for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> BIOLOGY (Total: 2999 journals)
    - BIOCHEMISTRY (236 journals)
    - BIOENGINEERING (107 journals)
    - BIOLOGY (1425 journals)
    - BIOPHYSICS (46 journals)
    - BIOTECHNOLOGY (219 journals)
    - BOTANY (220 journals)
    - CYTOLOGY AND HISTOLOGY (28 journals)
    - ENTOMOLOGY (63 journals)
    - GENETICS (162 journals)
    - MICROBIOLOGY (255 journals)
    - MICROSCOPY (10 journals)
    - ORNITHOLOGY (25 journals)
    - PHYSIOLOGY (70 journals)
    - ZOOLOGY (133 journals)

BIOLOGY (1425 journals)                  1 2 3 4 5 6 7 8 | Last

Showing 1 - 200 of 1720 Journals sorted alphabetically
AAPS Journal     Hybrid Journal   (Followers: 20)
Achievements in the Life Sciences     Open Access   (Followers: 4)
ACS Synthetic Biology     Full-text available via subscription   (Followers: 21)
Acta Biologica Colombiana     Open Access   (Followers: 7)
Acta Biologica Hungarica     Full-text available via subscription   (Followers: 4)
Acta Biologica Sibirica     Open Access  
Acta Biomaterialia     Hybrid Journal   (Followers: 25)
Acta Biotheoretica     Hybrid Journal   (Followers: 5)
Acta Chiropterologica     Full-text available via subscription   (Followers: 6)
acta ethologica     Hybrid Journal   (Followers: 4)
Acta Limnologica Brasiliensia     Open Access   (Followers: 3)
Acta Médica Costarricense     Open Access   (Followers: 2)
Acta Musei Silesiae, Scientiae Naturales : The Journal of Silesian Museum in Opava     Open Access  
Acta Neurobiologiae Experimentalis     Open Access  
Acta Parasitologica     Hybrid Journal   (Followers: 9)
Acta Scientiarum. Biological Sciences     Open Access   (Followers: 2)
Acta Scientifica Naturalis     Open Access   (Followers: 2)
Actualidades Biológicas     Open Access   (Followers: 1)
Advanced Health Care Technologies     Open Access   (Followers: 4)
Advanced Studies in Biology     Open Access  
Advances in Antiviral Drug Design     Full-text available via subscription   (Followers: 3)
Advances in Bioinformatics     Open Access   (Followers: 18)
Advances in Biological Regulation     Hybrid Journal   (Followers: 4)
Advances in Biosensors and Bioelectronics     Open Access   (Followers: 6)
Advances in Cell Biology     Open Access   (Followers: 24)
Advances in Cellular and Molecular Biology of Membranes and Organelles     Full-text available via subscription   (Followers: 12)
Advances in Developmental Biology     Full-text available via subscription   (Followers: 11)
Advances in DNA Sequence-Specific Agents     Full-text available via subscription   (Followers: 5)
Advances in Ecological Research     Full-text available via subscription   (Followers: 41)
Advances in Environmental Sciences - International Journal of the Bioflux Society     Open Access   (Followers: 20)
Advances in Enzyme Research     Open Access   (Followers: 9)
Advances in Experimental Biology     Full-text available via subscription   (Followers: 7)
Advances in Genome Biology     Full-text available via subscription   (Followers: 11)
Advances in High Energy Physics     Open Access   (Followers: 19)
Advances in Human Biology     Open Access   (Followers: 1)
Advances in Life Science and Technology     Open Access   (Followers: 14)
Advances in Life Sciences     Open Access   (Followers: 4)
Advances in Marine Biology     Full-text available via subscription   (Followers: 15)
Advances in Molecular and Cell Biology     Full-text available via subscription   (Followers: 22)
Advances in Planar Lipid Bilayers and Liposomes     Full-text available via subscription   (Followers: 3)
Advances in Regenerative Biology     Open Access   (Followers: 1)
Advances in Structural Biology     Full-text available via subscription   (Followers: 8)
Advances in Virus Research     Full-text available via subscription   (Followers: 5)
African Journal of Range & Forage Science     Hybrid Journal   (Followers: 6)
AFRREV STECH : An International Journal of Science and Technology     Open Access   (Followers: 1)
Ageing Research Reviews     Hybrid Journal   (Followers: 8)
Aging Cell     Open Access   (Followers: 10)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Agrokreatif Jurnal Ilmiah Pengabdian kepada Masyarakat     Open Access  
AJP Cell Physiology     Full-text available via subscription   (Followers: 13)
AJP Endocrinology and Metabolism     Full-text available via subscription   (Followers: 22)
AJP Lung Cellular and Molecular Physiology     Full-text available via subscription   (Followers: 3)
Al-Kauniyah : Jurnal Biologi     Open Access  
Alasbimn Journal     Open Access   (Followers: 1)
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Biology Teacher     Full-text available via subscription   (Followers: 13)
American Fern Journal     Full-text available via subscription   (Followers: 1)
American Journal of Agricultural and Biological Sciences     Open Access   (Followers: 10)
American Journal of Bioethics     Hybrid Journal   (Followers: 10)
American Journal of Biostatistics     Open Access   (Followers: 9)
American Journal of Human Biology     Hybrid Journal   (Followers: 12)
American Journal of Medical and Biological Research     Open Access   (Followers: 5)
American Journal of Plant Sciences     Open Access   (Followers: 19)
American Journal of Primatology     Hybrid Journal   (Followers: 15)
American Malacological Bulletin     Full-text available via subscription   (Followers: 3)
American Naturalist     Full-text available via subscription   (Followers: 68)
Amphibia-Reptilia     Hybrid Journal   (Followers: 6)
Anaerobe     Hybrid Journal   (Followers: 4)
Analytical Methods     Full-text available via subscription   (Followers: 9)
Anatomical Science International     Hybrid Journal   (Followers: 2)
Animal Cells and Systems     Hybrid Journal   (Followers: 4)
Annales de Limnologie - International Journal of Limnology     Hybrid Journal   (Followers: 1)
Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale     Full-text available via subscription   (Followers: 3)
Annales Henri Poincaré     Hybrid Journal   (Followers: 3)
Annales UMCS, Biologia     Open Access   (Followers: 1)
Annals of Applied Biology     Hybrid Journal   (Followers: 7)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 18)
Annals of Human Biology     Hybrid Journal   (Followers: 4)
Annual Review of Biomedical Engineering     Full-text available via subscription   (Followers: 17)
Annual Review of Biophysics     Full-text available via subscription   (Followers: 25)
Annual Review of Cancer Biology     Full-text available via subscription   (Followers: 1)
Annual Review of Cell and Developmental Biology     Full-text available via subscription   (Followers: 39)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 15)
Annual Review of Genomics and Human Genetics     Full-text available via subscription   (Followers: 19)
Annual Review of Phytopathology     Full-text available via subscription   (Followers: 10)
Anthropological Review     Open Access   (Followers: 25)
Anti-Infective Agents     Hybrid Journal   (Followers: 3)
Antibiotics     Open Access   (Followers: 9)
Antioxidants     Open Access   (Followers: 4)
Antioxidants & Redox Signaling     Hybrid Journal   (Followers: 8)
Antonie van Leeuwenhoek     Hybrid Journal   (Followers: 5)
Anzeiger für Schädlingskunde     Hybrid Journal   (Followers: 1)
Apidologie     Hybrid Journal   (Followers: 4)
Apmis     Hybrid Journal   (Followers: 1)
APOPTOSIS     Hybrid Journal   (Followers: 8)
Applied Bionics and Biomechanics     Open Access   (Followers: 8)
Applied Vegetation Science     Full-text available via subscription   (Followers: 9)
Aquaculture Environment Interactions     Open Access   (Followers: 2)
Aquaculture International     Hybrid Journal   (Followers: 22)
Aquaculture Reports     Open Access   (Followers: 3)
Aquaculture, Aquarium, Conservation & Legislation - International Journal of the Bioflux Society     Open Access   (Followers: 6)
Aquatic Biology     Open Access   (Followers: 5)
Aquatic Ecology     Hybrid Journal   (Followers: 30)
Aquatic Ecosystem Health & Management     Hybrid Journal   (Followers: 13)
Aquatic Science and Technology     Open Access   (Followers: 3)
Aquatic Toxicology     Hybrid Journal   (Followers: 18)
Archaea     Open Access   (Followers: 3)
Archiv für Molluskenkunde: International Journal of Malacology     Full-text available via subscription   (Followers: 3)
Archives of Biomedical Sciences     Open Access   (Followers: 7)
Archives of Microbiology     Hybrid Journal   (Followers: 8)
Archives of Natural History     Hybrid Journal   (Followers: 7)
Archives of Oral Biology     Hybrid Journal   (Followers: 2)
Archives of Virology     Hybrid Journal   (Followers: 5)
Archivum Immunologiae et Therapiae Experimentalis     Hybrid Journal   (Followers: 2)
Arid Ecosystems     Hybrid Journal   (Followers: 3)
Arquivos do Instituto Biológico     Open Access   (Followers: 1)
Arquivos do Museu Dinâmico Interdisciplinar     Open Access  
Arthropod Structure & Development     Hybrid Journal   (Followers: 2)
Arthropods     Open Access   (Followers: 1)
Artificial DNA: PNA & XNA     Hybrid Journal   (Followers: 2)
Artificial Photosynthesis     Open Access   (Followers: 1)
Asian Bioethics Review     Full-text available via subscription   (Followers: 1)
Asian Journal of Biodiversity     Open Access   (Followers: 5)
Asian Journal of Biological Sciences     Open Access   (Followers: 3)
Asian Journal of Cell Biology     Open Access   (Followers: 6)
Asian Journal of Developmental Biology     Open Access   (Followers: 2)
Asian Journal of Medical and Biological Research     Open Access   (Followers: 2)
Asian Journal of Nematology     Open Access   (Followers: 3)
Asian Journal of Poultry Science     Open Access   (Followers: 4)
Australian Life Scientist     Full-text available via subscription   (Followers: 2)
Australian Mammalogy     Hybrid Journal   (Followers: 6)
Autophagy     Hybrid Journal   (Followers: 2)
Avian Biology Research     Full-text available via subscription   (Followers: 4)
Avian Conservation and Ecology     Open Access   (Followers: 12)
Bacteriology Journal     Open Access   (Followers: 2)
Bacteriophage     Full-text available via subscription   (Followers: 3)
Bangladesh Journal of Bioethics     Open Access  
Bangladesh Journal of Plant Taxonomy     Open Access  
Bangladesh Journal of Scientific Research     Open Access   (Followers: 1)
Berita Biologi     Open Access   (Followers: 1)
Between the Species     Open Access   (Followers: 1)
Bio Tribune Magazine     Hybrid Journal  
BIO Web of Conferences     Open Access  
BIO-Complexity     Open Access  
Bio-Grafía. Escritos sobre la Biología y su enseñanza     Open Access  
Bioanalytical Reviews     Hybrid Journal   (Followers: 2)
Biocatalysis and Biotransformation     Hybrid Journal   (Followers: 6)
Biochemistry and Cell Biology     Hybrid Journal   (Followers: 14)
Biochimie     Hybrid Journal   (Followers: 7)
BioControl     Hybrid Journal   (Followers: 5)
Biocontrol Science and Technology     Hybrid Journal   (Followers: 5)
Biodemography and Social Biology     Hybrid Journal   (Followers: 1)
Biodiversidad Colombia     Open Access  
Biodiversity : Research and Conservation     Open Access   (Followers: 26)
Biodiversity and Natural History     Open Access   (Followers: 5)
Biodiversity Data Journal     Open Access   (Followers: 3)
Biodiversity Informatics     Open Access  
Bioedukasi : Jurnal Pendidikan Biologi FKIP UM Metro     Open Access  
Bioeksperimen : Jurnal Penelitian Biologi     Open Access  
Bioelectrochemistry     Hybrid Journal   (Followers: 2)
Bioelectromagnetics     Hybrid Journal   (Followers: 1)
Bioenergy Research     Hybrid Journal   (Followers: 2)
Bioengineering and Bioscience     Open Access   (Followers: 1)
BioEssays     Hybrid Journal   (Followers: 10)
Bioethics     Hybrid Journal   (Followers: 14)
BioéthiqueOnline     Open Access  
Biofabrication     Hybrid Journal   (Followers: 3)
Biogeosciences (BG)     Open Access   (Followers: 10)
Biogeosciences Discussions (BGD)     Open Access   (Followers: 1)
Bioinformatics     Hybrid Journal   (Followers: 308)
Bioinformatics and Biology Insights     Open Access   (Followers: 15)
Bioinspiration & Biomimetics     Hybrid Journal   (Followers: 6)
Biointerphases     Open Access   (Followers: 1)
Biojournal of Science and Technology     Open Access  
Biologia     Hybrid Journal  
Biologia on-line : Revista de divulgació de la Facultat de Biologia     Open Access  
Biological Bulletin     Partially Free   (Followers: 4)
Biological Control     Hybrid Journal   (Followers: 5)
Biological Invasions     Hybrid Journal   (Followers: 16)
Biological Journal of the Linnean Society     Hybrid Journal   (Followers: 16)
Biological Letters     Open Access   (Followers: 4)
Biological Procedures Online     Open Access  
Biological Psychiatry     Hybrid Journal   (Followers: 43)
Biological Psychology     Hybrid Journal   (Followers: 6)
Biological Research     Open Access  
Biological Rhythm Research     Hybrid Journal   (Followers: 2)
Biological Theory     Hybrid Journal   (Followers: 1)
Biological Trace Element Research     Hybrid Journal  
Biologicals     Full-text available via subscription   (Followers: 9)
Biologics: Targets & Therapy     Open Access   (Followers: 1)
Biologie Aujourd'hui     Full-text available via subscription  
Biologie in Unserer Zeit (Biuz)     Hybrid Journal   (Followers: 42)
Biologija     Open Access  
Biology     Open Access   (Followers: 5)
Biology and Philosophy     Hybrid Journal   (Followers: 16)
Biology Bulletin     Hybrid Journal   (Followers: 1)
Biology Bulletin Reviews     Hybrid Journal  
Biology Direct     Open Access   (Followers: 7)
Biology Letters     Full-text available via subscription   (Followers: 36)

        1 2 3 4 5 6 7 8 | Last

Journal Cover Antonie van Leeuwenhoek
  [SJR: 0.992]   [H-I: 87]   [5 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1572-9699 - ISSN (Online) 0003-6072
   Published by Springer-Verlag Homepage  [2353 journals]
  • Special Issue: the 3rd meeting of the Bergey’s International Society for
           Microbial Systematics (BISMIS)
    • Authors: Brian P. Hedlund; Iain C. Sutcliffe; Martha E. Trujillo
      Pages: 1245 - 1246
      PubDate: 2017-10-01
      DOI: 10.1007/s10482-017-0935-2
      Issue No: Vol. 110, No. 10 (2017)
  • The value of cultures to modern microbiology
    • Authors: Brian Austin
      Pages: 1247 - 1256
      Abstract: Abstract Since the late nineteenth century, pure cultures have been regarded as the cornerstone of bacteriology. However, not all bacteria will multiply sufficiently to produce visible colonies on solid media; some cells will produce micro-colonies that are invisible to the naked eye. Moreover, the proportion of culturable cells that produce visible growth will vary according to the species and the state of the cells—are they actively growing or comparatively inactive' The latter have a poorer rate of recovery in terms of cultivability. It is unclear whether or not an individual colony is always derived from a single cell; it is possible that organisms in close proximity to each other may multiply and come together to produce single colonies. Then, the resultant growth will most certainly be derived from more than one initial cell. Although it is generally assumed that streaking and re-streaking on fresh media will purify any culture, there is evidence for microbial consortia interacting to form what appear to be single pure cultures. As so-called pure cultures underpin traditional microbiology, it is relevant to understand that the culture does not necessarily contain clones of identical bacteria, but that there may be variation in the genetic potential of the component cells, i.e. the cells are not homogeneous. Certainly, many bacteria change rapidly upon culturing, with some becoming bigger and less active. It is difficult to be sure if these changes reflect a loss or change of DNA or whether standard culturing methods select faster growing cells that are effectively not representative of the environment from which they were derived. These concepts are reviewed with an emphasis on bacterial fish pathogens.
      PubDate: 2017-10-01
      DOI: 10.1007/s10482-017-0840-8
      Issue No: Vol. 110, No. 10 (2017)
  • The current status of cyanobacterial nomenclature under the
           “prokaryotic” and the “botanical” code
    • Authors: Aharon Oren; Stefano Ventura
      Pages: 1257 - 1269
      Abstract: Abstract Cyanobacterial taxonomy developed in the botanical world because Cyanobacteria/Cyanophyta have traditionally been identified as algae. However, they possess a prokaryotic cell structure, and phylogenetically they belong to the Bacteria. This caused nomenclature problems as the provisions of the International Code of Nomenclature for algae, fungi, and plants (ICN; the “Botanical Code”) differ from those of the International Code of Nomenclature of Prokaryotes (ICNP; the “Prokaryotic Code”). While the ICN recognises names validly published under the ICNP, Article 45(1) of the ICN has not yet been reciprocated in the ICNP. Different solutions have been proposed to solve the current problems. In 2012 a Special Committee on the harmonisation of the nomenclature of Cyanobacteria was appointed, but its activity has been minimal. Two opposing proposals to regulate cyanobacterial nomenclature were recently submitted, one calling for deletion of the cyanobacteria from the groups of organisms whose nomenclature is regulated by the ICNP, the second to consistently apply the rules of the ICNP to all cyanobacteria. Following a general overview of the current status of cyanobacterial nomenclature under the two codes we present five case studies of genera for which nomenclatural aspects have been discussed in recent years: Microcystis, Planktothrix, Halothece, Gloeobacter and Nostoc.
      PubDate: 2017-10-01
      DOI: 10.1007/s10482-017-0848-0
      Issue No: Vol. 110, No. 10 (2017)
  • A proposal for a portal to make earth’s microbial diversity easily
           accessible and searchable
    • Authors: Boris A. Vinatzer; Long Tian; Lenwood S. Heath
      Pages: 1271 - 1279
      Abstract: Abstract Estimates of the number of bacterial species range from 107 to 1012. At the pace at which descriptions of new species are currently being published, the description of all bacterial species on earth will only be completed in thousands of years. However, even if one day all species were named and described, these names and descriptions would still be of little practical value unless they could be easily searched and accessed, so that novel strains could be easily identified as members of any of these species. To complicate the situation further, many of the currently known species contain significant genotypic and phenotypic diversity that would still be missed if description of microbial diversity were limited to species. The solution to this problem could be a database in which every bacterial species and every intra-specific group is anchored to a genome-similarity framework. This ideal database should be searchable using complete or partial genome sequences as well as phenotypes. Moreover, the database should include functions to easily add newly sequenced novel strains, automatically place them into the genome-similarity framework, identify them as members of an already named species, or tag them as members of yet to be described species or new intra-specific groups. Here, we propose the means to develop such a database by taking advantage of the concept of genome sequence similarity-based codes, called Life Identification Numbers or LINs.
      PubDate: 2017-10-01
      DOI: 10.1007/s10482-017-0849-z
      Issue No: Vol. 110, No. 10 (2017)
  • A large-scale evaluation of algorithms to calculate average nucleotide
    • Authors: Seok-Hwan Yoon; Sung-min Ha; Jeongmin Lim; Soonjae Kwon; Jongsik Chun
      Pages: 1281 - 1286
      Abstract: Abstract Average nucleotide identity (ANI) is a category of computational analysis that can be used to define species boundaries of Archaea and Bacteria. Calculating ANI usually involves the fragmentation of genome sequences, followed by nucleotide sequence search, alignment, and identity calculation. The original algorithm to calculate ANI used the BLAST program as its search engine. An improved ANI algorithm, called OrthoANI, was developed to accommodate the concept of orthology. Here, we compared four algorithms to compute ANI, namely ANIb (ANI algorithm using BLAST), ANIm (ANI using MUMmer), OrthoANIb (OrthoANI using BLAST) and OrthoANIu (OrthoANI using USEARCH) using >100,000 pairs of genomes with various genome sizes. By comparing values to the ANIb that is considered a standard, OrthoANIb and OrthoANIu exhibited good correlation in the whole range of ANI values. ANIm showed poor correlation for ANI of <90%. ANIm and OrthoANIu runs faster than ANIb by an order of magnitude. When genomes that are larger than 7 Mbp were analysed, the run-times of ANIm and OrthoANIu were shorter than that of ANIb by 53- and 22-fold, respectively. In conclusion, ANI calculation can be greatly sped up by the OrthoANIu method without losing accuracy. A web-service that can be used to calculate OrthoANIu between a pair of genome sequences is available at For large-scale calculation and integration in bioinformatics pipelines, a standalone JAVA program is available for download at
      PubDate: 2017-10-01
      DOI: 10.1007/s10482-017-0844-4
      Issue No: Vol. 110, No. 10 (2017)
  • Phylogenomic resolution of the bacterial genus Pantoea and its
           relationship with Erwinia and Tatumella
    • Authors: Marike Palmer; Emma T. Steenkamp; Martin P. A. Coetzee; Wai-Yin Chan; Elritha van Zyl; Pieter De Maayer; Teresa A. Coutinho; Jochen Blom; Theo H. M. Smits; Brion Duffy; Stephanus N. Venter
      Pages: 1287 - 1309
      Abstract: Abstract Investigation of the evolutionary relationships between related bacterial species and genera with a variety of lifestyles have gained popularity in recent years. For analysing the evolution of specific traits, however, a robust phylogeny is essential. In this study we examined the evolutionary relationships among the closely related genera Erwinia, Tatumella and Pantoea, and also attempted to resolve the species relationships within Pantoea. To accomplish this, we used the whole genome sequence data for 35 different strains belonging to these three genera, as well as nine outgroup taxa. Multigene datasets consisting of the 1039 genes shared by these 44 strains were then generated and subjected to maximum likelihood phylogenetic analyses, after which the results were compared to those using conventional multi-locus sequence analysis (MLSA) and ribosomal MLSA (rMLSA) approaches. The robustness of the respective phylogenies was then explored by considering the factors typically responsible for destabilizing phylogenetic trees. We found that the nucleotide datasets employed in the MLSA, rMLSA and 1039-gene datasets contained significant levels of homoplasy, substitution saturation and differential codon usage, all of which likely gave rise to the observed lineage specific rate heterogeneity. The effects of these factors were much less pronounced in the amino acid dataset for the 1039 genes, which allowed reconstruction of a fully supported and resolved phylogeny. The robustness of this amino acid tree was also supported by different subsets of the 1039 genes. In contrast to the smaller datasets (MLSA and rMLSA), the 1039 amino acid tree was also not as sensitive to long-branch attraction. The robust and well-supported evolutionary hypothesis for the three genera, which confidently resolved their various inter- and intrageneric relationships, represents a valuable resource for future studies. It will form the basis for studies aiming to understand the forces driving the divergence and maintenance of lineages, species and biological traits in this important group of bacteria.
      PubDate: 2017-10-01
      DOI: 10.1007/s10482-017-0852-4
      Issue No: Vol. 110, No. 10 (2017)
  • Practically delineating bacterial species with genealogical concordance
    • Authors: Stephanus N. Venter; Marike Palmer; Chrizelle W. Beukes; Wai-Yin Chan; Giyoon Shin; Elritha van Zyl; Tarren Seale; Teresa A. Coutinho; Emma T. Steenkamp
      Pages: 1311 - 1325
      Abstract: Abstract Bacterial species are commonly defined by applying a set of predetermined criteria, including DNA–DNA hybridization values, 16S rRNA gene sequence similarity, phenotypic data as well as genome-based criteria such as average nucleotide identity or digital DNA-DNA hybridization. These criteria mostly allow for the delimitation of taxa that resemble typical bacterial species. Their application is often complicated when the objective is to delineate new species that are characterized by significant population-level diversity or recent speciation. However, we believe that these complexities and limitations can be easily circumvented by recognizing that bacterial species represent unique and exclusive assemblages of diversity. Within such a framework, methods that account for the population processes involved in species evolution are used to infer species boundaries. A method such as genealogical concordance analysis is well suited to delineate a putative species. The existence of the new taxon is then interrogated using an array of traditional and genome-based characters. By making use of taxa in the genera Pantoea, Paraburkholderia and Escherichia we demonstrate in a step-wise process how genealogical concordance can be used to delimit a bacterial species. Genetic, phenotypic and biological criteria were used to provide independent lines of evidence for the existence of that taxon. Our six-step approach to species recognition is straightforward and applicable to bacterial species especially in the post-genomic era, with increased availability of whole genome sequences. In fact, our results indicated that a combined genome-based comparative and evolutionary approach would be the preferred alternative for delineating coherent bacterial taxa.
      PubDate: 2017-10-01
      DOI: 10.1007/s10482-017-0869-8
      Issue No: Vol. 110, No. 10 (2017)
  • The impact of culturomics on taxonomy in clinical microbiology
    • Authors: Rita Abou Abdallah; Mamadou Beye; Awa Diop; Sofiane Bakour; Didier Raoult; Pierre-Edouard Fournier
      Pages: 1327 - 1337
      Abstract: Abstract Over the past decade, new culture methods coupled to genome and metagenome sequencing have enabled the number of isolated bacterial species with standing in nomenclature to rise to more than 15,000 whereas it was only 1791 in 1980. ‘Culturomics’, a new approach based on the diversification of culture conditions, has enabled the isolation of more than 1000 distinct human-associated bacterial species since 2012, including 247 new species. This strategy was demonstrated to be complementary to metagenome sequencing for the exhaustive study of the human microbiota and its roles in health and diseases. However, by identifying a large number of new bacterial species in a short time, culturomics has highlighted a need for taxonomic approaches adapted to clinical microbiology that would include the use of modern and reproducible tools, including high throughput genomic and proteomic analyses. Herein, we review the development of culturomics and genomics in the clinical microbiology field and their impact on bacterial taxonomy.
      PubDate: 2017-10-01
      DOI: 10.1007/s10482-017-0871-1
      Issue No: Vol. 110, No. 10 (2017)
  • Changes in structure and function of bacterial communities during coconut
           leaf vermicomposting
    • Authors: Murali Gopal; Shrikant S. Bhute; Alka Gupta; S. R. Prabhu; George V. Thomas; William B. Whitman; Kamlesh Jangid
      Pages: 1339 - 1355
      Abstract: Abstract To understand bacterial community dynamics during the vermicomposting of lignin-rich coconut leaves using an indigenous isolate of an epigeic earthworm, Eudrilus sp., we employed amplicon-based pyrosequencing of the V1 to V3 region of the 16S rRNA genes. Total community DNA was isolated from two separate vermicomposting tanks in triplicate at four different stages of the process: pre-decomposition (15th day), initial vermicomposting (45th day), 50–70% vermicomposting (75th day) and mature vermicompost (105th day). Alpha diversity measurements revealed an increase in bacterial diversity till the 75th day, which then declined in the mature vermicompost. Beta diversity comparisons showed formation of distinct, stage-specific communities. In terms of relative abundance, the Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, Planctomycetes, TM7 and WS3 groups increased until the 50–70% vermicomposting stage (p = 0.05). During the same time, the abundance of Bacteroidetes and Proteobacteria decreased. In contrast, the levels of Firmicutes increased throughout the 105-day vermicomposting process. The distribution of the most abundant OTUs revealed that each stage of the vermicomposting process possessed its own unique microbiome. Predictions based on the OTUs present by PICRUSt suggested a functional shift in the microbiome during vermicomposting. Enzymes and pathways of lipid and lignin metabolism were predicted to be initially abundant, but by the end of the process, biosynthesis of secondary metabolites and plant beneficial properties were enriched. The study revealed that bacterial communities undergo a continuous change throughout the vermicomposting process and that certain OTUs associated with specific stages could be targets for further improvements in the process.
      PubDate: 2017-10-01
      DOI: 10.1007/s10482-017-0894-7
      Issue No: Vol. 110, No. 10 (2017)
  • Microbial taxonomy in the era of OMICS: application of DNA sequences,
           computational tools and techniques
    • Authors: Nitish Kumar Mahato; Vipin Gupta; Priya Singh; Rashmi Kumari; Helianthous Verma; Charu Tripathi; Pooja Rani; Anukriti Sharma; Nirjara Singhvi; Utkarsh Sood; Princy Hira; Puneet Kohli; Namita Nayyar; Akshita Puri; Abhay Bajaj; Roshan Kumar; Vivek Negi; Chandni Talwar; Himani Khurana; Shekhar Nagar; Monika Sharma; Harshita Mishra; Amit Kumar Singh; Gauri Dhingra; Ram Krishan Negi; Mallikarjun Shakarad; Yogendra Singh; Rup Lal
      Pages: 1357 - 1371
      Abstract: Abstract The current prokaryotic taxonomy classifies phenotypically and genotypically diverse microorganisms using a polyphasic approach. With advances in the next-generation sequencing technologies and computational tools for analysis of genomes, the traditional polyphasic method is complemented with genomic data to delineate and classify bacterial genera and species as an alternative to cumbersome and error-prone laboratory tests. This review discusses the applications of sequence-based tools and techniques for bacterial classification and provides a scheme for more robust and reproducible bacterial classification based on genomic data. The present review highlights promising tools and techniques such as ortho-Average Nucleotide Identity, Genome to Genome Distance Calculator and Multi Locus Sequence Analysis, which can be validly employed for characterizing novel microorganisms and assessing phylogenetic relationships. In addition, the review discusses the possibility of employing metagenomic data to assess the phylogenetic associations of uncultured microorganisms. Through this article, we present a review of genomic approaches that can be included in the scheme of taxonomy of bacteria and archaea based on computational and in silico advances to boost the credibility of taxonomic classification in this genomic era.
      PubDate: 2017-10-01
      DOI: 10.1007/s10482-017-0928-1
      Issue No: Vol. 110, No. 10 (2017)
  • Uliginosibacterium sangjuense sp. nov., isolated from sediment of the
           Nakdong River
    • Authors: Ji-Hye Han; Kiwoon Baek; Young-Hee Ahn; Wook Jae Lee; Mi-Hwa Lee
      Abstract: Abstract A Gram-negative, aerobic, motile by flagella, and light yellow bacterium, designated SS1-76T, was isolated from sediment of the Nakdong River in Sangju-si, Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate SS1-76T belongs to the genus Uliginosibacterium of the family Rhodocyclaceae, exhibiting high sequence similarity with the type strains of Uliginosibacterium gangwonense 5YN10-9T (96.0%) and Uliginosibacterium paludis KBP-13T (94.9%). Strain SS1-76T contains ubiquinone-8 as a respiratory quinone and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0, and C14:0 as major fatty acids. The cellular polar lipids are composed of phosphatidylethanolamine, phosphatidylglycerol, and unidentified aminophospholipids. The DNA G+C content was 65.3 mol%. Phenotypic, chemotaxonomic, and phylogenetic evidence clearly indicated that strain SS1-76T represents a novel species of the genus Uliginosibacterium, for which the name Uliginosibacterium sangjuense sp. nov. is proposed. The type strain is SS1-76T (= KCTC 52159T = JCM 31375T).
      PubDate: 2017-09-22
      DOI: 10.1007/s10482-017-0946-z
  • Verrucosispora rhizosphaerae sp. nov., isolated from mangrove rhizosphere
    • Authors: Qing-yi Xie; Xiao-dong Bao; Qing-yu Ma; Fan-dong Kong; Man-li Zhou; Bing Yan; You-xing Zhao
      Abstract: Abstract An actinomycete strain, 2603PH03T, was isolated from a mangrove rhizosphere soil sample collected in Wenchang, China. Phylogenetic analysis of the 16S rRNA gene sequence of strain 2603PH03T indicated high similarity to Verrucosispora gifthornensis DSM 44337T (99.4%), Verrucosispora andamanensis (99.4%), Verrucosispora fiedleri MG-37T (99.4%) and Verrucosispora maris AB18-032T (99.4%). The cell wall was found to contain meso-diaminopimelic acid and glycine. The major menaquinones were identified as MK-9(H4), MK-9(H6) and MK-9(H8), with MK-9(H2), MK-10(H2), MK-9(H10) and MK-10(H6) as minor components. The characteristic whole cell sugars were found to be xylose and mannose. The phospholipid profile was found to contain phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol mannoside, phosphatidylinositol, phosphatidylserine and an unidentified phospholipid. The DNA G+C content was determined to be 70.1 mol%. The results of physiological and biochemical tests and low DNA-DNA relatedness readily distinguished the isolate from the closely related species. On the basis of these phenotypic and genotypic data, strain 2603PH03T is concluded to represent a novel species of the genus Verrucosispora, for which the name Verrucosispora rhizosphaerae sp. nov. is proposed. The type strain is 2603PH03T (=CCTCC AA 2016023T = DSM 45673T).
      PubDate: 2017-09-22
      DOI: 10.1007/s10482-017-0933-4
  • Biodiversity and ecology of flower-associated actinomycetes in different
           flowering stages of Protea repens
    • Authors: Zander R. Human; Casparus J. Crous; Francois Roets; Stephanus N. Venter; Michael J. Wingfield; Z. Wilhelm de Beer
      Abstract: Abstract Actinomycete bacteria have previously been reported from reproductive structures (infructescences) of Protea (sugarbush/suikerbos) species, a niche dominated by fungi in the genera Knoxdaviesia and Sporothrix. It is probable that these taxa have symbiotic interactions, but a lack of knowledge regarding their diversity and general ecology precludes their study. We determined the diversity of actinomycetes within Protea repens inflorescence buds, open inflorescences, young and mature infructescences, and leaf litter surrounding these trees. Since the P. repens habitat is fire-prone, we also considered the potential of these bacteria to recolonise infructescences after fire. Actinomycetes were largely absent from flower buds and inflorescences but were consistently present in young and mature infructescences. Two Streptomyces spp. were the most consistent taxa recovered, one of which was also routinely isolated from leaf litter. Lower colonisation rates were evident in samples from a recently burnt site. One of the most consistent taxa isolated from older trees in the unburnt site was absent from this site. Our findings show that P. repens has a distinct community of actinomycetes dominated by a few species. These communities change over time and infructescence developmental stage, season and the age of the host population. Mature infructescences appear to be important sources of inoculum for some of the actinomycetes, seemingly disrupted by fire. Increased fire frequency limiting maturation of P. repens infructescences could thus impact future actinomycete colonisation in the landscape. Streptomyces spp. are likely to share this niche with the ophiostomatoid fungi, which merits further study regarding their interactions and mode of transfer.
      PubDate: 2017-09-21
      DOI: 10.1007/s10482-017-0942-3
  • SParticle, an algorithm for the analysis of filamentous microorganisms in
           submerged cultures
    • Authors: Joost Willemse; Ferhat Büke; Dino van Dissel; Sanne Grevink; Dennis Claessen; Gilles P. van Wezel
      Abstract: Abstract Streptomycetes are filamentous bacteria that produce a plethora of bioactive natural products and industrial enzymes. Their mycelial lifestyle typically results in high heterogeneity in bioreactors, with morphologies ranging from fragments and open mycelial mats to dense pellets. There is a strong correlation between morphology and production in submerged cultures, with small and open mycelia favouring enzyme production, while most antibiotics are produced mainly in pellets. Here we describe SParticle, a Streptomyces Particle analysis method that combines whole slide imaging with automated image analysis to characterize the morphology of submerged grown Streptomyces cultures. SParticle allows the analysis of over a thousand particles per hour, offering a high throughput method for the imaging and statistical analysis of mycelial morphologies. The software is available as a plugin for the open source software ImageJ and allows users to create custom filters for other microbes. Therefore, SParticle is a widely applicable tool for the analysis of filamentous microorganisms in submerged cultures.
      PubDate: 2017-09-15
      DOI: 10.1007/s10482-017-0939-y
  • Plantactinospora solaniradicis sp. nov., a novel actinomycete isolated
           from the root of a tomato plant ( Solanum lycopersicum L.)
    • Authors: Wenchao Li; Xiaowei Guo; Linlin Shi; Junwei Zhao; Liangliang Yan; Xiaotong Zhong; Chen Zhang; Yufei Chen; Xiangjing Wang; Wensheng Xiang
      Abstract: Abstract A Gram-positive, non-motile actinomycete, designated strain NEAU-FJL1T, was isolated from tomato root (Solanum lycopersicum L.) collected from Harbin, Heilongjiang province, north China. The strain formed single spores with smooth surfaces from substrate mycelia. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-FJL1T should be affiliated with the genus Plantactinospora and forms a distinct branch with its close neighbour Plantactinospora soyae NEAU-gxj3T (99.2% sequence similarity). The cell wall was found to contain meso-diaminopimelic acid and the whole cell sugars were identified as xylose, glucose, arabinose and galactose. The predominant menaquinones were identified as MK-10(H6) and MK-10(H4). The phospholipid profile was found to consist of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were identified as C15:0, iso-C16:0, anteiso-C17:0, C17:0 and iso-C15:0. With reference to phenotypic characteristics, phylogenetic data and DNA–DNA hybridization results, strain NEAU-FJL1T can be distinguished from its most closely related strain and classified as a new species, for which the name Plantactinospora solaniradicis sp. nov. is proposed. The type strain is NEAU-FJL1T (= DSM 100596T = CGMCC 4.7284T).
      PubDate: 2017-09-14
      DOI: 10.1007/s10482-017-0943-2
  • Molecular diversity and phylogeny of indigenous Rhizobium leguminosarum
           strains associated with Trifolium repens plants in Romania
    • Authors: Rodica C. Efrose; Craita M. Rosu; Catalina Stedel; Andrei Stefan; Culita Sirbu; Lucian D. Gorgan; Nikolaos E. Labrou; Emmanouil Flemetakis
      Abstract: Abstract The symbiotic nitrogen fixing legumes play an essential role in sustainable agriculture. White clover (Trifolium repens L.) is one of the most valuable perennial legumes in pastures and meadows of temperate regions. Despite its great agriculture and economic importance, there is no detailed available information on phylogenetic assignation and characterization of rhizobia associated with native white clover plants in South-Eastern Europe. In the present work, the diversity of indigenous white clover rhizobia originating in 11 different natural ecosystems in North-Eastern Romania were assessed by a polyphasic approach. Initial grouping showed that, 73 rhizobial isolates, representing seven distinct phenons were distributed into 12 genotypes, indicating a wide phenotypic and genotypic diversity among the isolates. To clarify their phylogeny, 44 representative strains were used in sequence analysis of 16S rRNA gene and IGS fragments, three housekeeping genes (atpD, glnII and recA) and two symbiosis-related genes (nodA and nifH). Multilocus sequence analysis (MLSA) phylogeny based on concatenated housekeeping genes delineated the clover isolates into five putative genospecies. Despite their diverse chromosomal backgrounds, test strains shared highly similar symbiotic genes closely related to Rhizobium leguminosarum biovar trifolii. Phylogenies inferred from housekeeping genes were incongruent with those of symbiotic genes, probably due to occurrence of lateral transfer events among native strains. This is the first polyphasic taxonomic study to report on the MLSA-based phylogenetic diversity of indigenous rhizobia nodulating white clover plants grown in various soil types in South-Eastern Europe. Our results provide valuable taxonomic data on native clover rhizobia and may increase the pool of genetic material to be used as biofertilizers.
      PubDate: 2017-09-13
      DOI: 10.1007/s10482-017-0934-3
  • Quantitative physiology and elemental composition of Kluyveromyces lactis
           CBS 2359 during growth on glucose at different specific growth rates
    • Authors: Oscar Dias; Thiago O. Basso; Isabel Rocha; Eugénio C. Ferreira; Andreas K. Gombert
      Abstract: Abstract The yeast Kluyveromyces lactis has received attention both from academia and industry due to some important features, such as its capacity to grow in lactose-based media, its safe status, its suitability for large-scale cultivation and for heterologous protein synthesis. It has also been considered as a model organism for genomics and metabolic regulation. Despite this, very few studies were carried out hitherto under strictly controlled conditions, such as those found in a chemostat. Here we report a set of quantitative physiological data generated during chemostat cultivations with the K. lactis CBS 2359 strain, obtained under glucose-limiting and fully aerobic conditions. This dataset serve as a basis for the comparison of K. lactis with the model yeast Saccharomyces cerevisiae in terms of their elemental compositions, as well as for future metabolic flux analysis and metabolic modelling studies with K. lactis.
      PubDate: 2017-09-12
      DOI: 10.1007/s10482-017-0940-5
  • Virulence analysis of Staphylococcus aureus in a rabbit model of infected
           full-thickness wound under negative pressure wound therapy
    • Authors: Daohong Liu; Zhirui Li; Guoqi Wang; Tongtong Li; Lihai Zhang; Peifu Tang
      Abstract: Abstract The aim of this study was to evaluate the virulence of Staphylococcus aureus in a controlled animal study using the standard sterile gauze and negative pressure wound therapy (NPWT), including activation of agr, gene expression and production of virulence foctors and depth of bacterial invasion. The tissue specimens were harvested on days 0 (6 h after bacterial inoculation), 2, 4, 6, and 8 at the center of wound beds. Laser scanning confocal microscopy was performed to obtain bioluminescent images which were used to measure the depth of bacterial invasion. The agrA expression of S.aureus and the transcription and production of virulence factors including Eap, Spa and α-toxin were significantly different. The bacterial invasion depth was significantly less with effect of NPWT. The markedly different activation of quorum sensing systems that enable cell-to-cell communication and regulation of numerous colonization and virulence factors result in distinct gene expression and pathogenicity over time in different microenvironment. Thus, the agr system represents a fundamental regulatory paradigm that can encompass different adaptive strategies and accommodate horizontally acquired virulence determinants.
      PubDate: 2017-09-11
      DOI: 10.1007/s10482-017-0938-z
  • Detection of human antibodies binding with smooth and rough LPSs from
           Proteus mirabilis O3 strains S1959, R110, R45
    • Authors: J. Gleńska-Olender; K. Durlik; I. Konieczna; P. Kowalska; J. Gawęda; W. Kaca
      Abstract: Abstract Bacteria of the genus Proteus of the family Enterobacteriaceae are facultative human pathogens responsible mainly for urinary tract and wound infections, bacteremia and the development of rheumatoid arthritis (RA). We have analyzed and compared by ELISA the titer of antibodies in plasmas of healthy individuals and in sera of rheumatoid arthritis patients recognizing a potential host cross-reactive epitope (lysine-galacturonic acid epitopes) present in Proteus lipopolysaccharide (LPS). In our experiments LPSs isolated from two mutants of smooth Proteus mirabilis 1959 (O3), i.e. strains R110 and R45, were used. R110 (Ra type mutant) is lacking the O-specific polysaccharide, but possesses a complete core oligosaccharide, while R45 (Re type) has a reduced core oligosaccharide and contains two 3-deoxy-d-manno-oct-2-ulosonic acid residues and one of 4-amino-4-deoxy-l-arabinopyranose residues. Titer of P. mirabilis S1959 LPS-specific-antibodies increased with the age of blood donors. RA and blood donors’ sera contained antibodies against S and Ra and Re type of P. mirabilis O3 LPSs. Antibodies recognizing lysine-galacturonic acid epitopes of O3 LPS were detected by ELISA in some plasmas of healthy individuals and sera of rheumatoid arthritis patients. RA patients antibodies reacting with P. mirabilis S1959 S and R LPSs may indicate a potential role of anti-LPS antibodies in molecular mimicry in RA diseases.
      PubDate: 2017-09-09
      DOI: 10.1007/s10482-017-0937-0
  • Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus
    • Authors: Purnita Bhattacharyya; Bikash Agarwal; Madhurankhi Goswami; Debasish Maiti; Sunandan Baruah; Prosun Tribedi
      Abstract: Abstract Biofilms are structured consortia of microbial cells that grow on living and non living surfaces and surround themselves with secreted polymers. Infections with bacterial biofilms have emerged as a foremost public health concern because biofilm growing cells can be highly resistant to both antibiotics and host immune defenses. Zinc oxide nanoparticles have been reported as a potential antimicrobial agent, thus, in the current study, we have evaluated the antimicrobial as well as antibiofilm activity of zinc oxide nanoparticles against the bacterium Streptococcus pneumoniae which is a significant cause of disease. Zinc oxide nanoparticles showed strong antimicrobial activity against S. pneumoniae, with an MIC value of 40 μg/ml. Biofilm inhibition of S. pneumoniae was also evaluated by performing a series of experiments such as crystal violet assay, microscopic observation, protein count, EPS secretion etc. using sub-MIC concentrations (3, 6 and 12 µg/ml) of zinc oxide nanoparticles. The results showed that the sub-MIC doses of zinc oxide nanoparticles exhibited significant anti-biofilm activity against S. pneumoniae, with maximum biofilm attenuation found at 12 μg/ml. Taken together, the results indicate that zinc oxide nanoparticles can be considered as a potential agent for the inhibition of microbial biofilms.
      PubDate: 2017-09-09
      DOI: 10.1007/s10482-017-0930-7
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016