for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> BIOLOGY (Total: 3003 journals)
    - BIOCHEMISTRY (237 journals)
    - BIOENGINEERING (108 journals)
    - BIOLOGY (1427 journals)
    - BIOPHYSICS (46 journals)
    - BIOTECHNOLOGY (218 journals)
    - BOTANY (220 journals)
    - CYTOLOGY AND HISTOLOGY (28 journals)
    - ENTOMOLOGY (63 journals)
    - GENETICS (162 journals)
    - MICROBIOLOGY (256 journals)
    - MICROSCOPY (10 journals)
    - ORNITHOLOGY (25 journals)
    - PHYSIOLOGY (70 journals)
    - ZOOLOGY (133 journals)

BIOLOGY (1427 journals)                  1 2 3 4 5 6 7 8 | Last

Showing 1 - 200 of 1720 Journals sorted alphabetically
AAPS Journal     Hybrid Journal   (Followers: 20)
Achievements in the Life Sciences     Open Access   (Followers: 4)
ACS Synthetic Biology     Full-text available via subscription   (Followers: 21)
Acta Biologica Colombiana     Open Access   (Followers: 7)
Acta Biologica Hungarica     Full-text available via subscription   (Followers: 4)
Acta Biologica Sibirica     Open Access  
Acta Biomaterialia     Hybrid Journal   (Followers: 25)
Acta Biotheoretica     Hybrid Journal   (Followers: 5)
Acta Chiropterologica     Full-text available via subscription   (Followers: 6)
acta ethologica     Hybrid Journal   (Followers: 4)
Acta Limnologica Brasiliensia     Open Access   (Followers: 3)
Acta Médica Costarricense     Open Access   (Followers: 2)
Acta Musei Silesiae, Scientiae Naturales : The Journal of Silesian Museum in Opava     Open Access  
Acta Neurobiologiae Experimentalis     Open Access  
Acta Parasitologica     Hybrid Journal   (Followers: 9)
Acta Scientiarum. Biological Sciences     Open Access   (Followers: 2)
Acta Scientifica Naturalis     Open Access   (Followers: 2)
Actualidades Biológicas     Open Access   (Followers: 1)
Advanced Health Care Technologies     Open Access   (Followers: 4)
Advanced Studies in Biology     Open Access  
Advances in Antiviral Drug Design     Full-text available via subscription   (Followers: 3)
Advances in Bioinformatics     Open Access   (Followers: 18)
Advances in Biological Regulation     Hybrid Journal   (Followers: 4)
Advances in Biosensors and Bioelectronics     Open Access   (Followers: 6)
Advances in Cell Biology     Open Access   (Followers: 24)
Advances in Cellular and Molecular Biology of Membranes and Organelles     Full-text available via subscription   (Followers: 12)
Advances in Developmental Biology     Full-text available via subscription   (Followers: 11)
Advances in DNA Sequence-Specific Agents     Full-text available via subscription   (Followers: 5)
Advances in Ecological Research     Full-text available via subscription   (Followers: 41)
Advances in Environmental Sciences - International Journal of the Bioflux Society     Open Access   (Followers: 21)
Advances in Enzyme Research     Open Access   (Followers: 9)
Advances in Experimental Biology     Full-text available via subscription   (Followers: 7)
Advances in Genome Biology     Full-text available via subscription   (Followers: 11)
Advances in High Energy Physics     Open Access   (Followers: 19)
Advances in Human Biology     Open Access   (Followers: 1)
Advances in Life Science and Technology     Open Access   (Followers: 14)
Advances in Life Sciences     Open Access   (Followers: 4)
Advances in Marine Biology     Full-text available via subscription   (Followers: 16)
Advances in Molecular and Cell Biology     Full-text available via subscription   (Followers: 22)
Advances in Planar Lipid Bilayers and Liposomes     Full-text available via subscription   (Followers: 3)
Advances in Regenerative Biology     Open Access   (Followers: 1)
Advances in Structural Biology     Full-text available via subscription   (Followers: 8)
Advances in Virus Research     Full-text available via subscription   (Followers: 5)
African Journal of Range & Forage Science     Hybrid Journal   (Followers: 6)
AFRREV STECH : An International Journal of Science and Technology     Open Access   (Followers: 1)
Ageing Research Reviews     Hybrid Journal   (Followers: 8)
Aging Cell     Open Access   (Followers: 10)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Agrokreatif Jurnal Ilmiah Pengabdian kepada Masyarakat     Open Access  
AJP Cell Physiology     Full-text available via subscription   (Followers: 13)
AJP Endocrinology and Metabolism     Full-text available via subscription   (Followers: 22)
AJP Lung Cellular and Molecular Physiology     Full-text available via subscription   (Followers: 3)
Al-Kauniyah : Jurnal Biologi     Open Access  
Alasbimn Journal     Open Access   (Followers: 1)
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Biology Teacher     Full-text available via subscription   (Followers: 13)
American Fern Journal     Full-text available via subscription   (Followers: 1)
American Journal of Agricultural and Biological Sciences     Open Access   (Followers: 10)
American Journal of Bioethics     Hybrid Journal   (Followers: 10)
American Journal of Biostatistics     Open Access   (Followers: 9)
American Journal of Human Biology     Hybrid Journal   (Followers: 12)
American Journal of Medical and Biological Research     Open Access   (Followers: 6)
American Journal of Plant Sciences     Open Access   (Followers: 19)
American Journal of Primatology     Hybrid Journal   (Followers: 15)
American Malacological Bulletin     Full-text available via subscription   (Followers: 3)
American Naturalist     Full-text available via subscription   (Followers: 69)
Amphibia-Reptilia     Hybrid Journal   (Followers: 6)
Anaerobe     Hybrid Journal   (Followers: 4)
Analytical Methods     Full-text available via subscription   (Followers: 9)
Anatomical Science International     Hybrid Journal   (Followers: 2)
Animal Cells and Systems     Hybrid Journal   (Followers: 4)
Annales de Limnologie - International Journal of Limnology     Hybrid Journal   (Followers: 1)
Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale     Full-text available via subscription   (Followers: 3)
Annales Henri Poincaré     Hybrid Journal   (Followers: 3)
Annales UMCS, Biologia     Open Access   (Followers: 1)
Annals of Applied Biology     Hybrid Journal   (Followers: 7)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 18)
Annals of Human Biology     Hybrid Journal   (Followers: 4)
Annual Review of Biomedical Engineering     Full-text available via subscription   (Followers: 17)
Annual Review of Biophysics     Full-text available via subscription   (Followers: 25)
Annual Review of Cancer Biology     Full-text available via subscription   (Followers: 1)
Annual Review of Cell and Developmental Biology     Full-text available via subscription   (Followers: 38)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 15)
Annual Review of Genomics and Human Genetics     Full-text available via subscription   (Followers: 19)
Annual Review of Phytopathology     Full-text available via subscription   (Followers: 10)
Anthropological Review     Open Access   (Followers: 24)
Anti-Infective Agents     Hybrid Journal   (Followers: 3)
Antibiotics     Open Access   (Followers: 9)
Antioxidants     Open Access   (Followers: 4)
Antioxidants & Redox Signaling     Hybrid Journal   (Followers: 8)
Antonie van Leeuwenhoek     Hybrid Journal   (Followers: 5)
Anzeiger für Schädlingskunde     Hybrid Journal   (Followers: 1)
Apidologie     Hybrid Journal   (Followers: 4)
Apmis     Hybrid Journal   (Followers: 1)
APOPTOSIS     Hybrid Journal   (Followers: 8)
Applied Bionics and Biomechanics     Open Access   (Followers: 8)
Applied Vegetation Science     Full-text available via subscription   (Followers: 9)
Aquaculture Environment Interactions     Open Access   (Followers: 2)
Aquaculture International     Hybrid Journal   (Followers: 22)
Aquaculture Reports     Open Access   (Followers: 3)
Aquaculture, Aquarium, Conservation & Legislation - International Journal of the Bioflux Society     Open Access   (Followers: 6)
Aquatic Biology     Open Access   (Followers: 5)
Aquatic Ecology     Hybrid Journal   (Followers: 30)
Aquatic Ecosystem Health & Management     Hybrid Journal   (Followers: 13)
Aquatic Science and Technology     Open Access   (Followers: 3)
Aquatic Toxicology     Hybrid Journal   (Followers: 19)
Archaea     Open Access   (Followers: 3)
Archiv für Molluskenkunde: International Journal of Malacology     Full-text available via subscription   (Followers: 3)
Archives of Biomedical Sciences     Open Access   (Followers: 7)
Archives of Microbiology     Hybrid Journal   (Followers: 8)
Archives of Natural History     Hybrid Journal   (Followers: 7)
Archives of Oral Biology     Hybrid Journal   (Followers: 2)
Archives of Virology     Hybrid Journal   (Followers: 5)
Archivum Immunologiae et Therapiae Experimentalis     Hybrid Journal   (Followers: 2)
Arid Ecosystems     Hybrid Journal   (Followers: 3)
Arquivos do Instituto Biológico     Open Access   (Followers: 1)
Arquivos do Museu Dinâmico Interdisciplinar     Open Access  
Arthropod Structure & Development     Hybrid Journal   (Followers: 2)
Arthropods     Open Access   (Followers: 1)
Artificial DNA: PNA & XNA     Hybrid Journal   (Followers: 2)
Artificial Photosynthesis     Open Access   (Followers: 1)
Asian Bioethics Review     Full-text available via subscription   (Followers: 1)
Asian Journal of Biodiversity     Open Access   (Followers: 5)
Asian Journal of Biological Sciences     Open Access   (Followers: 3)
Asian Journal of Cell Biology     Open Access   (Followers: 6)
Asian Journal of Developmental Biology     Open Access   (Followers: 2)
Asian Journal of Medical and Biological Research     Open Access   (Followers: 2)
Asian Journal of Nematology     Open Access   (Followers: 3)
Asian Journal of Poultry Science     Open Access   (Followers: 4)
Australian Life Scientist     Full-text available via subscription   (Followers: 2)
Australian Mammalogy     Hybrid Journal   (Followers: 6)
Autophagy     Hybrid Journal   (Followers: 2)
Avian Biology Research     Full-text available via subscription   (Followers: 4)
Avian Conservation and Ecology     Open Access   (Followers: 12)
Bacteriology Journal     Open Access   (Followers: 2)
Bacteriophage     Full-text available via subscription   (Followers: 4)
Bangladesh Journal of Bioethics     Open Access  
Bangladesh Journal of Plant Taxonomy     Open Access  
Bangladesh Journal of Scientific Research     Open Access   (Followers: 1)
Berita Biologi     Open Access   (Followers: 1)
Between the Species     Open Access   (Followers: 1)
Bio Tribune Magazine     Hybrid Journal  
BIO Web of Conferences     Open Access  
BIO-Complexity     Open Access  
Bio-Grafía. Escritos sobre la Biología y su enseñanza     Open Access  
Bioanalytical Reviews     Hybrid Journal   (Followers: 2)
Biocatalysis and Biotransformation     Hybrid Journal   (Followers: 6)
Biochemistry and Cell Biology     Hybrid Journal   (Followers: 14)
Biochimie     Hybrid Journal   (Followers: 7)
BioControl     Hybrid Journal   (Followers: 5)
Biocontrol Science and Technology     Hybrid Journal   (Followers: 5)
Biodemography and Social Biology     Hybrid Journal   (Followers: 1)
Biodiversidad Colombia     Open Access  
Biodiversity : Research and Conservation     Open Access   (Followers: 26)
Biodiversity and Natural History     Open Access   (Followers: 5)
Biodiversity Data Journal     Open Access   (Followers: 3)
Biodiversity Informatics     Open Access  
Bioedukasi : Jurnal Pendidikan Biologi FKIP UM Metro     Open Access  
Bioeksperimen : Jurnal Penelitian Biologi     Open Access  
Bioelectrochemistry     Hybrid Journal   (Followers: 2)
Bioelectromagnetics     Hybrid Journal   (Followers: 1)
Bioenergy Research     Hybrid Journal   (Followers: 2)
Bioengineering and Bioscience     Open Access   (Followers: 1)
BioEssays     Hybrid Journal   (Followers: 10)
Bioethics     Hybrid Journal   (Followers: 14)
BioéthiqueOnline     Open Access  
Biofabrication     Hybrid Journal   (Followers: 3)
Biogeosciences (BG)     Open Access   (Followers: 10)
Biogeosciences Discussions (BGD)     Open Access   (Followers: 1)
Bioinformatics     Hybrid Journal   (Followers: 310)
Bioinformatics and Biology Insights     Open Access   (Followers: 15)
Bioinspiration & Biomimetics     Hybrid Journal   (Followers: 6)
Biointerphases     Open Access   (Followers: 1)
Biojournal of Science and Technology     Open Access  
Biologia     Hybrid Journal  
Biologia on-line : Revista de divulgació de la Facultat de Biologia     Open Access  
Biological Bulletin     Partially Free   (Followers: 5)
Biological Control     Hybrid Journal   (Followers: 4)
Biological Invasions     Hybrid Journal   (Followers: 16)
Biological Journal of the Linnean Society     Hybrid Journal   (Followers: 16)
Biological Letters     Open Access   (Followers: 4)
Biological Procedures Online     Open Access  
Biological Psychiatry     Hybrid Journal   (Followers: 42)
Biological Psychology     Hybrid Journal   (Followers: 6)
Biological Research     Open Access  
Biological Rhythm Research     Hybrid Journal   (Followers: 2)
Biological Theory     Hybrid Journal   (Followers: 1)
Biological Trace Element Research     Hybrid Journal  
Biologicals     Full-text available via subscription   (Followers: 9)
Biologics: Targets & Therapy     Open Access   (Followers: 1)
Biologie Aujourd'hui     Full-text available via subscription  
Biologie in Unserer Zeit (Biuz)     Hybrid Journal   (Followers: 42)
Biologija     Open Access  
Biology     Open Access   (Followers: 5)
Biology and Philosophy     Hybrid Journal   (Followers: 17)
Biology Bulletin     Hybrid Journal   (Followers: 1)
Biology Bulletin Reviews     Hybrid Journal  
Biology Direct     Open Access   (Followers: 7)
Biology Letters     Full-text available via subscription   (Followers: 36)

        1 2 3 4 5 6 7 8 | Last

Journal Cover Aging Cell
  [SJR: 4.374]   [H-I: 95]   [10 followers]  Follow
  This is an Open Access Journal Open Access journal
   ISSN (Print) 1474-9718 - ISSN (Online) 1474-9726
   Published by John Wiley and Sons Homepage  [1579 journals]
  • Influence of cell distribution and diabetes status on the association
           between mitochondrial DNA copy number and aging phenotypes in the
           InCHIANTI study

    • Authors: Ann Zenobia Moore; Jun Ding, Marcus A. Tuke, Andrew R. Wood, Stefania Bandinelli, Timothy M. Frayling, Luigi Ferrucci
      Abstract: Mitochondrial DNA copy number (mtDNA-CN) estimated in whole blood is a novel marker of mitochondrial mass and function that can be used in large population-based studies. Analyses that attempt to relate mtDNA-CN to specific aging phenotypes may be confounded by differences in the distribution of blood cell types across samples. Also, low or high mtDNA-CN may have a different meaning given the presence of diseases associated with mitochondrial damage. We evaluated the impact of blood cell type distribution and diabetes status on the association between mtDNA-CN and aging phenotypes, namely chronologic age, interleukin-6, hemoglobin, and all-cause mortality, among 672 participants of the InCHIANTI study. After accounting for white blood cell count, platelet count, and white blood cell proportions in multivariate models, associations of mtDNA-CN with age and interleukin-6 were no longer statistically significant. Evaluation of a statistical interaction by diabetes status suggested heterogeneity of effects in the analysis of mortality (P 
      PubDate: 2017-10-19T00:45:19.598565-05:
      DOI: 10.1111/acel.12683
  • Enhanced inflammation and attenuated tumor suppressor pathways are
           associated with oncogene-induced lung tumors in aged mice

    • Authors: Neha Parikh; Ryan L. Shuck, Mihai Gagea, Lanlan Shen, Lawrence A. Donehower
      Abstract: Aging is often accompanied by a dramatic increase in cancer susceptibility. To gain insights into how aging affects tumor susceptibility, we generated a conditional mouse model in which oncogenic KrasG12D was activated specifically in lungs of young (3–5 months) and old (19–24 months) mice. Activation of KrasG12D in old mice resulted in shorter survival and development of higher-grade lung tumors. Six weeks after KrasG12D activation, old lung tissues contained higher numbers of adenomas than their young tissue counterparts. Lung tumors in old mice displayed higher proliferation rates, as well as attenuated DNA damage and p53 tumor suppressor responses. Gene expression comparison of lung tumors from young and old mice revealed upregulation of extracellular matrix-related genes in young tumors, indicative of a robust cancer-associated fibroblast response. In old tumors, numerous inflammation-related genes such as Ccl7, IL-1β, Cxcr6, and IL-15ra were consistently upregulated. Increased numbers of immune cells were localized around the periphery of lung adenomas from old mice. Our experiments indicate that more aggressive lung tumor formation in older KrasG12D mice may be in part the result of subdued tumor suppressor and DNA damage responses, an enhanced inflammatory milieu, and a more accommodating tissue microenvironment.
      PubDate: 2017-10-18T23:06:13.153748-05:
      DOI: 10.1111/acel.12691
  • Anti-inflammaging effects of human alpha-1 antitrypsin

    • Authors: Ye Yuan; Benedetto DiCiaccio, Ying Li, Ahmed S. Elshikha, Denis Titov, Brian Brenner, Lee Seifer, Hope Pan, Nurdina Karic, Mohammad A. Akbar, Yuanqing Lu, Sihong Song, Lei Zhou
      Abstract: Inflammaging plays an important role in most age-related diseases. However, the mechanism of inflammaging is largely unknown, and therapeutic control of inflammaging is challenging. Human alpha-1 antitrypsin (hAAT) has immune-regulatory, anti-inflammatory, and cytoprotective properties as demonstrated in several disease models including type 1 diabetes, arthritis, lupus, osteoporosis, and stroke. To test the potential anti-inflammaging effect of hAAT, we generated transgenic Drosophila lines expressing hAAT. Surprisingly, the lifespan of hAAT-expressing lines was significantly longer than that of genetically matched controls. To understand the mechanism underlying the anti-aging effect of hAAT, we monitored the expression of aging-associated genes and found that aging-induced expressions of Relish (NF-ĸB orthologue) and Diptericin were significantly lower in hAAT lines than in control lines. RNA-seq analysis revealed that innate immunity genes regulated by NF-kB were significantly and specifically inhibited in hAAT transgenic Drosophila lines. To confirm this anti-inflammaging effect in human cells, we treated X-ray-induced senescence cells with hAAT and showed that hAAT treatment significantly decreased the expression and maturation of IL-6 and IL-8, two major factors of senescence-associated secretory phenotype. Consistent with results from Drosophila,RNA-seq analysis also showed that hAAT treatment significantly inhibited inflammation related genes and pathways. Together, our results demonstrated that hAAT significantly inhibited inflammaging in both Drosophila and human cell models. As hAAT is a FDA-approved drug with a confirmed safety profile, this novel therapeutic potential may make hAAT a promising candidate to combat aging and aging-related diseases.
      PubDate: 2017-10-17T03:57:00.24757-05:0
      DOI: 10.1111/acel.12694
  • Age-associated microRNA expression in human peripheral blood is associated
           with all-cause mortality and age-related traits

    • Authors: Tianxiao Huan; George Chen, Chunyu Liu, Anindya Bhattacharya, Jian Rong, Brian H. Chen, Sudha Seshadri, Kahraman Tanriverdi, Jane E. Freedman, Martin G. Larson, Joanne M. Murabito, Daniel Levy
      Abstract: Recent studies provide evidence of correlations of DNA methylation and expression of protein-coding genes with human aging. The relations of microRNA expression with age and age-related clinical outcomes have not been characterized thoroughly. We explored associations of age with whole-blood microRNA expression in 5221 adults and identified 127 microRNAs that were differentially expressed by age at P 
      PubDate: 2017-10-17T03:50:29.20043-05:0
      DOI: 10.1111/acel.12687
  • Human CD8+ EMRA T cells display a senescence-associated secretory
           phenotype regulated by p38 MAPK

    • Authors: Lauren A. Callender; Elizabeth C. Carroll, Robert W. J. Beal, Emma S. Chambers, Sussan Nourshargh, Arne N. Akbar, Sian M. Henson
      Abstract: Cellular senescence is accompanied by a senescence-associated secretory phenotype (SASP). We show here that primary human senescent CD8+ T cells also display a SASP comprising chemokines, cytokines and extracellular matrix remodelling proteases that are unique to this subset and contribute to age-associated inflammation. We found the CD8+ CD45RA+CD27− EMRA subset to be the most heterogeneous, with a population aligning with the naïve T cells and another with a closer association to the effector memory subset. However, despite the differing processes that give rise to these senescent CD8+ T cells once generated, they both adopt a unique secretory profile with no commonality to any other subset, aligning more closely with senescence than quiescence. Furthermore, we also show that the SASP observed in senescent CD8+ T cells is governed by p38 MAPK signalling.
      PubDate: 2017-10-12T01:40:59.179802-05:
      DOI: 10.1111/acel.12675
  • Interplay of pathogenic forms of human tau with different autophagic

    • Authors: Benjamin Caballero; Yipeng Wang, Antonio Diaz, Inmaculada Tasset, Yves Robert Juste, Eva-Maria Mandelkow, Eckhard Mandelkow, Ana Maria Cuervo
      Abstract: Loss of neuronal proteostasis, a common feature of the aging brain, is accelerated in neurodegenerative disorders, including different types of tauopathies. Aberrant turnover of tau, a microtubule-stabilizing protein, contributes to its accumulation and subsequent toxicity in tauopathy patients’ brains. A direct toxic effect of pathogenic forms of tau on the proteolytic systems that normally contribute to their turnover has been proposed. In this study, we analyzed the contribution of three different types of autophagy, macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy to the degradation of tau protein variants and tau mutations associated with this age-related disease. We have found that the pathogenic P301L mutation inhibits degradation of tau by any of the three autophagic pathways, whereas the risk-associated tau mutation A152T reroutes tau for degradation through a different autophagy pathway. We also found defective autophagic degradation of tau when using mutations that mimic common posttranslational modifications in tau or known to promote its aggregation. Interestingly, although most mutations markedly reduced degradation of tau through autophagy, the step of this process preferentially affected varies depending on the type of tau mutation. Overall, our studies unveil a complex interplay between the multiple modifications of tau and selective forms of autophagy that may determine its physiological degradation and its faulty clearance in the disease context.
      PubDate: 2017-10-12T01:36:09.073264-05:
      DOI: 10.1111/acel.12692
  • Ghrelin deletion protects against age-associated hepatic steatosis by
           downregulating the C/EBPα-p300/DGAT1 pathway

    • Authors: Bobby Guillory; Nicole Jawanmardi, Polina Iakova, Barbara Anderson, Pu Zang, Nikolai A. Timchenko, Jose M. Garcia
      Abstract: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. NAFLD usually begins as low-grade hepatic steatosis which further progresses in an age-dependent manner to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma in some patients. Ghrelin is a hormone known to promote adiposity in rodents and humans, but its potential role in hepatic steatosis is unknown. We hypothesized that genetic ghrelin deletion will protect against the development of age-related hepatic steatosis. To examine this hypothesis, we utilized ghrelin knockout (KO) mice. Although no different in young animals (3 months old), we found that at 20 months of age, ghrelin KO mice have significantly reduced hepatic steatosis compared to aged-matched wild-type (WT) mice. Examination of molecular pathways by which deletion of ghrelin reduces steatosis showed that the increase in expression of diacylglycerol O-acyltransferase-1 (DGAT1), one of the key enzymes of triglyceride (TG) synthesis, seen with age in WT mice, is not present in KO mice. This was due to the lack of activation of CCAAT/enhancer binding protein-alpha (C/EBPα) protein and subsequent reduction of C/EBPα-p300 complexes. These complexes were abundant in livers of old WT mice and were bound to and activated the DGAT1 promoter. However, the C/EBPα-p300 complexes were not detected on the DGAT1 promoter in livers of old KO mice resulting in lower levels of the enzyme. In conclusion, these studies demonstrate the mechanism by which ghrelin deletion prevents age-associated hepatic steatosis and suggest that targeting this pathway may offer therapeutic benefit for NAFLD.
      PubDate: 2017-10-12T01:35:38.679579-05:
      DOI: 10.1111/acel.12688
  • In vivo properties of the disaggregase function of J-proteins and Hsc70 in
           Caenorhabditis elegans stress and aging

    • Authors: Janine Kirstein; Kristin Arnsburg, Annika Scior, Anna Szlachcic, D. Lys Guilbride, Richard I. Morimoto, Bernd Bukau, Nadinath B. Nillegoda
      Abstract: Protein aggregation is enhanced upon exposure to various stress conditions and aging, which suggests that the quality control machinery regulating protein homeostasis could exhibit varied capacities in different stages of organismal lifespan. Recently, an efficient metazoan disaggregase activity was identified in vitro, which requires the Hsp70 chaperone and Hsp110 nucleotide exchange factor, together with single or cooperating J-protein co-chaperones of classes A and B. Here, we describe how the orthologous Hsp70s and J-protein of Caenorhabditis elegans work together to resolve protein aggregates both in vivo and in vitro to benefit organismal health. Using an RNAi knockdown approach, we show that class A and B J-proteins cooperate to form an interactive flexible network that relocalizes to protein aggregates upon heat shock and preferentially recruits constitutive Hsc70 to disaggregate heat-induced protein aggregates and polyQ aggregates that form in an age-dependent manner. Cooperation between class A and B J-proteins is also required for organismal health and promotes thermotolerance, maintenance of fecundity, and extended viability after heat stress. This disaggregase function of J-proteins and Hsc70 therefore constitutes a powerful regulatory network that is key to Hsc70-based protein quality control mechanisms in metazoa with a central role in the clearance of aggregates, stress recovery, and organismal fitness in aging.
      PubDate: 2017-10-10T23:06:07.453665-05:
      DOI: 10.1111/acel.12686
  • Sirtuins at the crossroads of stemness, aging, and cancer

    • Authors: Carol O'Callaghan; Athanassios Vassilopoulos
      Abstract: Sirtuins are stress-responsive proteins that direct various post-translational modifications (PTMs) and as a result, are considered to be master regulators of several cellular processes. They are known to both extend lifespan and regulate spontaneous tumor development. As both aging and cancer are associated with altered stem cell function, the possibility that the involvement of sirtuins in these events is mediated by their roles in stem cells is worthy of investigation. Research to date suggests that the individual sirtuin family members can differentially regulate embryonic, hematopoietic as well as other adult stem cells in a tissue- and cell type-specific context. Sirtuin-driven regulation of both cell differentiation and signaling pathways previously involved in stem cell maintenance has been described where downstream effectors involved determine the biological outcome. Similarly, diverse roles have been reported in cancer stem cells (CSCs), depending on the tissue of origin. This review highlights the current knowledge which places sirtuins at the intersection of stem cells, aging, and cancer. By outlining the plethora of stem cell-related roles for individual sirtuins in various contexts, our purpose was to provide an indication of their significance in relation to cancer and aging, as well as to generate a clearer picture of their therapeutic potential. Finally, we propose future directions which will contribute to the better understanding of sirtuins, thereby further unraveling the full repertoire of sirtuin functions in both normal stem cells and CSCs.
      PubDate: 2017-10-10T01:26:37.805349-05:
      DOI: 10.1111/acel.12685
  • Age-associated dysregulation of protein metabolism in the mammalian oocyte

    • Authors: Francesca E. Duncan; Susmita Jasti, Ariel Paulson, John M. Kelsh, Barbara Fegley, Jennifer L. Gerton
      Abstract: Reproductive aging is characterized by a marked decline in oocyte quality that contributes to infertility, miscarriages, and birth defects. This decline is multifactorial, and the underlying mechanisms are under active investigation. Here, we performed RNA-Seq on individual growing follicles from reproductively young and old mice to identify age-dependent functions in oocytes. This unbiased approach revealed genes involved in cellular processes known to change with age, including mitochondrial function and meiotic chromosome segregation, but also uncovered previously unappreciated categories of genes related to proteostasis and organelles required for protein metabolism. We further validated our RNA-Seq data by comparing nucleolar structure and function in oocytes from reproductively young and old mice, as this organelle is central for protein production. We examined key nucleolar markers, including upstream binding transcription factor (UBTF), an RNA polymerase I cofactor, and fibrillarin, an rRNA methyltransferase. In oocytes from mice of advanced reproductive age, UBTF was primarily expressed in giant fibrillar centers (GFCs), structures associated with high levels of rDNA transcription, and fibrillarin expression was increased ~2-fold. At the ultrastructural level, oocyte nucleoli from reproductively old mice had correspondingly more prominent fibrillar centers and dense fibrillar centers relative to young controls and more ribosomes were found in the cytoplasm. Taken together, our findings are significant because the growing oocyte is one of the most translationally active cells in the body and must accumulate high-quality maternally derived proteins to support subsequent embryo development. Thus, perturbations in protein metabolism are likely to have a profound impact on gamete health.
      PubDate: 2017-10-10T01:26:27.843834-05:
      DOI: 10.1111/acel.12676
  • Loss of SIRT2 leads to axonal degeneration and locomotor disability
           associated with redox and energy imbalance

    • Authors: Stéphane Fourcade; Laia Morató, Janani Parameswaran, Montserrat Ruiz, Tatiana Ruiz-Cortés, Mariona Jové, Alba Naudí, Paloma Martínez-Redondo, Mara Dierssen, Isidre Ferrer, Francesc Villarroya, Reinald Pamplona, Alejandro Vaquero, Manel Portero-Otín, Aurora Pujol
      Abstract: Sirtuin 2 (SIRT2) is a member of a family of NAD+-dependent histone deacetylases (HDAC) that play diverse roles in cellular metabolism and especially for aging process. SIRT2 is located in the nucleus, cytoplasm, and mitochondria, is highly expressed in the central nervous system (CNS), and has been reported to regulate a variety of processes including oxidative stress, genome integrity, and myelination. However, little is known about the role of SIRT2 in the nervous system specifically during aging. Here, we show that middle-aged, 13-month-old mice lacking SIRT2 exhibit locomotor dysfunction due to axonal degeneration, which was not present in young SIRT2 mice. In addition, these Sirt2−/− mice exhibit mitochondrial depletion resulting in energy failure, and redox dyshomeostasis. Our results provide a novel link between SIRT2 and physiological aging impacting the axonal compartment of the central nervous system, while supporting a major role for SIRT2 in orchestrating its metabolic regulation. This underscores the value of SIRT2 as a therapeutic target in the most prevalent neurodegenerative diseases that undergo with axonal degeneration associated with redox and energetic dyshomeostasis.
      PubDate: 2017-10-05T23:06:06.922706-05:
      DOI: 10.1111/acel.12682
  • Dopamine D4 receptor activation restores CA1 LTP in hippocampal slices
           from aged mice

    • Authors: Fangli Guo; Jianhua Zhao, Dandan Zhao, Jiangang Wang, Xiaofang Wang, Zhiwei Feng, Martin Vreugdenhil, Chengbiao Lu
      Abstract: Normal aging is characterized with a decline in hippocampal memory functions that is associated with changes in long-term potentiation (LTP) of the CA3-to-CA1 synapse. Age-related deficit of the dopaminergic system may contribute to impairment of CA1 LTP. Here we assessed how the modulation of CA1 LTP by dopamine is affected by aging and how it is dependent on the Ca2+ source. In slices from adult mice, the initial slope of the field potential showed strong LTP, but in slices from aged mice LTP was impaired. Dopamine did not affect LTP in adult slices, but enhanced LTP in aged slices. The dopamine D1/D5 receptor (D1R/D5R) agonist SKF-81297 did not affect LTP in adult but caused a relative small increase in LTP in aged slices; however, although there was no difference in dopamine D4 receptor (D4R) expression, the D4R agonist PD168077 increased LTP in aged slices to a magnitude similar to that in adult slices. The N-Methyl-D-aspartate receptor antagonist D-AP5 reduced LTP in adult slices, but not in aged slices. However, in the presence of D-AP5, PD168077 completely blocked LTP in aged slices. The voltage-dependent calcium channel (VDCC) blocker nifedipine reduced LTP in adult slices, but surprisingly enhanced LTP in aged slices. Furthermore, in the presence of nifedipine, PD168077 caused a strong enhancement of LTP in aged slices to a magnitude exceeding LTP in adult slices. Our results indicate that the full rescue of impaired LTP in aging by the selective D4R activation and that a large potentiation role on LTP by co-application of D4R agonist and VDCC blocker may provide novel strategies for the intervention of cognitive decline of aging and age-related diseases.
      PubDate: 2017-10-03T23:08:13.537891-05:
      DOI: 10.1111/acel.12666
  • TOR-mediated regulation of metabolism in aging

    • Authors: Henri Antikainen; Monica Driscoll, Gal Haspel, Radek Dobrowolski
      Abstract: Cellular metabolism is regulated by the mTOR kinase, a key component of the molecular nutrient sensor pathway that plays a central role in cellular survival and aging. The mTOR pathway promotes protein and lipid synthesis and inhibits autophagy, a process known for its contribution to longevity in several model organisms. The nutrient-sensing pathway is regulated at the lysosomal membrane by a number of proteins for which deficiency triggers widespread aging phenotypes in tested animal models. In response to environmental cues, this recently discovered lysosomal nutrient-sensing complex regulates autophagy transcriptionally through conserved factors, such as the transcription factors TFEB and FOXO, associated with lifespan extension. This key metabolic pathway strongly depends on nucleocytoplasmic compartmentalization, a cellular phenomenon gradually lost during aging. In this review, we discuss the current progress in understanding the contribution of mTOR-regulating factors to autophagy and longevity. Furthermore, we review research on the regulation of metabolism conducted in multiple aging models, including Caenorhabditis elegans, Drosophila and mouse, and human iPSCs. We suggest that conserved molecular pathways have the strongest potential for the development of new avenues for treatment of age-related diseases.
      PubDate: 2017-10-02T23:40:30.953939-05:
      DOI: 10.1111/acel.12689
  • miR-155 induces ROS generation through downregulation of
           antioxidation-related genes in mesenchymal stem cells

    • Authors: Yuta Onodera; Takeshi Teramura, Toshiyuki Takehara, Kayoko Obora, Tatsufumi Mori, Kanji Fukuda
      Abstract: Inflammation-induced reactive oxygen species (ROS) are implicated in cellular dysfunction and an important trigger for aging- or disease-related tissue degeneration. Inflammation-induced ROS in stem cells lead to deterioration of their properties, altering tissue renewal or regeneration. Pathological ROS generation can be induced by multiple steps, and dysfunction of antioxidant systems is a major cause. The identification of the central molecule mediating the above-mentioned processes would pave the way for the development of novel therapeutics for aging, aging-related diseases, or stem cell therapies. In recent years, microRNAs (miRNAs) have been shown to play important roles in many biological reactions, including inflammation and stem cell functions. In inflammatory conditions, certain miRNAs are highly expressed and mediate some cytotoxic actions. Here, we focused on miR-155, which is one of the most prominent miRNAs in inflammation and hypothesized that miR-155 participates to inflammation-induced ROS generation in stem cells. We observed mesenchymal stem cells (MSCs) from 1.5-year-old aged mice and determined that antioxidants, Nfe2l2, Sod1, and Hmox1, were suppressed, while miR-155-5p was highly expressed. Subsequent in vitro studies demonstrated that miR-155-5p induces ROS generation by suppression of the antioxidant genes by targeting the common transcription factor C/ebpβ. Moreover, this mechanism occurred during the cell transplantation process, in which ROS generation is triggering loss of transplanted stem cells. Finally, attenuation of antioxidants and ROS accumulation were partially prevented in miR-155 knockout MSCs. In conclusion, our study suggests that miR-155 is an important mediator connecting aging, inflammation, and ROS generation in stem cells.
      PubDate: 2017-10-02T05:25:51.972847-05:
      DOI: 10.1111/acel.12680
  • MicroRNAs mir-184 and let-7 alter Drosophila metabolism and longevity

    • Authors: Christi M. Gendron; Scott D. Pletcher
      Abstract: MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression associated with many complex biological processes. By comparing miRNA expression between long-lived cohorts of Drosophila melanogaster that were fed a low-nutrient diet with normal-lived control animals fed a high-nutrient diet, we identified miR-184, let-7, miR-125, and miR-100 as candidate miRNAs involved in modulating aging. We found that ubiquitous, adult-specific overexpression of these individual miRNAs led to significant changes in fat metabolism and/or lifespan. Most impressively, adult-specific overexpression of let-7 in female nervous tissue increased median fly lifespan by ~22%. We provide evidence that this lifespan extension is not due to alterations in nutrient intake or to decreased insulin signaling.
      PubDate: 2017-09-29T23:05:47.636785-05:
      DOI: 10.1111/acel.12673
  • Caloric restriction stabilizes body weight and accelerates behavioral
           recovery in aged rats after focal ischemia

    • Authors: Ovidiu Ciobanu; Raluca Elena Sandu, Adrian Tudor Balseanu, Alexandra Zavaleanu, Andrei Gresita, Eugen Bogdan Petcu, Adriana Uzoni, Aurel Popa-Wagner
      Abstract: Obesity and hyperinsulinemia are risk factors for stroke. We tested the hypothesis that caloric restriction, which reduces the incidence of age-related obesity and metabolic syndrome, may represent an efficient and cost-effective strategy for preventing stroke and its devastating consequences. To this end, we placed aged, obese Sprague-Dawley aged rats on a calorie-restricted diet for 8 weeks prior to the experimental infarction. Stroke in this animal model caused a progressive decrease in weight that reached a minimum at day 6 for the young rats, and at day 10 for the aged, ad libitum-fed rats. However, in aged animals that were calorie-restricted prior to stroke, body weight did not decrease after stroke, but we noted accelerated body weight gain shortly thereafter starting at day 5 poststroke. Moreover, calorie-restricted aged animals showed improved behavioral recovery in tasks requiring complex sensorimotor skills, or in tasks requiring cutaneous sensitivity and sensorimotor integration or spatial memory. Likewise, calorie-restricted aged rats showed significant poststroke increases in serum glucose, insulin, and IGF1 levels, as well as CR-specific changes in the expression of gene transcripts involved in glycogen metabolism, IGF signaling, apoptosis, arteriogenesis, and hypoxia. In conclusion, our study shows that recovery from stroke is enhanced in aged rats by a dietary regimen that reduces body weight prior to infarct.
      PubDate: 2017-09-29T11:28:23.593782-05:
      DOI: 10.1111/acel.12678
  • Sexually divergent DNA methylation patterns with hippocampal aging

    • Authors: Dustin R. Masser; Niran Hadad, Hunter L. Porter, Colleen A. Mangold, Archana Unnikrishnan, Matthew M. Ford, Cory B. Giles, Constantin Georgescu, Mikhail G. Dozmorov, Jonathan D. Wren, Arlan Richardson, David R. Stanford, Willard M. Freeman
      Abstract: DNA methylation is a central regulator of genome function, and altered methylation patterns are indicative of biological aging and mortality. Age-related cellular, biochemical, and molecular changes in the hippocampus lead to cognitive impairments and greater vulnerability to neurodegenerative disease that varies between the sexes. The role of hippocampal epigenomic changes with aging in these processes is unknown as no genome-wide analyses of age-related methylation changes have considered the factor of sex in a controlled animal model. High-depth, genome-wide bisulfite sequencing of young (3 month) and old (24 month) male and female mouse hippocampus revealed that while total genomic methylation amounts did not change with aging, specific sites in CG and non-CG (CH) contexts demonstrated age-related increases or decreases in methylation that were predominantly sexually divergent. Differential methylation with age for both CG and CH sites was enriched in intergenic and intronic regions and under-represented in promoters, CG islands, and specific enhancer regions in both sexes, suggesting that certain genomic elements are especially labile with aging, even if the exact genomic loci altered are predominantly sex-specific. Lifelong sex differences in autosomal methylation at CG and CH sites were also observed. The lack of genome-wide hypomethylation, sexually divergent aging response, and autosomal sex differences at CG sites was confirmed in human data. These data reveal sex as a previously unappreciated central factor of hippocampal epigenomic changes with aging. In total, these data demonstrate an intricate regulation of DNA methylation with aging by sex, cytosine context, genomic location, and methylation level.
      PubDate: 2017-09-25T23:36:05.001054-05:
      DOI: 10.1111/acel.12681
  • Gene therapy with the TRF1 telomere gene rescues decreased TRF1 levels
           with aging and prolongs mouse health span

    • Authors: Aksinya Derevyanko; Kurt Whittemore, Ralph P. Schneider, Verónica Jiménez, Fàtima Bosch, Maria A. Blasco
      Abstract: The shelterin complex protects telomeres by preventing them from being degraded and recognized as double-strand DNA breaks. TRF1 is an essential component of shelterin, with important roles in telomere protection and telomere replication. We previously showed that TRF1 deficiency in the context of different mouse tissues leads to loss of tissue homeostasis owing to impaired stem cell function. Here, we show that TRF1 levels decrease during organismal aging both in mice and in humans. We further show that increasing TRF1 expression in both adult (1-year-old) and old (2-year-old) mice using gene therapy can delay age-associated pathologies. To this end, we used the nonintegrative adeno-associated serotype 9 vector (AAV9), which transduces the majority of mouse tissues allowing for moderate and transient TRF1 overexpression. AAV9-TRF1 gene therapy significantly prevented age-related decline in neuromuscular function, glucose tolerance, cognitive function, maintenance of subcutaneous fat, and chronic anemia. Interestingly, although AAV9-TRF1 treatment did not significantly affect median telomere length, we found a lower abundance of short telomeres and of telomere-associated DNA damage in some tissues. Together, these findings suggest that rescuing naturally decreased TRF1 levels during mouse aging using AAV9-TRF1 gene therapy results in an improved mouse health span.
      PubDate: 2017-09-24T21:26:24.160784-05:
      DOI: 10.1111/acel.12677
  • Transthyretin deposition promotes progression of osteoarthritis

    • Authors: Tokio Matsuzaki; Yukio Akasaki, Merissa Olmer, Oscar Alvarez-Garcia, Natalia Reixach, Joel N. Buxbaum, Martin K. Lotz
      Abstract: Deposition of amyloid is a common aging-associated phenomenon in several aging-related diseases. Osteoarthritis (OA) is the most prevalent joint disease, and aging is its major risk factor. Transthyretin (TTR) is an amyloidogenic protein that is deposited in aging and OA-affected human cartilage and promotes inflammatory and catabolic responses in cultured chondrocytes. Here, we investigated the role of TTR in vivo using transgenic mice overexpressing wild-type human TTR (hTTR-TG). Although TTR protein was detected in cartilage in hTTR-TG mice, the TTR transgene was highly overexpressed in liver, but not in chondrocytes. OA was surgically induced by destabilizing the medial meniscus (DMM) in hTTR-TG mice, wild-type mice of the same strain (WT), and mice lacking endogenous Ttr genes. In the DMM model, both cartilage and synovitis histological scores were significantly increased in hTTR-TG mice. Further, spontaneous degradation and OA-like changes in cartilage and synovium developed in 18-month-old hTTR mice. Expression of cartilage catabolic (Adamts4, Mmp13) and inflammatory genes (Nos2, Il6) was significantly elevated in cartilage from 6-month-old hTTR-TG mice compared with WT mice as was the level of phospho-NF-κB p65. Intra-articular injection of aggregated TTR in WT mice increased synovitis and significantly increased expression of inflammatory genes in synovium. These findings are the first to show that TTR deposition increases disease severity in the murine DMM and aging model of OA.
      PubDate: 2017-09-22T23:06:45.56518-05:0
      DOI: 10.1111/acel.12665
  • Genetic interaction with temperature is an important determinant of
           nematode longevity

    • Authors: Hillary Miller; Marissa Fletcher, Melissa Primitivo, Alison Leonard, George L. Sutphin, Nicholas Rintala, Matt Kaeberlein, Scott F. Leiser
      Abstract: As in other poikilotherms, longevity in C. elegans varies inversely with temperature; worms are longer-lived at lower temperatures. While this observation may seem intuitive based on thermodynamics, the molecular and genetic basis for this phenomenon is not well understood. Several recent reports have argued that lifespan changes across temperatures are genetically controlled by temperature-specific gene regulation. Here, we provide data that both corroborate those studies and suggest that temperature-specific longevity is more the rule than the exception. By measuring the lifespans of worms with single modifications reported to be important for longevity at 15, 20, or 25 °C, we find that the effect of each modification on lifespan is highly dependent on temperature. Our results suggest that genetics play a major role in temperature-associated longevity and are consistent with the hypothesis that while aging in C. elegans is slowed by decreasing temperature, the major cause(s) of death may also be modified, leading to different genes and pathways becoming more or less important at different temperatures. These differential mechanisms of age-related death are not unlike what is observed in humans, where environmental conditions lead to development of different diseases of aging.
      PubDate: 2017-09-21T20:05:44.6892-05:00
      DOI: 10.1111/acel.12658
  • In a randomized trial in prostate cancer patients, dietary protein
           restriction modifies markers of leptin and insulin signaling in plasma
           extracellular vesicles

    • Authors: Erez Eitan; Valeria Tosti, Caitlin N. Suire, Edda Cava, Sean Berkowitz, Beatrice Bertozzi, Sophia M. Raefsky, Nicola Veronese, Ryan Spangler, Francesco Spelta, Maja Mustapic, Dimitrios Kapogiannis, Mark P. Mattson, Luigi Fontana
      Abstract: Obesity, metabolic syndrome, and hyperleptinemia are associated with aging and age-associated diseases including prostate cancer. One experimental approach to inhibit tumor growth is to reduce dietary protein intake and hence levels of circulating amino acids. Dietary protein restriction (PR) increases insulin sensitivity and suppresses prostate cancer cell tumor growth in animal models, providing a rationale for clinical trials. We sought to demonstrate that biomarkers derived from plasma extracellular vesicles (EVs) reflect systemic leptin and insulin signaling and respond to dietary interventions. We studied plasma samples from men with prostate cancer awaiting prostatectomy who participated in a randomized trial of one month of PR or control diet. We found increased levels of leptin receptor in the PR group in total plasma EVs and in a subpopulation of plasma EVs expressing the neuronal marker L1CAM. Protein restriction also shifted the phosphorylation status of the insulin receptor signal transducer protein IRS1 in L1CAM+ EVs in a manner suggestive of improved insulin sensitivity. Dietary PR modifies indicators of leptin and insulin signaling in circulating EVs. These findings are consistent with improved insulin and leptin sensitivity in response to PR and open a new window for following physiologic responses to dietary interventions in humans.
      PubDate: 2017-09-17T23:21:01.475417-05:
      DOI: 10.1111/acel.12657
  • Deficiency of CCAAT/enhancer-binding protein homologous protein (CHOP)
           prevents diet-induced aortic valve calcification in vivo

    • Authors: Zhejun Cai; Baoqing Liu, Jia Wei, Zurong Fu, Yidong Wang, Yaping Wang, Jian Shen, Liangliang Jia, Shengan Su, Xiaoya Wang, Xiaoping Lin, Han Chen, Fei Li, Jian'an Wang, Meixiang Xiang
      Abstract: Aortic valve (AoV) calcification is common in aged populations. Its subsequent aortic stenosis has been linked with increased morbidity, but still has no effective pharmacological intervention. Our previous data show endoplasmic reticulum (ER) stress is involved in AoV calcification. Here, we investigated whether deficiency of ER stress downstream effector CCAAT/enhancer-binding protein homology protein (CHOP) may prevent development of AoV calcification. AoV calcification was evaluated in Apoe−/− mice (n = 10) or in mice with dual deficiencies of ApoE and CHOP (Apoe−/−CHOP−/−, n = 10) fed with Western diet for 24 weeks. Histological and echocardiographic analysis showed that genetic ablation of CHOP attenuated AoV calcification, pro-calcification signaling activation, and apoptosis in the leaflets of Apoe−/− mice. In cultured human aortic valvular interstitial cells (VIC), we found oxidized low-density lipoprotein (oxLDL) promoted apoptosis and osteoblastic differentiation of VIC via CHOP activation. Using conditioned media (CM) from oxLDL-treated VIC, we further identified that oxLDL triggered osteoblastic differentiation of VIC via paracrine pathway, while depletion of apoptotic bodies (ABs) in CM suppressed the effect. CM from oxLDL-exposed CHOP-silenced cells prevented osteoblastic differentiation of VIC, while depletion of ABs did not further enhance this protective effect. Overall, our study indicates that CHOP deficiency protects against Western diet-induced AoV calcification in Apoe−/− mice. CHOP deficiency prevents oxLDL-induced VIC osteoblastic differentiation via preventing VIC-derived ABs releasing.
      PubDate: 2017-09-10T19:30:33.415825-05:
      DOI: 10.1111/acel.12674
  • Estrogenic regulation of skeletal muscle proteome: a study of
           premenopausal women and postmenopausal MZ cotwins discordant for hormonal

    • Authors: Eija K. Laakkonen; Rabah Soliymani, Sira Karvinen, Jaakko Kaprio, Urho M. Kujala, Marc Baumann, Sarianna Sipilä, Vuokko Kovanen, Maciej Lalowski
      Abstract: Female middle age is characterized by a decline in skeletal muscle mass and performance, predisposing women to sarcopenia, functional limitations, and metabolic dysfunction as they age. Menopausal loss of ovarian function leading to low circulating level of 17β-estradiol has been suggested as a contributing factor to aging-related muscle deterioration. However, the underlying molecular mechanisms remain largely unknown and thus far androgens have been considered as a major anabolic hormone for skeletal muscle. We utilized muscle samples from 24 pre- and postmenopausal women to establish proteome-wide profiles, associated with the difference in age (30–34 years old vs. 54–62 years old), menopausal status (premenopausal vs. postmenopausal), and use of hormone replacement therapy (HRT; user vs. nonuser). None of the premenopausal women used hormonal medication while the postmenopausal women were monozygotic (MZ) cotwin pairs of whom the other sister was current HRT user or the other had never used HRT. Label-free proteomic analyses resulted in the quantification of 797 muscle proteins of which 145 proteins were for the first time associated with female aging using proteomics. Furthermore, we identified 17β-estradiol as a potential upstream regulator of the observed differences in muscle energy pathways. These findings pinpoint the underlying molecular mechanisms of the metabolic dysfunction accruing upon menopause, thus having implications for understanding the complex functional interactions between female reproductive hormones and health.
      PubDate: 2017-09-07T21:01:07.631741-05:
      DOI: 10.1111/acel.12661
  • The acceleration of reproductive aging in Nrg1flox/flox;Cyp19-Cre female

    • Authors: Takashi Umehara; Tomoko Kawai, Ikko Kawashima, Katsuhiro Tanaka, Satoshi Okuda, Hiroya Kitasaka, JoAnne S. Richards, Masayuki Shimada
      Abstract: Irregular menstrual cycles, reduced responses to exogenous hormonal treatments, and altered endocrine profiles (high FSH/high LH/low AMH) are observed in women with increasing age before menopause. In this study, because the granulosa cell-specific Nrg1 knockout mice (gcNrg1KO) presented ovarian and endocrine phenotypes similar to older women, we sought to understand the mechanisms of ovarian aging and to develop a new strategy for improving fertility in older women prior to menopause. In the ovary of 6-month-old gcNrg1KO mice, follicular development was blocked in bilayer secondary follicles and heterogeneous cells accumulated in ovarian stroma. The heterogeneous cells in ovarian stroma were distinguished as two different types: (i) the LH receptor-positive endocrine cells and (ii) actin-rich fibrotic cells expressing collagen. Both the endocrine and fibrotic cells disappeared following long-term treatment with a GnRH antagonist, indicating that the high levels of serum LH induced the survival of both cell types and the abnormal endocrine profile to reduce fertility. Moreover, follicular development to the antral stages was observed with reduced LH and the disappearance of the abnormal stromal cells. Mice treated with the GnRH antagonist regained normal, recurrent estrous cycles and continuously delivered pups for at least for 3 months. We conclude that endocrine and matrix alternations occur within the ovarian stroma with increasing age and that abolishing these alternations resets the cyclical release of LH. Thus, GnRH antagonist treatments might provide a new, noninvasive strategy for improving fertility in a subset of aging women before menopause.
      PubDate: 2017-08-31T01:01:42.554309-05:
      DOI: 10.1111/acel.12662
  • Hyperphosphatemia induces senescence in human endothelial cells by
           increasing endothelin-1 production

    • Authors: Gemma Olmos; Patricia Martínez-Miguel, Elena Alcalde-Estevez, Diana Medrano, Patricia Sosa, Leocadio Rodríguez-Mañas, Manuel Naves-Diaz, Diego Rodríguez-Puyol, María Piedad Ruiz-Torres, Susana López-Ongil
      Abstract: Hyperphosphatemia is related to some pathologies, affecting vascular cell behavior. This work analyzes whether high concentration of extracellular phosphate induces endothelial senescence through up-regulation of endothelin-1 (ET-1), exploring the mechanisms involved. The phosphate donor β-glycerophosphate (BGP) in human endothelial cells increased ET-1 production, endothelin-converting enzyme-1 (ECE-1) protein, and mRNA expression, which depend on the AP-1 activation through ROS production. In parallel, BGP also induced endothelial senescence by increasing p16 expression and the senescence-associated β-galactosidase (SA-ß-GAL) activity. ET-1 itself was able to induce endothelial senescence, increasing p16 expression and SA-ß-GAL activity. In addition, senescence induced by BGP was blocked when different ET-1 system antagonists were used. BGP increased ROS production at short times, and the presence of antioxidants prevented the effect of BGP on AP1 activation, ECE-1 expression, and endothelial senescence. These findings were confirmed in vivo with two animal models in which phosphate serum levels were increased: seven/eight nephrectomized rats as chronic kidney disease models fed on a high phosphate diet and aged mice. Both models showed hyperphosphatemia, higher levels of ET-1, and up-regulation in aortic ECE-1, suggesting a direct relationship between hyperphosphatemia and ET-1. Present results point to a new and relevant role of hyperphosphatemia on the regulation of ET-1 system and senescence induction at endothelial level, both in endothelial cells and aorta from two animal models. The mechanism involved showed a higher ROS production, which probably activates AP-1 transcription factor and, as a result, ECE-1 expression, increasing ET-1 synthesis, which in consequence induces endothelial senescence.
      PubDate: 2017-08-31T00:55:55.591081-05:
      DOI: 10.1111/acel.12664
  • Can FSH influence longevity'

    • Authors: Andrzej Bartke
      Abstract: It was recently reported that the extragonadal actions of follicle-stimulating hormone (FSH) include regulation of brown and white adipose tissue function and thermogenesis. Based on these findings and on our evidence for reduced FSH levels and enhanced thermogenesis in long-lived growth hormone (GH)-deficient mice and GH-resistant mice, we suggest that FSH may have a role in the control of aging and longevity. We speculate that alterations in FSH secretion may represent one of the mechanisms of trade-offs between reproduction and aging.
      PubDate: 2017-08-30T02:20:55.769834-05:
      DOI: 10.1111/acel.12663
  • Wide-scale comparative analysis of longevity genes and interventions

    • Authors: Hagai Yanai; Arie Budovsky, Thomer Barzilay, Robi Tacutu, Vadim E. Fraifeld
      Abstract: Hundreds of genes, when manipulated, affect the lifespan of model organisms (yeast, worm, fruit fly, and mouse) and thus can be defined as longevity-associated genes (LAGs). A major challenge is to determine whether these LAGs are model-specific or may play a universal role as longevity regulators across diverse taxa. A wide-scale comparative analysis of the 1805 known LAGs across 205 species revealed that (i) LAG orthologs are substantially overrepresented, from bacteria to mammals, compared to the entire genomes or interactomes, and this was especially noted for essential LAGs; (ii) the effects on lifespan, when manipulating orthologous LAGs in different model organisms, were mostly concordant, despite a high evolutionary distance between them; (iii) LAGs that have orthologs across a high number of phyla were enriched in translational processes, energy metabolism, and DNA repair genes; (iv) LAGs that have no orthologs out of the taxa in which they were discovered were enriched in autophagy (Ascomycota/Fungi), G proteins (Nematodes), and neuroactive ligand–receptor interactions (Chordata). The results also suggest that antagonistic pleiotropy might be a conserved principle of aging and highlight the importance of overexpression studies in the search for longevity regulators.
      PubDate: 2017-08-24T01:25:43.009957-05:
      DOI: 10.1111/acel.12659
  • Sex differences in lifespan extension with acarbose and 17-α estradiol:
           gonadal hormones underlie male-specific improvements in glucose tolerance
           and mTORC2 signaling

    • Authors: Michael Garratt; Brian Bower, Gonzalo G. Garcia, Richard A. Miller
      Abstract: Interventions that extend lifespan in mice can show substantial sexual dimorphism. Here, we show that male-specific lifespan extension with two pharmacological treatments, acarbose (ACA) and 17-α estradiol (17aE2), is associated, in males only, with increased insulin sensitivity and improved glucose tolerance. Females, which show either smaller (ACA) or no lifespan extension (17aE2), do not derive these metabolic benefits from drug treatment. We find that these male-specific metabolic improvements are associated with enhanced hepatic mTORC2 signaling, increased Akt activity, and phosphorylation of FOXO1a – changes that might promote metabolic health and survival in males. By manipulating sex hormone levels through gonadectomy, we show that sex-specific changes in these metabolic pathways are modulated, in opposite directions, by both male and female gonadal hormones: Castrated males show fewer metabolic responses to drug treatment than intact males, and only those that are also observed in intact females, while ovariectomized females show some responses similar to those seen in intact males. Our results demonstrate that sex-specific metabolic benefits occur concordantly with sexual dimorphism in lifespan extension. These sex-specific effects can be influenced by the presence of both male and female gonadal hormones, suggesting that gonadally derived hormones from both sexes may contribute to sexual dimorphism in responses to interventions that extend mouse lifespan.
      PubDate: 2017-08-22T05:56:02.522909-05:
      DOI: 10.1111/acel.12656
  • In aged primary T cells, mitochondrial stress contributes to telomere
           attrition measured by a novel imaging flow cytometry assay

    • Authors: Sharon Lesley Sanderson; Anna Katharina Simon
      Abstract: The decline of the immune system with age known as immune senescence contributes to inefficient pathogen clearance and is a key risk factor for many aged-related diseases. However, reversing or halting immune aging requires more knowledge about the cell biology of senescence in immune cells. Telomere shortening, low autophagy and mitochondrial dysfunction have been shown to underpin cell senescence. While autophagy has been found to control mitochondrial damage, no link has been made to telomere attrition. In contrast, mitochondrial stress can contribute to telomere attrition and vice versa. Whereas this link has been investigated in fibroblasts or cell lines, it is unclear whether this link exists in primary cells such as human lymphocytes and whether autophagy contributes to it. As traditional methods for measuring telomere length are low throughput or unsuitable for the analysis of cell subtypes within a mixed population of primary cells, we have developed a novel sensitive flow-FISH assay using the imaging flow cytometer. Using this assay, we show a correlation between age and increased mitochondrial reactive oxygen species in CD8+ T-cell subsets, but not with autophagy. Telomere shortening within the CD8+ subset could be prevented in vitro by treatment with a ROS scavenger. Our novel assay is a sensitive assay to measure relative telomere length in primary cells and has revealed ROS as a contributing factor to the decline in telomere length.
      PubDate: 2017-08-19T23:21:17.01698-05:0
      DOI: 10.1111/acel.12640
  • A multimethod computational simulation approach for investigating
           mitochondrial dynamics and dysfunction in degenerative aging

    • Authors: Timothy E. Hoffman; Katherine J. Barnett, Lyle Wallis, William H. Hanneman
      Abstract: Research in biogerontology has largely focused on the complex relationship between mitochondrial dysfunction and biological aging. In particular, the mitochondrial free radical theory of aging (MFRTA) has been well accepted. However, this theory has been challenged by recent studies showing minimal increases in reactive oxygen species (ROS) as not entirely deleterious in nature, and even beneficial under the appropriate cellular circumstances. To assess these significant and nonintuitive observations in the context of a functional system, we have taken an in silico approach to expand the focus of the MFRTA by including other key mitochondrial stress response pathways, as they have been observed in the nematode Caenorhabditis elegans. These include the mitochondrial unfolded protein response (UPRmt), mitochondrial biogenesis and autophagy dynamics, the relevant DAF-16 and SKN-1 axes, and NAD+-dependent deacetylase activities. To integrate these pathways, we have developed a multilevel hybrid-modeling paradigm, containing agent-based elements among stochastic system-dynamics environments of logically derived ordinary differential equations, to simulate aging mitochondrial phenotypes within a population of energetically demanding cells. The simulation experiments resulted in accurate predictions of physiological parameters over time that accompany normal aging, such as the declines in both NAD+ and ATP and an increase in ROS. Additionally, the in silico system was virtually perturbed using a variety of pharmacological (e.g., rapamycin, pterostilbene, paraquat) and genetic (e.g., skn-1, daf-16, sod-2) schemes to quantitate the temporal alterations of specific mechanistic targets, supporting insights into molecular determinants of aging as well as cytoprotective agents that may improve neurological or muscular healthspan.
      PubDate: 2017-08-16T03:00:55.573049-05:
      DOI: 10.1111/acel.12644
  • The valosin-containing protein is a novel repressor of cardiomyocyte
           hypertrophy induced by pressure overload

    • Authors: Ning Zhou; Ben Ma, Shaunrick Stoll, Tristan T. Hays, Hongyu Qiu
      Abstract: Hypertension-induced left ventricular hypertrophy (LVH) is an independent risk factor for heart failure. Regression of LVH has emerged as a major goal in the treatment of hypertensive patients. Here, we tested our hypothesis that the valosin-containing protein (VCP), an ATPase associate protein, is a novel repressor of cardiomyocyte hypertrophy under the pressure overload stress. Left ventricular hypertrophy (LVH) was determined by echocardiography in 4-month male spontaneously hypertensive rats (SHRs) vs. age-matched normotensive Wistar Kyoto (WKY) rats. VCP expression was found to be significantly downregulated in the left ventricle (LV) tissues from SHRs vs. WKY rats. Pressure overload was induced by transverse aortic constriction (TAC) in wild-type (WT) mice. At the end of 2 weeks, mice with TAC developed significant LVH whereas the cardiac function remained unchanged. A significant reduction of VCP at both the mRNA and protein levels in hypertrophic LV tissue was found in TAC WT mice compared to sham controls. Valosin-containing protein VCP expression was also observed to be time- and dose-dependently reduced in vitro in isolated neonatal rat cardiomyocytes upon the treatment of angiotensin II. Conversely, transgenic (TG) mice with cardiac-specific overexpression of VCP showed a significant repression in TAC-induced LVH vs. litter-matched WT controls upon 2-week TAC. TAC-induced activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling observed in WT mice LVs was also significantly blunted in VCP TG mice. In conclusion, VCP acts as a novel repressor that is able to prevent cardiomyocyte hypertrophy from pressure overload by modulating the mTORC1 signaling pathway.
      PubDate: 2017-08-11T03:21:48.585769-05:
      DOI: 10.1111/acel.12653
  • Opposing effects on cardiac function by calorie restriction in
           different-aged mice

    • Authors: Yunlu Sheng; Shan Lv, Min Huang, Yifan Lv, Jing Yu, Juan Liu, Tingting Tang, Hanmei Qi, Wenjuan Di, Guoxian Ding
      Abstract: Calorie restriction (CR) increases average and maximum lifespan and exhibits an apparent beneficial impact on age-related diseases. Several studies have shown that CR initiated either in middle or old age could improve ischemic tolerance and rejuvenate the aging heart; however, the data are not uniform when initiated in young. The accurate time to initiate CR providing maximum benefits for cardiac remodeling and function during aging remains unclear. Thus, whether a similar degree of CR initiated in mice of different ages could exert a similar effect on myocardial protection was investigated in this study. C57BL/6 mice were subjected to a calorically restricted diet (40% less than the ad libitum diet) for 3 months initiated in 3, 12, and 19 months. It was found that CR significantly reversed the aging phenotypes of middle-aged and old mice including cardiac remodeling (cardiomyocyte hypertrophy and cardiac fibrosis), inflammation, mitochondrial damage, telomere shortening, as well as senescence-associated markers but accelerated in young mice. Furthermore, whole-genome microarray demonstrated that the AMP-activated protein kinase (AMPK)–Forkhead box subgroup ‘O’ (FOXO) pathway might be a major contributor to contrasting regulation by CR initiated in different ages; thus, increased autophagy was seen in middle-aged and old mice but decreased in young mice. Together, the findings demonstrated promising myocardial protection by 40% CR should be initiated in middle or old age that may have vital implications for the practical nutritional regimen.
      PubDate: 2017-08-11T03:21:22.270866-05:
      DOI: 10.1111/acel.12652
  • Reduced expression of PMCA1 is associated with increased blood pressure
           with age which is preceded by remodelling of resistance arteries

    • Authors: Robert Little; Min Zi, Sally K. Hammad, Loan Nguyen, Alexandra Njegic, Sathishkumar Kurusamy, Sukhpal Prehar, Angel L. Armesilla, Ludwig Neyses, Clare Austin, Elizabeth J. Cartwright
      Abstract: Hypertension is a well-established risk factor for adverse cardiovascular events, and older age is a risk factor for the development of hypertension. Genomewide association studies have linked ATP2B1, the gene for the plasma membrane calcium ATPase 1 (PMCA1), to blood pressure (BP) and hypertension. Here, we present the effects of reduction in the expression of PMCA1 on BP and small artery structure and function when combined with advancing age. Heterozygous PMCA1 null mice (PMCA1Ht) were generated and conscious BP was measured at 6 to 18 months of age. Passive and active properties of isolated small mesenteric arteries were examined by pressure myography. PMCA1Ht mice exhibited normal BP at 6 and 9 months of age but developed significantly elevated BP when compared to age-matched wild-type controls at ≥12 months of age. Decreased lumen diameter, increased wall thickness and increased wall:lumen ratio were observed in small mesenteric arteries from animals 9 months of age and older, indicative of eutrophic remodelling. Increases in mesenteric artery intrinsic tone and global intracellular calcium were evident in animals at both 6 and 18 months of age. Thus, decreased expression of PMCA1 is associated with increased BP when combined with advancing age. Changes in arterial structure precede the elevation of BP. Pathways involving PMCA1 may be a novel target for BP regulation in the elderly.
      PubDate: 2017-08-09T23:07:32.991907-05:
      DOI: 10.1111/acel.12637
  • Autophagy in stem cell aging

    • Authors: Miren Revuelta; Ander Matheu
      Abstract: Aging is responsible for changes in mammalian tissues that result in an imbalance to tissue homeostasis and a decline in the regeneration capacity of organs due to stem cell exhaustion. Autophagy is a constitutive pathway necessary to degrade damaged organelles and protein aggregates. Autophagy is one of the hallmarks of aging, which involves a decline in the number and functionality of stem cells. Recent studies show that stem cells require autophagy to get rid of cellular waste produced during the quiescent stage. In particular, two independent studies in muscle and hematopoietic stem cells demonstrate the relevance of the autophagy impairment for stem cell exhaustion and aging. In this review, we summarize the main results of these works, which helped to elucidate the impact of autophagy in stem cell activity as well as in age-associated diseases.
      PubDate: 2017-08-07T04:25:20.582883-05:
      DOI: 10.1111/acel.12655
  • In vivo imaging reveals mitophagy independence in the maintenance of
           axonal mitochondria during normal aging

    • Authors: Xu Cao; Haiqiong Wang, Zhao Wang, Qingyao Wang, Shuang Zhang, Yuanping Deng, Yanshan Fang
      Abstract: Mitophagy is thought to be a critical mitochondrial quality control mechanism in neurons and has been extensively studied in neurological disorders such as Parkinson's disease. However, little is known about how mitochondria are maintained in the lengthy neuronal axons in the context of physiological aging. Here, we utilized the unique Drosophila wing nerve model and in vivo imaging to rigorously profile changes in axonal mitochondria during aging. We revealed that mitochondria became fragmented and accumulated in aged axons. However, lack of Pink1 or Parkin did not lead to the accumulation of axonal mitochondria or axonal degeneration. Further, unlike in in vitro cultured neurons, we found that mitophagy rarely occurred in intact axons in vivo, even in aged animals. Furthermore, blocking overall mitophagy by knockdown of the core autophagy genes Atg12 or Atg17 had little effect on the turnover of axonal mitochondria or axonal integrity, suggesting that mitophagy is not required for axonal maintenance; this is regardless of whether the mitophagy is PINK1-Parkin dependent or independent. In contrast, downregulation of mitochondrial fission–fusion genes caused age-dependent axonal degeneration. Moreover, Opa1 expression in the fly head was significantly decreased with age, which may underlie the accumulation of fragmented mitochondria in aged axons. Finally, we showed that adult-onset, neuronal downregulation of the fission–fusion, but not mitophagy genes, dramatically accelerated features of aging. We propose that axonal mitochondria are maintained independently of mitophagy and that mitophagy-independent mechanisms such as fission–fusion may be central to the maintenance of axonal mitochondria and neural integrity during normal aging.
      PubDate: 2017-08-07T04:21:02.075181-05:
      DOI: 10.1111/acel.12654
  • Dyrk1 inhibition improves Alzheimer's disease-like pathology

    • Authors: Caterina Branca; Darren M. Shaw, Ramona Belfiore, Vijay Gokhale, Arthur Y. Shaw, Christopher Foley, Breland Smith, Christopher Hulme, Travis Dunckley, Bessie Meechoovet, Antonella Caccamo, Salvatore Oddo
      Abstract: There is an urgent need for the development of new therapeutic strategies for Alzheimer's disease (AD). The dual-specificity tyrosine phosphorylation-regulated kinase-1A (Dyrk1a) is a protein kinase that phosphorylates the amyloid precursor protein (APP) and tau and thus represents a link between two key proteins involved in AD pathogenesis. Furthermore, Dyrk1a is upregulated in postmortem human brains, and high levels of Dyrk1a are associated with mental retardation. Here, we sought to determine the effects of Dyrk1 inhibition on AD-like pathology developed by 3xTg-AD mice, a widely used animal model of AD. We dosed 10-month-old 3xTg-AD and nontransgenic (NonTg) mice with a Dyrk1 inhibitor (Dyrk1-inh) or vehicle for eight weeks. During the last three weeks of treatment, we tested the mice in a battery of behavioral tests. The brains were then analyzed for the pathological markers of AD. We found that chronic Dyrk1 inhibition reversed cognitive deficits in 3xTg-AD mice. These effects were associated with a reduction in amyloid-β (Aβ) and tau pathology. Mechanistically, Dyrk1 inhibition reduced APP and insoluble tau phosphorylation. The reduction in APP phosphorylation increased its turnover and decreased Aβ levels. These results suggest that targeting Dyrk1 could represent a new viable therapeutic approach for AD.
      PubDate: 2017-08-04T23:05:47.943226-05:
      DOI: 10.1111/acel.12648
  • HDAC3 negatively regulates spatial memory in a mouse model of Alzheimer's

    • Authors: Xiaolei Zhu; Sulei Wang, Linjie Yu, Jiali Jin, Xing Ye, Yi Liu, Yun Xu
      Abstract: The accumulation and deposition of beta-amyloid (Aβ) is a key neuropathological hallmark of Alzheimer's disease (AD). Histone deacetylases (HDACs) are promising therapeutic targets for the treatment of AD, while the specific HDAC isoforms associated with cognitive improvement are poorly understood. In this study, we investigate the role of HDAC3 in the pathogenesis of AD. Nuclear HDAC3 is significantly increased in the hippocampus of 6- and 9-month-old APPswe/PS1dE9 (APP/PS1) mice compared with that in age-matched wild-type C57BL/6 (B6) mice. Lentivirus -mediated inhibition or overexpression of HDAC3 was used in the hippocampus of APP/PS1 mice to investigate the role of HDAC3 in spatial memory, amyloid burden, dendritic spine density, glial activation and tau phosphorylation. Inhibition of HDAC3 in the hippocampus attenuates spatial memory deficits, as indicated in the Morris water maze test, and decreases amyloid plaque load and Aβ levels in the brains of APP/PS1 mice. Dendritic spine density is increased, while microglial activation is alleviated after HDAC3 inhibition in the hippocampus of 9-month-old APP/PS1 mice. Furthermore, HDAC3 overexpression in the hippocampus increases Aβ levels, activates microglia, and decreases dendritic spine density in 6-month-old APP/PS1 mice. In conclusion, our results indicate that HDAC3 negatively regulates spatial memory in APP/PS1 mice and HDAC3 inhibition might represent a potential therapy for the treatment of AD.
      PubDate: 2017-08-03T01:07:00.643617-05:
      DOI: 10.1111/acel.12642
  • The ω-3 fatty acid α-linolenic acid extends Caenorhabditis elegans
           lifespan via NHR-49/PPARα and oxidation to oxylipins

    • Authors: Wenbo Qi; Gloria E. Gutierrez, Xiaoli Gao, Hong Dixon, Joe A. McDonough, Ann M. Marini, Alfred L. Fisher
      Abstract: The dietary intake of ω-3 polyunsaturated fatty acids has been linked to a reduction in the incidence of aging-associated disease including cardiovascular disease and stroke. Additionally, long-lived Caenorhabditis elegans glp-1 germ line-less mutant animals show a number of changes in lipid metabolism including the increased production of the ω-3 fatty acid, α-linolenic acid (ALA). Here, we show that the treatment of C. elegans with ALA produces a dose-dependent increase in lifespan. The increased longevity of the glp-1 mutant animals is known to be dependent on both the NHR-49/PPARα and SKN-1/Nrf2 transcription factors, although the mechanisms involved are incompletely understood. We find that ALA treatment increased the lifespan of wild-type worms and that these effects required both of these transcription factors. Specifically, NHR-49 was activated by ALA to promote the expression of genes involved in the β-oxidation of lipids, whereas SKN-1 is not directly activated by ALA, but instead, the exposure of ALA to air results in the oxidation of ALA to a group of compounds termed oxylipins. At least one of the oxylipins activates SKN-1 and enhances the increased longevity resulting from ALA treatment. The results show that ω-3 fatty acids inhibit aging and that these effects could reflect the combined effects of the ω-3 fatty acid and the oxylipin metabolites. The benefits of ω-3 fatty acid consumption on human health may similarly involve the production of oxylipins, and differences in oxylipin conversion could account for at least part of the variability found between observational vs. interventional clinical trials.
      PubDate: 2017-08-03T01:02:59.23575-05:0
      DOI: 10.1111/acel.12651
  • Evidence for reduced neurogenesis in the aging human hippocampus despite
           stable stem cell markers

    • Authors: Kathryn J. Mathews; Katherine M. Allen, Danny Boerrigter, Helen Ball, Cynthia Shannon Weickert, Kay L. Double
      Abstract: Reduced neurogenesis in the aging mammalian hippocampus has been linked to cognitive deficits and increased risk of dementia. We utilized postmortem human hippocampal tissue from 26 subjects aged 18–88 years to investigate changes in expression of six genes representing different stages of neurogenesis across the healthy adult lifespan. Progressive and significant decreases in mRNA levels of the proliferation marker Ki67 (MKI67) and the immature neuronal marker doublecortin (DCX) were found in the healthy human hippocampus over the lifespan. In contrast, expression of genes for the stem cell marker glial fibrillary acidic protein delta and the neuronal progenitor marker eomesodermin was unchanged with age. These data are consistent with a persistence of the hippocampal stem cell population with age. Age-associated expression of the proliferation and immature neuron markers MKI67 and DCX, respectively, was unrelated, suggesting that neurogenesis-associated processes are independently altered at these points in the development from stem cell to neuron. These data are the first to demonstrate normal age-related decreases at specific stages of adult human hippocampal neurogenesis.
      PubDate: 2017-08-01T23:08:10.852462-05:
      DOI: 10.1111/acel.12641
  • The path from mitochondrial ROS to aging runs through the mitochondrial
           permeability transition pore

    • Authors: Hagai Rottenberg; Jan B. Hoek
      Abstract: Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging-related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro-apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan.
      PubDate: 2017-07-31T03:00:54.086459-05:
      DOI: 10.1111/acel.12650
  • Mitofusin 1 and optic atrophy 1 shift metabolism to mitochondrial
           respiration during aging

    • Authors: Jyung Mean Son; Ehab H. Sarsour, Anurag Kakkerla Balaraju, Jenna Fussell, Amanda L. Kalen, Brett A. Wagner, Garry R. Buettner, Prabhat C. Goswami
      Abstract: Replicative and chronological lifespan are two different modes of cellular aging. Chronological lifespan is defined as the duration during which quiescent normal cells retain their capacity to re-enter the proliferative cycle. This study investigated whether changes in metabolism occur during aging of quiescent normal human fibroblasts (NHFs) and the mechanisms that regulate these changes. Bioenergetics measurements were taken in quiescent NHFs from younger (newborn, 3-day, 5-month, and 1-year) and older (58-, 61-, 63-, 68-, and 70-year) healthy donors as well as NHFs from the same individual at different ages (29, 36, and 46 years). Results show significant changes in cellular metabolism during aging of quiescent NHFs: Old NHFs exhibit a significant decrease in glycolytic flux and lactate levels, and increase in oxygen consumption rate (OCR) and ATP levels compared to young NHFs. Results from the Seahorse XF Cell Mito Stress Test show that old NHFs with a lower Bioenergetic Health Index (BHI) are more prone to oxidative stress compared to young NHFs with a higher BHI. The increase in OCR in old NHFs is associated with a shift in mitochondrial dynamics more toward fusion. Genetic knockdown of mitofusin 1 (MFN1) and optic atrophy 1 (OPA1) in old NHFs decreased OCR and shifted metabolism more toward glycolysis. Downregulation of MFN1 and OPA1 also suppressed the radiation-induced increase in doubling time of NHFs. In summary, results show that a metabolic shift from glycolysis in young to mitochondrial respiration in old NHFs occurs during chronological lifespan, and MFN1 and OPA1 regulate this process.
      PubDate: 2017-07-31T02:45:31.982873-05:
      DOI: 10.1111/acel.12649
  • Combined deficiency of the Cnr1 and Cnr2 receptors protects against
           age-related bone loss by osteoclast inhibition

    • Authors: Antonia Sophocleous; Silvia Marino, Dilruba Kabir, Stuart H. Ralston, Aymen I. Idris
      Abstract: The endocannabinoid system plays a role in regulating bone mass and bone cell activity and inactivation of the type 1 (Cnr1) or type 2 (Cnr2) cannabinoid receptors influences peak bone mass and age-related bone loss. As the Cnr1 and Cnr2 receptors have limited homology and are activated by different ligands, we have evaluated the effects of combined deficiency of Cnr1 and 2 receptors (Cnr1/2−/−) on bone development from birth to old age and studied ovariectomy induced bone loss in female mice. The Cnr1/2−/− mice had accelerated bone accrual at birth when compared with wild type littermates, and by 3 months of age, they had higher trabecular bone mass. They were also significantly protected against ovariectomy-induced bone loss due to a reduction in osteoclast number. The Cnr1/2−/− mice had reduced age-related bone loss when compared with wild-type due to a reduction in osteoclast number. Although bone formation was reduced and bone marrow adiposity increased in Cnr1/2−/− mice, the osteoclast defect outweighed the reduction in bone formation causing preservation of bone mass with aging. This contrasts with the situation previously reported in mice with inactivation of the Cnr1 or Cnr2 receptors individually where aged-related bone loss was greater than in wild-type. We conclude that the Cnr1 and Cnr2 receptors have overlapping but nonredundant roles in regulating osteoclast and osteoblast activities. These observations indicate that combined inhibition of Cnr1 and Cnr2 receptors may be beneficial in preventing age-related bone loss, whereas blockade of individual receptors may be detrimental.
      PubDate: 2017-07-28T03:22:17.898405-05:
      DOI: 10.1111/acel.12638
  • Serpine 1 induces alveolar type II cell senescence through activating
           p53-p21-Rb pathway in fibrotic lung disease

    • Authors: Chunsun Jiang; Gang Liu, Tracy Luckhardt, Veena Antony, Yong Zhou, A. Brent Carter, Victor J. Thannickal, Rui-Ming Liu
      Abstract: Senescence of alveolar type 2 (ATII) cells, progenitors of the alveolar epithelium, is implicated in the pathogeneses of idiopathic pulmonary fibrosis (IPF), an aging-related progressive fatal lung disorder with unknown etiology. The mechanism underlying ATII cell senescence in fibrotic lung diseases, however, remains poorly understood. In this study, we report that ATII cells in IPF lungs express higher levels of serpine 1, also known as plasminogen activator inhibitor 1 (PAI-1), and cell senescence markers p21 and p16, compared to ATII cells in control lungs. Silencing PAI-1 or inhibition of PAI-1 activity in cultured rat ATII (L2) cells leads to decreases in p53 serine 18 phosphorylation (p53S18P), p53 and p21 protein expressions; an increase in retinoblastoma protein phosphorylation (ppRb); and a reduction in the sensitivity to bleomycin- and doxorubicin-induced senescence. Silencing p53, on the other hand, abrogates PAI-1 protein-stimulated p21 expression and cell senescence. In vivo studies, using ATII cell-specific PAI-1 conditional knockout mouse model generated recently in this laboratory, further support the role of PAI-1 in the activation of p53-p21-Rb cell cycle repression pathway, ATII cell senescence, and lung fibrosis induced by bleomycin. This study reveals a novel function of PAI-1 in regulation of cell cycle and suggests that elevation of PAI-1 contributes importantly to ATII cell senescence in fibrotic lung diseases.
      PubDate: 2017-07-19T01:47:16.134657-05:
      DOI: 10.1111/acel.12643
  • Nrf2 as a target for prevention of age-related and diabetic cataracts by
           against oxidative stress

    • Authors: Xiu-Fen Liu; Ji-Long Hao, Tian Xie, Tayyab Hamid Malik, Cheng-Bo Lu, Cong Liu, Chang Shu, Cheng-Wei Lu, Dan-Dan Zhou
      Abstract: Cataract is one of the most important causes of blindness worldwide, with age-related cataract being the most common one. Agents preventing cataract formation are urgently required. Substantial evidences point out aggravated oxidative stress as a vital factor for cataract formation. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like erythroid-cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1) system is considered as one of the main cellular defense mechanisms against oxidative stresses. This review discusses the role of Nrf2 pathway in the prevention of cataracts and highlights that Nrf2 suppressors may augment oxidative stress of the lens, and Nrf2 inducers may decrease the oxidative stress and prevent the cataract formation. Thus, Nrf2 may serve as a promising therapeutic target for cataract treatment.
      PubDate: 2017-07-19T01:10:39.465703-05:
      DOI: 10.1111/acel.12645
  • FOXO3 longevity interactome on chromosome 6

    • Authors: Timothy A. Donlon; Brian J. Morris, Randi Chen, Kamal H. Masaki, Richard C. Allsopp, D. Craig Willcox, Ayako Elliott, Bradley J. Willcox
      Abstract: FOXO3 has been implicated in longevity in multiple populations. By DNA sequencing in long-lived individuals, we identified all single nucleotide polymorphisms (SNPs) in FOXO3 and showed 41 were associated with longevity. Thirteen of these had predicted alterations in transcription factor binding sites. Those SNPs appeared to be in physical contact, via RNA polymerase II binding chromatin looping, with sites in the FOXO3 promoter, and likely function together as a cis-regulatory unit. The SNPs exhibited a high degree of LD in the Asian population, in which they define a specific longevity haplotype that is relatively common. The haplotype was less frequent in whites and virtually nonexistent in Africans. We identified distant contact points between FOXO3 and 46 neighboring genes, through long-range physical contacts via CCCTC-binding factor zinc finger protein (CTCF) binding sites, over a 7.3 Mb distance on chromosome 6q21. When activated by cellular stress, we visualized movement of FOXO3 toward neighboring genes. FOXO3 resides at the center of this early-replicating and highly conserved syntenic region of chromosome 6. Thus, in addition to its role as a transcription factor regulating gene expression genomewide, FOXO3 may function at the genomic level to help regulate neighboring genes by virtue of its central location in chromatin conformation via topologically associated domains. We believe that the FOXO3 ‘interactome’ on chromosome 6 is a chromatin domain that defines an aging hub. A more thorough understanding of the functions of these neighboring genes may help elucidate the mechanisms through which FOXO3 variants promote longevity and healthy aging.
      PubDate: 2017-07-19T01:02:17.671811-05:
      DOI: 10.1111/acel.12625
  • Translation fidelity coevolves with longevity

    • Authors: Zhonghe Ke; Pramit Mallik, Adam B. Johnson, Facundo Luna, Eviatar Nevo, Zhengdong D. Zhang, Vadim N. Gladyshev, Andrei Seluanov, Vera Gorbunova
      Abstract: Whether errors in protein synthesis play a role in aging has been a subject of intense debate. It has been suggested that rare mistakes in protein synthesis in young organisms may result in errors in the protein synthesis machinery, eventually leading to an increasing cascade of errors as organisms age. Studies that followed generally failed to identify a dramatic increase in translation errors with aging. However, whether translation fidelity plays a role in aging remained an open question. To address this issue, we examined the relationship between translation fidelity and maximum lifespan across 17 rodent species with diverse lifespans. To measure translation fidelity, we utilized sensitive luciferase-based reporter constructs with mutations in an amino acid residue critical to luciferase activity, wherein misincorporation of amino acids at this mutated codon re-activated the luciferase. The frequency of amino acid misincorporation at the first and second codon positions showed strong negative correlation with maximum lifespan. This correlation remained significant after phylogenetic correction, indicating that translation fidelity coevolves with longevity. These results give new life to the role of protein synthesis errors in aging: Although the error rate may not significantly change with age, the basal rate of translation errors is important in defining lifespan across mammals.
      PubDate: 2017-07-13T23:05:33.625806-05:
      DOI: 10.1111/acel.12628
  • The emerging role of alternative splicing in senescence and aging

    • Authors: Mathieu Deschênes; Benoit Chabot
      Abstract: Deregulation of precursor mRNA splicing is associated with many illnesses and has been linked to age-related chronic diseases. Here we review recent progress documenting how defects in the machinery that performs intron removal and controls splice site selection contribute to cellular senescence and organismal aging. We discuss the functional association linking p53, IGF-1, SIRT1, and ING-1 splice variants with senescence and aging, and review a selection of splicing defects occurring in accelerated aging (progeria), vascular aging, and Alzheimer's disease. Overall, it is becoming increasingly clear that changes in the activity of splicing factors and in the production of key splice variants can impact cellular senescence and the aging phenotype.
      PubDate: 2017-07-13T04:26:54.119195-05:
      DOI: 10.1111/acel.12646
  • Analysis of individual cells identifies cell-to-cell variability following
           induction of cellular senescence

    • Authors: Christopher D. Wiley; James M. Flynn, Christapher Morrissey, Ronald Lebofsky, Joe Shuga, Xiao Dong, Marc A. Unger, Jan Vijg, Simon Melov, Judith Campisi
      Abstract: Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single-cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell-to-cell variability resulted in a loss of correlation among the expression of several senescence-associated genes. Many genes encoding senescence-associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo.
      PubDate: 2017-07-11T23:06:07.370995-05:
      DOI: 10.1111/acel.12632
  • Cooperation between p21 and Akt is required for p53-dependent cellular

    • Authors: Young Yeon Kim; Hye Jin Jee, Jee-Hyun Um, Young Mi Kim, Sun Sik Bae, Jeanho Yun
      Abstract: Cellular senescence has been implicated in normal aging, tissue homeostasis, and tumor suppression. Although p53 has been shown to be a central mediator of cellular senescence, the signaling pathway by which it induces senescence remains incompletely understood. In this study, we have shown that both Akt and p21 are required to induce cellular senescence in response to p53 expression. In a p53-induced senescence model, we found that Akt activation was essential for inducing a cellular senescence phenotype. Surprisingly, Akt inhibition did not abolish p53-induced cell cycle arrest, but it suppressed the increase in intracellular reactive oxygen species (ROS) levels. The results of the cell cycle and morphological analysis suggest that p53 induced quiescence, not senescence, following Akt inhibition. Conversely, the inhibition of p21 induction abolished cell cycle arrest but did not affect the p53-induced increase in ROS levels. Additionally, p21 and Akt separately controlled cell cycle arrest and ROS levels, respectively, during H-Ras-induced senescence in human normal fibroblasts. The mechanistic analysis revealed that Akt increased ROS levels through NOX4 induction, and increased Akt-dependent NF-κB binding to the NOX4 promoter is responsible for NOX4 induction upon p53 expression. We further showed that Akt activation upon p53 expression is mediated by mammalian target of rapamycin complex 2. In addition, p53-mediated IL6 and IL8 induction was abrogated by Akt inhibition, suggesting that Akt activation is also required for the senescence-associated secretory phenotype. Collectively, these results suggest that p53 simultaneously controls multiple pathways to induce cellular senescence through p21 and Akt.
      PubDate: 2017-07-09T21:35:33.018543-05:
      DOI: 10.1111/acel.12639
  • Akt2 ablation prolongs life span and improves myocardial contractile
           function with adaptive cardiac remodeling: role of Sirt1-mediated
           autophagy regulation

    • Authors: Jun Ren; Lifang Yang, Li Zhu, Xihui Xu, Asli F. Ceylan, Wei Guo, Jian Yang, Yingmei Zhang
      Abstract: Aging is accompanied with unfavorable geometric and functional changes in the heart involving dysregulation of Akt and autophagy. This study examined the impact of Akt2 ablation on life span and cardiac aging as well as the mechanisms involved with a focus on autophagy and mitochondrial integrity. Cardiac geometry, contractile, and intracellular Ca2+ properties were evaluated using echocardiography, IonOptix® edge-detection and fura-2 techniques. Levels of Sirt1, mitochondrial integrity, autophagy, and mitophagy markers were evaluated using Western blot. Our results revealed that Akt2 ablation prolonged life span (by 9.1%) and alleviated aging (24 months)-induced unfavorable changes in myocardial function and intracellular Ca2+ handling (SERCA2a oxidation) albeit with more pronounced cardiac hypertrophy (58.1%, 47.8%, and 14.5% rises in heart weight, wall thickness, and cardiomyocyte cross-sectional area). Aging downregulated levels of Sirt1, increased phosphorylation of Akt, and the nuclear transcriptional factor Foxo1, as well as facilitated acetylation of Foxo1, the effects of which (except Sirt1 and Foxo1 acetylation) were significantly attenuated or negated by Akt2 ablation. Advanced aging disturbed autophagy, mitophagy, and mitochondrial integrity as evidenced by increased p62, decreased levels of beclin-1, Atg7, LC3B, BNIP3, PTEN-induced putative kinase 1 (PINK1), Parkin, UCP-2, PGC-1α, and aconitase activity, the effects of which were reversed by Akt2 ablation. Aging-induced cardiomyocyte contractile dysfunction and loss of mitophagy were improved by rapamycin and the Sirt1 activator SRT1720. Activation of Akt using insulin or Parkin deficiency prevented SRT1720-induced beneficial effects against aging. In conclusion, our data indicate that Akt2 ablation protects against cardiac aging through restored Foxo1-related autophagy and mitochondrial integrity.
      PubDate: 2017-07-05T23:07:16.823263-05:
      DOI: 10.1111/acel.12616
  • Caloric restriction impacts plasma microRNAs in rhesus monkeys

    • Authors: Augusto Schneider; Joseph M. Dhahbi, Hani Atamna, Josef P. Clark, Ricki J. Colman, Rozalyn M. Anderson
      Abstract: Caloric restriction (CR) is one of the most robust interventions shown to delay aging in diverse species, including rhesus monkeys (Macaca mulatta). Identification of factors involved in CR brings a promise of translatability to human health and aging. Here, we show that CR induced a profound change in abundance of circulating microRNAs (miRNAs) linked to growth and insulin signaling pathway, suggesting that miRNAs are involved in CR's mechanisms of action in primates. Deep sequencing of plasma RNA extracts enriched for short species revealed a total of 243 unique species of miRNAs including 47 novel species. Approximately 70% of the plasma miRNAs detected were conserved between rhesus monkeys and humans. CR induced or repressed 24 known and 10 novel miRNA species. Regression analysis revealed correlations between bodyweight, adiposity, and insulin sensitivity for 10 of the CR-regulated known miRNAs. Sequence alignment and target identification for these 10 miRNAs identify a role in signaling downstream of the insulin receptor. The highly abundant miR-125a-5p correlated positively with adiposity and negatively with insulin sensitivity and was negatively regulated by CR. Putative target pathways of CR-associated miRNAs were highly enriched for growth and insulin signaling that have previously been implicated in delayed aging. Clustering analysis further pointed to CR-induced miRNA regulation of ribosomal, mitochondrial, and spliceosomal pathways. These data are consistent with a model where CR recruits miRNA-based homeostatic mechanisms to coordinate a program of delayed aging.
      PubDate: 2017-07-05T01:00:30.643652-05:
      DOI: 10.1111/acel.12636
  • Anti-aging pharmacology in cutaneous wound healing: effects of metformin,
           resveratrol, and rapamycin by local application

    • Authors: Pan Zhao; Bing-Dong Sui, Nu Liu, Ya-Jie Lv, Chen-Xi Zheng, Yong-Bo Lu, Wen-Tao Huang, Cui-Hong Zhou, Ji Chen, Dan-Lin Pang, Dong-Dong Fei, Kun Xuan, Cheng-Hu Hu, Yan Jin
      Abstract: Cutaneous wounds are among the most common soft tissue injuries and are particularly hard to heal in aging. Caloric restriction (CR) is well documented to extend longevity; pharmacologically, profound rejuvenative effects of CR mimetics have been uncovered, especially metformin (MET), resveratrol (RSV), and rapamycin (RAPA). However, locally applied impacts and functional differences of these agents on wound healing remain to be established. Here, we discovered that chronic topical administration of MET and RSV, but not RAPA, accelerated wound healing with improved epidermis, hair follicles, and collagen deposition in young rodents, and MET exerted more profound effects. Furthermore, locally applied MET and RSV improved vascularization of the wound beds, which were attributed to stimulation of adenosine monophosphate-activated protein kinase (AMPK) pathway, the key mediator of wound healing. Notably, in aged skin, AMPK pathway was inhibited, correlated with impaired vasculature and reduced healing ability. As therapeutic approaches, local treatments of MET and RSV prevented age-related AMPK suppression and angiogenic inhibition in wound beds. Moreover, in aged rats, rejuvenative effects of topically applied MET and RSV on cell viability of wound beds were confirmed, of which MET showed more prominent anti-aging effects. We further verified that only MET promoted wound healing and cutaneous integrity in aged skin. These findings clarified differential effects of CR-based anti-aging pharmacology in wound healing, identified critical angiogenic and rejuvenative mechanisms through AMPK pathway in both young and aged skin, and unraveled chronic local application of MET as the optimal and promising regenerative agent in treating cutaneous wound defects.
      PubDate: 2017-07-05T00:51:17.224549-05:
      DOI: 10.1111/acel.12635
  • Epigenetic regulation by G9a/GLP complex ameliorates amyloid-beta 1-42
           induced deficits in long-term plasticity and synaptic tagging/capture in
           hippocampal pyramidal neurons

    • Authors: Mahima Sharma; Tobias Dierkes, Sreedharan Sajikumar
      Abstract: Altered epigenetic mechanisms are implicated in the cognitive decline associated with neurodegenerative diseases such as in Alzheimer's disease (AD). AD is the most prevalent form of dementia worldwide; amyloid plaques and neurofibrillary tangles are the histopathological hallmarks of AD. We have recently reported that the inhibition of G9a/GLP complex promotes long-term potentiation (LTP) and its associative mechanisms such as synaptic tagging and capture (STC). However, the role of this complex in plasticity impairments remains elusive. Here, we investigated the involvement of G9a/GLP complex in alleviating the effects of soluble Amyloid-β 1-42 oligomers (oAβ) on neuronal plasticity and associativity in the CA1 region of acute hippocampal slices from 5- to 7-week-old male Wistar rats. Our findings demonstrate that the regulation of G9a/GLP complex by inhibiting its catalytic activity reverses the amyloid-β oligomer-induced deficits in late-LTP and STC. This is achieved by releasing the transcription repression of the brain-derived neurotrophic factor (Bdnf) gene. The catalytic inhibition of G9a/GLP complex leads to the upregulation of Bdnf expression in the slices treated with oAβ. This further ensures the availability of BDNF that subsequently binds its receptor tyrosine kinase B (TrkB) and maintains the late-LTP. Furthermore, the capture of BDNF by weakly activated synapses re-establishes STC. Our findings regarding the reinstatement of functional plasticity and associativity in AD-like conditions provide the first evidence for the role of G9a/GLP complex in AD. We propose G9a/GLP complex as the possible target for preventing oAβ-induced plasticity deficits in hippocampal neurons.
      PubDate: 2017-06-30T05:25:39.558285-05:
      DOI: 10.1111/acel.12634
  • Small RNAs induce the activation of the pro-inflammatory TLR7 signaling
           pathway in aged rat kidney

    • Authors: Eun Kyeong Lee; Ki Wung Chung, Ye Ra Kim, Sugyeong Ha, Sung Dae Kim, Dae Hyun Kim, Kyung Jin Jung, Bonggi Lee, Eunok Im, Byung Pal Yu, Hae Young Chung
      Abstract: We have recently reported that TLR-related genes, including TLR7, are upregulated during aging. However, the role of TLR7 and its endogenous ligand in inflammation related to aging is not well defined. Here, we established that small RNAs trigger age-related renal inflammation via TLR7 signaling pathway. We first investigated the expression changes of nine different TLRs in kidney of 6-month-old young rats and 20-month-old aged rats. The results revealed that the expression of TLR7 was the highest among nine TLRs in kidney of old rats compared to the young aged rats. Next, to assess the role of cellular RNA as a TLR7 ligand, we treated a renal tubular epithelial cell line with total RNA isolated from the kidney of young and old rats. The results showed that RNA isolated from old rats showed higher expression of TLR7, IL1β, and TNFα compared to that from young rats. Furthermore, RNA isolated from old rats induced IKKα/β/JNK/NF-κB activation. To identify RNA that activates TLR7, we isolated small and large RNAs from old rat kidney and found that small RNAs increased TLR7 expression in cells. Finally, to investigate the local inflammatory response by small RNA, C57B/L6 mice were intraperitoneally injected with small RNAs isolated from young and old rats; thereby, RNA isolated from old rats induced higher inflammatory responses. Our study demonstrates that renal small RNAs from aged rats induce pro-inflammatory processes via the activation of the TLR7/IKKα/β/JNK/NF-κB signaling pathway, and highlights its causative role as a possible therapeutic target in age-related chronic renal inflammation.
      PubDate: 2017-06-30T05:06:04.626576-05:
      DOI: 10.1111/acel.12629
  • The Piwi-piRNA pathway: road to immortality

    • Authors: Ádám Sturm; András Perczel, Zoltán Ivics, Tibor Vellai
      Abstract: Despite its medical, social, and economic significance, understanding what primarily causes aging, that is, the mechanisms of the aging process, remains a fundamental and fascinating problem in biology. Accumulating evidence indicates that a small RNA-based gene regulatory machinery, the Piwi-piRNA pathway, represents a shared feature of nonaging (potentially immortal) biological systems, including the germline, somatic cancer stem cells, and certain ‘lower’ eukaryotic organisms like the planarian flatworm and freshwater hydra. The pathway primarily functions to repress the activity of mobile genetic elements, also called transposable elements (TEs) or ‘jumping genes’, which are capable of moving from one genomic locus to another, thereby causing insertional mutations. TEs become increasingly active and multiply in the genomes of somatic cells as the organism ages. These characteristics of TEs highlight their decisive mutagenic role in the progressive disintegration of genetic information, a molecular hallmark associated with aging. Hence, TE-mediated genomic instability may substantially contribute to the aging process.
      PubDate: 2017-06-27T04:12:37.666252-05:
      DOI: 10.1111/acel.12630
  • Methylation of the ribosomal RNA gene promoter is associated with aging
           and age-related decline

    • Authors: Patrizia D'Aquila; Alberto Montesanto, Maurizio Mandalà, Sabrina Garasto, Vincenzo Mari, Andrea Corsonello, Dina Bellizzi, Giuseppe Passarino
      Abstract: The transcription of ribosomal RNA genes (rDNA) is subject to epigenetic regulation, as it is abrogated by the methylation of CpG dinucleotides within their promoter region. Here, we investigated, through Sequenom platform, the age-related methylation status of the CpG island falling into the rDNA promoter in 472 blood samples from 20- to 105-year-old humans and in different tissues (blood, heart, liver, kidney, and testis) of 15 rats 3–96 weeks old. In humans, we did not find a consistently significant correlation between CpG site methylation and chronological age. Furthermore, the methylation levels of one of the analyzed CpG sites were negatively associated with both cognitive performance and survival chance measured in a 9-year follow-up study. We consistently confirmed such result in a replication sample. In rats, the analysis of the homologous region in the tissues revealed the existence of increased methylation in old rats. rRNA expression data, in both humans and rats, were consistent with observed methylation patterns, with a lower expression of rRNA in highly methylated samples. As chronological and biological ages in rats of a given strain are likely to be much closer to each other than in humans, these results seem to provide the first evidence that epigenetic modifications of rDNA change over time according to the aging decline. Thus, the methylation profile of rDNA may represent a potential biomarker of aging.
      PubDate: 2017-06-17T23:05:39.780868-05:
      DOI: 10.1111/acel.12603
  • Drug repurposing for aging research using model organisms

    • Authors: Matthias Ziehm; Satwant Kaur, Dobril K. Ivanov, Pedro J. Ballester, David Marcus, Linda Partridge, Janet M. Thornton
      Abstract: Many increasingly prevalent diseases share a common risk factor: age. However, little is known about pharmaceutical interventions against aging, despite many genes and pathways shown to be important in the aging process and numerous studies demonstrating that genetic interventions can lead to a healthier aging phenotype. An important challenge is to assess the potential to repurpose existing drugs for initial testing on model organisms, where such experiments are possible. To this end, we present a new approach to rank drug-like compounds with known mammalian targets according to their likelihood to modulate aging in the invertebrates Caenorhabditis elegans and Drosophila. Our approach combines information on genetic effects on aging, orthology relationships and sequence conservation, 3D protein structures, drug binding and bioavailability. Overall, we rank 743 different drug-like compounds for their likelihood to modulate aging. We provide various lines of evidence for the successful enrichment of our ranking for compounds modulating aging, despite sparse public data suitable for validation. The top ranked compounds are thus prime candidates for in vivo testing of their effects on lifespan in C. elegans or Drosophila. As such, these compounds are promising as research tools and ultimately a step towards identifying drugs for a healthier human aging.
      PubDate: 2017-06-16T03:10:31.565446-05:
      DOI: 10.1111/acel.12626
  • TORC1-mediated sensing of chaperone activity alters glucose metabolism and
           extends lifespan

    • Authors: Matea Perić; Anita Lovrić, Ana Šarić, Marina Musa, Peter Bou Dib, Marina Rudan, Andrea Nikolić, Sandra Sobočanec, Ana-Matea Mikecin, Sven Dennerlein, Ira Milošević, Kristian Vlahoviček, Nuno Raimundo, Anita Kriško
      Abstract: Protein quality control mechanisms, required for normal cellular functioning, encompass multiple functions related to protein production and maintenance. However, the existence of communication between proteostasis and metabolic networks and its underlying mechanisms remain elusive. Here, we report that enhanced chaperone activity and consequent improved proteostasis are sensed by TORC1 via the activity of Hsp82. Chaperone enrichment decreases the level of Hsp82, which deactivates TORC1 and leads to activation of Snf1/AMPK, regardless of glucose availability. This mechanism culminates in the extension of yeast replicative lifespan (RLS) that is fully reliant on both TORC1 deactivation and Snf1/AMPK activation. Specifically, we identify oxygen consumption increase as the downstream effect of Snf1 activation responsible for the entire RLS extension. Our results set a novel paradigm for the role of proteostasis in aging: modulation of the misfolded protein level can affect cellular metabolic features as well as mitochondrial activity and consequently modify lifespan. The described mechanism is expected to open new avenues for research of aging and age-related diseases.
      PubDate: 2017-06-14T04:36:02.593499-05:
      DOI: 10.1111/acel.12623
  • Transcriptional coactivator with PDZ-binding motif is required to sustain
           testicular function on aging

    • Authors: Mi Gyeong Jeong; Hyuna Song, Ji Hyun Shin, Hana Jeong, Hyo Kyeong Kim, Eun Sook Hwang
      Abstract: Transcriptional coactivator with PDZ-binding motif (TAZ) directly interacts with transcription factors and regulates their transcriptional activity. Extensive functional studies have shown that TAZ plays critical regulatory roles in stem cell proliferation, differentiation, and survival and also modulates the development of organs such as the lung, kidney, heart, and bone. Despite the importance of TAZ in stem cell maintenance, TAZ function has not yet been evaluated in spermatogenic stem cells of the male reproductive system. Here, we investigated the expression and functions of TAZ in mouse testis. TAZ was expressed in spermatogenic stem cells; however, its deficiency caused significant structural abnormalities, including atrophied tubules, widened interstitial space, and abnormal Leydig cell expansion, thereby resulting in lowered sperm counts and impaired fertility. Furthermore, TAZ deficiency increased the level of apoptosis and senescence in spermatogenic cells and Leydig cells upon aging. The expression of senescence-associated β-galactosidase (SA-βgal), secretory phenotypes, and cyclin-dependent kinase inhibitors (p16, p19, and p21) significantly increased in the absence of TAZ. TAZ downregulation in testicular cells further increased SA-βgal and p21 expression induced by oxidative stress, whereas TAZ overexpression decreased p21 induction and prevented senescence. Mechanistic studies showed that TAZ suppressed DNA-binding activity of p53 through a direct interaction and thus attenuated p53-induced p21 gene transcription. Our results suggested that TAZ may suppress apoptosis and premature senescence in spermatogenic cells by inhibiting the p53-p21 signaling pathway, thus playing important roles in the maintenance and control of reproductive function.
      PubDate: 2017-06-14T04:31:51.14111-05:0
      DOI: 10.1111/acel.12631
  • The SKN-1/Nrf2 transcription factor can protect against oxidative stress
           and increase lifespan in C. elegans by distinct mechanisms

    • Authors: Jennifer M.A. Tullet; James W. Green, Catherine Au, Alexandre Benedetto, Maximillian A. Thompson, Emily Clark, Ann F. Gilliat, Adelaide Young, Kathrin Schmeisser, David Gems
      Abstract: In C. elegans, the skn-1 gene encodes a transcription factor that resembles mammalian Nrf2 and activates a detoxification response. skn-1 promotes resistance to oxidative stress (Oxr) and also increases lifespan, and it has been suggested that the former causes the latter, consistent with the theory that oxidative damage causes aging. Here, we report that effects of SKN-1 on Oxr and longevity can be dissociated. We also establish that skn-1 expression can be activated by the DAF-16/FoxO transcription factor, another central regulator of growth, metabolism, and aging. Notably, skn-1 is required for Oxr but not increased lifespan resulting from over-expression of DAF-16; concomitantly, DAF-16 over-expression rescues the short lifespan of skn-1 mutants but not their hypersensitivity to oxidative stress. These results suggest that SKN-1 promotes longevity by a mechanism other than protection against oxidative damage.
      PubDate: 2017-06-14T04:31:34.998074-05:
      DOI: 10.1111/acel.12627
  • HIV and drug abuse mediate astrocyte senescence in a β-catenin-dependent
           manner leading to neuronal toxicity

    • Authors: Chunjiang Yu; Srinivas D. Narasipura, Maureen H. Richards, Xiu-Ti Hu, Bryan Yamamoto, Lena Al-Harthi
      Abstract: Emerging evidence suggests that cell senescence plays an important role in aging-associated diseases including neurodegenerative diseases. HIV leads to a spectrum of neurologic diseases collectively termed HIV-associated neurocognitive disorders (HAND). Drug abuse, particularly methamphetamine (meth), is a frequently abused psychostimulant among HIV+ individuals and its abuse exacerbates HAND. The mechanism by which HIV and meth lead to brain cell dysregulation is not entirely clear. In this study, we evaluated the impact of HIV and meth on astrocyte senescence using in vitro and several animal models. Astrocytes constitute up to 50% of brain cells and play a pivotal role in marinating brain homeostasis. We show here that HIV and meth induce significant senescence of primary human fetal astrocytes, as evaluated by induction of senescence markers (β-galactosidase and p16INK4A), senescence-associated morphologic changes, and cell cycle arrest. HIV- and meth-mediated astrocyte senescence was also demonstrated in three small animal models (humanized mouse model of HIV/NSG-huPBMCs, HIV-transgenic rats, and in a meth administration rat model). Senescent astrocytes in turn mediated neuronal toxicity. Further, we show that β-catenin, a pro-survival/proliferation transcriptional co-activator, is downregulated by HIV and meth in human astrocytes and this downregulation promotes astrocyte senescence while induction of β-catenin blocks HIV- and meth-mediated astrocyte senescence. These studies, for the first time, demonstrate that HIV and meth induce astrocyte senescence and implicate the β-catenin pathway as potential therapeutic target to overcome astrocyte senescence.
      PubDate: 2017-06-13T23:07:25.855523-05:
      DOI: 10.1111/acel.12593
  • Issue Information

    • Pages: 903 - 905
      PubDate: 2017-09-12T19:35:18.52891-05:0
      DOI: 10.1111/acel.12535
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016