for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> BIOLOGY (Total: 3026 journals)
    - BIOCHEMISTRY (239 journals)
    - BIOENGINEERING (111 journals)
    - BIOLOGY (1437 journals)
    - BIOPHYSICS (45 journals)
    - BIOTECHNOLOGY (221 journals)
    - BOTANY (219 journals)
    - CYTOLOGY AND HISTOLOGY (28 journals)
    - ENTOMOLOGY (65 journals)
    - GENETICS (163 journals)
    - MICROBIOLOGY (257 journals)
    - MICROSCOPY (10 journals)
    - ORNITHOLOGY (25 journals)
    - PHYSIOLOGY (71 journals)
    - ZOOLOGY (135 journals)

BIOLOGY (1437 journals)                  1 2 3 4 5 6 7 8 | Last

Showing 1 - 200 of 1720 Journals sorted alphabetically
AAPS Journal     Hybrid Journal   (Followers: 21)
Achievements in the Life Sciences     Open Access   (Followers: 4)
ACS Synthetic Biology     Full-text available via subscription   (Followers: 23)
Acta Biologica Colombiana     Open Access   (Followers: 7)
Acta Biologica Hungarica     Full-text available via subscription   (Followers: 4)
Acta Biologica Sibirica     Open Access  
Acta Biomaterialia     Hybrid Journal   (Followers: 27)
Acta Biotheoretica     Hybrid Journal   (Followers: 5)
Acta Chiropterologica     Full-text available via subscription   (Followers: 6)
acta ethologica     Hybrid Journal   (Followers: 4)
Acta Limnologica Brasiliensia     Open Access   (Followers: 3)
Acta Médica Costarricense     Open Access   (Followers: 2)
Acta Musei Silesiae, Scientiae Naturales : The Journal of Silesian Museum in Opava     Open Access  
Acta Neurobiologiae Experimentalis     Open Access  
Acta Parasitologica     Hybrid Journal   (Followers: 9)
Acta Scientiarum. Biological Sciences     Open Access   (Followers: 2)
Acta Scientifica Naturalis     Open Access   (Followers: 2)
Actualidades Biológicas     Open Access   (Followers: 1)
Advanced Health Care Technologies     Open Access   (Followers: 4)
Advanced Studies in Biology     Open Access  
Advances in Antiviral Drug Design     Full-text available via subscription   (Followers: 3)
Advances in Bioinformatics     Open Access   (Followers: 20)
Advances in Biological Regulation     Hybrid Journal   (Followers: 4)
Advances in Biosensors and Bioelectronics     Open Access   (Followers: 6)
Advances in Cell Biology     Open Access   (Followers: 25)
Advances in Cellular and Molecular Biology of Membranes and Organelles     Full-text available via subscription   (Followers: 13)
Advances in Developmental Biology     Full-text available via subscription   (Followers: 12)
Advances in DNA Sequence-Specific Agents     Full-text available via subscription   (Followers: 6)
Advances in Ecological Research     Full-text available via subscription   (Followers: 46)
Advances in Environmental Sciences - International Journal of the Bioflux Society     Open Access   (Followers: 21)
Advances in Enzyme Research     Open Access   (Followers: 9)
Advances in Experimental Biology     Full-text available via subscription   (Followers: 8)
Advances in Genome Biology     Full-text available via subscription   (Followers: 11)
Advances in High Energy Physics     Open Access   (Followers: 19)
Advances in Human Biology     Open Access   (Followers: 2)
Advances in Life Science and Technology     Open Access   (Followers: 14)
Advances in Life Sciences     Open Access   (Followers: 6)
Advances in Marine Biology     Full-text available via subscription   (Followers: 16)
Advances in Molecular and Cell Biology     Full-text available via subscription   (Followers: 23)
Advances in Organ Biology     Full-text available via subscription   (Followers: 2)
Advances in Planar Lipid Bilayers and Liposomes     Full-text available via subscription   (Followers: 3)
Advances in Regenerative Biology     Open Access   (Followers: 1)
Advances in Space Biology and Medicine     Full-text available via subscription   (Followers: 5)
Advances in Structural Biology     Full-text available via subscription   (Followers: 8)
Advances in Virus Research     Full-text available via subscription   (Followers: 6)
African Journal of Range & Forage Science     Hybrid Journal   (Followers: 6)
AFRREV STECH : An International Journal of Science and Technology     Open Access   (Followers: 1)
Ageing Research Reviews     Hybrid Journal   (Followers: 9)
Aging Cell     Open Access   (Followers: 11)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Agrokreatif Jurnal Ilmiah Pengabdian kepada Masyarakat     Open Access  
AJP Cell Physiology     Full-text available via subscription   (Followers: 14)
AJP Endocrinology and Metabolism     Full-text available via subscription   (Followers: 23)
AJP Lung Cellular and Molecular Physiology     Full-text available via subscription   (Followers: 3)
Al-Kauniyah : Jurnal Biologi     Open Access  
Alasbimn Journal     Open Access   (Followers: 1)
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Biology Teacher     Full-text available via subscription   (Followers: 13)
American Fern Journal     Full-text available via subscription   (Followers: 1)
American Journal of Agricultural and Biological Sciences     Open Access   (Followers: 10)
American Journal of Bioethics     Hybrid Journal   (Followers: 10)
American Journal of Human Biology     Hybrid Journal   (Followers: 13)
American Journal of Medical and Biological Research     Open Access   (Followers: 8)
American Journal of Plant Sciences     Open Access   (Followers: 19)
American Journal of Primatology     Hybrid Journal   (Followers: 16)
American Malacological Bulletin     Full-text available via subscription   (Followers: 3)
American Naturalist     Full-text available via subscription   (Followers: 73)
Amphibia-Reptilia     Hybrid Journal   (Followers: 6)
Anaerobe     Hybrid Journal   (Followers: 4)
Analytical Methods     Full-text available via subscription   (Followers: 10)
Anatomical Science International     Hybrid Journal   (Followers: 2)
Animal Cells and Systems     Hybrid Journal   (Followers: 4)
Annales de Limnologie - International Journal of Limnology     Hybrid Journal   (Followers: 1)
Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale     Full-text available via subscription   (Followers: 3)
Annales Henri Poincaré     Hybrid Journal   (Followers: 3)
Annales UMCS, Biologia     Open Access   (Followers: 1)
Annals of Applied Biology     Hybrid Journal   (Followers: 7)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 18)
Annals of Human Biology     Hybrid Journal   (Followers: 4)
Annual Review of Biomedical Engineering     Full-text available via subscription   (Followers: 16)
Annual Review of Biophysics     Full-text available via subscription   (Followers: 25)
Annual Review of Cancer Biology     Full-text available via subscription   (Followers: 1)
Annual Review of Cell and Developmental Biology     Full-text available via subscription   (Followers: 39)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 16)
Annual Review of Genomics and Human Genetics     Full-text available via subscription   (Followers: 20)
Annual Review of Phytopathology     Full-text available via subscription   (Followers: 10)
Anthropological Review     Open Access   (Followers: 24)
Anti-Infective Agents     Hybrid Journal   (Followers: 3)
Antibiotics     Open Access   (Followers: 9)
Antioxidants     Open Access   (Followers: 4)
Antioxidants & Redox Signaling     Hybrid Journal   (Followers: 8)
Antonie van Leeuwenhoek     Hybrid Journal   (Followers: 5)
Anzeiger für Schädlingskunde     Hybrid Journal   (Followers: 1)
Apidologie     Hybrid Journal   (Followers: 4)
Apmis     Hybrid Journal   (Followers: 1)
APOPTOSIS     Hybrid Journal   (Followers: 8)
Applied Bionics and Biomechanics     Open Access   (Followers: 8)
Applied Vegetation Science     Full-text available via subscription   (Followers: 9)
Aquaculture Environment Interactions     Open Access   (Followers: 2)
Aquaculture International     Hybrid Journal   (Followers: 22)
Aquaculture Reports     Open Access   (Followers: 3)
Aquaculture, Aquarium, Conservation & Legislation - International Journal of the Bioflux Society     Open Access   (Followers: 6)
Aquatic Biology     Open Access   (Followers: 5)
Aquatic Ecology     Hybrid Journal   (Followers: 32)
Aquatic Ecosystem Health & Management     Hybrid Journal   (Followers: 14)
Aquatic Science and Technology     Open Access   (Followers: 3)
Aquatic Toxicology     Hybrid Journal   (Followers: 20)
Archaea     Open Access   (Followers: 3)
Archiv für Molluskenkunde: International Journal of Malacology     Full-text available via subscription   (Followers: 3)
Archives of Biomedical Sciences     Open Access   (Followers: 7)
Archives of Microbiology     Hybrid Journal   (Followers: 8)
Archives of Natural History     Hybrid Journal   (Followers: 8)
Archives of Oral Biology     Hybrid Journal   (Followers: 2)
Archives of Virology     Hybrid Journal   (Followers: 5)
Archivum Immunologiae et Therapiae Experimentalis     Hybrid Journal   (Followers: 2)
Arid Ecosystems     Hybrid Journal   (Followers: 3)
Arquivos do Instituto Biológico     Open Access   (Followers: 1)
Arquivos do Museu Dinâmico Interdisciplinar     Open Access  
Arthropod Structure & Development     Hybrid Journal   (Followers: 2)
Arthropods     Open Access   (Followers: 1)
Artificial DNA: PNA & XNA     Hybrid Journal   (Followers: 3)
Artificial Photosynthesis     Open Access   (Followers: 1)
Asian Bioethics Review     Full-text available via subscription   (Followers: 2)
Asian Journal of Biodiversity     Open Access   (Followers: 5)
Asian Journal of Biological Sciences     Open Access   (Followers: 3)
Asian Journal of Cell Biology     Open Access   (Followers: 6)
Asian Journal of Developmental Biology     Open Access   (Followers: 2)
Asian Journal of Medical and Biological Research     Open Access   (Followers: 2)
Asian Journal of Nematology     Open Access   (Followers: 3)
Asian Journal of Poultry Science     Open Access   (Followers: 4)
Australian Life Scientist     Full-text available via subscription   (Followers: 2)
Australian Mammalogy     Hybrid Journal   (Followers: 6)
Autophagy     Hybrid Journal   (Followers: 2)
Avian Biology Research     Full-text available via subscription   (Followers: 5)
Avian Conservation and Ecology     Open Access   (Followers: 13)
Bacteriology Journal     Open Access   (Followers: 2)
Bacteriophage     Full-text available via subscription   (Followers: 4)
Bangladesh Journal of Bioethics     Open Access  
Bangladesh Journal of Plant Taxonomy     Open Access  
Bangladesh Journal of Scientific Research     Open Access   (Followers: 2)
Berita Biologi     Open Access   (Followers: 1)
Between the Species     Open Access   (Followers: 1)
Bio Tribune Magazine     Hybrid Journal  
BIO Web of Conferences     Open Access  
BIO-Complexity     Open Access  
Bio-Grafía. Escritos sobre la Biología y su enseñanza     Open Access  
Bioanalytical Reviews     Hybrid Journal   (Followers: 2)
Biocatalysis and Biotransformation     Hybrid Journal   (Followers: 6)
Biochemistry and Cell Biology     Hybrid Journal   (Followers: 14)
Biochimie     Hybrid Journal   (Followers: 7)
BioControl     Hybrid Journal   (Followers: 5)
Biocontrol Science and Technology     Hybrid Journal   (Followers: 5)
Biodemography and Social Biology     Hybrid Journal   (Followers: 1)
BioDiscovery     Open Access   (Followers: 2)
Biodiversity : Research and Conservation     Open Access   (Followers: 28)
Biodiversity and Natural History     Open Access   (Followers: 6)
Biodiversity Data Journal     Open Access   (Followers: 3)
Biodiversity Informatics     Open Access   (Followers: 1)
Biodiversity Information Science and Standards     Open Access  
Bioedukasi : Jurnal Pendidikan Biologi FKIP UM Metro     Open Access  
Bioeksperimen : Jurnal Penelitian Biologi     Open Access  
Bioelectrochemistry     Hybrid Journal   (Followers: 2)
Bioelectromagnetics     Hybrid Journal   (Followers: 1)
Bioenergy Research     Hybrid Journal   (Followers: 2)
Bioengineering and Bioscience     Open Access   (Followers: 1)
BioEssays     Hybrid Journal   (Followers: 10)
Bioethics     Hybrid Journal   (Followers: 14)
BioéthiqueOnline     Open Access  
Biofabrication     Hybrid Journal   (Followers: 3)
Biogeosciences (BG)     Open Access   (Followers: 10)
Biogeosciences Discussions (BGD)     Open Access   (Followers: 1)
Bioinformatics     Hybrid Journal   (Followers: 297)
Bioinformatics and Biology Insights     Open Access   (Followers: 15)
Bioinspiration & Biomimetics     Hybrid Journal   (Followers: 7)
Biointerphases     Open Access   (Followers: 1)
Biojournal of Science and Technology     Open Access  
Biologia     Hybrid Journal  
Biologia on-line : Revista de divulgació de la Facultat de Biologia     Open Access  
Biological Bulletin     Partially Free   (Followers: 5)
Biological Control     Hybrid Journal   (Followers: 4)
Biological Invasions     Hybrid Journal   (Followers: 17)
Biological Journal of the Linnean Society     Hybrid Journal   (Followers: 16)
Biological Letters     Open Access   (Followers: 4)
Biological Procedures Online     Open Access  
Biological Psychiatry     Hybrid Journal   (Followers: 43)
Biological Psychology     Hybrid Journal   (Followers: 6)
Biological Research     Open Access  
Biological Rhythm Research     Hybrid Journal   (Followers: 2)
Biological Theory     Hybrid Journal   (Followers: 2)
Biological Trace Element Research     Hybrid Journal  
Biologicals     Full-text available via subscription   (Followers: 9)
Biologics: Targets & Therapy     Open Access   (Followers: 1)
Biologie Aujourd'hui     Full-text available via subscription  
Biologie in Unserer Zeit (Biuz)     Hybrid Journal   (Followers: 41)
Biologija     Open Access  
Biology     Open Access   (Followers: 5)
Biology and Philosophy     Hybrid Journal   (Followers: 17)
Biology Bulletin     Hybrid Journal   (Followers: 1)
Biology Bulletin Reviews     Hybrid Journal  

        1 2 3 4 5 6 7 8 | Last

Journal Cover Annals of Biomedical Engineering
  [SJR: 1.182]   [H-I: 94]   [18 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1573-9686 - ISSN (Online) 0090-6964
   Published by Springer-Verlag Homepage  [2355 journals]
  • Starting a Medical Technology Venture as a Young Academic Innovator or
           Student Entrepreneur
    • Authors: Amir Manbachi; Katlin Kreamer-Tonin; Philipp Walch; Nao J. Gamo; Parastoo Khoshakhlagh; Yu Shrike Zhang; Charles Montague; Soumyadipta Acharya; Elizabeth A. Logsdon; Robert H. Allen; Nicholas J. Durr; Mark G. Luciano; Nicholas Theodore; Henry Brem; Youseph Yazdi
      Pages: 1 - 13
      Abstract: Abstract Following the footprints of Bill Gates, Steve Jobs and Mark Zuckerberg, there has been a misconception that students are better off quitting their studies to bring to life their ideas, create jobs and monetize their inventions. Having historically transitioned from manpower to mind power, we live in one of the most rapidly changing times in human history. As a result, academic institutions that are supposed to be pioneers and educators of the next generations have started to realize that they need to adapt to a new system, and change their policies to be more flexible towards patent ownership and commercialization. There is an infrastructure being developed towards students starting their own businesses while continuing with their studies. This paper aims to provide an overview of the existing landscape, the exciting rewards as well as risks awaiting a student entrepreneur, the challenges of the present ecosystem, and questions to consider prior to embarking on such a journey. Various entities influencing the start-up environment are considered, specifically for the medical technology sector. These parties include but are not limited to: scientists, clinicians, investors, academic institutions and governments. A special focus will be set on the seemingly unbridgeable gap between founding a company and a scientific career.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1938-x
      Issue No: Vol. 46, No. 1 (2018)
       
  • Conservative Exposure Predictions for Rapid Risk Assessment of
           Phase-Separated Additives in Medical Device Polymers
    • Authors: Vaishnavi Chandrasekar; Dustin W. Janes; David M. Saylor; Alan Hood; Akhil Bajaj; Timothy V. Duncan; Jiwen Zheng; Irada S. Isayeva; Christopher Forrey; Brendan J. Casey
      Pages: 14 - 24
      Abstract: Abstract A novel approach for rapid risk assessment of targeted leachables in medical device polymers is proposed and validated. Risk evaluation involves understanding the potential of these additives to migrate out of the polymer, and comparing their exposure to a toxicological threshold value. In this study, we propose that a simple diffusive transport model can be used to provide conservative exposure estimates for phase separated color additives in device polymers. This model has been illustrated using a representative phthalocyanine color additive (manganese phthalocyanine, MnPC) and polymer (PEBAX 2533) system. Sorption experiments of MnPC into PEBAX were conducted in order to experimentally determine the diffusion coefficient, D = (1.6 ± 0.5) × 10−11 cm2/s, and matrix solubility limit, C s = 0.089 wt.%, and model predicted exposure values were validated by extraction experiments. Exposure values for the color additive were compared to a toxicological threshold for a sample risk assessment. Results from this study indicate that a diffusion model-based approach to predict exposure has considerable potential for use as a rapid, screening-level tool to assess the risk of color additives and other small molecule additives in medical device polymers.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1931-4
      Issue No: Vol. 46, No. 1 (2018)
       
  • Physical and Chemical Enhancement of and Adaptive Resistance to
           Irreversible Electroporation of Pancreatic Cancer
    • Authors: Qi Shao; Feng Liu; Connie Chung; Kianna Elahi-Gedwillo; Paolo P. Provenzano; Bruce Forsyth; John C. Bischof
      Pages: 25 - 36
      Abstract: Abstract Irreversible electroporation (IRE) can be used to treat cancer by electrical pulses, with advantages over traditional thermal approaches. Here we assess for the first time the IRE response of pancreatic cancer, one of the deadliest forms of cancer, both in vitro and in vivo. We demonstrate that both established and primary cancer cell lines can be destroyed by IRE, but with differential susceptibility and thresholds. We further demonstrate in vitro that viability for a given IRE dose can vary with the local chemistry as outcomes were shown to depend on suspending medium and reduction of glucose in the media significantly improved IRE destruction. Data here also demonstrate that repeated IRE treatments can lead to adaptive resistance in pancreatic carcinoma cells thereby reducing subsequent treatment efficacy. In addition, we demonstrate that physical enhancement of IRE, by re-arranging the pulse sequences without increasing the electrical energy delivered, achieve reduced viability in vitro and decreased tumor growth in an in vivo xenograft model. Together, these results show that IRE can destroy pancreatic cancer in vitro and in vivo, that there are both chemical and physical enhancements that can improve tumor destruction, and that one should guard against adaptive resistance when performing repeated treatments.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1932-3
      Issue No: Vol. 46, No. 1 (2018)
       
  • Monitoring Bone Tissue Engineered (BTE) Constructs Based on the Shifting
           Metabolism of Differentiating Stem Cells
    • Authors: Aaron D. Simmons; Vassilios I. Sikavitsas
      Pages: 37 - 47
      Abstract: Abstract Ever-increasing demand for bone grafts necessitates the realization of clinical implementation of bone tissue engineered constructs. The predominant hurdle to implementation remains to be securing FDA approval, based on the lack of viable methods for the rigorous monitoring of said constructs. The study presented herein details a method for such monitoring based on the shifting metabolism of mesenchymal stem cells (MSCs) as they differentiate into osteoblasts. To that end, rat MSCs seeded on 85% porous spunbonded poly(L-lactic acid) scaffolds were cultured in flow perfusion bioreactors with baseline or osteoinductive media, and levels of key physio-metabolic markers (oxygen, glucose, osteoprotegerin, and osteocalcin) were monitored throughout culture. Comparison of these non-destructively obtained values and current standard destructive analyses demonstrated key trends useful for the concurrent real-time monitoring of construct cellularity and maturation. Principle among these is the elucidation of the ratio of the rates of oxygen uptake to glucose consumption as a powerful quality marker. This ratio, supported on a physiological basis, has been shown herein to be reliable in the determination of both construct maturation (defined as osteoblastic differentiation and accompanying mineralization) and construct cellularity. Supplementary monitoring of OPG and OCN are shown to provide further validation of such metrics.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1937-y
      Issue No: Vol. 46, No. 1 (2018)
       
  • Low-Intensity Ultrasound Modulates Ca 2+ Dynamics in Human Mesenchymal
           Stem Cells via Connexin 43 Hemichannel
    • Authors: Chi Woo Yoon; Hayong Jung; Kyosuk Goo; Sunho Moon; Kweon Mo Koo; Nan Sook Lee; Andrew C. Weitz; K. Kirk Shung
      Pages: 48 - 59
      Abstract: Abstract In recent years, ultrasound has gained attention in new biological applications due to its ability to induce specific biological responses at the cellular level. Although the biophysical mechanisms underlying the interaction between ultrasound and cells are not fully understood, many agree on a pivotal role of Ca2+ signaling through mechanotransduction pathways. Because Ca2+ regulates a vast range of downstream cellular processes, a better understanding of how ultrasound influences Ca2+ signaling could lead to new applications for ultrasound. In this study, we investigated the mechanism of ultrasound-induced Ca2+ mobilization in human mesenchymal stem cells using 47 MHz focused ultrasound to stimulate single cells at low intensities (~ 110 mW/cm2). We found that ultrasound exposure triggers opening of connexin 43 hemichannels on the plasma membrane, causing release of ATP into the extracellular space. That ATP then binds to G-protein-coupled P2Y1 purinergic receptors on the membrane, in turn activating phospholipase C, which evokes production of inositol trisphosphate and release of Ca2+ from intracellular stores.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1949-7
      Issue No: Vol. 46, No. 1 (2018)
       
  • Introducing Statistical Persistence Decay: A Quantification of
           Stride-to-Stride Time Interval Dependency in Human Gait
    • Authors: P. C. Raffalt; J. M. Yentes
      Pages: 60 - 70
      Abstract: Abstract Stride-to-stride time intervals during human walking are characterised by predictability and statistical persistence quantified by sample entropy (SaEn) and detrended fluctuation analysis (DFA) which indicates a time dependency in the gait pattern. However, neither analyses quantify time dependency in a physical or physiological interpretable time scale. Recently, entropic half-life (ENT½) has been introduced as a measure of the time dependency on an interpretable time scale. A novel measure of time dependency, based on DFA, statistical persistence decay (SPD), was introduced. The present study applied SaEn, DFA, ENT½, and SPD in known theoretical signals (periodic, chaotic, and random) and stride-to-stride time intervals during overground and treadmill walking in healthy subjects. The analyses confirmed known properties of the theoretical signals. There was a significant lower predictability (p = 0.033) and lower statistical persistence (p = 0.012) during treadmill walking compared to overground walking. No significant difference was observed for ENT½ and SPD between walking condition, and they exhibited a low correlation. ENT½ showed that predictability in stride time intervals was halved after 11–14 strides and SPD indicated that the statistical persistency was deteriorated to uncorrelated noise after ~50 strides. This indicated a substantial time memory, where information from previous strides affected the future strides.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1934-1
      Issue No: Vol. 46, No. 1 (2018)
       
  • Importance of Consistent Datasets in Musculoskeletal Modelling: A Study of
           the Hand and Wrist
    • Authors: Benjamin Goislard De Monsabert; Dafydd Edwards; Darshan Shah; Angela Kedgley
      Pages: 71 - 85
      Abstract: Abstract Hand musculoskeletal models provide a valuable insight into the loads withstood by the upper limb; however, their development remains challenging because there are few datasets describing both the musculoskeletal geometry and muscle morphology from the elbow to the finger tips. Clinical imaging, optical motion capture and microscopy were used to create a dataset from a single specimen. Subsequently, a musculoskeletal model of the wrist was developed based on these data to estimate muscle tensions and to demonstrate the potential of the provided parameters. Tendon excursions and moment arms predicted by this model were in agreement with previously reported experimental data. When simulating a flexion–extension motion, muscle forces reached 90 N among extensors and a co-contraction of flexors, amounting to 62.6 N, was estimated by the model. Two alternative musculoskeletal models were also created based on anatomical data available in the literature to illustrate the effect of combining incomplete datasets. Compared to the initial model, the intensities and load sharing of the muscles estimated by the two alternative models differed by up to 180% for a single muscle. This confirms the importance of using a single source of anatomical data when developing such models.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1936-z
      Issue No: Vol. 46, No. 1 (2018)
       
  • A Lower Limb-Pelvis Finite Element Model with 3D Active Muscles
    • Authors: Fuhao Mo; Fan Li; Michel Behr; Zhi Xiao; Guanjun Zhang; Xianping Du
      Pages: 86 - 96
      Abstract: Abstract A lower limb-pelvis finite element (FE) model with active three-dimensional (3D) muscles was developed in this study for biomechanical analysis of human body. The model geometry was mainly reconstructed from a male volunteer close to the anthropometry of a 50th percentile Chinese male. Tissue materials and structural features were established based on the literature and new implemented experimental tests. In particular, the muscle was modeled with a combination of truss and hexahedral elements to define its passive and active properties as well as to follow the detailed anatomy structure. Both passive and active properties of the model were validated against the experiments of Post-Mortem Human Surrogate (PMHS) and volunteers, respectively. The model was then used to simulate driver’s emergency braking during frontal crashes and investigate Knee-Thigh-Hip (KTH) injury mechanisms and tolerances of the human body. A significant force and bending moment variance was noted for the driver’s femur due to the effects of active muscle forces during emergency braking. In summary, the present lower limb-pelvis model can be applied in various research fields to support expensive and complex physical tests or corresponding device design.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1942-1
      Issue No: Vol. 46, No. 1 (2018)
       
  • Knee Implant Loosening Detection: A Vibration Analysis Investigation
    • Authors: Arash Arami; Jean-Romain Delaloye; Hossein Rouhani; Brigitte M. Jolles; Kamiar Aminian
      Pages: 97 - 107
      Abstract: Abstract Knee implant loosening is mainly caused by the weakness of the prosthesis-bone interface and is the main reason for surgical revisions. However, pre-operative diagnosis is difficult due to lack of accurate tests. In this study, we developed a vibration-based system to detect the loosening of the tibial implant of an instrumented knee prosthesis. The proposed system includes an instrumented vibrator for transcutaneous stimulation of the bone in a repeatable manner, and accelerometer sensors integrated into the implants to measure the propagated vibration. A coherence-based detection technique was proposed to distinguish the loosened implants from the secure ones. Fourteen ex vivo lower limbs were used, on which the knee prosthesis was implanted, and harmonic-forced vibration was applied on the tibia. The input–output coherence measure provided 92.26% accuracy, a high sensitivity (91.67%) and specificity (92.86%). This technique was benchmarked against power spectrum based analysis of the propagated vibration to the implant. In particular, loosening detection based on new peak appearance, peak shift, and peak flattening in power spectra showed inferior performance to the proposed coherence-based technique. As such, application of vibration on our instrumented knee prosthesis together with input–output coherence analysis enabled us to distinguish the secure from loose implants.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1941-2
      Issue No: Vol. 46, No. 1 (2018)
       
  • Investigation of Shape with Patients Suffering from Unilateral Lymphoedema
    • Authors: Kevork Karakashian; Lawrence Shaban; Cheryl Pike; Raoul van Loon
      Pages: 108 - 121
      Abstract: Abstract This study investigates the use of a 3D depth sensing camera for analysing the shape of lymphoedematous arms, and seeks to identify suitable metrics for monitoring lymphoedema clinically. A fast, simple protocol was developed for scanning upper limb lymphoedema, after which a robust data pre- and post-processing framework was built that consistently and quickly identifies arm shape and volume. The framework was then tested on 24 patients with mild unilateral lymphoedema, who were also assessed using tape measurements. The scanning protocol developed led to scanning times of about 20–30 s. Shape related metrics such as circumference and circularity were used to distinguish between affected and healthy arms (p ≤ 0.05). Swelling maps were also derived to identify the distribution of oedema on arms. Topology and shape could be used to monitor or even diagnose lymphoedema using the provided framework. Such metrics provide more detailed information to a lymphoedema specialist than solely volume. Although tested on a small cohort, these results show promise for further research into better diagnostics of lymphoedema and for future adoption of the proposed methods across lymphoedema clinics.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1929-y
      Issue No: Vol. 46, No. 1 (2018)
       
  • Using a Novel In Vitro Fontan Model and Condition-Specific Real-Time MRI
           Data to Examine Hemodynamic Effects of Respiration and Exercise
    • Authors: Michael Tree; Zhenglun Alan Wei; Phillip M. Trusty; Vrishank Raghav; Mark Fogel; Kevin Maher; Ajit Yoganathan
      Pages: 135 - 147
      Abstract: Abstract Several studies exist modeling the Fontan connection to understand its hemodynamic ties to patient outcomes (Chopski in: Experimental and Computational Assessment of Mechanical Circulatory Assistance of a Patient-Specific Fontan Vessel Configuration. Dissertation, 2013; Khiabani et al. in J Biomech 45:2376–2381, 2012; Taylor and Figueroa in Annu Rev Biomed 11:109–134, 2009; Vukicevic et al. in ASAIO J 59:253–260, 2013). The most patient-accurate of these studies include flexible, patient-specific total cavopulmonary connections. This study improves Fontan hemodynamic modeling by validating Fontan model flexibility against a patient-specific bulk compliance value, and employing real-time phase contrast magnetic resonance flow data. The improved model was employed to acquire velocity field information under breath-held, free-breathing, and exercise conditions to investigate the effect of these conditions on clinically important Fontan hemodynamic metrics including power loss and viscous dissipation rate. The velocity data, obtained by stereoscopic particle image velocimetry, was visualized for qualitative three-dimensional flow field comparisons between the conditions. Key hemodynamic metrics were calculated from the velocity data and used to quantitatively compare the flow conditions. The data shows a multi-factorial and extremely patient-specific nature to Fontan hemodynamics.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1943-0
      Issue No: Vol. 46, No. 1 (2018)
       
  • Simultaneous Measurement of Contraction and Calcium Transients in Stem
           Cell Derived Cardiomyocytes
    • Authors: A. Ahola; R.-P. Pölönen; K. Aalto-Setälä; J. Hyttinen
      Pages: 148 - 158
      Abstract: Abstract Induced pluripotent stem cell derived cardiomyocytes (iPSC-CM) provide a powerful platform for disease modeling and drug development in vitro. Traditionally, electrophysiological methods or fluorescent dyes (e.g. calcium) have been used in their functional characterization. Recently, video microscopy has enabled non-invasive analysis of CM contractile motion. Simultaneous assessments of motion and calcium transients have not been generally conducted, as motion detection methods are affected by changing pixel intensities in calcium imaging. Here, we present for the first time a protocol for simultaneous video-based measurement of contraction and calcium with fluorescent dye Fluo-4 videos without corrections, providing data on both ionic and mechanic activity. The method and its accuracy are assessed by measuring the effect of fluorescence and background light on transient widths and contraction velocity amplitudes. We demonstrate the method by showing the contraction-calcium relation and measuring the transient time intervals in catecholaminergic polymorphic ventricular tachycardia patient specific iPSC-CMs and healthy controls. Our validation shows that the simultaneous method provides comparable data to combined individual measurements, providing a new tool for measuring CM biomechanics and calcium simultaneously. Our results with calcium sensitive dyes suggest the method could be expanded to use with other fluorescent reporters as well.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1933-2
      Issue No: Vol. 46, No. 1 (2018)
       
  • Should We Ignore What We Cannot Measure' How Non-Uniform Stretch,
           Non-Uniform Wall Thickness and Minor Side Branches Affect Computational
           Aortic Biomechanics in Mice
    • Authors: Mauro Ferraro; Bram Trachet; Lydia Aslanidou; Heleen Fehervary; Patrick Segers; Nikolaos Stergiopulos
      Pages: 159 - 170
      Abstract: Abstract In order to advance the state-of-the-art in computational aortic biomechanics, we investigated the influence of (i) a non-uniform wall thickness, (ii) minor aortic side branches and (iii) a non-uniform axial stretch distribution on the location of predicted hotspots of principal strain in a mouse model for dissecting aneurysms. After 3 days of angiotensin II infusion, a murine abdominal aorta was scanned in vivo with contrast-enhanced micro-CT. The animal was subsequently sacrificed and its aorta was scanned ex vivo with phase-contrast X-ray tomographic microscopy (PCXTM). An automatic morphing framework was developed to map the non-pressurized, non-stretched PCXTM geometry onto the pressurized, stretched micro-CT geometry. The output of the morphing model was a structural FEM simulation where the output strain distribution represents an estimation of the wall deformation, not only due to the pressurization, but also due to the local axial stretch field. The morphing model also included minor branches and a mouse-specific wall thickness. A sensitivity study was then performed to assess the influence of each of these novel features on the outcome of the simulations. The results were supported by comparing the computed hotspots of principal strain to hotspots of early vascular damage as detected on PCXTM. Non-uniform axial stretch, non-uniform wall thickness and minor subcostal arteries significantly alter the locations of calculated hotspots of maximal principal strain. Even if experimental data on these features are often not available in clinical practice, one should be aware of the important implications that simplifications in the model might have on the final simulated result.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1945-y
      Issue No: Vol. 46, No. 1 (2018)
       
  • Beat-by-Beat Estimation of the Left Ventricular Pressure–Volume Loop
           Under Clinical Conditions
    • Authors: Shaun Davidson; Chris Pretty; Shun Kamoi; Thomas Desaive; J. Geoffrey Chase
      Pages: 171 - 185
      Abstract: Abstract This paper develops a method for the minimally invasive, beat-by-beat estimation of the left ventricular pressure–volume loop. This method estimates the left ventricular pressure and volume waveforms that make up the pressure–volume loop using clinically available inputs supported by a short, baseline echocardiography reading. Validation was performed across 142,169 heartbeats of data from 11 Piétrain pigs subject to two distinct protocols encompassing sepsis, dobutamine administration and clinical interventions. The method effectively located pressure–volume loops, with low overall median errors in end-diastolic volume of 8.6%, end-systolic volume of 17.3%, systolic pressure of 19.4% and diastolic pressure of 6.5%. The method further demonstrated a low overall mean error of 23.2% predicting resulting stroke work, and high correlation coefficients along with a high percentage of trend compass ‘in band’ performance tracking changes in stroke work as patient condition varied. This set of results forms a body of evidence for the potential clinical utility of the method. While further validation in humans is required, the method has the potential to aid in clinical decision making across a range of clinical interventions and disease state disturbances by providing real-time, beat-to-beat, patient specific information at the intensive care unit bedside without requiring additional invasive instrumentation.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1947-9
      Issue No: Vol. 46, No. 1 (2018)
       
  • Role of Re-entry Tears on the Dynamics of Type B Dissection Flap
    • Authors: Saranya Canchi; Xiaomei Guo; Matt Phillips; Zachary Berwick; Jarin Kratzberg; Joshua Krieger; Blayne Roeder; Stephan Haulon; Sean Chambers; Ghassan S. Kassab
      Pages: 186 - 196
      Abstract: Abstract Mortality during follow-up after acute Type B aortic dissection is substantial with aortic expansion observed in over 59% of the patients. Lumen pressure differential is considered a prime contributing factor for aortic dilation after propagation. The objective of the study was to evaluate the relationship between changes in vessel geometry with and without lumen pressure differential post propagation in an ex vivo porcine model with comparison with patient clinical data. A pulse duplicator system was utilized to propagate the dissection within descending thoracic porcine aortic vessels for set proximal (%circumference of the entry tear: 40%, axial length: 2 cm) and re-entry (50% of distal vessel circumference) tear geometry. Measurements of lumen pressure differential were made along with quantification of vessel geometry (n = 16). The magnitude of mean lumen pressure difference measured after propagation was low (~ 5 mmHg) with higher pressures measured in false lumen and as anticipated the pressure difference approached zero after the creation of distal re-entry tear. False lumen Dissection Ratio (FDR) defined as arc length of dissected wall divided by arc length of dissection flap, had mean value of 1.59 ± 0.01 at pressure of 120/80 mmHg post propagation with increasing values with increase in pulse pressure that was not rescued with the creation of distal re-entry tear (p < 0.01). An average FDR of 1.87 ± 0.27 was measured in patients with acute Type B dissection. Higher FDR value (FDR = 1 implies zero dissection) in the presence of distal re-entry tear demonstrates an acute change in vessel morphology in response to the dissection independent of local pressure changes challenges the re-apposition of the aortic wall.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1940-3
      Issue No: Vol. 46, No. 1 (2018)
       
  • Correction to: Impact Performance of Modern Football Helmets
    • Authors: David C. Viano; Chris Withnall; David Halstead
      Pages: 208 - 210
      Abstract: Abstract This erratum is to correct headings listing the impact location and speed in Figs. 5 and 6. The following provides corrected Figs. 5 and 6. The data is unchanged. The authors apologize for any inconvenience this might have caused.
      PubDate: 2018-01-01
      DOI: 10.1007/s10439-017-1948-8
      Issue No: Vol. 46, No. 1 (2018)
       
  • Biomechanical Characterisation of Bone-anchored Implant Systems for
           Amputation Limb Prostheses: A Systematic Review
    • Authors: Alexander Thesleff; Rickard Brånemark; Bo Håkansson; Max Ortiz-Catalan
      Abstract: Abstract Bone-anchored limb prostheses allow for the direct transfer of external loads from the prosthesis to the skeleton, eliminating the need for a socket and the associated problems of poor fit, discomfort, and limited range of movement. A percutaneous implant system for direct skeletal attachment of an external limb must provide a long-term, mechanically stable interface to the bone, along with an infection barrier to the external environment. In addition, the mechanical integrity of the implant system and bone must be preserved despite constant stresses induced by the limb prosthesis. Three different percutaneous implant systems for direct skeletal attachment of external limb prostheses are currently clinically available and a few others are under investigation in human subjects. These systems employ different strategies and have undergone design changes with a view to fulfilling the aforementioned requirements. This review summarises such strategies and design changes, providing an overview of the biomechanical characteristics of current percutaneous implant systems for direct skeletal attachment of amputation limb prostheses.
      PubDate: 2018-01-11
      DOI: 10.1007/s10439-017-1976-4
       
  • AngleNav: MEMS Tracker to Facilitate CT-Guided Puncture
    • Authors: Rui Li; Sheng Xu; William F. Pritchard; John W. Karanian; Venkatesh P. Krishnasamy; Bradford J. Wood; Zion Tsz Ho Tse
      Abstract: Abstract As a low-cost needle navigation system, AngleNav may be used to improve the accuracy, speed, and ease of CT-guided needle punctures. The AngleNav hardware includes a wireless device with a microelectromechanical (MEMS) tracker that can be attached to any standard needle. The physician defines the target, desired needle path and skin entry point on a CT slice image. The accuracy of AngleNav was first tested in a 3D-printed calibration platform in a benchtop setting. An abdominal phantom study was then performed in a CT scanner to validate the accuracy of the device’s angular measurement. Finally, an in vivo swine study was performed to guide the needle towards liver targets (n = 8). CT scans of the targets were used to quantify the angular errors and needle tip-to-targeting distance errors between the planned needle path and the final needle position. The MEMS tracker showed a mean angular error of 0.01° with a standard deviation (SD) of 0.62° in the benchtop setting. The abdominal phantom test showed a mean angular error of 0.87° with an SD of 1.19° and a mean tip-to-target distance error of 4.89 mm with an SD of 1.57 mm. The animal experiment resulted in a mean angular error of 6.6° with an SD of 1.9° and a mean tip-to-target distance error of 8.7 mm with an SD of 3.1 mm. These results demonstrated the feasibility of AngleNav for CT-guided interventional workflow. The angular and distance errors were reduced by 64.4 and 54.8% respectively if using AngleNav instead of freehand insertion, with a limited number of operators. AngleNav assisted the physicians to deliver accurate needle insertion during CT-guided intervention. The device could potentially reduce the learning curve for physicians to perform CT-guided needle targeting.
      PubDate: 2018-01-05
      DOI: 10.1007/s10439-017-1968-4
       
  • Correction to: Deformability of Human Mesenchymal Stem Cells Is Dependent
           on Vimentin Intermediate Filaments
    • Authors: Poonam Sharma; Zachary T. Bolten; Diane R. Wagner; Adam H. Hsieh
      Abstract: Abstract This erratum is to correct the following: (1) in the Western Blotting subsection under the Materials and Methods section, the concentration of protein from each sample loaded into Criterion Tris–HCl gels was incorrectly stated as 155 µg of protein. The correct value is 9.7 µg; (2) in Fig. 1b, the bar graph showed incorrect values for semi-quantitation of Western blots. Figure 1 has been updated with a corrected graph in Fig. 1b only.
      PubDate: 2018-01-02
      DOI: 10.1007/s10439-017-1975-5
       
  • Assessment of Corneal Biomechanical Properties with Inflation Test Using
           Optical Coherence Tomography
    • Authors: Like Wang; Lei Tian; Yanping Huang; Yifei Huang; Yongping Zheng
      Abstract: Abstract Biomechanical properties are important for the cornea to maintain its normal shape and function. There is still a need to develop better methods for accurate measurement of corneal mechanical properties. In this study, we propose to introduce the optical coherence tomography (OCT) in inflation test for the imaging of corneal deformation in order to measure its biomechanical properties. Ten cornea-mimicking silicone phantoms with different stiffness and five fresh porcine corneas were tested using the proposed method. Intra-ocular pressure was changed from 10 to 90 mmHg using two different loading rates to observe the pressure-apex displacement relationship and calculate the apparent stiffness of the corneas. Stiffness of the corneal phantoms obtained by the inflation test ranged from 0.2 to 1 MPa, which was highly consistent with the results from the mechanical tensile test (y = 0.70x, p < 0.001). The porcine corneas showed highly viscoelastic behavior with obvious hysteresis in inflation. The apparent stiffness of the porcine corneas was 0.63 ± 0.07 and 1.05 ± 0.08 MPa with loading rates of 3.3 and 33 mmHg/min, respectively. Mapping of corneal surface displacement was also generated for both the phantom and porcine corneas. This study showed that it is feasible to incorporate the high resolution OCT imaging in inflation test to measure the biomechanical properties of the cornea.
      PubDate: 2018-01-02
      DOI: 10.1007/s10439-017-1973-7
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016