydroxyl-O)benzamidato-O] (DBDF2,6T) was one of the novel patent organotin compounds with high antitumor activity and relatively low toxicity. In this study, several methods were used to study the interaction between DBDF2,6T and hPPARγ protein, including fluorescence quenching, three-dimensional (3D) fluorescence, drug affinity responsive target stability (DARTS), ultrafiltration-LC, and molecular docking. According to the experimental results, the quenching process of the hPPARγ protein was induced by static quenching mode to form a nonradiative ground-state complex with DBDF2,6T spontaneously, mainly through the hydrophobic force. DBDF2,6T could bind to the hPPARγ protein directly and give the protein the ability of antienzymatic hydrolysis. And the binding mode of DBDF2,6T into hPPARγ protein appeared to have an orientation towards residues of SER342 and GLY284. In conclusion, these methods could comprehensively reveal the interaction details of DBDF2,6T and the hPPARγ protein and established a feasible way to preliminarily identify the agonist compounds for the hPPARγ protein.
      PubDate: Sun, 10 Jun 2018 06:21:00 +000
       
  • The Anticancer Activities of Some Nitrogen Donor Ligands Containing
           

    • Abstract: The anticancer study of nitrogen-chelating ligands can be of tremendous help in choosing ligands for the anticancer metal complexes design especially with ruthenium(II). The inhibitory anticancer activities of some nitrogen-chelating ligands containing bis-pyrazole, bipyridine, and phenanthroline were studied using experimental screening against cancer cell and theoretical docking methods. In vitro anticancer activities showed compound 11 as the most promising inhibitor, and the computational docking further indicates its strong inhibitory activities towards some cancer-related receptors. Among the twenty-one modelled ligands, pyrazole-based compounds 7, 11, and 15 are the most promising inhibitors against the selected receptors followed by 18 and 21 which are derivatives of pyridine and phenanthroline, respectively. The presence of the carboxylic unit in the top five ligands that displayed stronger inhibitory activities against the selected receptors is an indication that the formation of noncovalent interactions such as hydrogen bonding and a strong electron-withdrawing group in these compounds are very important for their receptor interactions. The thermodynamic properties, the polarizabilities, and the LUMO energy of the compounds are in the same patterns as the observed inhibitory activities.
      PubDate: Mon, 04 Jun 2018 09:51:46 +000
       
  • Synthesis, Structural Analysis, and Biological Activities of Some
           Imidazolium Salts

    • Abstract: Four newly synthesized imidazolium salts were characterized by nuclear magnetic resonance, vibrational spectra, and mass spectra. Then, the density functional theory calculations were performed to obtain the molecular configurations on which the theoretical nuclear magnetic resonance and infrared spectra were consequently obtained. The comparison of calculated spectra with the experimental spectra for each molecule leads to the conclusion that the theoretical results can be assumed to be a good approach to their molecular configurations. The in vitro biological activities of the salts on the selected bacteria and cancer cell lines were determined by using the broth dilution method according to Clinical and Laboratory Standards Institute guidelines. The 1,3-bis(2-hydroxyethyl) imidazolidinium bromide and 3-(2-ethoxy-2-oxoethly)-1-(3-aminopropyl)-1H-imidazol-3-ium bromide showed efficiency on Bacillus cereus ATCC 11778. The 3-bis(2-carboxyethyl)-4-methyl-1-H-imidazol-3-ium bromide was effective on HeLa while a similar effect was observed on Hep G2 with 3-(2-carboxyethyl)-1-(3-aminopropyl)-1H-imidazol-3-ium bromide.
      PubDate: Tue, 22 May 2018 00:00:00 +000
       
  • Hydrothermal Synthesis, Structural Characterization, and Interaction
           Mechanism with DNA of Copper(II) Complex Containing 2,2′-Bipyridine

    • Abstract: A Cu(II) complex [Cu(bipy)(H2O)2(SO4)]n (bipy = 2,2′-bipyridine) was synthesized by hydrothermal method and characterized structurally by elemental analyses, single crystal X-ray diffraction, infrared spectra, and thermogravimetry and differential scanning calorimetry. The Cu(II) was hexacoordinated by two N atoms from bipy, two O atoms from different sulfate radical anions, and two O atoms from two water molecules, forming a slightly distorted octahedral geometry, and bridged by sulfato groups into polymeric chains. Under the condition of physiological pH, the interaction mechanism between the complex and hsDNA was explored with acridine orange as a fluorescence probe by spectroscopic methods. The binding modes between the complex and hsDNA were the electrostatic and embedded modes.
      PubDate: Tue, 22 May 2018 00:00:00 +000
       
  • Synthesis of Pyrazolone Derivatives and Their Nanometer Ag(I) Complexes
           and Physicochemical, DNA Binding, Antitumor, and Theoretical
           Implementations

    • Abstract: Four pyrazolone derivatives and their corresponding silver complexes were synthesized and characterized. Based on elemental analysis, 1 : 2 (M : L) molar ratio was suggested for all inspected complexes. 1H, 13C NMR, mass, UV-Vis, TGA, and IR were the spectral tools used for describing the formulae. Moreover, XRD patterns and SEM pictures were used to evaluate the particle sizes which appeared strongly in nanometer range. CT-DNA study is the major consideration in this study, to test the interacting ability of all synthesized cationic complexes towards cell DNA. Each binding constant was computed and correlated with the Hammett sigma constant. Antitumor activity was examined upon three carcinoma cell lines (MCF-7, HepG2, and HCT116). The high efficiency was recorded towards MCF-7 (breast carcinoma) cell line. Kinetic studies yield essential parameters to assert on the rule of metal atom on thermal feature of organic compounds. Molecular modeling was implemented to optimize the structures of compounds. Also, molecular docking was achieved to obtain a clear view about proposed drug behavior within the affected cells. This was achieved through comparing the calculated internal energy values of all docking complexes. All the tested compounds displayed a significant interaction with breast cancer protein (strong matching with practical result) followed by DNA polymerase protein.
      PubDate: Mon, 14 May 2018 00:00:00 +000
       
  • Coordination Behavior of Ni2+, Cu2+, and Zn2+ in Tetrahedral
           1-Methylimidazole Complexes: A DFT/CSD Study

    • Abstract: The interaction between nickel (Ni2+), copper (Cu2+), and zinc (Zn2+) ions and 1-methylimidazole has been studied by exploring the geometries of eleven crystal structures in the Cambridge Structural Database (CSD). The coordination behavior of the respective ions was further investigated by means of density functional theory (DFT) methods. The gas-phase complexes were fully optimized using B3LYP/GENECP functionals with 6-31G∗ and LANL2DZ basis sets. The Ni2+ and Cu2+ complexes show distorted tetrahedral geometries around the central ions, with Zn2+ being a perfect tetrahedron. Natural bond orbital (NBO) analysis and natural population analysis (NPA) show substantial reduction in the formal charge on the respective ions. The interaction between metal d-orbitals (donor) and ligand orbitals (acceptor) was also explored using second-order perturbation of the Fock matrix. These interactions followed the order Ni2+ > Cu2+ > Zn2+ with Zn2+ having the least interaction with the ligand orbitals. Examination of the frontier orbitals shows the stability of the complexes in the order Ni2+ > Cu2+ 
      PubDate: Mon, 14 May 2018 00:00:00 +000
       
  • Hydrolysis of Methionine- and Histidine-Containing Peptides Promoted by
           Dinuclear Platinum(II) Complexes with Benzodiazines as Bridging Ligands:
           Influence of Ligand Structure on the Catalytic Ability of Platinum(II)
           Complexes

    • Abstract: Dinuclear platinum(II) complexes, [{Pt(en)Cl}2(-qx)]Cl2·2H2O (1), [{Pt(en)Cl}2(-qz)](ClO4)2 (2), and [{Pt(en)Cl}2(-phtz)]Cl2·4H2O (3), were synthesized and characterized by different spectroscopic techniques. The crystal structure of 1 was determined by single-crystal X-ray diffraction analysis, while the DFT M06-2X method was applied in order to optimize the structures of 1–3. The chlorido Pt(II) complexes 1–3 were converted into the corresponding aqua species 1a–3a, and their reactions with an equimolar amount of Ac–L–Met–Gly and Ac–L–His–Gly dipeptides were studied by 1H NMR spectroscopy in the pH range 2.0 
      PubDate: Tue, 08 May 2018 00:00:00 +000
       
  • Ir-6: A Novel Iridium (III) Organometallic Derivative for Inhibition of
           Human Platelet Activation

    • Abstract: Platelet activation has been reported to play a major role in arterial thrombosis, cancer metastasis, and progression. Recently, we developed a novel Ir(III)-based compound, [Ir(Cp)1-(2-pyridyl)-3-(4-dimethylaminophenyl)imidazo[1,5-a]pyridine Cl]BF4 or Ir-6 and assessed its effectiveness as an antiplatelet drug. Ir-6 exhibited higher potency against human platelet aggregation stimulated by collagen. Ir-6 also inhibited ATP-release, intracellular Ca2+ mobilization, P-selectin expression, and the phosphorylation of phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), v-Akt murine thymoma viral oncogene (Akt)/protein kinase B, and mitogen-activated protein kinases (MAPKs), in collagen-activated platelets. Neither the adenylate cyclase inhibitor SQ22536 nor the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one significantly reversed the Ir-6-mediated inhibition of collagen-induced platelet aggregation. Moreover, Ir-6 did not considerably diminish OH radical signals in collagen-activated platelets or Fenton reaction solution. At 2 mg/kg, Ir-6 markedly prolonged the bleeding time in experimental mice. In conclusion, Ir-6 plays a crucial role by inhibiting platelet activation through the inhibition of signaling pathways, such as the PLCγ2–PKC cascade and the subsequent suppression of Akt and MAPK activation, thereby ultimately inhibiting platelet aggregation. Therefore, Ir-6 is a potential therapeutic agent for preventing or treating thromboembolic disorders or disrupting the interplay between platelets and tumor cells, which contributes to tumor cell growth and progression.
      PubDate: Wed, 02 May 2018 00:00:00 +000
       
  • Adsorptive Removal of Hexavalent Chromium by Diphenylcarbazide-Grafted
           Macadamia Nutshell Powder

    • Abstract: Macadamia nutshell powder oxidized by hydrogen peroxide solutions (MHP) was functionalized by immobilizing 1,5′-diphenylcarbazide (DPC) on its surface. The effectiveness of grafting was confirmed by the Fourier transform infrared spectrum due to the presence of NH and C=C stretches at 3361, 1591, and 1486 cm−1, respectively, on the grafted material which were absent in the nongrafted material. Thermogravimetric analysis revealed that the presence of DPC on the surface of Macadamia shells lowered the thermal stability from 300°C to about 180°C owing to the volatile nature of DPC. Surface roughness as a result of grafting was appreciated on the scanning electron microscopy images. Parameters influencing the adsorptive removal of Cr(VI) were examined and found to be optimal at pH 2, 120 min, 150 mg/L, and 2.5 g/L. Grafting MHP with DPC leads to an increase in the Langmuir monolayer capacity from 37.74 to 72.12 mg/g. Grafting MHP with DPC produced adsorbent with improved removal efficiency for Cr(VI).
      PubDate: Thu, 19 Apr 2018 00:00:00 +000
       
  • Metal Nanoparticles: Thermal Decomposition, Biomedicinal Applications to
           Cancer Treatment, and Future Perspectives

    • Abstract: Monodispersed forms of metal nanoparticles are significant to overcome frightening threat of cancer. This review examined pragmatically thermal decomposition as one of the best ways to synthesize monodispersed metal nanoparticles which are stable and of small particle sizes. Controlled morphology for delivery of anticancer agent to specific cells can also be obtained with thermal decomposition. In addition to thermal decomposition, the study also looked into processes of characterization techniques, biological evaluation, toxicity of nanoparticles, and future perspectives.
      PubDate: Wed, 18 Apr 2018 00:00:00 +000
       
  • Synthesis, Characterization, and Biological Evaluation of Unimetallic and
           Heterobimetallic Complexes of Bivalent Copper

    • Abstract: We present an inclusive characterization of the unimetallic and heterobimetallic complexes of copper synthesized using CuCl2 and diamine (4-fluoro 1,2-phenylenediamine) resulting in monometallic complex which further undergoes treatment with organometallic dichlorides of group 4 and 14 in 1 : 2 molar ratio resulting in heterobimetallic complexes. These complexes thoroughly characterized using various physical, analytical, and spectroscopic techniques indicate square planar and distorted octahedral geometry for the synthesized unimetallic and heterobimetallic complexes, respectively. These complexes were evaluated for their antimicrobial efficacy against various bacterial and fungal strains while hepatoprotective activity was also examined in male albino rats.
      PubDate: Thu, 12 Apr 2018 05:07:09 +000
       
  • Impact of Different Serum Potassium Levels on Postresuscitation Heart
           Function and Hemodynamics in Patients with Nontraumatic Out-of-Hospital
           Cardiac Arrest

    • Abstract: Background. Sustained return of spontaneous circulation (ROSC) can be initially established in patients with out-of-hospital cardiac arrest (OHCA); however, the early postresuscitation hemodynamics can still be impaired by high levels of serum potassium (hyperkalemia). The impact of different potassium levels on early postresuscitation heart function has remained unclear. We aim to analyze the relationship between different levels of serum potassium and postresuscitation heart function during the early postresuscitation period (the first hour after achieving sustained ROSC). Methods. Information on 479 nontraumatic OHCA patients with sustained ROSC was retrospectively obtained. Measures of early postresuscitation heart function (rate, blood pressure, and rhythm), hemodynamics (urine output and blood pH), and the duration of survival were analyzed in the case of different serum potassium levels (low: 5 mmol/L). Results. Most patients (59.9%, n = 287) had previously presented with high levels of potassium. Bradycardia, nonsinus rhythm, urine output 1 ml/kg/hr (OR: 5.35, 95% CI: 2.58–11.10), and nonacidosis (blood pH>7.35, OR: 7.74, 95% CI: 3.78–15.58). The duration of survival was shorter in patients with hyperkalemia than that in patients whose potassium levels were low or normal (). Conclusion. Early postresuscitation heart function and hemodynamics were associated with the serum potassium level. A high potassium level was more likely to be associated with bradycardia, nonsinus rhythm, urine output
      PubDate: Thu, 05 Apr 2018 00:00:00 +000
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.198.103.13
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-