for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> BIOLOGY (Total: 3190 journals)
    - BIOCHEMISTRY (243 journals)
    - BIOENGINEERING (119 journals)
    - BIOLOGY (1522 journals)
    - BIOPHYSICS (49 journals)
    - BIOTECHNOLOGY (244 journals)
    - BOTANY (236 journals)
    - CYTOLOGY AND HISTOLOGY (29 journals)
    - ENTOMOLOGY (70 journals)
    - GENETICS (165 journals)
    - MICROBIOLOGY (262 journals)
    - MICROSCOPY (10 journals)
    - ORNITHOLOGY (26 journals)
    - PHYSIOLOGY (73 journals)
    - ZOOLOGY (142 journals)

BIOLOGY (1522 journals)                  1 2 3 4 5 6 7 8 | Last

Showing 1 - 200 of 1720 Journals sorted alphabetically
AAPS Journal     Hybrid Journal   (Followers: 23)
Achievements in the Life Sciences     Open Access   (Followers: 5)
ACS Synthetic Biology     Hybrid Journal   (Followers: 24)
Acta Biologica Colombiana     Open Access   (Followers: 7)
Acta Biologica Hungarica     Full-text available via subscription   (Followers: 4)
Acta Biologica Sibirica     Open Access   (Followers: 2)
Acta Biologica Turcica     Open Access  
Acta Biomaterialia     Hybrid Journal   (Followers: 27)
Acta Biotheoretica     Hybrid Journal   (Followers: 4)
Acta Chiropterologica     Full-text available via subscription   (Followers: 6)
acta ethologica     Hybrid Journal   (Followers: 4)
Acta Fytotechnica et Zootechnica     Open Access   (Followers: 1)
Acta Limnologica Brasiliensia     Open Access   (Followers: 3)
Acta Médica Costarricense     Open Access   (Followers: 2)
Acta Musei Silesiae, Scientiae Naturales     Open Access  
Acta Neurobiologiae Experimentalis     Open Access  
Acta Parasitologica     Hybrid Journal   (Followers: 10)
Acta Scientiarum. Biological Sciences     Open Access   (Followers: 2)
Acta Scientifica Naturalis     Open Access   (Followers: 3)
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis     Open Access  
Actualidades Biológicas     Open Access   (Followers: 1)
Advanced Health Care Technologies     Open Access   (Followers: 4)
Advanced Journal of Graduate Research     Open Access  
Advanced Nonlinear Studies     Hybrid Journal  
Advanced Studies in Biology     Open Access  
Advances in Antiviral Drug Design     Full-text available via subscription   (Followers: 2)
Advances in Bioinformatics     Open Access   (Followers: 17)
Advances in Biological Regulation     Hybrid Journal   (Followers: 4)
Advances in Biology     Open Access   (Followers: 9)
Advances in Biosensors and Bioelectronics     Open Access   (Followers: 7)
Advances in Cell Biology/ Medical Journal of Cell Biology     Open Access   (Followers: 25)
Advances in Cellular and Molecular Biology of Membranes and Organelles     Full-text available via subscription   (Followers: 12)
Advances in Developmental Biology     Full-text available via subscription   (Followers: 12)
Advances in DNA Sequence-Specific Agents     Full-text available via subscription   (Followers: 5)
Advances in Ecological Research     Full-text available via subscription   (Followers: 44)
Advances in Environmental Sciences - International Journal of the Bioflux Society     Open Access   (Followers: 16)
Advances in Enzyme Research     Open Access   (Followers: 10)
Advances in Experimental Biology     Full-text available via subscription   (Followers: 8)
Advances in Genome Biology     Full-text available via subscription   (Followers: 8)
Advances in High Energy Physics     Open Access   (Followers: 19)
Advances in Human Biology     Open Access   (Followers: 3)
Advances in Life Science and Technology     Open Access   (Followers: 16)
Advances in Life Sciences     Open Access   (Followers: 6)
Advances in Marine Biology     Full-text available via subscription   (Followers: 18)
Advances in Molecular and Cell Biology     Full-text available via subscription   (Followers: 23)
Advances in Organ Biology     Full-text available via subscription   (Followers: 1)
Advances in Planar Lipid Bilayers and Liposomes     Full-text available via subscription   (Followers: 3)
Advances in Regenerative Biology     Open Access   (Followers: 1)
Advances in Space Biology and Medicine     Full-text available via subscription   (Followers: 6)
Advances in Structural Biology     Full-text available via subscription   (Followers: 5)
Advances in Tropical Biodiversity and Environmental Sciences     Open Access  
Advances in Virus Research     Full-text available via subscription   (Followers: 5)
African Journal of Range & Forage Science     Hybrid Journal   (Followers: 8)
AFRREV STECH : An International Journal of Science and Technology     Open Access   (Followers: 1)
Ageing Research Reviews     Hybrid Journal   (Followers: 11)
Aging Cell     Open Access   (Followers: 18)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Agrokreatif Jurnal Ilmiah Pengabdian kepada Masyarakat     Open Access  
AJP Cell Physiology     Hybrid Journal   (Followers: 15)
AJP Endocrinology and Metabolism     Hybrid Journal   (Followers: 24)
AJP Lung Cellular and Molecular Physiology     Hybrid Journal   (Followers: 3)
Al-Kauniyah : Jurnal Biologi     Open Access  
Alasbimn Journal     Open Access   (Followers: 1)
Alces : A Journal Devoted to the Biology and Management of Moose     Open Access  
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Biology Teacher     Full-text available via subscription   (Followers: 14)
American Fern Journal     Full-text available via subscription   (Followers: 1)
American Journal of Agricultural and Biological Sciences     Open Access   (Followers: 8)
American Journal of Bioethics     Hybrid Journal   (Followers: 13)
American Journal of Human Biology     Hybrid Journal   (Followers: 14)
American Journal of Medical and Biological Research     Open Access   (Followers: 8)
American Journal of Plant Sciences     Open Access   (Followers: 19)
American Journal of Primatology     Hybrid Journal   (Followers: 15)
American Malacological Bulletin     Full-text available via subscription   (Followers: 3)
American Naturalist     Full-text available via subscription   (Followers: 76)
Amphibia-Reptilia     Hybrid Journal   (Followers: 6)
Anadolu University Journal of Science and Technology : C Life Sciences and Biotechnology     Open Access  
Anaerobe     Hybrid Journal   (Followers: 4)
Analytical Methods     Full-text available via subscription   (Followers: 11)
Anatomical Science International     Hybrid Journal   (Followers: 3)
Animal Cells and Systems     Hybrid Journal   (Followers: 4)
Animal Models and Experimental Medicine     Open Access  
Annales de Limnologie - International Journal of Limnology     Hybrid Journal   (Followers: 1)
Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale     Full-text available via subscription   (Followers: 3)
Annales Henri Poincaré     Hybrid Journal   (Followers: 3)
Annals of Applied Biology     Hybrid Journal   (Followers: 7)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 17)
Annals of Human Biology     Hybrid Journal   (Followers: 5)
Annals of Science and Technology     Open Access  
Annual Review of Biomedical Engineering     Full-text available via subscription   (Followers: 14)
Annual Review of Biophysics     Full-text available via subscription   (Followers: 23)
Annual Review of Cancer Biology     Full-text available via subscription   (Followers: 2)
Annual Review of Cell and Developmental Biology     Full-text available via subscription   (Followers: 37)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 13)
Annual Review of Genomics and Human Genetics     Full-text available via subscription   (Followers: 24)
Annual Review of Phytopathology     Full-text available via subscription   (Followers: 12)
Anthropological Review     Open Access   (Followers: 23)
Anti-Infective Agents     Hybrid Journal   (Followers: 3)
Antibiotics     Open Access   (Followers: 9)
Antioxidants     Open Access   (Followers: 4)
Antioxidants & Redox Signaling     Hybrid Journal   (Followers: 8)
Antonie van Leeuwenhoek     Hybrid Journal   (Followers: 5)
Anzeiger für Schädlingskunde     Hybrid Journal   (Followers: 1)
Apidologie     Hybrid Journal   (Followers: 4)
Apmis     Hybrid Journal   (Followers: 1)
APOPTOSIS     Hybrid Journal   (Followers: 8)
Applied Biology     Open Access  
Applied Bionics and Biomechanics     Open Access   (Followers: 8)
Applied Vegetation Science     Full-text available via subscription   (Followers: 10)
Aquaculture Environment Interactions     Open Access   (Followers: 4)
Aquaculture International     Hybrid Journal   (Followers: 25)
Aquaculture Reports     Open Access   (Followers: 3)
Aquaculture, Aquarium, Conservation & Legislation - International Journal of the Bioflux Society     Open Access   (Followers: 7)
Aquatic Biology     Open Access   (Followers: 6)
Aquatic Ecology     Hybrid Journal   (Followers: 36)
Aquatic Ecosystem Health & Management     Hybrid Journal   (Followers: 15)
Aquatic Science and Technology     Open Access   (Followers: 3)
Aquatic Toxicology     Hybrid Journal   (Followers: 23)
Archaea     Open Access   (Followers: 3)
Archiv für Molluskenkunde: International Journal of Malacology     Full-text available via subscription   (Followers: 3)
Archives of Biological Sciences     Open Access  
Archives of Microbiology     Hybrid Journal   (Followers: 9)
Archives of Natural History     Hybrid Journal   (Followers: 6)
Archives of Oral Biology     Hybrid Journal   (Followers: 2)
Archives of Virology     Hybrid Journal   (Followers: 5)
Archivum Immunologiae et Therapiae Experimentalis     Hybrid Journal   (Followers: 2)
Arid Ecosystems     Hybrid Journal   (Followers: 2)
Arquivos do Instituto Biológico     Open Access   (Followers: 1)
Arquivos do Museu Dinâmico Interdisciplinar     Open Access  
Arthropod Structure & Development     Hybrid Journal   (Followers: 2)
Arthropods     Open Access   (Followers: 1)
Artificial DNA: PNA & XNA     Hybrid Journal   (Followers: 3)
Asian Bioethics Review     Full-text available via subscription   (Followers: 3)
Asian Journal of Biodiversity     Open Access   (Followers: 4)
Asian Journal of Biological Sciences     Open Access   (Followers: 3)
Asian Journal of Cell Biology     Open Access   (Followers: 5)
Asian Journal of Developmental Biology     Open Access   (Followers: 2)
Asian Journal of Medical and Biological Research     Open Access   (Followers: 4)
Asian Journal of Nematology     Open Access   (Followers: 4)
Asian Journal of Poultry Science     Open Access   (Followers: 4)
Atti della Accademia Peloritana dei Pericolanti - Classe di Scienze Medico-Biologiche     Open Access  
Australian Life Scientist     Full-text available via subscription   (Followers: 2)
Australian Mammalogy     Hybrid Journal   (Followers: 6)
Autophagy     Hybrid Journal   (Followers: 3)
Avian Biology Research     Full-text available via subscription   (Followers: 4)
Avian Conservation and Ecology     Open Access   (Followers: 11)
Bacteriology Journal     Open Access   (Followers: 1)
Bacteriophage     Full-text available via subscription   (Followers: 3)
Bangladesh Journal of Bioethics     Open Access  
Bangladesh Journal of Plant Taxonomy     Open Access  
Bangladesh Journal of Scientific Research     Open Access   (Followers: 1)
Batman Üniversitesi Yaşam Bilimleri Dergisi     Open Access  
Berita Biologi     Open Access   (Followers: 1)
Between the Species     Open Access   (Followers: 1)
Bio Tribune Magazine     Hybrid Journal  
BIO Web of Conferences     Open Access  
BIO-Complexity     Open Access  
Bio-Grafía. Escritos sobre la Biología y su enseñanza     Open Access  
Bioanalytical Reviews     Hybrid Journal   (Followers: 2)
Biocatalysis and Biotransformation     Hybrid Journal   (Followers: 6)
BioCentury Innovations     Full-text available via subscription   (Followers: 1)
Biochemistry and Cell Biology     Hybrid Journal   (Followers: 16)
Biochimie     Hybrid Journal   (Followers: 7)
BioControl     Hybrid Journal   (Followers: 5)
Biocontrol Science and Technology     Hybrid Journal   (Followers: 5)
Biodemography and Social Biology     Hybrid Journal  
BioDiscovery     Open Access   (Followers: 2)
Biodiversidade e Conservação Marinha : Revista CEPSUL     Open Access  
Biodiversitas : Journal of Biological Diversity     Open Access  
Biodiversity Data Journal     Open Access   (Followers: 4)
Biodiversity Informatics     Open Access   (Followers: 1)
Biodiversity Information Science and Standards     Open Access  
Biodiversity: Research and Conservation     Open Access   (Followers: 27)
Bioedukasi : Jurnal Pendidikan Biologi FKIP UM Metro     Open Access  
Bioeksperimen : Jurnal Penelitian Biologi     Open Access  
Bioelectrochemistry     Hybrid Journal   (Followers: 2)
Bioelectromagnetics     Hybrid Journal   (Followers: 1)
Bioenergy Research     Hybrid Journal   (Followers: 3)
Bioengineering and Bioscience     Open Access   (Followers: 1)
BioEssays     Hybrid Journal   (Followers: 10)
Bioethics     Hybrid Journal   (Followers: 15)
BioéthiqueOnline     Open Access  
Biofabrication     Hybrid Journal   (Followers: 4)
Biofilms     Full-text available via subscription   (Followers: 1)
Biogeosciences (BG)     Open Access   (Followers: 10)
Biogeosciences Discussions (BGD)     Open Access   (Followers: 2)
Bioinformatics     Hybrid Journal   (Followers: 315)
Bioinformatics and Biology Insights     Open Access   (Followers: 11)
Bioinspiration & Biomimetics     Hybrid Journal   (Followers: 7)
Biointerphases     Open Access   (Followers: 1)
Biojournal of Science and Technology     Open Access  
BioLink : Jurnal Biologi Lingkungan, Industri, Kesehatan     Open Access   (Followers: 1)
Biologia     Hybrid Journal  
Biologia on-line : Revista de divulgació de la Facultat de Biologia     Open Access  
Biological Bulletin     Partially Free   (Followers: 6)
Biological Control     Hybrid Journal   (Followers: 4)
Biological Invasions     Hybrid Journal   (Followers: 20)
Biological Journal of the Linnean Society     Hybrid Journal   (Followers: 18)
Biological Letters     Open Access   (Followers: 5)

        1 2 3 4 5 6 7 8 | Last

Journal Cover
Journal Prestige (SJR): 0.847
Citation Impact (citeScore): 3
Number of Followers: 4  

  This is an Open Access Journal Open Access journal
ISSN (Online) 2076-3921
Published by MDPI Homepage  [205 journals]
  • Antioxidants, Vol. 7, Pages 34: Quantification of Phenolic Compounds and
           In Vitro Radical Scavenging Abilities with Leaf Extracts from Two
           Varieties of Psidium guajava L.

    • Authors: Julio Camarena-Tello, Héctor Martínez-Flores, Ma. Garnica-Romo, José Padilla-Ramírez, Alfredo Saavedra-Molina, Osvaldo Alvarez-Cortes, María Bartolomé-Camacho, José Rodiles-López
      First page: 34
      Abstract: Guava leaf (Psidium guajava L.) extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL) in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties.
      Citation: Antioxidants
      PubDate: 2018-02-27
      DOI: 10.3390/antiox7030034
      Issue No: Vol. 7, No. 3 (2018)
  • Antioxidants, Vol. 7, Pages 35: A Possible Role for Singlet Oxygen in the
           Degradation of Various Antioxidants. A Meta-Analysis and Review of
           Literature Data

    • Authors: Athinoula Petrou, Petros Petrou, Theodoros Ntanos, Antonis Liapis
      First page: 35
      Abstract: The thermodynamic parameters Eact, ΔH≠, ΔS≠, and ΔG≠ for various processes involving antioxidants were calculated using literature kinetic data (k, T). The ΔG≠ values of the antioxidants’ processes vary in the range 91.27–116.46 kJmol−1 at 310 K. The similarity of the ΔG≠ values (for all of the antioxidants studied) is supported to be an indication that a common mechanism in the above antioxidant processes may be taking place. A value of about 10–30 kJmol−1 is the activation energy for the diffusion of reactants depending on the reaction and the medium. The energy 92 kJmol−1 is needed for the excitation of O2 from the ground to the first excited state (1Δg, singlet oxygen). We suggest the same role of the oxidative stress and specifically of singlet oxygen to the processes of antioxidants as in the processes of proteinaceous diseases. We therefore suggest a competition between the various antioxidants and the proteins of proteinaceous diseases in capturing singlet oxygen’s empty π* orbital. The concentration of the antioxidants could be a crucial factor for the competition. Also, the structures of the antioxidant molecules play a significant role since the various structures have a different number of regions of high electron density.
      Citation: Antioxidants
      PubDate: 2018-02-27
      DOI: 10.3390/antiox7030035
      Issue No: Vol. 7, No. 3 (2018)
  • Antioxidants, Vol. 7, Pages 36: Selenium and Selenoproteins in Gut
           Inflammation—A Review

    • Authors: Shaneice Nettleford, K. Prabhu
      First page: 36
      Abstract: Inflammatory bowel disease (IBD), characterized by severe flares and remissions, is a debilitating condition. While the etiology is unknown, many immune cells, such as macrophages, T cells and innate lymphoid cells, are implicated in the pathogenesis of the disease. Previous studies have shown the ability of micronutrient selenium (Se) and selenoproteins to impact inflammatory signaling pathways implicated in the pathogenesis of the disease. In particular, two transcription factors, nuclear factor-κB (NF-κB), and peroxisome proliferator activated receptor (PPAR)γ, which are involved in the activation of immune cells, and are also implicated in various stages of inflammation and resolution, respectively, are impacted by Se status. Available therapies for IBD produce detrimental side effects, resulting in the need for alternative therapies. Here, we review the current understanding of the role of NF-κB and PPARγ in the activation of immune cells during IBD, and how Se and selenoproteins modulate effective resolution of inflammation to be considered as a promising alternative to treat IBD.
      Citation: Antioxidants
      PubDate: 2018-03-01
      DOI: 10.3390/antiox7030036
      Issue No: Vol. 7, No. 3 (2018)
  • Antioxidants, Vol. 7, Pages 37: The Energy Costs of Prematurity and the
           Neonatal Intensive Care Unit (NICU) Experience

    • Authors: John Tan, Danilo Boskovic, Danilyn Angeles
      First page: 37
      Abstract: Premature neonates are in an energy deficient state due to (1) oxygen desaturation and hypoxia events, (2) painful and stressful stimuli, (3) illness, and (4) neurodevelopmental energy requirements. Failure to correct energy deficiency in premature infants may lead to adverse effects such as neurodevelopmental delay and negative long-term metabolic and cardiovascular outcomes. The effects of energy dysregulation and the challenges that clinicians in the Neonatal Intensive Care Unit (NICU) face in meeting the premature infant’s metabolic demands are discussed. Specifically, the focus is on the effects of pain and stress on energy homeostasis. Energy deficiency is a complex problem and requires a multi-faceted solution to promote optimum development of premature infants.
      Citation: Antioxidants
      PubDate: 2018-03-02
      DOI: 10.3390/antiox7030037
      Issue No: Vol. 7, No. 3 (2018)
  • Antioxidants, Vol. 7, Pages 38: Synthetic Lignan Secoisolariciresinol
           Diglucoside (LGM2605) Reduces Asbestos-Induced Cytotoxicity in an
           Nrf2-Dependent and -Independent Manner

    • Authors: Ralph Pietrofesa, Shampa Chatterjee, Kyewon Park, Evguenia Arguiri, Steven Albelda, Melpo Christofidou-Solomidou
      First page: 38
      Abstract: Asbestos exposure triggers inflammatory processes associated with oxidative stress and tissue damage linked to malignancy. LGM2605 is the synthetic lignan secoisolariciresinol diglucoside (SDG) with free radical scavenging, antioxidant, and anti-inflammatory properties in diverse inflammatory cell and mouse models, including exposure to asbestos fibers. Nuclear factor-E2 related factor 2 (Nrf2) activation and boosting of endogenous tissue defenses were associated with the protective action of LGM2605 from asbestos-induced cellular damage. To elucidate the role of Nrf2 induction by LGM2605 in protection from asbestos-induced cellular damage, we evaluated LGM2605 in asbestos-exposed macrophages from wild-type (WT) and Nrf2 disrupted (Nrf2−/−) mice. Cells were pretreated with LGM2605 (50 µM and 100 µM) and exposed to asbestos fibers (20 µg/cm2) and evaluated 8 h and 24 h later for inflammasome activation, secreted cytokine levels (interleukin-1β (IL-1β), interleukin-18 (IL-18), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα)), cytotoxicity and cell death, nitrosative stress, and Nrf2-regulated enzyme levels. Asbestos exposure induced robust oxidative and nitrosative stress, cell death and cytotoxicity, which were equally mitigated by LGM2605. Inflammasome activation was significantly attenuated in Nrf2−/− macrophages compared to WT, and the protective action of LGM2605 was seen only in WT cells. In conclusion, in a cell model of asbestos-induced toxicity, LGM2605 acts via protective mechanisms that may not involve Nrf2 activation.
      Citation: Antioxidants
      PubDate: 2018-03-02
      DOI: 10.3390/antiox7030038
      Issue No: Vol. 7, No. 3 (2018)
  • Antioxidants, Vol. 7, Pages 39: Systems-Level Feedbacks of NRF2
           Controlling Autophagy upon Oxidative Stress Response

    • Authors: Orsolya Kapuy, Diána Papp, Tibor Vellai, Gábor Bánhegyi, Tamás Korcsmáros
      First page: 39
      Abstract: Although the primary role of autophagy-dependent cellular self-eating is cytoprotective upon various stress events (such as starvation, oxidative stress, and high temperatures), sustained autophagy might lead to cell death. A transcription factor called NRF2 (nuclear factor erythroid-related factor 2) seems to be essential in maintaining cellular homeostasis in the presence of either reactive oxygen or nitrogen species generated by internal metabolism or external exposure. Accumulating experimental evidence reveals that oxidative stress also influences the balance of the 5′ AMP-activated protein kinase (AMPK)/rapamycin (mammalian kinase target of rapamycin or mTOR) signaling pathway, thereby inducing autophagy. Based on computational modeling here we propose that the regulatory triangle of AMPK, NRF2 and mTOR guaranties a precise oxidative stress response mechanism comprising of autophagy. We suggest that under conditions of oxidative stress, AMPK is crucial for autophagy induction via mTOR down-regulation, while NRF2 fine-tunes the process of autophagy according to the level of oxidative stress. We claim that the cellular oxidative stress response mechanism achieves an incoherently amplified negative feedback loop involving NRF2, mTOR and AMPK. The mTOR-NRF2 double negative feedback generates bistability, supporting the proper separation of two alternative steady states, called autophagy-dependent survival (at low stress) and cell death (at high stress). In addition, an AMPK-mTOR-NRF2 negative feedback loop suggests an oscillatory characteristic of autophagy upon prolonged intermediate levels of oxidative stress, resulting in new rounds of autophagy stimulation until the stress events cannot be dissolved. Our results indicate that AMPK-, NRF2- and mTOR-controlled autophagy induction provides a dynamic adaptation to altering environmental conditions, assuming their new frontier in biomedicine.
      Citation: Antioxidants
      PubDate: 2018-03-05
      DOI: 10.3390/antiox7030039
      Issue No: Vol. 7, No. 3 (2018)
  • Antioxidants, Vol. 7, Pages 40: Post-Irradiation Treatment with a
           Superoxide Dismutase Mimic, MnTnHex-2-PyP5+, Mitigates Radiation Injury in
           the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing

    • Authors: John Cline, Greg Dugan, John Bourland, Donna Perry, Joel Stitzel, Ashley Weaver, Chen Jiang, Artak Tovmasyan, Kouros Owzar, Ivan Spasojevic, Ines Batinic-Haberle, Zeljko Vujaskovic
      First page: 40
      Abstract: Radiation injury to the lung is the result of acute and chronic free radical formation, and there are currently few effective means of mitigating such injury. Studies in rodents indicate that superoxide dismutase mimetics may be effective in this regard; however, studies in humans or large animals are lacking. We hypothesized that post-exposure treatment with the lipophilic mitochondrial superoxide dismutase mimetic, MnTnHex-2-PyP5+ (hexyl), would reduce radiation-induced pneumonitis and fibrosis in the lungs of nonhuman primates. Rhesus monkeys (Macaca mulatta) received 10 Gy whole thorax irradiation, 10 Gy + hexyl treatment, sham irradiation, or sham irradiation + hexyl. Hexyl was given twice daily, subcutaneously, at 0.05 mg/kg, for 2 months. Animals were monitored daily, and respiratory rates, pulse oximetry, hematology and serum chemistry panels were performed weekly. Computed tomography scans were performed at 0, 2, and 4 months after irradiation. Supportive fluid therapy, corticosteroids, analgesics, and antibiotics were given as needed. All animals were humanely euthanized 4.5 months after irradiation, and pathologic assessments were made. Multifocal, progressive lung lesions were seen at 2 and 4 months in both irradiated groups. Hexyl treatment delayed the onset of radiation-induced lung lesions, reduced elevations of respiratory rate, and reduced pathologic increases in lung weight. No adverse effects of hexyl treatment were found. These results demonstrate (1) development of a nonhuman primate model of radiation-induced lung injury, (2) a significant mitigating effect of hexyl treatment on lung pathology in this model, and (3) no evidence for toxicity of hexyl at the dose studied.
      Citation: Antioxidants
      PubDate: 2018-03-07
      DOI: 10.3390/antiox7030040
      Issue No: Vol. 7, No. 3 (2018)
  • Antioxidants, Vol. 7, Pages 41: Influence of Vitamin C on Lymphocytes: An

    • Authors: Gwendolyn van Gorkom, Roel Klein Wolterink, Catharina Van Elssen, Lotte Wieten, Wilfred Germeraad, Gerard Bos
      First page: 41
      Abstract: Vitamin C or ascorbic acid (AA) is implicated in many biological processes and has been proposed as a supplement for various conditions, including cancer. In this review, we discuss the effects of AA on the development and function of lymphocytes. This is important in the light of cancer treatment, as the immune system needs to regenerate following chemotherapy or stem cell transplantation, while cancer patients are often AA-deficient. We focus on lymphocytes, as these white blood cells are the slowest to restore, rendering patients susceptible to often lethal infections. T lymphocytes mediate cellular immunity and have been most extensively studied in the context of AA biology. In vitro studies demonstrate that T cell development requires AA, while AA also enhances T cell proliferation and may influence T cell function. There are limited and opposing data on the effects of AA on B lymphocytes that mediate humoral immunity. However, AA enhances the proliferation of NK cells, a group of cytotoxic innate lymphocytes. The influence of AA on natural killer (NK) cell function is less clear. In summary, an increasing body of evidence indicates that AA positively influences lymphocyte development and function. Since AA is a safe and cheap nutritional supplement, it is worthwhile to further explore its potential benefits for immune reconstitution of cancer patients treated with immunotoxic drugs.
      Citation: Antioxidants
      PubDate: 2018-03-10
      DOI: 10.3390/antiox7030041
      Issue No: Vol. 7, No. 3 (2018)
  • Antioxidants, Vol. 7, Pages 42: Redistribution of Extracellular Superoxide
           Dismutase Causes Neonatal Pulmonary Vascular Remodeling and PH but
           Protects Against Experimental Bronchopulmonary Dysplasia

    • Authors: Laurie Sherlock, Ashley Trumpie, Laura Hernandez-Lagunas, Sarah McKenna, Susan Fisher, Russell Bowler, Clyde Wright, Cassidy Delaney, Eva Nozik-Grayck
      First page: 42
      Abstract: Background: A naturally occurring single nucleotide polymorphism (SNP), (R213G), in extracellular superoxide dismutase (SOD3), decreases SOD3 matrix binding affinity. Humans and mature mice expressing the R213G SNP exhibit increased cardiovascular disease but decreased lung disease. The impact of this SNP on the neonatal lung at baseline or with injury is unknown. Methods: Wild type and homozygous R213G mice were injected with intraperitoneal bleomycin or phosphate buffered saline (PBS) three times weekly for three weeks and tissue harvested at 22 days of life. Vascular and alveolar development were evaluated by morphometric analysis and immunostaining of lung sections. Pulmonary hypertension (PH) was assessed by right ventricular hypertrophy (RVH). Lung protein expression for superoxide dismutase (SOD) isoforms, catalase, vascular endothelial growth factor receptor 2 (VEGFR2), endothelial nitric oxide synthase (eNOS) and guanosine triphosphate cyclohydrolase-1 (GTPCH-1) was evaluated by western blot. SOD activity and SOD3 expression were measured in serum. Results: In R213G mice, SOD3 lung protein expression decreased, serum SOD3 protein expression and SOD serum activity increased compared to wild type (WT) mice. Under control conditions, R213G mice developed pulmonary vascular remodeling (decreased vessel density and increased medial wall thickness) and PH; alveolar development was similar between strains. After bleomycin injury, in contrast to WT, R213G mice were protected from impaired alveolar development and their vascular abnormalities and PH did not worsen. Bleomycin decreased VEGFR2 and GTPCH-1 only in WT mice. Conclusion: R213G neonatal mice demonstrate impaired vascular development and PH at baseline without alveolar simplification, yet are protected from bleomycin induced lung injury and worsening of pulmonary vascular remodeling and PH. These results show that vessel bound SOD3 is essential in normal pulmonary vascular development, and increased serum SOD3 expression and SOD activity prevent lung injury in experimental bronchopulmonary dysplasia (BPD) and PH.
      Citation: Antioxidants
      PubDate: 2018-03-14
      DOI: 10.3390/antiox7030042
      Issue No: Vol. 7, No. 3 (2018)
  • Antioxidants, Vol. 7, Pages 43: Microbial Biotransformation of a
           Polyphenol-Rich Potato Extract Affects Antioxidant Capacity in a Simulated
           Gastrointestinal Model

    • Authors: Joelle Khairallah, Shima Sadeghi Ekbatan, Kebba Sabally, Michèle Iskandar, Raza Hussain, Atef Nassar, Lekha Sleno, Laetitia Rodes, Satya Prakash, Danielle Donnelly, Stan Kubow
      First page: 43
      Abstract: A multistage human gastrointestinal model was used to digest a polyphenol-rich potato extract containing chlorogenic acid, caffeic acid, ferulic acid, and rutin as the primary polyphenols, to assess for their microbial biotransformation and to measure changes in antioxidant capacity in up to 24 h of digestion. The biotransformation of polyphenols was assessed by liquid chromatography–mass spectrometry. Antioxidant capacity was measured by the ferric reducing antioxidant power (FRAP) assay. Among the colonic reactors, parent (poly)phenols were detected in the ascending (AC), but not the transverse (TC) or descending (DC) colons. The most abundant microbial phenolic metabolites in all colonic reactors included derivatives of propionic acid, acetic acid, and benzoic acid. As compared to the baseline, an earlier increase in antioxidant capacity (T = 8 h) was seen in the stomach and small intestine vessels as compared to the AC (T = 16 h) and TC and DC (T = 24 h). The increase in antioxidant capacity observed in the DC and TC can be linked to the accumulation of microbial smaller-molecular-weight phenolic catabolites, as the parent polyphenolics had completely degraded in those vessels. The colonic microbial digestion of potato-based polyphenols could lead to improved colonic health, as this generates phenolic metabolites with significant antioxidant potential.
      Citation: Antioxidants
      PubDate: 2018-03-20
      DOI: 10.3390/antiox7030043
      Issue No: Vol. 7, No. 3 (2018)
  • Antioxidants, Vol. 7, Pages 44: Vitamin E

    • Authors: Volker Böhm
      First page: 44
      Abstract: Vitamin E is the major lipid-soluble antioxidant in the cell antioxidant system and is exclusively obtained from the diet[...]
      Citation: Antioxidants
      PubDate: 2018-03-20
      DOI: 10.3390/antiox7030044
      Issue No: Vol. 7, No. 3 (2018)
  • Antioxidants, Vol. 7, Pages 22: Vitamin E as an Antioxidant in Female
           Reproductive Health

    • Authors: Siti Mohd Mutalip, Sharaniza Ab-Rahim, Mohd Rajikin
      First page: 22
      Abstract: Vitamin E was first discovered in 1922 as a substance necessary for reproduction. Following this discovery, vitamin E was extensively studied, and it has become widely known as a powerful lipid-soluble antioxidant. There has been increasing interest in the role of vitamin E as an antioxidant, as it has been discovered to lower body cholesterol levels and act as an anticancer agent. Numerous studies have reported that vitamin E exhibits anti-proliferative, anti-survival, pro-apoptotic, and anti-angiogenic effects in cancer, as well as anti-inflammatory activities. There are various reports on the benefits of vitamin E on health in general. However, despite it being initially discovered as a vitamin necessary for reproduction, to date, studies relating to its effects in this area are lacking. Hence, this paper was written with the intention of providing a review of the known roles of vitamin E as an antioxidant in female reproductive health.
      Citation: Antioxidants
      PubDate: 2018-01-26
      DOI: 10.3390/antiox7020022
      Issue No: Vol. 7, No. 2 (2018)
  • Antioxidants, Vol. 7, Pages 23: Resuspendable Powders of Lyophilized
           Chalcogen Particles with Activity against Microorganisms

    • Authors: Sharoon Griffin, Muhammad Sarfraz, Steffen Hartmann, Shashank Pinnapireddy, Muhammad Nasim, Udo Bakowsky, Cornelia Keck, Claus Jacob
      First page: 23
      Abstract: Many organic sulfur, selenium and tellurium compounds show considerable activity against microorganisms, including bacteria and fungi. This pronounced activity is often due to the specific, oxidizing redox behavior of the chalcogen-chalcogen bond present in such molecules. Interestingly, similar chalcogen-chalcogen motifs are also found in the elemental forms of these elements, and while those materials are insoluble in aqueous media, it has recently been possible to unlock their biological activities using naturally produced or homogenized suspensions of respective chalcogen nanoparticles. Those suspensions can be employed readily and often effectively against common pathogenic microorganisms, still their practical uses are limited as such suspensions are difficult to transport, store and apply. Using mannitol as stabilizer, it is now possible to lyophilize such suspensions to produce solid forms of the nanoparticles, which upon resuspension in water essentially retain their initial size and exhibit considerable biological activity. The sequence of Nanosizing, Lyophilization and Resuspension (NaLyRe) eventually provides access to a range of lyophilized materials which may be considered as easy-to-handle, ready-to-use and at the same time as bioavailable, active forms of otherwise insoluble or sparingly substances. In the case of elemental sulfur, selenium and tellurium, this approach promises wider practical applications, for instance in the medical or agricultural arena.
      Citation: Antioxidants
      PubDate: 2018-01-27
      DOI: 10.3390/antiox7020023
      Issue No: Vol. 7, No. 2 (2018)
  • Antioxidants, Vol. 7, Pages 24: Impact of Thermal Degradation of
           Cyanidin-3-O-Glucoside of Haskap Berry on Cytotoxicity of Hepatocellular
           Carcinoma HepG2 and Breast Cancer MDA-MB-231 Cells

    • Authors: Eric Pace, Yuanyuan Jiang, Amy Clemens, Tennille Crossman, H.P. Rupasinghe
      First page: 24
      Abstract: Cyanidin-3-O-glucoside (C3G), the predominant anthocyanin in haskap berries (Lonicera caerulea L.), possesses antioxidant and many other biological activities. This study investigated the impact of temperature and pH on the degradation of the C3G-rich haskap fraction. The effect of the thermal degradation products on the viability of hepatocellular carcinoma HepG2 and breast cancer MDA-MB-231 cells was also studied in vitro. Using column chromatography, the C3G-rich fraction was isolated from acetone extracts of haskap berries. The C3G stability in these fractions was studied under elevated temperatures (70 °C and 90 °C) at three different pH values (2.5, 4, and 7) by monitoring the concentration of C3G and its major degradation products, protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), using liquid chromatography mass spectrometry. Significant degradation of C3G was observed at elevated temperatures and at neutral pH. Conversely, the PCA and PGA concentration increased at higher pH and temperature. Similar to C3G, neutral pH also has a prominent effect on the degradation of PGA, which is further accelerated by heating. The C3G-rich fraction exhibited dose-dependent inhibitory effects on cell metabolic activity when the HepG2 cells were exposed for 48 h. Interestingly, PGA but not PCA exhibited cytotoxic effects against both MDA-MB-231 and HepG2 cells. The results suggest that thermal food processing of haskap could influence its biological properties due to the degradation of C3G.
      Citation: Antioxidants
      PubDate: 2018-01-27
      DOI: 10.3390/antiox7020024
      Issue No: Vol. 7, No. 2 (2018)
  • Antioxidants, Vol. 7, Pages 25: A Review of the Catalytic Mechanism of
           Human Manganese Superoxide Dismutase

    • Authors: Jahaun Azadmanesh, Gloria Borgstahl
      First page: 25
      Abstract: Superoxide dismutases (SODs) are necessary antioxidant enzymes that protect cells from reactive oxygen species (ROS). Decreased levels of SODs or mutations that affect their catalytic activity have serious phenotypic consequences. SODs perform their bio-protective role by converting superoxide into oxygen and hydrogen peroxide by cyclic oxidation and reduction reactions with the active site metal. Mutations of SODs can cause cancer of the lung, colon, and lymphatic system, as well as neurodegenerative diseases such as Parkinson’s disease and amyotrophic lateral sclerosis. While SODs have proven to be of significant biological importance since their discovery in 1968, the mechanistic nature of their catalytic function remains elusive. Extensive investigations with a multitude of approaches have tried to unveil the catalytic workings of SODs, but experimental limitations have impeded direct observations of the mechanism. Here, we focus on human MnSOD, the most significant enzyme in protecting against ROS in the human body. Human MnSOD resides in the mitochondrial matrix, the location of up to 90% of cellular ROS generation. We review the current knowledge of the MnSOD enzymatic mechanism and ongoing studies into solving the remaining mysteries.
      Citation: Antioxidants
      PubDate: 2018-01-30
      DOI: 10.3390/antiox7020025
      Issue No: Vol. 7, No. 2 (2018)
  • Antioxidants, Vol. 7, Pages 26: Do Coffee Polyphenols Have a Preventive
           Action on Metabolic Syndrome Associated Endothelial Dysfunctions' An
           Assessment of the Current Evidence

    • Authors: Kazuo Yamagata
      First page: 26
      Abstract: Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome.
      Citation: Antioxidants
      PubDate: 2018-02-04
      DOI: 10.3390/antiox7020026
      Issue No: Vol. 7, No. 2 (2018)
  • Antioxidants, Vol. 7, Pages 27: A Naturally Occurring Antioxidant Complex
           from Unripe Grapes: The Case of Sangiovese (v. Vitis vinifera)

    • Authors: Giovanna Fia, Claudio Gori, Ginevra Bucalossi, Francesca Borghini, Bruno Zanoni
      First page: 27
      Abstract: The wine industry is well known for its production of a large amount of wastes and by-products. Among them, unripe grapes from thinning operations are an undervalued by-product. Grapes are an interesting source of natural antioxidants such as flavonoids, non-flavonoids and stilbenes. A potential strategy to exploit unripe grapes was investigated in this study. Juice from unripe grapes, v. Sangiovese, was obtained by an innovative technique of solid-liquid extraction without the use of solvents. The juice was dried by a spray-drying technique with the addition of arabic gum as support to obtain powder; juice and powder were characterized for antioxidant activity, phenolic concentration and profile. Phenolic acids, flavonols, flava-3-ols, procyanidins and resveratrol were detected in the juice and powder. The powder was used as anti-browning additive in white wine to test the potential re-use of the unripe grapes in the wine industry. The results indicated that the antioxidant complex from unripe grapes contributed to increasing the anti-browning capacity of white wine. Other applications, such as food and nutraceutical products development, can be considered for the antioxidant complex extracted from unripe grapes. In conclusion, the method proposed in this study may contribute to the exploitation of unripe grapes as a by-product of the winemaking process.
      Citation: Antioxidants
      PubDate: 2018-02-08
      DOI: 10.3390/antiox7020027
      Issue No: Vol. 7, No. 2 (2018)
  • Antioxidants, Vol. 7, Pages 28: Carotenoids—Antioxidant Properties

    • Authors: Andrew Young, Gordon Lowe
      First page: 28
      Abstract: The carotenoid group of pigments are ubiquitous in nature and more than 600 different carotenoids have been identified and characterized [1].[...]
      Citation: Antioxidants
      PubDate: 2018-02-11
      DOI: 10.3390/antiox7020028
      Issue No: Vol. 7, No. 2 (2018)
  • Antioxidants, Vol. 7, Pages 29: Appropriate Handling, Processing and
           Analysis of Blood Samples Is Essential to Avoid Oxidation of Vitamin C to
           Dehydroascorbic Acid

    • Authors: Juliet Pullar, Simone Bayer, Anitra Carr
      First page: 29
      Abstract: Vitamin C (ascorbate) is the major water-soluble antioxidant in plasma and its oxidation to dehydroascorbic acid (DHA) has been proposed as a marker of oxidative stress in vivo. However, controversy exists in the literature around the amount of DHA detected in blood samples collected from various patient cohorts. In this study, we report on DHA concentrations in a selection of different clinical cohorts (diabetes, pneumonia, cancer, and critically ill). All clinical samples were collected into EDTA anticoagulant tubes and processed at 4 °C prior to storage at −80 °C for subsequent analysis by HPLC with electrochemical detection. We also investigated the effects of different handling and processing conditions on short-term and long-term ascorbate and DHA stability in vitro and in whole blood and plasma samples. These conditions included metal chelation, anticoagulants (EDTA and heparin), and processing temperatures (ice, 4 °C and room temperature). Analysis of our clinical cohorts indicated very low to negligible DHA concentrations. Samples exhibiting haemolysis contained significantly higher concentrations of DHA. Metal chelation inhibited oxidation of vitamin C in vitro, confirming the involvement of contaminating metal ions. Although EDTA is an effective metal chelator, complexes with transition metal ions are still redox active, thus its use as an anticoagulant can facilitate metal ion-dependent oxidation of vitamin C in whole blood and plasma. Handling and processing blood samples on ice (or at 4 °C) delayed oxidation of vitamin C by a number of hours. A review of the literature regarding DHA concentrations in clinical cohorts highlighted the fact that studies using colourimetric or fluorometric assays reported significantly higher concentrations of DHA compared to those using HPLC with electrochemical detection. In conclusion, careful handling and processing of samples, combined with appropriate analysis, is crucial for accurate determination of ascorbate and DHA in clinical samples.
      Citation: Antioxidants
      PubDate: 2018-02-11
      DOI: 10.3390/antiox7020029
      Issue No: Vol. 7, No. 2 (2018)
  • Antioxidants, Vol. 7, Pages 30: Morphological Pathways of Mitochondrial

    • Authors: Bernard Tandler, Charles L. Hoppel, Jason A. Mears
      First page: 30
      Abstract: Mitochondrial fission is essential for distributing cellular energy throughout cells and for isolating damaged regions of the organelle that are targeted for degradation. Excessive fission is associated with the progression of cell death as well. Therefore, this multistep process is tightly regulated and several physiologic cues directly impact mitochondrial division. The double membrane structure of mitochondria complicates this process, and protein factors that drive membrane scission need to coordinate the separation of both the outer and inner mitochondrial membranes. In this review, we discuss studies that characterize distinct morphological changes associated with mitochondrial division. Specifically, coordinated partitioning and pinching of mitochondria have been identified as alternative mechanisms associated with fission. Additionally, we highlight the major protein constituents that drive mitochondrial fission and the role of connections with the endoplasmic reticulum in establishing sites of membrane division. Collectively, we review decades of research that worked to define the molecular framework of mitochondrial fission. Ongoing studies will continue to sort through the complex network of interactions that drive this critical event.
      Citation: Antioxidants
      PubDate: 2018-02-15
      DOI: 10.3390/antiox7020030
      Issue No: Vol. 7, No. 2 (2018)
  • Antioxidants, Vol. 7, Pages 31: Nanotherapy and Reactive Oxygen Species
           (ROS) in Cancer: A Novel Perspective

    • Authors: Peter Brenneisen, Andreas Reichert
      First page: 31
      Abstract: The incidence of numerous types of cancer has been increasing over recent years, representing the second-most frequent cause of death after cardiovascular diseases. Even though, the number of effective anticancer drugs is increasing as well, a large number of patients suffer from severe side effects (e.g., cardiomyopathies) caused by these drugs. This adversely affects the patients’ well-being and quality of life. On the molecular level, tumor cells that survive treatment modalities can become chemotherapy-resistant. In addition, adverse impacts on normal (healthy, stromal) cells occur concomitantly. Strategies that minimize these negative impacts on normal cells and which at the same time target tumor cells efficiently are needed. Recent studies suggest that redox-based combinational nanotherapies may represent one option in this direction. Here, we discuss recent advances in the application of nanoparticles, alone or in combination with other drugs, as a promising anticancer tool. Such novel strategies could well minimize harmful side effects and improve patients’ health prognoses.
      Citation: Antioxidants
      PubDate: 2018-02-22
      DOI: 10.3390/antiox7020031
      Issue No: Vol. 7, No. 2 (2018)
  • Antioxidants, Vol. 7, Pages 32: Phytochemicals in Human Milk and Their
           Potential Antioxidative Protection

    • Authors: Apollinaire Tsopmo
      First page: 32
      Abstract: Diets contain secondary plant metabolites commonly referred to as phytochemicals. Many of them are believed to impact human health through various mechanisms, including protection against oxidative stress and inflammation, and decreased risks of developing chronic diseases. For mothers and other people, phytochemical intake occurs through the consumption of foods such as fruits, vegetables, and grains. Research has shown that some these phytochemicals are present in the mother’s milk and can contribute to its oxidative stability. For infants, human milk (HM) represents the primary and preferred source of nutrition because it is a complete food. Studies have reported that the benefit provided by HM goes beyond basic nutrition. It can, for example, reduce oxidative stress in infants, thereby reducing the risk of lung and intestinal diseases in infants. This paper summarizes the phytochemicals present in HM and their potential contribution to infant health.
      Citation: Antioxidants
      PubDate: 2018-02-22
      DOI: 10.3390/antiox7020032
      Issue No: Vol. 7, No. 2 (2018)
  • Antioxidants, Vol. 7, Pages 33: Antioxidant Tocols as Radiation
           Countermeasures (Challenges to be Addressed to Use Tocols as Radiation
           Countermeasures in Humans)

    • Authors: Ujwani Nukala, Shraddha Thakkar, Kimberly Krager, Philip Breen, Cesar Compadre, Nukhet Aykin-Burns
      First page: 33
      Abstract: Radiation countermeasures fall under three categories, radiation protectors, radiation mitigators, and radiation therapeutics. Radiation protectors are agents that are administered before radiation exposure to protect from radiation-induced injuries by numerous mechanisms, including scavenging free radicals that are generated by initial radiochemical events. Radiation mitigators are agents that are administered after the exposure of radiation but before the onset of symptoms by accelerating the recovery and repair from radiation-induced injuries. Whereas radiation therapeutic agents administered after the onset of symptoms act by regenerating the tissues that are injured by radiation. Vitamin E is an antioxidant that neutralizes free radicals generated by radiation exposure by donating H atoms. The vitamin E family consists of eight different vitamers, including four tocopherols and four tocotrienols. Though alpha-tocopherol was extensively studied in the past, tocotrienols have recently gained attention as radiation countermeasures. Despite several studies performed on tocotrienols, there is no clear evidence on the factors that are responsible for their superior radiation protection properties over tocopherols. Their absorption and bioavailability are also not well understood. In this review, we discuss tocopherol’s and tocotrienol’s efficacy as radiation countermeasures and identify the challenges to be addressed to develop them into radiation countermeasures for human use in the event of radiological emergencies.
      Citation: Antioxidants
      PubDate: 2018-02-23
      DOI: 10.3390/antiox7020033
      Issue No: Vol. 7, No. 2 (2018)
  • Antioxidants, Vol. 7, Pages 5: Singlet Oxygen and Free Radical Reactions
           of Retinoids and Carotenoids—A Review

    • Authors: Ruth Edge, T. Truscott
      First page: 5
      Abstract: We report on studies of reactions of singlet oxygen with carotenoids and retinoids and a range of free radical studies on carotenoids and retinoids with emphasis on recent work, dietary carotenoids and the role of oxygen in biological processes. Many previous reviews are cited and updated together with new data not previously reviewed. The review does not deal with computational studies but the emphasis is on laboratory-based results. We contrast the ease of study of both singlet oxygen and polyene radical cations compared to neutral radicals. Of particular interest is the switch from anti- to pro-oxidant behavior of a carotenoid with change of oxygen concentration: results for lycopene in a cellular model system show total protection of the human cells studied at zero oxygen concentration, but zero protection at 100% oxygen concentration.
      Citation: Antioxidants
      PubDate: 2018-01-01
      DOI: 10.3390/antiox7010005
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 6: Genotypic and Environmental Effects on
           Tocopherol Content in Almond

    • Authors: Ossama Kodad, Rafel Socias i Company, José Alonso
      First page: 6
      Abstract: Almond is the most important nut species worldwide and almond kernels show the highest levels of tocopherols among all nuts. In almond, tocopherols not only play a substantial role as a healthy food for human consumption, but also in protecting lipids against oxidation and, thus, lengthening the storage time of almond kernels. The main tocopherol homologues detected in almond in decreasing content and biological importance are α-, γ-, δ-, and β-tocopherol. Tocopherol concentration in almond depends on the genotype and the environment, such as the climatic conditions of the year and the growing management of the orchard. The range of variability for the different tocopherol homologues is of 335–657 mg/kg of almond oil for α-, 2–50 for γ-, and 0.1–22 for β-tocopherol. Drought and heat have been the most important stresses affecting tocopherol content in almond, with increased levels at higher temperatures and in water deficit conditions. The right cultivar and the most appropriate growing conditions may be selected to obtain crops with effective kernel storage and for the most beneficial effects of almond consumption for human nutrition and health.
      Citation: Antioxidants
      PubDate: 2018-01-05
      DOI: 10.3390/antiox7010006
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 7: Exercise and Mitochondrial Dynamics:
           Keeping in Shape with ROS and AMPK

    • Authors: Adam Trewin, Brandon Berry, Andrew Wojtovich
      First page: 7
      Abstract: Exercise is a robust stimulus for mitochondrial adaptations in skeletal muscle which consequently plays a central role in enhancing metabolic health. Despite this, the precise molecular events that underpin these beneficial effects remain elusive. In this review, we discuss molecular signals generated during exercise leading to altered mitochondrial morphology and dynamics. In particular, we focus on the interdependence between reactive oxygen species (ROS) and redox homeostasis, the sensing of cellular bioenergetic status via 5’ adenosine monophosphate (AMP)-activated protein kinase (AMPK), and the regulation of mitochondrial fission and fusion. Precisely how exercise regulates the network of these responses and their effects on mitochondrial dynamics is not fully understood at present. We highlight the limitations that exist with the techniques currently available, and discuss novel molecular tools to potentially advance the fields of redox biology and mitochondrial bioenergetics. Ultimately, a greater understanding of these processes may lead to novel mitochondria-targeted therapeutic strategies to augment or mimic exercise in order to attenuate or reverse pathophysiology.
      Citation: Antioxidants
      PubDate: 2018-01-06
      DOI: 10.3390/antiox7010007
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 8: Acknowledgement to Reviewers of
           Antioxidants in 2017

    • Authors: Antioxidants Editorial Office
      First page: 8
      Abstract: Peer review is an essential part in the publication process, ensuring that Antioxidants maintains high quality standards for its published papers.[...]
      Citation: Antioxidants
      PubDate: 2018-01-10
      DOI: 10.3390/antiox7010008
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 9: Dietary Antioxidants and Health Promotion

    • Authors: Dejian Huang
      First page: 9
      Abstract: Accumulating scientific evidence suggests that over-production of reactive oxygen species (ROS) may be the root cause of chronic diseases such as cancer, cardiovascular diseases, neurodegeneration, and ageing per se [1,2].[...]
      Citation: Antioxidants
      PubDate: 2018-01-12
      DOI: 10.3390/antiox7010009
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 10: Long-Chain Metabolites of Vitamin E:

    • Authors: Martin Schubert, Stefan Kluge, Lisa Schmölz, Maria Wallert, Francesco Galli, Marc Birringer, Stefan Lorkowski
      First page: 10
      Abstract: Vitamins E, A, D and K comprise the class of lipid-soluble vitamins. For vitamins A and D, a metabolic conversion of precursors to active metabolites has already been described. During the metabolism of vitamin E, the long-chain metabolites (LCMs) 13′-hydroxychromanol (13′-OH) and 13′-carboxychromanol (13′-COOH) are formed by oxidative modification of the side-chain. The occurrence of these metabolites in human serum indicates a physiological relevance. Indeed, effects of the LCMs on lipid metabolism, apoptosis, proliferation and inflammatory actions as well as tocopherol and xenobiotic metabolism have been shown. Interestingly, there are several parallels between the actions of the LCMs of vitamin E and the active metabolites of vitamin A and D. The recent findings that the LCMs exert effects different from that of their precursors support their putative role as regulatory metabolites. Hence, it could be proposed that the mode of action of the LCMs might be mediated by a mechanism similar to vitamin A and D metabolites. If the physiological relevance and this concept of action of the LCMs can be confirmed, a general concept of activation of lipid-soluble vitamins via their metabolites might be deduced.
      Citation: Antioxidants
      PubDate: 2018-01-12
      DOI: 10.3390/antiox7010010
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 11: Effect of the Extraction Process on the
           Biological Activity of Lyophilized Apricot Extracts Recovered from Apricot

    • Authors: Dina Cheaib, Nada El Darra, Hiba Rajha, Iman El-Ghazzawi, Richard Maroun, Nicolas Louka
      First page: 11
      Abstract: The preservation of polyphenols in fruits by lyophilization has gained great interest in the recent decades. The present study aims to assess the impact of the pre-treatment extraction methods heat-assisted extraction (HAE) and infrared (IR) on lyophilized apricot pomace extracts. Then to test the conservation of polyphenols quantities as well as their bioactivities (antiradical and antibacterial) in lyophilized extract. An aqueous extract was obtained through either heat-assisted extraction or infrared pre-treatments then lyophilized to obtain a dried form. Results showed that the content of polyphenols, the antiradical and antibacterial activities in lyophilized extracts exhibited a slighter decrease in infrared sample compared to the heat-assisted extraction ones. The High-performance liquid chromatography (HPLC) analysis showed that lyophilized extracts IR and HAE preserved the same phenolic molecules (rutin, catechin and epicatechin) detected in liquid extracts (IR and HAE) with a smaller yield. Lyophilization can be used as a widely process in the food industry to conserve many bioactive molecules.
      Citation: Antioxidants
      PubDate: 2018-01-14
      DOI: 10.3390/antiox7010011
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 12: Vitamin E as a Treatment for Nonalcoholic
           Fatty Liver Disease: Reality or Myth'

    • Authors: Hamza Hadi, Roberto Vettor, Marco Rossato
      First page: 12
      Abstract: Obesity is one of the major epidemics of this millennium, and its incidence is growing worldwide. Following the epidemics of obesity, nonalcoholic fatty liver disease (NAFLD) has become a disease of increasing prevalence and a leading cause of morbidity and mortality closely related to cardiovascular disease, malignancies, and cirrhosis. It is believed that oxidative stress is a main player in the development and progression of NAFLD. Currently, a pharmacological approach has become necessary in NAFLD because of a failure to modify lifestyle and dietary habits in most patients. Vitamin E is a potent antioxidant that has been shown to reduce oxidative stress in NAFLD. This review summarizes the biological activities of vitamin E, with a primary focus on its therapeutic efficacy in NAFLD.
      Citation: Antioxidants
      PubDate: 2018-01-16
      DOI: 10.3390/antiox7010012
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 13: Reactive Oxygen Species and Mitochondrial
           Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer

    • Authors: Jan Ježek, Katrina Cooper, Randy Strich
      First page: 13
      Abstract: Mitochondria are organelles with a highly dynamic ultrastructure maintained by a delicate equilibrium between its fission and fusion rates. Understanding the factors influencing this balance is important as perturbations to mitochondrial dynamics can result in pathological states. As a terminal site of nutrient oxidation for the cell, mitochondrial powerhouses harness energy in the form of ATP in a process driven by the electron transport chain. Contemporaneously, electrons translocated within the electron transport chain undergo spontaneous side reactions with oxygen, giving rise to superoxide and a variety of other downstream reactive oxygen species (ROS). Mitochondrially-derived ROS can mediate redox signaling or, in excess, cause cell injury and even cell death. Recent evidence suggests that mitochondrial ultrastructure is tightly coupled to ROS generation depending on the physiological status of the cell. Yet, the mechanism by which changes in mitochondrial shape modulate mitochondrial function and redox homeostasis is less clear. Aberrant mitochondrial morphology may lead to enhanced ROS formation, which, in turn, may deteriorate mitochondrial health and further exacerbate oxidative stress in a self-perpetuating vicious cycle. Here, we review the latest findings on the intricate relationship between mitochondrial dynamics and ROS production, focusing mainly on its role in malignant disease.
      Citation: Antioxidants
      PubDate: 2018-01-16
      DOI: 10.3390/antiox7010013
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 14: Subcellular Reactive Oxygen Species (ROS)
           in Cardiovascular Pathophysiology

    • Authors: Sarah Aldosari, Maan Awad, Elizabeth Harrington, Frank Sellke, M. Abid
      First page: 14
      Abstract: There exist two opposing perspectives regarding reactive oxygen species (ROS) and their roles in angiogenesis and cardiovascular system, one that favors harmful and causal effects of ROS, while the other supports beneficial effects. Recent studies have shown that interaction between ROS in different sub-cellular compartments plays a crucial role in determining the outcomes (beneficial vs. deleterious) of ROS exposures on the vascular system. Oxidant radicals in one cellular organelle can affect the ROS content and function in other sub-cellular compartments in endothelial cells (ECs). In this review, we will focus on a critical fact that the effects or the final phenotypic outcome of ROS exposure to EC are tissue- or organ-specific, and depend on the spatial (subcellular localization) and temporal (duration of ROS exposure) modulation of ROS levels.
      Citation: Antioxidants
      PubDate: 2018-01-16
      DOI: 10.3390/antiox7010014
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 15: Regulation of Mitochondrial Dynamics by
           Proteolytic Processing and Protein Turnover

    • Authors: Sumaira Ali, Gavin McStay
      First page: 15
      Abstract: The mitochondrial network is a dynamic organization within eukaryotic cells that participates in a variety of essential cellular processes, such as adenosine triphosphate (ATP) synthesis, central metabolism, apoptosis and inflammation. The mitochondrial network is balanced between rates of fusion and fission that respond to pathophysiologic signals to coordinate appropriate mitochondrial processes. Mitochondrial fusion and fission are regulated by proteins that either reside in or translocate to the inner or outer mitochondrial membranes or are soluble in the inter-membrane space. Mitochondrial fission and fusion are performed by guanosine triphosphatases (GTPases) on the outer and inner mitochondrial membranes with the assistance of other mitochondrial proteins. Due to the essential nature of mitochondrial function for cellular homeostasis, regulation of mitochondrial dynamics is under strict control. Some of the mechanisms used to regulate the function of these proteins are post-translational proteolysis and/or turnover, and this review will discuss these mechanisms required for correct mitochondrial network organization.
      Citation: Antioxidants
      PubDate: 2018-01-17
      DOI: 10.3390/antiox7010015
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 16: Metabolic Alterations in Cancer Cells and
           the Emerging Role of Oncometabolites as Drivers of Neoplastic Change

    • Authors: Zhengqiu Zhou, Elochukwu Ibekwe, Yevgen Chornenkyy
      First page: 16
      Abstract: The mitochondrion is an important organelle and provides energy for a plethora of intracellular reactions. Metabolic dysregulation has dire consequences for the cell, and alteration in metabolism has been identified in multiple disease states—cancer being one. Otto Warburg demonstrated that cancer cells, in the presence of oxygen, undergo glycolysis by reprogramming their metabolism—termed “aerobic glycolysis”. Alterations in metabolism enable cancer cells to gain a growth advantage by obtaining precursors for macromolecule biosynthesis, such as nucleic acids and lipids. To date, several molecules, termed “oncometabolites”, have been identified to be elevated in cancer cells and arise from mutations in nuclear encoded mitochondrial enzymes. Furthermore, there is evidence that oncometabolites can affect mitochondrial dynamics. It is believed that oncometabolites can assist in reprogramming enzymatic pathways and providing cancer cells with selective advantages. In this review, we will touch upon the effects of normal and aberrant mitochondrial metabolism in normal and cancer cells, the advantages of metabolic reprogramming, effects of oncometabolites on metabolism and mitochondrial dynamics and therapies aimed at targeting oncometabolites and metabolic aberrations.
      Citation: Antioxidants
      PubDate: 2018-01-17
      DOI: 10.3390/antiox7010016
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 17: Cytokine Response to Exercise and Its

    • Authors: Katsuhiko Suzuki
      First page: 17
      Abstract: Strenuous exercise induces such inflammatory responses as leukocytosis (neutrophilia) and symptoms as delayed-onset muscle soreness and swelling. However, the association between inflammatory mediator cytokines and oxidative stress is not fully delineated. Herein, in addition to basic background information on cytokines, research findings on exertional effects on cytokine release and the underlying mechanisms and triggers are introduced. Then, the associations among cytokine responses, oxidative stress, and tissue damage are described not only in overloaded skeletal muscle, but also in other internal organs. Furthermore, we introduce preventive countermeasures against the exhaustive exercise-induced pathogenesis together with the possibility of antioxidant interventions.
      Citation: Antioxidants
      PubDate: 2018-01-17
      DOI: 10.3390/antiox7010017
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 18: Superoxide Dismutase Mimetic GC4419
           Enhances the Oxidation of Pharmacological Ascorbate and Its Anticancer
           Effects in an H2O2-Dependent Manner

    • Authors: Collin Heer, Andrew Davis, David Riffe, Brett Wagner, Kelly Falls, Bryan Allen, Garry Buettner, Robert Beardsley, Dennis Riley, Douglas Spitz
      First page: 18
      Abstract: Lung cancer, together with head and neck cancer, accounts for more than one-fourth of cancer deaths worldwide. New, non-toxic therapeutic approaches are needed. High-dose IV vitamin C (aka, pharmacological ascorbate; P-AscH−) represents a promising adjuvant to radiochemotherapy that exerts its anti-cancer effects via metal-catalyzed oxidation to form H2O2. Mn(III)-porphyrins possessing superoxide dismutase (SOD) mimetic activity have been shown to increase the rate of oxidation of AscH−, enhancing the anti-tumor effects of AscH− in several cancer types. The current study demonstrates that the Mn(II)-containing pentaazamacrocyclic selective SOD mimetic GC4419 may serve as an AscH−/O2•− oxidoreductase as evidenced by the increased rate of oxygen consumption, steady-state concentrations of ascorbate radical, and H2O2 production in complete cell culture media. GC4419, but not CuZnSOD, was shown to significantly enhance the toxicity of AscH− in H1299, SCC25, SQ20B, and Cal27 cancer cell lines. This enhanced cancer cell killing was dependent upon the catalytic activity of the SOD mimetic and the generation of H2O2, as determined using conditional overexpression of catalase in H1299T cells. GC4419 combined with AscH− was also capable of enhancing radiation-induced cancer cell killing. Currently, AscH− and GC4419 are each being tested separately in clinical trials in combination with radiation therapy. Data presented here support the hypothesis that the combination of GC4419 and AscH− may provide an effective means by which to further enhance radiation therapy responses.
      Citation: Antioxidants
      PubDate: 2018-01-19
      DOI: 10.3390/antiox7010018
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 19: Interplay between Selenium Levels and
           Replicative Senescence in WI-38 Human Fibroblasts: A Proteomic Approach

    • Authors: Ghania Hammad, Yona Legrain, Zahia Touat-Hamici, Stéphane Duhieu, David Cornu, Anne-Laure Bulteau, Laurent Chavatte
      First page: 19
      Abstract: Selenoproteins are essential components of antioxidant defense, redox homeostasis, and cell signaling in mammals, where selenium is found in the form of a rare amino acid, selenocysteine. Selenium, which is often limited both in food intake and cell culture media, is a strong regulator of selenoprotein expression and selenoenzyme activity. Aging is a slow, complex, and multifactorial process, resulting in a gradual and irreversible decline of various functions of the body. Several cellular aspects of organismal aging are recapitulated in the replicative senescence of cultured human diploid fibroblasts, such as embryonic lung fibroblast WI-38 cells. We previously reported that the long-term growth of young WI-38 cells with high (supplemented), moderate (control), or low (depleted) concentrations of selenium in the culture medium impacts their replicative lifespan, due to rapid changes in replicative senescence-associated markers and signaling pathways. In order to gain insight into the molecular link between selenium levels and replicative senescence, in the present work, we have applied a quantitative proteomic approach based on 2-Dimensional Differential in-Gel Electrophoresis (2D-DIGE) to the study of young and presenescent cells grown in selenium-supplemented, control, or depleted media. Applying a restrictive cut-off (spot intensity ±50% and a p value < 0.05) to the 2D-DIGE analyses revealed 81 differentially expressed protein spots, from which 123 proteins of interest were identified by mass spectrometry. We compared the changes in protein abundance for three different conditions: (i) spots varying between young and presenescent cells, (ii) spots varying in response to selenium concentration in young cells, and (iii) spots varying in response to selenium concentration in presenescent cells. Interestingly, a 72% overlap between the impact of senescence and selenium was observed in our proteomic results, demonstrating a strong interplay between selenium, selenoproteins, and replicative senescence.
      Citation: Antioxidants
      PubDate: 2018-01-20
      DOI: 10.3390/antiox7010019
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 20: Polyphenolic Compounds Analysis of Old and
           New Apple Cultivars and Contribution of Polyphenolic Profile to the In
           Vitro Antioxidant Capacity

    • Authors: Josephine Kschonsek, Theresa Wolfram, Annette Stöckl, Volker Böhm
      First page: 20
      Abstract: Polyphenols are antioxidant ingredients in apples and are related to human health because of their free radical scavenging activities. The polyphenolic profiles of old and new apple cultivars (n = 15) were analysed using high-performance liquid chromatography (HPLC) with diode array detection (DAD). The in vitro antioxidant capacity was determined by total phenolic content (TPC) assay, hydrophilic trolox equivalent antioxidant capacity (H-TEAC) assay and hydrophilic oxygen radical absorbance (H-ORAC) assay. Twenty polyphenolic compounds were identified in all investigated apples by HPLC analysis. Quercetin glycosides (203 ± 108 mg/100 g) were the main polyphenols in the peel and phenolic acids (10 ± 5 mg/100 g) in the flesh. The calculated relative contribution of single compounds indicated flavonols (peel) and vitamin C (flesh) as the major contributors to the antioxidant capacity, in all cultivars investigated. The polyphenolic content (HPLC data) of the flesh differed significantly between old (29 ± 7 mg/100 g) and new (13 ± 4 mg/100 g) cultivars, and the antioxidant capacity of old apple cultivars was up to 30% stronger compared to new ones.
      Citation: Antioxidants
      PubDate: 2018-01-24
      DOI: 10.3390/antiox7010020
      Issue No: Vol. 7, No. 1 (2018)
  • Antioxidants, Vol. 7, Pages 21: The Addition of Manganese Porphyrins
           during Radiation Inhibits Prostate Cancer Growth and Simultaneously
           Protects Normal Prostate Tissue from Radiation Damage

    • Authors: Arpita Chatterjee, Yuxiang Zhu, Qiang Tong, Elizabeth Kosmacek, Eliezer Lichter, Rebecca Oberley-Deegan
      First page: 21
      Abstract: Radiation therapy is commonly used for prostate cancer treatment; however, normal tissues can be damaged from the reactive oxygen species (ROS) produced by radiation. In separate reports, we and others have shown that manganese porphyrins (MnPs), ROS scavengers, protect normal cells from radiation-induced damage but inhibit prostate cancer cell growth. However, there have been no studies demonstrating that MnPs protect normal tissues, while inhibiting tumor growth in the same model. LNCaP or PC3 cells were orthotopically implanted into athymic mice and treated with radiation (2 Gy, for 5 consecutive days) in the presence or absence of MnPs. With radiation, MnPs enhanced overall life expectancy and significantly decreased the average tumor volume, as compared to the radiated alone group. MnPs enhanced lipid oxidation in tumor cells but reduced oxidative damage to normal prostate tissue adjacent to the prostate tumor in combination with radiation. Mechanistically, MnPs behave as pro-oxidants or antioxidants depending on the level of oxidative stress inside the treated cell. We found that MnPs act as pro-oxidants in prostate cancer cells, while in normal cells and tissues the MnPs act as antioxidants. For the first time, in the same in vivo model, this study reveals that MnPs enhance the tumoricidal effect of radiation and reduce oxidative damage to normal prostate tissue adjacent to the prostate tumor in the presence of radiation. This study suggests that MnPs are effective radio-protectors for radiation-mediated prostate cancer treatment.
      Citation: Antioxidants
      PubDate: 2018-01-25
      DOI: 10.3390/antiox7010021
      Issue No: Vol. 7, No. 1 (2018)
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-