for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> BIOLOGY (Total: 3121 journals)
    - BIOCHEMISTRY (240 journals)
    - BIOENGINEERING (119 journals)
    - BIOLOGY (1487 journals)
    - BIOPHYSICS (47 journals)
    - BIOTECHNOLOGY (236 journals)
    - BOTANY (227 journals)
    - CYTOLOGY AND HISTOLOGY (30 journals)
    - ENTOMOLOGY (69 journals)
    - GENETICS (162 journals)
    - MICROBIOLOGY (258 journals)
    - MICROSCOPY (10 journals)
    - ORNITHOLOGY (26 journals)
    - PHYSIOLOGY (73 journals)
    - ZOOLOGY (137 journals)

BIOLOGY (1487 journals)                  1 2 3 4 5 6 7 8 | Last

Showing 1 - 200 of 1720 Journals sorted alphabetically
AAPS Journal     Hybrid Journal   (Followers: 22)
Achievements in the Life Sciences     Open Access   (Followers: 5)
ACS Synthetic Biology     Hybrid Journal   (Followers: 24)
Acta Biologica Colombiana     Open Access   (Followers: 7)
Acta Biologica Hungarica     Full-text available via subscription   (Followers: 4)
Acta Biologica Sibirica     Open Access  
Acta Biomaterialia     Hybrid Journal   (Followers: 27)
Acta Biotheoretica     Hybrid Journal   (Followers: 4)
Acta Chiropterologica     Full-text available via subscription   (Followers: 6)
acta ethologica     Hybrid Journal   (Followers: 4)
Acta Limnologica Brasiliensia     Open Access   (Followers: 3)
Acta Médica Costarricense     Open Access   (Followers: 2)
Acta Musei Silesiae, Scientiae Naturales     Open Access  
Acta Neurobiologiae Experimentalis     Open Access  
Acta Parasitologica     Hybrid Journal   (Followers: 10)
Acta Scientiarum. Biological Sciences     Open Access   (Followers: 2)
Acta Scientifica Naturalis     Open Access   (Followers: 3)
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis     Open Access  
Actualidades Biológicas     Open Access   (Followers: 1)
Advanced Health Care Technologies     Open Access   (Followers: 4)
Advanced Journal of Graduate Research     Open Access  
Advanced Studies in Biology     Open Access  
Advances in Antiviral Drug Design     Full-text available via subscription   (Followers: 2)
Advances in Bioinformatics     Open Access   (Followers: 17)
Advances in Biological Regulation     Hybrid Journal   (Followers: 4)
Advances in Biology     Open Access   (Followers: 8)
Advances in Biosensors and Bioelectronics     Open Access   (Followers: 7)
Advances in Cell Biology/ Medical Journal of Cell Biology     Open Access   (Followers: 25)
Advances in Cellular and Molecular Biology of Membranes and Organelles     Full-text available via subscription   (Followers: 12)
Advances in Developmental Biology     Full-text available via subscription   (Followers: 11)
Advances in DNA Sequence-Specific Agents     Full-text available via subscription   (Followers: 5)
Advances in Ecological Research     Full-text available via subscription   (Followers: 43)
Advances in Environmental Sciences - International Journal of the Bioflux Society     Open Access   (Followers: 17)
Advances in Enzyme Research     Open Access   (Followers: 10)
Advances in Experimental Biology     Full-text available via subscription   (Followers: 7)
Advances in Genome Biology     Full-text available via subscription   (Followers: 8)
Advances in High Energy Physics     Open Access   (Followers: 19)
Advances in Human Biology     Open Access   (Followers: 3)
Advances in Life Science and Technology     Open Access   (Followers: 16)
Advances in Life Sciences     Open Access   (Followers: 6)
Advances in Marine Biology     Full-text available via subscription   (Followers: 14)
Advances in Molecular and Cell Biology     Full-text available via subscription   (Followers: 21)
Advances in Organ Biology     Full-text available via subscription   (Followers: 1)
Advances in Planar Lipid Bilayers and Liposomes     Full-text available via subscription   (Followers: 3)
Advances in Regenerative Biology     Open Access   (Followers: 1)
Advances in Space Biology and Medicine     Full-text available via subscription   (Followers: 5)
Advances in Structural Biology     Full-text available via subscription   (Followers: 5)
Advances in Virus Research     Full-text available via subscription   (Followers: 5)
African Journal of Range & Forage Science     Hybrid Journal   (Followers: 6)
AFRREV STECH : An International Journal of Science and Technology     Open Access   (Followers: 1)
Ageing Research Reviews     Hybrid Journal   (Followers: 11)
Aging Cell     Open Access   (Followers: 13)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Agrokreatif Jurnal Ilmiah Pengabdian kepada Masyarakat     Open Access  
AJP Cell Physiology     Hybrid Journal   (Followers: 15)
AJP Endocrinology and Metabolism     Hybrid Journal   (Followers: 23)
AJP Lung Cellular and Molecular Physiology     Hybrid Journal   (Followers: 3)
Al-Kauniyah : Jurnal Biologi     Open Access  
Alasbimn Journal     Open Access   (Followers: 1)
Alces : A Journal Devoted to the Biology and Management of Moose     Open Access  
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Biology Teacher     Full-text available via subscription   (Followers: 14)
American Fern Journal     Full-text available via subscription   (Followers: 1)
American Journal of Agricultural and Biological Sciences     Open Access   (Followers: 8)
American Journal of Bioethics     Hybrid Journal   (Followers: 11)
American Journal of Human Biology     Hybrid Journal   (Followers: 13)
American Journal of Medical and Biological Research     Open Access   (Followers: 8)
American Journal of Plant Sciences     Open Access   (Followers: 19)
American Journal of Primatology     Hybrid Journal   (Followers: 14)
American Malacological Bulletin     Full-text available via subscription   (Followers: 3)
American Naturalist     Full-text available via subscription   (Followers: 73)
Amphibia-Reptilia     Hybrid Journal   (Followers: 6)
Anadolu University Journal of Science and Technology : C Life Sciences and Biotechnology     Open Access  
Anaerobe     Hybrid Journal   (Followers: 4)
Analytical Methods     Full-text available via subscription   (Followers: 10)
Anatomical Science International     Hybrid Journal   (Followers: 2)
Animal Cells and Systems     Hybrid Journal   (Followers: 4)
Animal Models and Experimental Medicine     Open Access  
Annales de Limnologie - International Journal of Limnology     Hybrid Journal   (Followers: 1)
Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale     Full-text available via subscription   (Followers: 3)
Annales Henri Poincaré     Hybrid Journal   (Followers: 3)
Annals of Applied Biology     Hybrid Journal   (Followers: 7)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 18)
Annals of Human Biology     Hybrid Journal   (Followers: 5)
Annual Review of Biomedical Engineering     Full-text available via subscription   (Followers: 14)
Annual Review of Biophysics     Full-text available via subscription   (Followers: 23)
Annual Review of Cancer Biology     Full-text available via subscription   (Followers: 1)
Annual Review of Cell and Developmental Biology     Full-text available via subscription   (Followers: 37)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 13)
Annual Review of Genomics and Human Genetics     Full-text available via subscription   (Followers: 23)
Annual Review of Phytopathology     Full-text available via subscription   (Followers: 12)
Anthropological Review     Open Access   (Followers: 23)
Anti-Infective Agents     Hybrid Journal   (Followers: 3)
Antibiotics     Open Access   (Followers: 9)
Antioxidants     Open Access   (Followers: 4)
Antioxidants & Redox Signaling     Hybrid Journal   (Followers: 8)
Antonie van Leeuwenhoek     Hybrid Journal   (Followers: 5)
Anzeiger für Schädlingskunde     Hybrid Journal   (Followers: 1)
Apidologie     Hybrid Journal   (Followers: 4)
Apmis     Hybrid Journal   (Followers: 1)
APOPTOSIS     Hybrid Journal   (Followers: 8)
Applied Bionics and Biomechanics     Open Access   (Followers: 8)
Applied Vegetation Science     Full-text available via subscription   (Followers: 10)
Aquaculture Environment Interactions     Open Access   (Followers: 2)
Aquaculture International     Hybrid Journal   (Followers: 23)
Aquaculture Reports     Open Access   (Followers: 3)
Aquaculture, Aquarium, Conservation & Legislation - International Journal of the Bioflux Society     Open Access   (Followers: 6)
Aquatic Biology     Open Access   (Followers: 5)
Aquatic Ecology     Hybrid Journal   (Followers: 34)
Aquatic Ecosystem Health & Management     Hybrid Journal   (Followers: 14)
Aquatic Science and Technology     Open Access   (Followers: 3)
Aquatic Toxicology     Hybrid Journal   (Followers: 22)
Archaea     Open Access   (Followers: 3)
Archiv für Molluskenkunde: International Journal of Malacology     Full-text available via subscription   (Followers: 3)
Archives of Biological Sciences     Open Access  
Archives of Microbiology     Hybrid Journal   (Followers: 8)
Archives of Natural History     Hybrid Journal   (Followers: 6)
Archives of Oral Biology     Hybrid Journal   (Followers: 2)
Archives of Virology     Hybrid Journal   (Followers: 5)
Archivum Immunologiae et Therapiae Experimentalis     Hybrid Journal   (Followers: 2)
Arid Ecosystems     Hybrid Journal   (Followers: 2)
Arquivos do Instituto Biológico     Open Access   (Followers: 1)
Arquivos do Museu Dinâmico Interdisciplinar     Open Access  
Arthropod Structure & Development     Hybrid Journal   (Followers: 2)
Arthropods     Open Access   (Followers: 1)
Artificial DNA: PNA & XNA     Hybrid Journal   (Followers: 3)
Asian Bioethics Review     Full-text available via subscription   (Followers: 3)
Asian Journal of Biodiversity     Open Access   (Followers: 4)
Asian Journal of Biological Sciences     Open Access   (Followers: 3)
Asian Journal of Cell Biology     Open Access   (Followers: 5)
Asian Journal of Developmental Biology     Open Access   (Followers: 2)
Asian Journal of Medical and Biological Research     Open Access   (Followers: 3)
Asian Journal of Nematology     Open Access   (Followers: 4)
Asian Journal of Poultry Science     Open Access   (Followers: 3)
Atti della Accademia Peloritana dei Pericolanti - Classe di Scienze Medico-Biologiche     Open Access  
Australian Life Scientist     Full-text available via subscription   (Followers: 2)
Australian Mammalogy     Hybrid Journal   (Followers: 6)
Autophagy     Hybrid Journal   (Followers: 2)
Avian Biology Research     Full-text available via subscription   (Followers: 4)
Avian Conservation and Ecology     Open Access   (Followers: 11)
Bacteriology Journal     Open Access   (Followers: 1)
Bacteriophage     Full-text available via subscription   (Followers: 3)
Bangladesh Journal of Bioethics     Open Access  
Bangladesh Journal of Plant Taxonomy     Open Access  
Bangladesh Journal of Scientific Research     Open Access   (Followers: 1)
Batman Üniversitesi Yaşam Bilimleri Dergisi     Open Access  
Berita Biologi     Open Access   (Followers: 1)
Between the Species     Open Access   (Followers: 1)
Bio Tribune Magazine     Hybrid Journal  
BIO Web of Conferences     Open Access  
BIO-Complexity     Open Access  
Bio-Grafía. Escritos sobre la Biología y su enseñanza     Open Access  
Bioanalytical Reviews     Hybrid Journal   (Followers: 2)
Biocatalysis and Biotransformation     Hybrid Journal   (Followers: 6)
BioCentury Innovations     Full-text available via subscription   (Followers: 1)
Biochemistry and Cell Biology     Hybrid Journal   (Followers: 15)
Biochimie     Hybrid Journal   (Followers: 7)
BioControl     Hybrid Journal   (Followers: 5)
Biocontrol Science and Technology     Hybrid Journal   (Followers: 5)
Biodemography and Social Biology     Hybrid Journal  
BioDiscovery     Open Access   (Followers: 2)
Biodiversitas : Journal of Biological Diversity     Open Access  
Biodiversity Data Journal     Open Access   (Followers: 3)
Biodiversity Informatics     Open Access   (Followers: 1)
Biodiversity Information Science and Standards     Open Access  
Biodiversity: Research and Conservation     Open Access   (Followers: 26)
Bioedukasi : Jurnal Pendidikan Biologi FKIP UM Metro     Open Access  
Bioeksperimen : Jurnal Penelitian Biologi     Open Access  
Bioelectrochemistry     Hybrid Journal   (Followers: 2)
Bioelectromagnetics     Hybrid Journal   (Followers: 1)
Bioenergy Research     Hybrid Journal   (Followers: 2)
Bioengineering and Bioscience     Open Access   (Followers: 1)
BioEssays     Hybrid Journal   (Followers: 10)
Bioethics     Hybrid Journal   (Followers: 15)
BioéthiqueOnline     Open Access  
Biofabrication     Hybrid Journal   (Followers: 5)
Biofilms     Full-text available via subscription   (Followers: 1)
Biogeosciences (BG)     Open Access   (Followers: 10)
Biogeosciences Discussions (BGD)     Open Access   (Followers: 2)
Bioinformatics     Hybrid Journal   (Followers: 299)
Bioinformatics and Biology Insights     Open Access   (Followers: 11)
Bioinspiration & Biomimetics     Hybrid Journal   (Followers: 7)
Biointerphases     Open Access   (Followers: 1)
Biojournal of Science and Technology     Open Access  
Biologia     Hybrid Journal  
Biologia on-line : Revista de divulgació de la Facultat de Biologia     Open Access  
Biological Bulletin     Partially Free   (Followers: 6)
Biological Control     Hybrid Journal   (Followers: 4)
Biological Invasions     Hybrid Journal   (Followers: 19)
Biological Journal of the Linnean Society     Hybrid Journal   (Followers: 18)
Biological Letters     Open Access   (Followers: 5)
Biological Procedures Online     Open Access  
Biological Psychiatry     Hybrid Journal   (Followers: 47)
Biological Psychology     Hybrid Journal   (Followers: 6)
Biological Research     Open Access  
Biological Rhythm Research     Hybrid Journal   (Followers: 2)
Biological Theory     Hybrid Journal   (Followers: 3)
Biological Trace Element Research     Hybrid Journal  
Biologicals     Full-text available via subscription   (Followers: 9)

        1 2 3 4 5 6 7 8 | Last

Journal Cover
Acta Biomaterialia
Journal Prestige (SJR): 1.967
Citation Impact (citeScore): 7
Number of Followers: 27  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1742-7061
Published by Elsevier Homepage  [3159 journals]
  • Solution Fibre Spinning Technique for the Fabrication of Tuneable
           Decellularised Matrix-Laden Fibres and Fibrous Micromembranes
    • Abstract: Publication date: Available online 10 August 2018Source: Acta BiomaterialiaAuthor(s): Zhaoying Li, Jack Tuffin, Iek M. Lei, Francesco S. Ruggeri, Natasha S. Lewis, Elisabeth L. Gill, Thierry Savin, Luai Huleihel, Stephen F. Badylak, Tuomas Knowles, Simon C. Satchell, Gavin I. Welsh, Moin A. Saleem, Yan Yan Shery Huang Recreating tissue-specific microenvironments of the extracellular matrix (ECM) in vitro is of broad interest for the fields of tissue engineering and organ-on-a-chip. Here, we present biofunctional ECM protein fibres and suspended membranes, with tuneable biochemical, mechanical and topographical properties. This soft and entirely biologic membrane scaffold, formed by micro-nano-fibres using low voltage electrospinning, displays three unique characteristics for potential cell culture applications: high-content of key ECM proteins, single-layered mesh membrane, and flexibility for in situ integration into a range of device setups. Extracellular matrix (ECM) powder derived from urinary bladder, was used to fabricate the ECM-laden fibres and membranes. The highest ECM concentration in the dry protein fibre was 50 wt%, with the rest consisting of gelatin. Key ECM proteins, including collagen IV, laminin, and fibronectin, were shown to be preserved post the biofabrication process. The single fibre tensile Young’s modulus can be tuned for over two orders of magnitude between ∼ 600 kPa to 50 MPa depending on the ECM content. Combining the fibre mesh printing with 3D printed or microfabricated structures, culture devices were constructed for endothelial layer formation, and a trans-membrane co-culture formed by glomerular cell types of podocytes and glomerular endothelial cells, demonstrating feasibility of the membrane culture. Our cell culture observation points to the importance of membrane mechanical property and re-modelling ability as a factor for soft membrane-based cell cultures. The ECM-laden fibres and membranes presented here would see potential applications in in vitro assays, and tailoring structure and biological functions of tissue engineering scaffolds.Statement of SignificanceRecreating tissue-specific microenvironments of the extracellular matrix (ECM) is of broad interest for the fields of tissue engineering and organ-on-a-chip. Both the biochemical and biophysical signatures of the engineered ECM interplay to affect cell response. Currently, there are limited biomaterials processing methods which allow to design ECM membrane properties flexibly and rapidly. Solvents and additives used in many existing processes also induced unwanted ECM protein degradation and toxic residues. This paper presents a solution fibre spinning technique, where careful selection of the solution combination led to well-preserved ECM proteins with tuneable composition. This technique also provides a highly versatile approach to fabricate ECM fibres and membranes, leading to designable fibre Young’s modulus for over two orders of magnitude.Graphical abstractGraphical abstract for this article
       
  • Toxicological assessment of additively manufactured methacrylates for
           medical devices in dentistry
    • Abstract: Publication date: Available online 10 August 2018Source: Acta BiomaterialiaAuthor(s): Frank Alifui-Segbaya, Jasper Bowman, Alan R. White, Sony Varma, Graham J. Lieschke, Roy George The paucity of information on the biological risks of photopolymers in additive manufacturing or three-dimensional printing (3DP) is a major challenge for the uptake of the technology in the construction of medical devices in dentistry. In this paper, the biocompatibility of additively manufactured methacrylates are evaluated using the innovative zebrafish (Danio rerio) embryo model. Data obtained confirmed gradations of toxicity primarily influenced by ethanol treatment, exposure scenarios, and extraction vehicles. In direct exposure tests, zebrafish (AB/Tü) embryos cultured on materials with ultrapure water showed accelerated toxicological effects compared to counterparts in transparent E3 medium. Similarly, toxic extracts induced mostly acute responses rather than cumulative chronic as observed in direct exposure. FTIR spectra was used to quantify the double bond conversion of the materials and those with>60 % BisEMA displayed relatively low degree of conversion; however, they were safe in zebrafish bioassays after ethanol treatment in contrast to untreated methacrylates. The study affirms that biocompatibility was influenced primarily by the physico-chemical characteristics, which subsequently influenced their residual monomer content before and after ethanol treatment. Given the precautionary implications of the study, we propose a 3-tiered approach i.e. using approved materials, apposite manufacturing parameters and post-processing techniques that together guarantee optimal results for all medical devices.Statement of significanceThis study is timely and relevant since there is limited published literature that precisely describes the toxicological properties of additively manufactured methacrylates despite their increased popularity for medical devices. While it is generally accepted that the zebrafish excels as a model system for developmental toxicity, a further examination of its utility in this study using different protocols provides basis for its consideration and adoption at a crucial time when there is a lack of consensus regarding the most suited biological assessment methods for medical devices.Graphical abstractGraphical abstract for this article
       
  • Size-Dependent Neutralizing Activity of Gold Nanoparticle-Based Subunit
           Vaccine Against Dengue Virus
    • Abstract: Publication date: Available online 10 August 2018Source: Acta BiomaterialiaAuthor(s): Quang Huy Quach, Swee Kim Ang, Jang-Hann Justin Chu, James Chen Yong Kah Dengue results in substantial human morbidity and significant socio-economic impacts, but a specific dengue therapeutic is not available. The currently available dengue vaccine has low efficacy and high rate of adverse effects, necessitating different strategies for the development of a safer and more efficient vaccine against dengue virus. We describe here a hybrid combination of different-sized gold nanoparticles (AuNPs) and domain III of envelope glycoprotein derived from serotype 2 of dengue virus (EDIII) as dengue subunit vaccine. The efficacy of the EDIII-functionalized AuNPs (AuNP-E) to induce neutralizing antibody in BALB/c mice is evaluated. Obtained results show that AuNP-E induced a high level of antibody which mediates serotype-specific neutralization of dengue virus. More importantly, the level of antibody is dependent on both the size of AuNPs and the concentration of AuNP-E, implicating the possibility to modulate it through adjusting these parameters. These results represent an important step towards the development of tetravalent AuNP-based subunit dengue vaccine.Statement of SignificanceThis research presents a novel subunit vaccine against dengue virus using a hybrid comprising gold nanoparticles (AuNPs) and domain III of envelop protein (EDIII). We proved the neutralizing activity of anti-EDIII antibody induced in immunized mice on Dengue virus serotype 2 in an AuNP core size and concentration dependent manner. The hybrid concept behind this work could also be adopted for the development of a tetravalent vaccine against four serotypes of Dengue virus.Graphical abstractDengue subunit vaccine (AuNP-E) formed from gold nanoparticles (AuNPs) and domain III of envelop glycoprotein (EDIII) elicit T-cell response, characterized by the number of IFN-γ and IL-4 producing splenocytes, and the generation of antibody that specifically binds to EDIII and neutralizes dengue virus (DENV) in a manner dependent on AuNP’s size and concentration.Graphical abstract for this article
       
  • Tailoring the Subchondral Bone Phase of a Multi-Layered Osteochondral
           Construct to Support Bone Healing and a Cartilage Analog
    • Abstract: Publication date: Available online 10 August 2018Source: Acta BiomaterialiaAuthor(s): Alan Marionneaux, Joshua Walters, Helena Guo, Jeremy Mercuri Focal chondral and osteochondral defects create significant pain and disability for working-aged adults. Current osteochondral repair grafts are limited in availability and often fail due to insufficient osseous support and integration. Thus, a need exists for an off-the-shelf osteochondral construct with the propensity to overcome these shortcomings. Herein, a scalable process was used to develop a multi-layered osteochondral graft with a subchondral bone (ScB) phase tailored to support bone healing and integration. Multiple ScB formulations and fabrication techniques were screened via degradation, bioactivity, and unconfined compression testing. An optimized ScB construct was selected and its cytotoxicity assessed. Additionally, a cartilage analog was secured to the optimized ScB construct via a calcified cartilage layer, and the resulting osteochondral construct was characterized via interfacial shear and dynamic mechanical testing. The optimized ScB construct did not significantly alter local pH during degradation, exhibited measurable bioactivity in vitro, and had significantly greater compressive mechanical strength compared to other constructs. The attachment strength of the cartilage analog was significantly greater by an increase in compressive dynamic mechanical properties. Furthermore, this ScB construct was found to be cytocompatible with human bone marrow-derived mesenchymal stromal cells. Taken together, this optimized ScB material forms the robust foundation of a novel, off-the-shelf osteochondral construct to be used in defect repair.Statement of SignificanceThe quality of life for millions of individuals worldwide is detrimentally affected by focal chondral or osteochondral defects. Current off-the-shelf biomaterial constructs often fail to repair these defects due to insufficient osseous support and integration. Herein, we used a scalable process to fabricate and optimize a novel boney construct. This optimized boney construct demonstrated biochemical, physical, and mechanical properties tailored to promote bone healing. Furthermore, a novel cartilage analog was successfully attached to the boney construct, forming a multi-layered osteochondral construct.Graphical abstractGraphical abstract for this article
       
  • Multicellular spheroid based on a triple co-culture: a novel 3D model to
           mimic pancreatic tumor complexity
    • Abstract: Publication date: Available online 10 August 2018Source: Acta BiomaterialiaAuthor(s): Gianpiero Lazzari, Valerie Nicolas, Michiya Matsusaki, Mitsuru Akashi, Patrick Couvreur, Simona Mura The preclinical drug screening of pancreatic cancer treatments suffers from the absence of appropriate models capable to reproduce in vitro the heterogeneous tumor microenvironment and its stiff desmoplasia. Driven by this pressing need, we describe in this paper the conception and the characterization of a novel 3D tumor model, consisting of a triple co-culture of pancreatic cancer cells (PANC–1), fibroblasts (MRC–5) and endothelial cells (HUVEC), which assembled to form a hetero-type multicellular tumor spheroid (MCTS). By histological analyses and Selective Plain Illumination Microscopy (SPIM) we have monitored the spatial distribution of each cell type and the evolution of the spheroid composition. Results revealed the presence of a core rich in fibroblasts and fibronectin in which endothelial cells were homogeneously distributed. The integration of the three cell types enabled to reproduce in vitro with fidelity the influence of the surrounding environment on the sensitivity of cancer cells to chemotherapy. To our knowledge, this is the first time that a scaffold-free pancreatic cancer spheroid model combining both tumor and multiple stromal components has been designed. It holds the possibility to become an advantageous tool for a pertinent assessment of the efficacy of various therapeutic strategies.Statement of significancePancreatic tumor microenvironment is characterized by abundant fibrosis and aberrant vasculature. Aiming to reproduce in vitro these features, cancer cells have been already co-cultured with fibroblasts or endothelial cells separately but the integration of both these essential components of the pancreatic tumor microenvironment in a unique system, although urgently needed, was still missing. In this study, we successfully integrated cellular and acellular microenvironment components (i.e., fibroblasts, endothelial cells, fibronectin) in a hetero-type scaffold-free multicellular tumor spheroid. This new 3D triple co-culture model closely mimicked the resistance to treatments observed in vivo, resulting in a reduction of cancer cell sensitivity to the anticancer treatment.Graphical abstractGraphical abstract for this article
       
  • Synergistic effect of dual targeting vaccine adjuvant with aminated
           β-glucan and CpG-oligodeoxynucleotides for both humoral and cellular
           immune responses
    • Abstract: Publication date: Available online 9 August 2018Source: Acta BiomaterialiaAuthor(s): Jing Wei Jin, Shun Qing Tang, Min Zhi Rong, Ming Qiu Zhang Presently, clinically approved adjuvants (such as aluminum salts) fail to induce cellular immune responses, which is crucial to defend against intracellular pathogens (including HIV, malaria, tuberculosis and Ebola) and cancer. However, Freund’s complete adjuvant potently stimulates both humoral and cellular immune responses, accompanying by high toxicity and severe side reactions. Here in this work, a CpG-oligodeoxynucleotides (CpG-OND) crosslinked aminated β-glucan-Ovalbumin dual targeting nanoparticle (CpG-OND-AG-OVA) is prepared through a simple and mild ionic complexation method. The aminated β-glucan plays dual roles as antigen presenting cells (APCs) targeted carrier and immunopotentiator (targeting and activating dectin-1 on APCs). Meanwhile, CpG-OND also plays dual roles as ionic crosslinker and immunopotentiator (targeting and activating Toll-like receptor 9 in APCs). The adjuvant activity of the particles is evaluated through in vitro and in vivo experiments. The particles significantly enhance uptake and sustained proteolytic processing of antigens, and result in APCs maturation, inducing robust Th1 and Th2-type immune responses comparable to Freund’s adjuvant without obvious toxicity. The potent adjuvant activity of the nanoparticles may originate from dual targeting synergistic effects between aminated β-glucan and CpG-OND. Accordingly, the dual targeting nanoparticles may be a promising vaccine adjuvant for inducing robust humoral and cellular immune responses against infectious diseases and cancers.Statement of SignificanceAn ideal adjuvant for subunit vaccine should act as both a carrier to enhance the uptake, sustained processing and cytosolic delivery of antigens, and an immunopotentiator to stimulate antigen presenting cells (APCs) for activation of naive T cells. Additionally, it should be easy to obtain and safe with negligible toxicity. Unfortunately, both synthetic and natural polymers that have been developed into antigen delivery system cannot completely fulfill the requirements. In the present study, the authors design nanoparticles with aminated β-glucan and CpG-oligodeoxynucleotides (CpG-OND) through a simple and mild method. β-Glucan (a dectin-1 and TLR2 targeted PAMP) and CpG-OND (a TLR9 targeted PAMP) are readily accessible. Aminated β-glucan plays dual roles in the nanoparticle as APCs targeted carrier and immunopotentiator. Meanwhile, CpG-OND also plays dual roles as crosslinker and APCs targeted immunopotentiator. By making use of synergistic effect of the dual targeting vaccine adjuvant with aminated β-glucan and CpG-OND, the nanoparticles induce robust antigen specific immune responses comparable to Freund’s adjuvant without obvious toxicity.Graphical abstractGraphical abstract for this article
       
  • Pro-angiogenic near infrared-responsive hydrogels for deliberate transgene
           expression
    • Abstract: Publication date: Available online 9 August 2018Source: Acta BiomaterialiaAuthor(s): Francisco Martín-Saavedra, Clara Escudero-Duch, Martín Prieto, Silvia Sánchez-Casanova, Daniel López, Manuel Arruebo, Richard Voellmy, Jesús Santamaría, Nuria Vilaboa CuS nanoparticles (CuSNP) are degradable, readily prepared, inexpensive to produce and efficiently cleared from the body. In this work, we explored the feasibility of CuSNP to function as degradable near infrared (NIR) nanotransducers within fibrin-based cellular scaffolds. To prepare NIR-responsive CuSNP hydrogels, fibrinogen was dissolved in cell culture medium and supplemented with aqueous dispersions of CuSNP. Fibrinogen polymerization was catalyzed by the addition of thrombin. In some experiments, HUVEC, C3H/10T1/2 or C3H/10T1/2-fLuc cells, that harbor a heat-activated and rapamycin-dependent gene switch for regulating the expression of firefly luciferase transgene expression, were incorporated to the sol phase of the hydrogel. For in vivo experiments, hydrogels were injected subcutaneously in the back of adult C3H/HeN mice. Upon NIR irradiation, CuSNP hydrogels allowed heat-inducible and rapamycin-dependent transgene expression in cells contained therein, in vitro and in vivo. C3H/10T1/2 cells cultured in CuSNP hydrogels increased metabolic activity, survival rate and fibrinolytic activity, which correlated with changes at the transcriptome level. Media conditioned by CuSNP hydrogels increased viability of HUVEC which formed pseudocapillary structures and remodeled protein matrix when entrapped within these hydrogels. After long-term implantation, the skin patches that covered the CuSNP hydrogels showed increased capillary density which was not detected in mice implanted with matrices lacking CuSNP. In summary, NIR-responsive scaffolds harboring CuSNP offer compelling features in the tissue engineering field, as degradable implants with enhanced integration capacity in host tissues that can provide remote controlled deployment of therapeutic gene products.Statement of significanceHydrogels composed of fibrin embedding copper sulfide nanoparticles (CuSNP) efficiently convert incident near infrared (NIR) energy into heat and can function as cellular scaffolding. NIR laser irradiation of CuSNP hydrogels can be employed to remotely induce spatiotemporal patterns of transgene expression in genetically engineered multipotent stem cells. CuSNP incorporation in hydrogel architecture accelerates the cell-mediated degradation of the fibrin matrix and induces pro-angiogenic responses that may facilitation the integration of these NIR-responsive scaffolds in host tissues. CuSNP hydrogels that harbor cells capable of controlled expression of therapeutic gene products may be well suited for tissue engineering as they are biodegradable, enhance implant vascularization and an can be used to deploy growth factors in a desired spatiotemporal fashion.Graphical abstractGraphical abstract for this article
       
  • Fine tuning neuronal targeting of nanoparticles by adjusting the ligand
           grafting density and combining PEG spacers of different length
    • Abstract: Publication date: Available online 7 August 2018Source: Acta BiomaterialiaAuthor(s): Carla Pereira Gomes, Victoria Leiro, Cátia Daniela Ferreira Lopes, Ana Patrícia Spencer, Ana Paula Pêgo Poly(ethylene glycol) (PEG) has been extensively used to coat the surface of nanocarriers to improve their physicochemical properties and allow the grafting of targeting moieties. Still, to date there is no common agreement on the ideal PEG coverage-density or length to be used for optimum vector performance. In this study, we aimed to investigate the impact of both PEG density and length on the vectoring capacity of neuron-targeted gene-carrying trimethyl chitosan nanoparticles. The non-toxic fragment from the tetanus toxin (HC) was coupled to a 5 kDa heterobifunctional PEG (HC-PEG5k) reactive for the thiol groups inserted into the polymer backbone and grafted at different densities onto the nanoparticles. Internalization and transfection studies on neuronal versus non-neuronal cell lines allowed to determine the PEG density of 2 mol% of PEG chains per mol of primary amine groups as the one with superior biological performance. To enhance HC exposure and maximize cell-nanoparticle specific interaction, NPs containing different ratios of HC-PEG5k and 2 kDa methoxy-PEG at the same grafting density were produced. By intercalating HC-PEG5k with methoxy-PEG2k we attained the best performance in terms of internalization (higher payload delivery into cells) and transfection efficiency, using twice lower amount of HC. This outcome highlights the need for fine-tuning of PEG-modified nanoparticles towards the achievement of optimal targeting.Statement of SignificanceThe amount and exposure of targeting moieties at a nanoparticle surface are critical parameters regarding the targeting potential of nanosized delivery vectors. However, to date, few studies have considered fundamental aspects impacting the ligand-receptor pair interaction, such as the effect of spacer chain length, flexibility or conformation. By optimizing the PEG spacer density and chain length grafted into nanoparticles, we were able to establish the formulation that maximizes cell-nanoparticle specific interaction and superior biological performance. Our work shows that the precise adjustment of the PEG coverage-density presents a significant impact on the selectivity and bioactivity of the developed formulation, emphasizing the need for the fine-tuning of PEG-modified nanoparticles for the successful development of the next-generation nanomedicines.Graphical abstractGraphical abstract for this article
       
  • Direct cell-cell communication with three-dimensional cell morphology on
           wrinkled microposts
    • Abstract: Publication date: Available online 7 August 2018Source: Acta BiomaterialiaAuthor(s): Bethany R. Hughes, Marziye Mirbagheri, Stephen D. Waldman, Dae Kun Hwang Cell-cell communication plays a critical role in a myriad of processes, such as homeostasis, angiogenesis, and carcinogenesis, in multi-cellular organisms. Monolayer cell models have notably improved our understanding of cellular interactions. However, the cultured cells on the planar surfaces adopt a two-dimensional morphology, which poorly imitates cellular organization in vivo, providing physiologically-irrelevant cell responses. Non-planar surfaces comprising various patterns have demonstrated great abilities in directing cellular growth and producing different cell morphologies. In recent years, a few topographical substrates have provided valuable information about cell-cell signalling, however, none of these studies have reported a three-dimensional (3D) cell morphology. Here, we introduce a structurally tunable topographical platform that can maintain cell coupling while inducing a true 3D cell morphology. Optical imaging and fluorescence recovery after photobleaching are used to illustrate these capabilities. Our analyses suggest that the intercellular signalling on the present platform, which we propose is mainly through gap junctions, is comparable to that in natural tissue.Graphical abstractGraphical abstract for this article
       
  • Lessons to be learned and future directions for intervertebral disc
           biomaterials
    • Abstract: Publication date: Available online 6 August 2018Source: Acta BiomaterialiaAuthor(s): Matteo D'Este, David Eglin, Mauro Alini Biomaterials science has achieved significant advancements for the replacement, repair and regeneration of intervertebral disc tissues. However, the translation of this research to the clinic presents hurdles. The goal of this paper is to identify strategies to recapitulate the intrinsic complexities of the intervertebral disc, to highlight the unresolved issues in basic knowledge hindering the clinical translation, and finally to report on the emerging technologies in the biomaterials field. On this basis, we identify promising research directions, with the hope of stimulating further debate and advances for resolving clinical problems such as cervical and low back pain using biomaterial-based approaches.
       
  • Long-term Contractile Activity and Thyroid Hormone Supplementation Produce
           Engineered Rat Myocardium with Adult-like Structure and Function
    • Abstract: Publication date: Available online 4 August 2018Source: Acta BiomaterialiaAuthor(s): Christopher Jackman, Hanjun Li, Nenad Bursac The field of cardiac tissue engineering has developed rapidly, but structural and functional immaturity of engineered heart tissues hinder their widespread use. Here, we show that a combination of low-rate (0.2 Hz) contractile activity and thyroid hormone (T3) supplementation significantly promote structural and functional maturation of engineered rat cardiac tissues (“cardiobundles”). The progressive maturation of cardiobundles during first 2 weeks of culture resulted in cell cycle exit and loss of spontaneous activity, which in longer culture yielded decreased contractile function. Maintaining a low level of contractile activity by 0.2 Hz pacing between culture weeks 3 and 5, combined with T3 treatment, yielded significant growth of cardiobundle and myocyte cross-sectional areas (by 68% and 32%, respectively), increased nuclei numbers (by 22%), improved twitch force (by 39%), shortened action potential duration (by 32%), polarized N-cadherin distribution, and switch from immature (slow skeletal) to mature (fast) cardiac troponin I isoform expression. Along with advanced functional output (conduction velocity 53.7 ± 0.8 cm/s, specific force 70.1 ± 5.8 mN/mm2), quantitative ultrastructural analyses revealed similar metrics and abundance of sarcomeres, T-tubules, M-bands, and intercalated disks compared to native age-matched (5-week) and adult (3-month) ventricular myocytes. Unlike 0.2 Hz regime, chronic 1 Hz pacing resulted in significant cardiomyocyte loss and formation of necrotic core despite the use of dynamic culture. Overall, our results demonstrate remarkable ultrastructural and functional maturation of neonatal rat cardiomyocytes in 3D culture and reveal importance of combined biophysical and hormonal inputs for in vitro engineering of adult-like myocardium.Statement of SignificanceCompared to human stem cell-derived cardiomyocytes, neonatal rat ventricular myocytes show advanced maturation state which makes them suitable for in vitro studies of postnatal cardiac development. Still, maturation process from a neonatal to an adult cardiomyocyte has not been recapitulated in rodent cell cultures. Here, we show that low-frequency pacing and thyroid hormone supplementation of 3D engineered neonatal rat cardiac tissues synergistically yield significant increase in cell and tissue volume, robust formation of T-tubules and M-lines, improved sarcomere organization, and faster and more forceful contractions. To the best of our knowledge, 5-week old engineered cardiac tissues described in this study are the first that exhibit both ultrastructural and functional characteristics approaching or matching those of adult ventricular myocardium.Graphical abstractGraphical abstract for this article
       
  • Young’s modulus of trabecular bone at the tissue level: A review
    • Abstract: Publication date: Available online 4 August 2018Source: Acta BiomaterialiaAuthor(s): Dan Wu, Per Isaksson, Stephen J. Ferguson, Cecilia Persson The tissue-level Young’s modulus of trabecular bone is important for detailed mechanical analysis of bone and bone-implant mechanical interactions. However, the heterogeneity and small size of the trabecular struts complicate an accurate determination. Methods such as micro-mechanical testing of single trabeculae, ultrasonic testing, and nanoindentation have been used to estimate the trabecular Young’s modulus. This review summarizes and classifies the trabecular Young’s moduli reported in the literature. Information on species, anatomic site, and test condition of the samples has also been gathered. Advantages and disadvantages of the different methods together with recent developments are discussed, followed by some suggestions for potential improvement, for future work. In summary, this review provides a thorough introduction to the approaches used for determining trabecular Young’s modulus, highlights important considerations when applying these methods and summarizes the reported Young’s modulus for follow-up studies on trabecular properties.Statement of SignificanceThe spongy trabecular bone provides mechanical support while maintaining a low weight. A correct measure of its mechanical properties at the tissue level, i.e. at a single-trabecula level, is crucial for analysis of interactions between bone and implants, necessary for understanding e.g. bone healing mechanisms. In this study, we comprehensively summarize the Young’s moduli of trabecular bone estimated by currently available methods, and report their dependency on different factors. The critical review of different methods with recent updates is intended to inspire improvements in estimating trabecular Young’s modulus. It is strongly suggested to report detailed information on the tested bone to enable statistical analysis in the future.Graphical abstractGraphical abstract for this article
       
  • Inhibition of the Fibrillation of Highly Amyloidogenic Human Calcitonin by
           Cucurbit[7]uril with Improved Bioactivity
    • Abstract: Publication date: Available online 2 August 2018Source: Acta BiomaterialiaAuthor(s): Hui Shang, Anna Zhou, Jian Jiang, Yanpeng Liu, Jing Xie, Sheyu Li, Yantao Chen, Xiaofeng Zhu, Hong Tan, Jianshu Li Protein/peptide fibrillation is an important challenge for biotechnological drug development. Salmon calcitonin (sCT) is currently used in the clinical treatment of bone-related diseases such as osteoporosis and hypercalcemia, but it still has the risk of immune responses. Although human calcitonin (hCT) would be a better choice in terms of immunogenicity, it has a strong tendency to irreversibly aggregate in aqueous solutions and form long amyloid fibrils, which significantly reduces its bioavailability and therapeutic potency. Here, we demonstrate that cucurbit[7]uril (CB[7]) can inhibit hCT fibrillation by supramolecular interaction with its aromatic groups (affinity: Phe16> Tyr12> Phe19> Phe22). The hCT-CB[7] complex exhibits low cytotoxicity, even promotes osteoblast proliferation and osteogenic capacity of MC3T3 cells. Meanwhile the hCT-CB[7] complexes shows higher bioactivity compared to hCT in reducing blood calcium levels in rats, and also decreases the immunogenicity of hCT. These results suggest that CB[7] has the potential to improve the therapeutic potency of amyloidogenic protein/peptide drugs such as hCT.Statement of SignificanceIn the treatment of bone-related diseases such as osteoporosis (more than 200 million patients all over the world), human calcitonin (hCT) would be a better choice than salmon calcitonin in terms of immunogenicity, but it can not be used in clinic because it has a strong tendency to form amyloid fibrils. Here we demonstrate that cucurbit[7]uril (CB[7]) can inhibit hCT fibrillation by supramolecular interaction. It promotes the proliferation, osteogenic differentiation and osteogenesis of MC3T3 cells. CB[7] can decrease the immunogenicity of hCT. The hCT-CB[7] complex also exhibits improved bioactivity in rats. Thus, the CB[7]-based supramolecular strategy can be widely explored to improve the bioavailability and therapeutic potency of quite a few amyloidogenic protein/peptide drugs.Graphical abstractGraphical abstract for this article
       
  • NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of
           powders and transient-liquid-phase sintering
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Shannon L. Taylor, Amaka J. Ibeh, Adam E. Jakus, Ramille N. Shah, David C. Dunand We present a novel additive manufacturing method for NiTi-Nb micro-trusses combining (i) extrusion-based 3D-printing of liquid inks containing NiTi and Nb powders, solvents, and a polymer binder into micro-trusses with 0/90° ABAB layers of parallel, ∼600 µm struts spaced 1 mm apart and (ii) subsequent heat-treatment to remove the binder and solvents, and then bond the NiTi powders using liquid phase sintering via the formation of a transient NiTi-Nb eutectic phase. We investigate the effects of Nb concentration (0, 1.5, 3.1, 6.7 at.% Nb) on the porosity, microstructure, and phase transformations of the printed NiTi-Nb micro-trusses. Micro-trusses with the highest Nb content exhibit long channels (from 3D-printing) and struts with smaller interconnected porosity (from partial sintering), resulting in overall porosities of ∼75% and low compressive stiffnesses of 1–1.6 GPa, similar to those of trabecular bone and in agreement with analytical and finite element modeling predictions. Diffusion of Nb into the NiTi particles from the bond regions results in a Ni-rich composition as the Nb replaces Ti atoms, leading to decreased martensite/austenite transformation temperatures. Adult human mesenchymal stem cells seeded on these micro-trusses showed excellent viability, proliferation, and extracellular matrix deposition over 14 days in culture.Statement of SignificanceNear-equiatomic NiTi micro-trusses are attractive for biomedical applications such as stents, actuators, and bone implants because of their combination of biocompatibility, low compressive stiffness, high surface area, and shape-memory or superelasticity. Extrusion-based 3D-printing of NiTi powder-based inks into micro-trusses is feasible, but the subsequent sintering of the powders into dense struts is unachievable due to low diffusivity, large particle size, and low packing density of the NiTi powders. We present a solution, whereby Nb powders are added to the NiTi inks, thus forming during sintering a eutectic NiTi-Nb liquid phase which bonds the solid NiTi powders and improves densification of the struts. This study investigates the microstructure, porosity, phase transformation behavior, compressive stiffness, and cytocompatibility of these printed NiTi-Nb micro-trusses.Graphical abstractGraphical abstract for this article
       
  • In vitro response of mesenchymal stem cells to biomimetic hydroxyapatite
           substrates: A new strategy to assess the effect of ion exchange
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Joanna Maria Sadowska, Jordi Guillem-Marti, Montserrat Espanol, Christoph Stähli, Nicola Döbelin, Maria-Pau Ginebra Biomaterials can interact with cells directly, that is, by direct contact of the cells with the material surface, or indirectly, through soluble species that can be released to or uptaken from the surrounding fluids. However, it is difficult to characterise the relevance of this fluid-mediated interaction separately from the topography and composition of the substrate, because they are coupled variables. These fluid-mediated interactions are amplified in the case of highly reactive calcium phosphates (CaPs) such as biomimetic calcium deficient hydroxyapatite (CDHA), particularly in static in vitro cultures. The present work proposes a strategy to decouple the effect of ion exchange from topographical features by adjusting the volume ratio between the cell culture medium and biomaterial (VCM/VB). Increasing this ratio allowed mitigating the drastic ionic exchanges associated to the compositional changes experienced by the material exposed to the cell culture medium. This strategy was validated using rat mesenchymal stem cells (rMSCs) cultured on CDHA and beta-tricalcium phosphate (β-TCP) discs using different VCM/VB ratios. Whereas in the case of β-TCP the cell response was not affected by this ratio, a significant effect on cell adhesion and proliferation was found for the more reactive CDHA. The ionic exchange, produced by CDHA at low VCM/VB, altered cell adhesion due to the reduced number of focal adhesions, caused cell shrinkage and further rMCSs apoptosis. This was mitigated when using a high VCM/VB, which attenuated the changes of calcium and phosphate concentrations in the cell culture medium, resulting in rMSCs spreading and a viability over time. Moreover, rMSCs showed an earlier expression of osteogenic genes on CDHA compared to sintered β-TCP when extracellular calcium fluctuations were reduced.Statement of SignificanceFluid mediated interactions play a significant role in the bioactivity of calcium phosphates. Ionic exchange is amplified in the case of biomimetic hydroxyapatite, which makes the in vitro characterisation of cell-material interactions especially challenging. The present work proposes a novel and simple strategy to explore the mechanisms of interaction of biomimetic and sintered calcium phosphates with mesenchymal stem cells. The effects of topography and ion exchange are analysed separately by modifying the volume ratio between cell culture medium and biomaterial. High ionic fluctuations interfered in the maturation of focal adhesions, hampering cell adhesion and leading to increased apoptosis and reduced proliferation rate.Graphical abstractGraphical abstract for this article
       
  • Cigarette smoke increases pro-inflammatory markers and inhibits osteogenic
           differentiation in experimental exposure model
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): G.N. Cyprus, J.W. Overlin, K.M. Hotchkiss, S. Kandalam, R. Olivares-Navarrete Tobacco smokers have slowed bone growth and regeneration and more frequent implant failures than non-smokers, but the effect of cigarette smoking on the host response to bone-dwelling biomaterials is poorly understood. Macrophages and mesenchymal stem cells (MSCs) are essential in the healing response after implant placement. This study examined the effects of an experimental model of cigarette smoke exposure using cigarette smoke extract (CSE) on bone architecture in vivo and differentiation and inflammatory cytokine production on clinically relevant microstructured surfaces in vitro. CSE was prepared by bubbling mainstream smoke from one research cigarette (3R4F) in 1 mL phosphate-buffered saline. For in vivo studies, bone morphometry was examined in femurs isolated from mice injected with diluted CSE for 25 days. For in vitro studies, osteogenic markers and interleukins were measured in human MSCs and murine macrophages cultured on rough or rough-hydrophilic titanium (Ti) surfaces in culture media ± CSE for seven days. In vivo, CSE exposure decreased in bone area, volume, and interconnectivity in a dose-dependent manner. In vitro, macrophages exposed to CSE increased production of pro-inflammatory cytokines, abolishing the increase in anti-inflammatory cytokines typically seen on rough-hydrophilic surfaces. MSCs exposed to CSE had lower mRNA expression of osteoblast differentiation markers, increased levels of pro-inflammatory mRNA, and reduced production of osteogenic proteins. Our results demonstrate that CSE decreases osteogenic differentiation and anti-inflammatory interleukin production while increasing pro-inflammatory interleukin production in macrophages and MSCs, suggesting that compounds in CSE strongly affect stem cell differentiation and may compromise bone formation following biomaterial placement.Statement of SignificanceThe study of implantable materials’ interaction with biological systems occurs nearly exclusively in healthy cell and animal models. However, 15% of the US population smokes cigarettes, which is known to modulate immune response and tissue regeneration. To explore this interaction, we created a method of capturing smoke compounds as CSE for in vivo and in vitro use. We found chronic injection into mice produced an osteoporotic, pro-inflammatory phenotype similar to direct smoke models. Furthermore, CSE attenuated osteogenic differentiation and promoted a pro-inflammatory profile in MSCs and macrophages, respectively, when cultured on titanium surfaces. These results demonstrate that this CSE model may be useful for predicting how chronic tobacco exposure may adversely affect the outcome of biomedical implants in pre-clinical models.Graphical abstractGraphical abstract for this article
       
  • Bone matrix development in steroid-induced osteoporosis is associated with
           a consistently reduced fibrillar stiffness linked to altered bone mineral
           quality
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): L. Xi, P. De Falco, E. Barbieri, A. Karunaratne, L. Bentley, C.T. Esapa, N.J. Terrill, S.D.M. Brown, R.D. Cox, G.R. Davis, N.M. Pugno, R.V. Thakker, H.S. Gupta Glucocorticoid-induced osteoporosis (GIOP) is a major secondary form of osteoporosis, with the fracture risk significantly elevated – at similar levels of bone mineral density – in patients taking glucocorticoids compared with non-users. The adverse bone structural changes at multiple hierarchical levels in GIOP, and their mechanistic consequences leading to reduced load-bearing capacity, are not clearly understood. Here we combine experimental X-ray nanoscale mechanical imaging with analytical modelling of the bone matrix mechanics to determine mechanisms causing bone material quality deterioration during development of GIOP. In situ synchrotron small-angle X-ray diffraction combined with tensile testing was used to measure nanoscale deformation mechanisms in a murine model of GIOP, due to a corticotrophin-releasing hormone promoter mutation, at multiple ages (8-, 12-, 24- and 36 weeks), complemented by quantitative micro-computed tomography and backscattered electron imaging to determine mineral concentrations. We develop a two-level hierarchical model of the bone matrix (mineralized fibril and lamella) to predict fibrillar mechanical response as a function of architectural parameters of the mineralized matrix. The fibrillar elastic modulus of GIOP-bone is lower than healthy bone throughout development, and nearly constant in time, in contrast to the progressively increasing stiffness in healthy bone. The lower mineral platelet aspect ratio value for GIOP compared to healthy bone in the multiscale model can explain the fibrillar deformation. Consistent with this result, independent measurement of mineral platelet lengths from wide-angle X-ray diffraction finds a shorter mineral platelet length in GIOP. Our results show how lowered mineralization combined with altered mineral nanostructure in GIOP leads to lowered mechanical competence.Significance StatementIncreased fragility in musculoskeletal disorders like osteoporosis are believed to arise due to alterations in bone structure at multiple length-scales from the organ down to the supramolecular-level, where collagen molecules and elongated mineral nanoparticles form stiff fibrils. However, the nature of these molecular-level alterations are not known. Here we used X-ray scattering to determine both how bone fibrils deform in secondary osteoporosis, as well as how the fibril orientation and mineral nanoparticle structure changes. We found that osteoporotic fibrils become less stiff both because the mineral nanoparticles became shorter and less efficient at transferring load from collagen, and because the fibrils are more randomly oriented. These results will help in the design of new composite musculoskeletal implants for bone repair.Graphical abstractGraphical abstract for this article
       
  • Responsive antimicrobial dental adhesive based on drug-silica co-assembled
           particles
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Cameron A. Stewart, Jenny H. Hong, Benjamin D. Hatton, Yoav Finer Most dental resin composite restorations are replacements for failing restorations. Degradation of the restoration-tooth margins by cariogenic bacteria results in recurrent caries, a leading cause for restoration failure. Incorporating antimicrobial agents in dental adhesives could reduce interfacial bacterial count and reduce recurrent caries rates, inhibit interfacial degradation, and prolong restoration service life, while minimizing systemic exposure. Direct addition of antimicrobial compounds into restorative materials have limited release periods and could affect the integrity of the material. Attempts to incorporate antimicrobial within mesoporous silica nanoparticles showed theoretical promise due to their physical robustness and large available internal volume, yet yielded short-term burst release and limited therapeutic payload.We have developed novel broad-spectrum antimicrobial drug-silica particles co-assembled for long-term release and high payload incorporated into dental adhesives. The release of the drug, octenidine dihydrochloride, is modulated by the oral degradative environment and mathematically modeled to predict effective service life. Steady-state release kills cariogenic bacteria, preventing biofilm formation over the adhesive surface, with no toxicity. This novel material could extend dental restoration service life and may be applied to other long-term medical device-tissue interfaces for responsive drug release upon bacterial infection.Statement of SignificanceThis study describes a novel dental adhesive that includes a broad-spectrum antimicrobial drug-silica co-assembled particles for long-term antimicrobial effect. The release of the drug, octenidine dihydrochloride, is modulated by the oral degradative environment and mathematically modeled to predict effective release throughout the service life of the restoration. Steady-state drug-release kills caries-forming bacteria, preventing biofilm formation over the adhesive surface, without toxicity. This novel material could extend dental restoration service life and may be applied to other long-term medical device-tissue interfaces for responsive drug release upon bacterial infection. Since recurrent cavities (caries) caused by bacteria are the major reason for dental filling failure, this development represents a significant contribution to the biomaterials field in methodology and material performance.Graphical abstractFor clarity, drawing of silica precursor, drug, nano-particles, clinical picture and schematic diagram of the restoration-tooth interface are not to scale.Graphical abstract for this article
       
  • Functional reconstruction of critical-sized load-bearing bone defects
           using a Sclerostin-targeting miR-210-3p-based construct to enhance
           osteogenic activity
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Bin Hu, Yan Li, Mohan Wang, Youming Zhu, Yong Zhou, Baiyan Sui, Yu Tan, Yujie Ning, Jie Wang, Jiacai He, Chi Yang, Duohong Zou A considerable amount of research has focused on improving regenerative therapy strategies for repairing defects in load-bearing bones. The enhancement of tissue regeneration with microRNAs (miRNAs) is being developed because miRNAs can simultaneously regulate multiple signaling pathways in an endogenous manner. In this study, we developed a miR-210-based bone repair strategy. We identified a miRNA (miR-210-3p) that can simultaneously up-regulate the expression of multiple key osteogenic genes in vitro. This process resulted in enhanced bone formation in a subcutaneous mouse model with a miR-210-3p/poly-l-lactic acid (PLLA)/bone marrow-derived stem cell (BMSC) construct. Furthermore, we constructed a model of critical-sized load-bearing bone defects and implanted a miR-210-3p/β-tricalcium phosphate (β-TCP)/bone mesenchymal stem cell (BMSC) construct into the defect. We found that the load-bearing defect was almost fully repaired using the miR-210-3p construct. We also identified a new mechanism by which miR-210-3p regulates Sclerostin protein levels. This miRNA-based strategy may yield novel therapeutic methods for the treatment of regenerative defects in vital load-bearing bones by utilizing miRNA therapy for tissue engineering.Statement of SignificanceThe destroyed maxillofacial bone reconstruction is still a real challenge for maxillofacial surgeon, due to that functional bone reconstruction involved load-bearing. Base on the above problem, this paper developed a novel miR-210-3p/β-tricalcium phosphate (TCP)/bone marrow-derived stem cell (BMSC) construct (miR-210-3p/β-TCP/BMSCs), which lead to functional reconstruction of critical-size mandible bone defect. We found that the load-bearing defect was almost fully repaired using the miR-210-3p construct. In addition, we also found the mechanism of how the delivered microRNA activated the signaling pathways of endogenous stem cells, leading to the defect regeneration. This miRNA-based strategy can be used to regenerate defects in vital load-bearing bones, thus addressing a critical challenge in regenerative medicine by utilizing miRNA therapy for tissue engineering.Graphical abstractGraphical abstract for this article
       
  • Chloroquine in combination with aptamer-modified nanocomplexes for tumor
           vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to
           overcome drug resistance in EGFR-mutated non-small cell lung cancer
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Tingting Lv, Ziying Li, Liang Xu, Yingying Zhang, Haijun Chen, Yu Gao Although novel molecular targeted drugs have been recognized as an effective therapy for non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) activating mutations, their efficacy fails to meet the expectation due to the acquired resistance in tumors. Up-regulation of the anti-apoptotic protein Survivin was shown to contribute to the resistance to EGFR tyrosine kinase inhibitors (TKI) in EGFR mutation–positive NSCLC. However, the unorganized tumor blood vessels impeded drug penetration into tumor tissue. The resulting insufficient intracellular drug/gene delivery in drug-resistant cancer cells remarkably weakened the drug efficacy in NSCLC. In this work, a multi-functional drug delivery system AP/ES was developed by using anti-EGFR aptamer (Apt)-modified polyamidoamine to co-deliver erlotinib and Survivin-shRNA. Chloroquine (CQ) was used in combination with AP/ES to normalize tumor vessels for sufficient drug/gene delivery to overcome drug resistance in NSCLC cells. The obtained AP/ES possessed desired physicochemical properties, good biostability, controlled drug release profiles, and strong selectivity to EGFR-mutated NSCLC mediated by Apt. CQ not only enhanced endosomal escape ability of AP/ES for efficient gene transfection to inhibit Survivin, but also showed strong vessel-normalization ability to improve tumor microcirculation, which further promoted drug delivery and enhanced drug efficacy in erlotinib-resistant NSCLC cells. Our innovative gene/drug co-delivery system in combination with CQ showed a promising outcome in fighting against erlotinib resistance both in vitro and in vivo. This work indicates that normalization of tumor vessels could help intracellular erlotinib/Survivin-shRNA delivery and the down-regulation of Survivin could act synergistically with erlotinib for reversal of erlotinib resistance in EGFR mutation-positive NSCLC.Statement of SignificanceNSCLC patients who benefited from EGFR-TKIs inevitably developed acquired resistance. Previous research focused on synthesis of new generation of molecular targeted drugs that could irreversibly inhibit EGFR with a particular gene mutation to overcome drug resistance. However, they failed to inhibit EGFR with other gene mutations. Activation of bypass signaling pathway and the changes of tumor microenvironment are identified as two of the mechanisms of acquired resistance to EGFR-TKIs. We therefore constructed multifunctional gene/drug co-delivery nanocomplexes AP/ES co-formulated with chloroquine that could target the both two mechanisms. We found that chloroquine not only enhanced endosomal escape ability of AP/ES for efficient gene transfection to inhibit Survivin, but also showed strong vessel-normalization ability to improve tumor microcirculation, which further promoted drug delivery into tumor tissue and enhanced drug efficacy in erlotinib-resistant NSCLC.Graphical abstractGraphical abstract for this article
       
  • Engineering folate-targeting diselenide-containing triblock copolymer as a
           redox-responsive shell-sheddable micelle for antitumor therapy in vivo
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Farnaz Behroozi, Mohammad-Jafar Abdkhodaie, Hamid Sadeghi Abandansari, Leila Satarian, Mohammad Molazem, Khuloud T. Al-Jamal, Hossein Baharvand The oxidation-reduction (redox)–responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA)2]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic–hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC) in an aqueous environment. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses showed that the micelles were spherical with an average diameter of 120 nm. The insoluble anticancer drug paclitaxel (PTX) was loaded into micelles, and its triggered release behavior under different redox conditions was verified. Folate-targeting micelles showed an enhanced uptake in 4T1 breast cancer cells and in vitro cytotoxicity by flow cytometry and (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay, respectively. Delayed tumor growth was confirmed in the subcutaneously implanted 4T1 breast cancer in mice after intraperitoneal injection. The proposed redox-responsive copolymer offers a new type of biomaterial for drug delivery into cancer cells in vivo.Statement of SignificanceOn-demand drug actuation is highly desired. Redox-responsive polymeric DDSs have been shown to be able to respond and release their cargo in a selective manner when encountering a significant change in the potential difference, such as that present between cancerous and healthy tissues. This study offers an added advantage to the field of redox-responsive polymers by reporting a new type of shell-sheddable micelle based on an amphiphilic triblock co-polymer, containing diselenide as a redox-sensitive linkage. The linkage was smartly located at the hydrophilic-hydrophilic bridge in the co-polymer offering complete collapse of the micelle when exposed to the right trigger. The system was able to delay tumor growth and reduce toxicity in a breast cancer tumor model following intraperitoneal injection in mice.Graphical abstractGraphical abstract for this article
       
  • Kinetics of dopamine release from poly(aspartamide)-based prodrugs
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): David Juriga, Istvan Laszlo, Krisztina Ludanyi, Imre Klebovich, Chang Hoon Chae, Miklos Zrinyi Preparation of novel biocompatible and biodegradable polymer-based prodrugs that can be applied in complex drug delivery systems is one of the most researched fields in pharmaceutics. The kinetics of the drug release strongly depends on the physicochemical parameters of prodrugs as well as environmental properties, therefore precise kinetical description is crucial to design the appropriate polymer prodrug formula. The aim of the present study was to investigate the dopamine release from different poly(aspartamide) based dopamine drug conjugates in different environments and to work out a kinetic description which can be extended to describe drug release in similar systems. Poly(aspartamide) was conjugated with different amounts of dopamine. In order to alter the solubility of the conjugates, 2-aminoethanol was also grafted to the main chain. Chemical structure as well as physical properties such as solubility, lipophilicity measurements and thermogravimetric analysis has been carried out. Kinetics of dopamine release from the macromolecular prodrugs which has good water solubility has been studied and compared in different environments (phosphate buffer, Bromelain and α-Chymotrypsin). It was found that the kinetics of release in those solutions can be satisfactorily described by first order reaction rate. For poorly-soluble conjugates, the release of dopamine was considered as a result of coupling of diffusion and chemical reaction. Besides the time dependence of dopamine cleavage, a practical quantity, the half–life of the release of loading capacity has been introduced and evaluated. It was found, that dopamine containing macromolecular prodrugs exhibit prolonged release kinetics and the quantitative description of the kinetics, including the most important physical parameters provides a solid base for future pharmaceutical and medical studies.Statement of SignificancePoly(aspartamide) based polymer-drug conjugates are promising for controlled and prolonged drug delivery due to their biocompatibility and biodegradability. In this study different poly(aspartamide) based dopamine conjugates were synthesized which can protect dopamine from deactivation in the human body. Since there is no satisfying kinetics description for drug release from covalent polymer-drug conjugates in the literature, dopamine release was investigated in different environments and a complete kinetical description was worked out. This study demonstrates that poly(aspartamide) is able to protect conjugated dopamine from deactivation and provide prolonged release in alkaline pH as well as in the presence of different enzymes. Furthermore, detailed kinetical descriptions were demonstrated which can be used in case of other covalent polymer-drug conjugates.Graphical abstractGraphical abstract for this article
       
  • Preservation of the soft protein corona in distinct flow allows
           identification of weakly bound proteins
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): C. Weber, J. Simon, V. Mailänder, S. Morsbach, K. Landfester Nanocarriers that are used for targeted drug delivery come in contact with biological liquids and subsequently proteins will adsorb to the nanocarriers’ surface to form the so called ‘protein corona’. The protein corona defines the biological identity and determines the biological response towards the nanocarriers in the body. To make nanomedicine safe and reliable it is required to get a better insight into this protein corona and, therefore, the adsorbed proteins have to be characterized. Currently, centrifugation is the common method to isolate the protein corona for further investigations. However, with this method it is only possible to investigate the strongly bound proteins, also referred to as ‘hard protein corona’. Therefore, we want to introduce a new separation technique to separate nanoparticles including the soft protein corona containing also loosely bound proteins for further characterization. The used separation technique is the asymmetric flow field-flow fractionation (AF4). We were able to separate the nanoparticles with proteins forming the soft protein corona and were able to show that in our system only the hard protein corona directly influenced the cell uptake behavior.Statement of SignificanceCurrently, there is an ongoing debate whether only strongly bound proteins (hard corona) or also loosely bound proteins (soft corona) contribute to the biological identity of nanocarriers, because up to now isolation of the soft corona was not possible. Here, asymmetric flow field-flow fractionation was used to isolate nanoparticles with a preserved soft corona from the biological medium. This enabled the characterization of the soft corona composition and to evaluate its influence on cellular uptake. For our system we found that only the strongly bound proteins (hard corona) determined cell internalization. This method can now be used to evaluate the impact of the soft corona further and to characterize nanomaterials that cannot be separated from blood plasma by other means.Graphical abstractGraphical abstract for this article
       
  • Titania coating of mesoporous silica nanoparticles for improved
           biocompatibility and drug release within blood vessels
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Asima Farooq, Ali Shukur, Cai Astley, Lubomira Tosheva, Peter Kelly, Debra Whitehead, May Azzawi Blood vessel disease is a major contributor to cardiovascular morbidity and mortality and is hallmarked by dysfunction of the lining endothelial cells (ECs). These cells play a significant role in vascular homeostasis, through the release of mediators to control vessel diameter, hence tissue perfusion. Mesoporous silica nanoparticles (MSNs) can be used as potential drug delivery platforms for vasodilator drugs. Here, using an ex vivo model of vascular function, we examine the use of titania coating for improved biocompatibility and release dynamics of MSN loaded sodium nitroprusside (SNP). MSNs (95 ± 23 nm diameter; pore size 2.7 nm) were synthesised and fully characterised. They were loaded with SNP and coated with titania (TiO2), using the magnetron sputtering technique. Pre-constricted aortic vessels were exposed to drug loaded MSNs (at 1.96 × 1012 MSN mL−1) and the time course of vessel dilation observed, in real time. Exposure of viable vessels to MSNs lead to their internalization into the cytoplasm of ECs, while TiMSNs were also observed in the elastic lamina and smooth muscle cell layers. We demonstrate that titania coating of MSNs significantly improves their biocompatibility and alters the dynamics of drug release. A slow and more sustained relaxation was evident after uptake of TiMSN-SNP, in comparison to uncoated MSN-SNP (rate of dilation was 0.08% per min over a 2.5 h period). The use of titania coated MSNs for drug delivery to the vasculature may be an attractive strategy for therapeutic clinical intervention in cardiovascular disease.Statement of SignificanceCardiovascular disease is a major cause of mortality and morbidity worldwide, with a total global cost of over $918 billion, by 2030. Mesoporous silica nanoparticles (MSNs) have great potential for the delivery of drugs that can treat vessel disease. This paper provides the first description for the use of titania coated MSNs with increased vascular penetration, for the delivery of vasodilator drugs, without compromising overall vessel function. We demonstrate that titania coating of MSNs significantly improves their biocompatibility and uptake within aortic blood vessels and furthermore, enables a slower and more sustained release of the vasodilator drug, sodium nitroprusside within the vessel, thus making them an attractive strategy for the treatment of vascular disease.Graphical abstractGraphical abstract for this article
       
  • α-Galactosylceramide and peptide-based nano-vaccine synergistically
           induced a strong tumor suppressive effect in melanoma
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Vanessa Sainz, Liane I.F. Moura, Carina Peres, Ana I. Matos, Ana S. Viana, Angela M. Wagner, Julia E. Vela Ramirez, Teresa S. Barata, Manuela Gaspar, Steve Brocchini, Mire Zloh, Nicholas A. Peppas, Ronit Satchi-Fainaro, Helena F. Florindo α-Galactosylceramide (GalCer) is a glycolipid widely known as an activator of Natural killer T (NKT) cells, constituting a promising adjuvant against cancer, including melanoma. However, limited clinical outcomes have been obtained so far. This study evaluated the synergy between GalCer and major histocompatibility complex (MHC) class I and MHC class II melanoma-associated peptide antigens and the Toll-Like Receptor (TLR) ligands CpG and monophosphoryl lipid A (MPLA), which we intended to maximize following their co-delivery by a nanoparticle (NP). This is expected to improve GalCer capture by dendritic cells (DCs) and subsequent presentation to NKT cells, simultaneously inducing an anti-tumor specific T-cell mediated immunity.The combination of GalCer with melanoma peptides and TLR ligands successfully restrained tumor growth. The tumor volume in these animals was 5-fold lower than the ones presented by mice immunized with NPs not containing GalCer. However, tumor growth was controlled at similar levels by GalCer entrapped or in its soluble form, when mixed with antigens and TLR ligands. Those two groups showed an improved infiltration of T lymphocytes into the tumor, but only GalCer-loaded nano-vaccine induced a prominent and enhanced infiltration of NKT and NK cells. In addition, splenocytes of these animals secreted levels of IFN-γ and IL-4 at least 1.5-fold and 2-fold higher, respectively, than those treated with the mixture of antigens and adjuvants in solution. Overall, the combined delivery of the NKT agonist with TLR ligands and melanoma antigens via this multivalent nano-vaccine displayed a synergistic anti-tumor immune-mediated efficacy in B16F10 melanoma mouse model.Statement of SignificanceCombination of α-galactosylceramide (GalCer), a Natural Killer T (NKT) cell agonist, with melanoma-associated antigens presented by MHC class I (Melan-A:26) and MHC class II (gp100:44) molecules, and Toll-like Receptor (TLR) ligands (MPLA and CpG), within nanoparticle matrix induced a prominent anti-tumor immune response able to restrict melanoma growth. An enhanced infiltration of NKT and NK cells into tumor site was only achieved when the combination GalCer, antigens and TLR ligands were co-delivered by the nanovaccine.Graphical abstractGraphical abstract for this article
       
  • Sustained delivery of siRNA/mesoporous silica nanoparticle complexes from
           nanofiber scaffolds for long-term gene silencing
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Coline Pinese, Junquan Lin, Ulla Milbreta, Mingqiang Li, Yucai Wang, Kam W. Leong, Sing Yian Chew A low toxicity and efficient delivery system is needed to deliver small interfering RNAs (siRNA) in vitro and in vivo. The use of mesoporous silica nanoparticles (MSN) is becoming increasingly common due to its biocompatibility, tunable pore size and customizable properties. However, bolus delivery of siRNA/MSN complexes remains suboptimal, especially when a sustained and long-term administration is required. Here, we utilized electrospun scaffolds for sustained delivery of siRNA/MSN-PEI through surface adsorption and nanofiber encapsulation. As a proof-of-concept, we targeted collagen type I expression to modulate fibrous capsule formation. Surface adsorption of siRNA/MSN-PEI provided sustained availability of siRNA for at least 30 days in vitro. As compared to conventional bolus delivery, such scaffold-mediated transfection provided more effective gene silencing (p 
       
  • Investigation on vascular cytotoxicity and extravascular transport of
           cationic polymer nanoparticles using perfusable 3D microvessel model
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Jungho Ahn, Chong-Su Cho, Seong Woo Cho, Joo H. Kang, Sung-Yon Kim, Dal-Hee Min, Joon Myong Song, Tae-Eun Park, Noo Li Jeon Vascular networks are the first sites exposed to cationic polymer nanoparticles (NPs) administered intravenously, and thus function as a barrier for NPs reaching the target organ. While cationic polymer NPs have been intensively studied as non-viral delivery systems, their biological effects in human microvessels have been poorly investigated due to a lack of appropriate in vitro systems. Here, we employed a three-dimensional microvessel on a chip, which accurately models in vivo conditions. An open and perfused microvessel surrounded by pericytes was shown to reproduce the important features of living vasculature, including barrier function and biomarkers. Using this microvessel chip, we observed contraction of the microvascular lumen induced by perfused polyethylenimine (PEI)/DNA NPs. We demonstrated that the oxidative stress present when microvessels were exposed to PEI NPs led to rearrangement of microtubules resulting in microvessel contraction. Furthermore, the transcytotic behavior of PEI NPs was analyzed in the microvessel by monitoring the escape of PEI NPs from the microvascular lumen into the perivascular region, which was not possible in two-dimensional culture systems. With our new understanding of the different behaviors of cationic polymer NPs depending on their transcytotic route, we suggest that caveolae-mediated transcytosis is a powerful route for efficient extravascular transport.Statement of SignificanceMicrovascular networks are not only biological system constituting largest surface area in the body and but also first site exposed to nanoparticle in vivo. While cationic polymer NPs have been intensively studied as non-viral delivery systems, its biological effects in human microvessel have been poorly investigated due to lack of appropriate in vitro systems. Here, we microengineered an open and perfused 3D pericyte incorporated microvessel model which possesses same morphological characteristic of in vivo. Using the microengineered model, this study represents the first report of transcytotic behavior of NPs in 3D microvessel, and its effect on extravasation efficiency. Our study lays the groundwork for the integration of innovative technologies to examine blood vessel-nanoparticle interaction, which a critical but ill-defined phenomenon.Graphical abstractGraphical abstract for this article
       
  • Stimulation of calvarial bone healing with human bone marrow stromal cells
           versus inhibition with adipose-tissue stromal cells on nanostructured
           β-TCP-collagen
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Friederike Bothe, Benedict Lotz, Elisabeth Seebach, Jennifer Fischer, Eliane Hesse, Solvig Diederichs, Wiltrud Richter Bioactive functional scaffolds are essential for support of cell-based strategies to improve bone regeneration. Adipose-tissue-derived-stromal cells (ASC) are more accessible multipotent cells with faster proliferation than bone-marrow-derived-stromal-cells (BMSC) having potential to replace BMSC for therapeutic stimulation of bone-defect healing. Their osteogenic potential is, however, lower compared to BMSC, a deficit that may be overcome in growth factor-rich orthotopic bone defects with enhanced bone-conductive scaffolds. Objective of this study was to compare the therapeutic potency of human ASC and BMSC for bone regeneration on a novel nanoparticulate β-TCP/collagen-carrier (β-TNC).Cytotoxicity of β-TCP nanoparticles and multilineage differentiation of cells were characterized in vitro. Cell-seeded β-TNC versus cell-free controls were implanted into 4 mm calvarial bone-defects in immunodeficient mice and bone healing was quantified by µCT at 4 and 8 weeks. Tissue-quality and cell-origin were assessed by histology.β-TNC was non-toxic, radiolucent and biocompatible, lent excellent support for human cell persistence and allowed formation of human bone tissue by BMSC but not ASC. Opposite to BMSC, ASC-grafting significantly inhibited calvarial bone healing compared to controls. Bone formation progressed significantly from 4 to 8 weeks only in BMSC and controls yielding 5.6-fold more mineralized tissue in BMSC versus ASC-treated defects.Conclusively, β-TNC was simple to generate, biocompatible, osteoconductive, and stimulated osteogenicity of BMSC to enhance calvarial defect healing while ASC had negative effects. Thus, an orthotopic environment and β-TNC could not compensate for cell-autonomous deficits of ASC which should systematically be considered when choosing the right cell source for tissue engineering-based stimulation of bone regeneration.Statement of SignificanceBone-marrow-derived-stromal cells (BMSC) implanted on bone replacement materials can support bone defect healing and adipose-tissue-derived-stromal cells (ASC) being more accessible and better proliferating are considered as alternate source. This first standardized comparison of the bone regeneration potency of human ASC and BMSC was performed on a novel nanoparticular β-TCP-enriched collagen-carrier (β-TNC) designed to overcome the known inferior osteogenicity of ASC. β-TNC was non-toxic, biocompatible and osteoconductive supporting human bone formation and defect-closure by BMSC but not ASC. Long-term cell-persistence and the distinct secretome of ASC appear as main reasons why ASC inhibited bone healing opposite to BMSC. Overall, ASC-grafting is at considerable risk of producing negative effects on bone-healing while no such risks are known for BMSC.Graphical abstractGraphical abstract for this article
       
  • Platelet-derived growth factor-coated decellularized meniscus scaffold for
           integrative healing of meniscus tears
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Kwang Il Lee, Merissa Olmer, Jihye Baek, Darryl D. D'Lima, Martin K. Lotz The aim of this study was to examine the potential of platelet-derived growth factor (PDGF)-coated decellularized meniscus scaffold in mediating integrative healing of meniscus tears by inducing endogenous cell migration.Fresh bovine meniscus was chemically decellularized and covalently conjugated with heparin and PDGF-BB. In vitro PDGF release kinetics was measured. The scaffold was transplanted into experimental tears in avascular bovine meniscus explants and cultured for 2 and 4 weeks. The number migrating and proliferating cells at the borderline between the scaffold and injured explant and PDGF receptor-β (PDGFRβ) expressing cells were counted. The alignment of the newly produced ECM and collagen was analyzed by Safranin-O, picrosirius red staining, and differential interference contrast (DIC). Tensile testing of the explants was performed after culture for 2 and 4 weeks.Heparin conjugated scaffold showed immobilization of high levels of PDGF-BB, with sustained release over 2 weeks. Insertion of the PDGF-BB treated scaffold in defects in avascular meniscus led to increased PDGFRβ expression, cell migration and proliferation into the defect zone. Safranin-O, picrosirius red staining and DIC showed tissue integration between the scaffold and injured explants. Tensile properties of injured explants treated with PDGF-BB coated scaffold were significantly higher than in the scaffold without PDGF.In conclusion, PDGF-BB-coated scaffold increased PDGFRβ expression and promoted migration of endogenous meniscus cells to the defect area. New matrix was formed that bridged the space between the native meniscus and the scaffold and this was associated with improved biomechanical properties. The PDGF-BB-coated scaffold will be promising for clinical translation to healing of meniscus tears.Statement of SignificanceMeniscus tears are the most common injury of the knee joint. The most prevalent forms that occur in the inner third typically do not spontaneously heal and represent a major risk factor for the development of knee osteoarthritis. The goal of this project was to develop an approach that is readily applicable for clinical use.We selected a natural and readily available decellularized meniscus scaffold and conjugated it with PDGF, which we had previously found to have strong chemotactic activity for chondrocytes and progenitor cells.The present results show that insertion of the PDGF-conjugated scaffold in defects in avascular meniscus led to endogenous cell migration and proliferation into the defect zone with tissue integration between the scaffold and injured explants and improved tensile properties.This PDGF-conjugated scaffold will be promising for a translational approach to healing of meniscus tears.Graphical abstractGraphical abstract for this article
       
  • Incorporating β-cyclodextrin into collagen scaffolds to sequester growth
           factors and modulate mesenchymal stem cell activity
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): William K. Grier, Aleczandria S. Tiffany, Matthew D. Ramsey, Brendan A.C. Harley The development of biomaterials for a range of tissue engineering applications increasingly requires control over the bioavailability of biomolecular cues such as growth factors in order to promote desired cell responses. While efforts have predominantly concentrated on covalently-bound or freely-diffusible incorporation of biomolecules in porous, three-dimensional biomaterials, opportunities exist to exploit transient interactions to concentrate growth factor activity over desired time frames. Here, we report the incorporation of β-cyclodextrin into a model collagen-GAG scaffold as a means to exploit the passive sequestration and release of growth factors via guest-host interactions to control mesenchymal stem cell differentiation. Collagen-GAG scaffolds that incorporate β-cyclodextrin show improved sequestration as well as extended retention and release of TGF-β1. We further show extended retention and release of TGF-β1 and BMP-2 from β-cyclodextrin modified scaffolds was sufficient to influence the metabolic activity and proliferation of mesenchymal stem cells as well as differential activation of Smad 2/3 and Smad 1/5/8 pathways associated with differential osteo-chondral differentiation. Further, gene expression analysis showed TGF-β1 release from β-cyclodextrin CG scaffolds promoted early chondrogenic-specific differentiation. Ultimately, this work establishes a novel method for the incorporation and display of growth factors within CG scaffolds via supramolecular interactions. Such a design framework offers opportunities to selectively alter the bioavailability of multiple biomolecules within a three-dimensional collagen-GAG scaffold to enhance cell activity for a range of musculoskeletal regenerative medicine applications.Statement of SignificanceWe describe the incorporation of β-cyclodextrin into a model CG-scaffold under development for musculoskeletal tissue engineering applications. We show β-cyclodextrin modified scaffolds promote the sequestration of soluble TGF-β1 and BMP-2 via guest-host interactions, leading to extended retention and release. Further, β-cyclodextrin modified CG scaffolds promote TGF-β1 or BMP-2 specific Smad signaling pathway activation associated with divergent osseous versus chondrogenic differentiation pathways in mesenchymal stem cells.Graphical abstractGraphical abstract for this article
       
  • Characterization of clinically relevant model bacterial strains of
           Pseudomonas aeruginosa for anti-biofilm testing of materials
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Olena Rzhepishevska, Nataliia Limanska, Mykola Galkin, Alicia Lacoma, Margaretha Lundquist, Dmytro Sokol, Shoghik Hakobyan, Anders Sjöstedt, Cristina Prat, Madeleine Ramstedt There is a great interest in developing novel anti-biofilm materials in order to decrease medical device-associated bacterial infections causing morbidity and high healthcare costs. However, the testing of novel materials is often done using bacterial lab strains that may not exhibit the same phenotype as clinically relevant strains infecting medical devices. Furthermore, no consensus of strain selection exists in the field, making results very difficult to compare between studies. In this work, 19 clinical isolates of Pseudomonas aeruginosa originating from intubated patients in an intensive care unit have been characterized and compared to the lab reference strain PAO1 and a rmlC lipopolysaccharide mutant of PAO1. The adhesion and biofilm formation was monitored, as well as cell properties such as hydrophobicity, zeta potential and motility. Two groups of isolates were observed: one with high adhesion to polymer surfaces and one with low adhesion (the latter including PAO1). Furthermore, detailed biofilm assays in a flow system were performed using five characteristic isolates from the two groups. Confocal microscopy showed that the adhesion and biofilm formation of four of these five strains could be reduced dramatically on zwitterionic surface coatings. However, one isolate with pronounced swarming colonized and formed biofilm also on the antifouling surface. We demonstrate that the biofilm properties of clinical isolates can differ greatly from that of a standard lab strain and propose two clinical model strains for testing of materials designed for prevention of biofilm formation in the respiratory tract. The methodology used could beneficially be applied for screening of other collections of pathogens to identify suitable model strains for in vitro biofilm testing.Statement of SignificanceMedical-device associated infections present a great challenge in health care. Therefore, much research is undertaken to prevent bacterial colonization of new types of biomaterials. The work described here characterizes, tests and presents a number of clinically relevant bacterial model strains for assessing biofilm formation by Pseudomonas aeruginosa. Such model strains are of importance as they may provide better predictability of lab testing protocols with respect to how well materials would perform in an infection situation in a patient. Furthermore, this study uses the strains to test the performance of polymer surfaces designed to repel bacterial adhesion and it is shown that the biofilm formation for four out of the five tested bacterial strains was reduced.Graphical abstractGraphical abstract for this article
       
  • Plant-inspired gallolamine catalytic surface chemistry for engineering an
           efficient nitric oxide generating coating
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Zhilu Yang, Hua Qiu, Xiangyang Li, Peng Gao, Nan Huang A novel concept of generating therapeutic gas, nitric oxide (NO) via catalytic phenolic-amine “gallolamine” surface chemistry is developed. The concept is realized using plant polyphenol, gallic acid, and a glutathione peroxidase-like organoselenium compound cystamine or selenocystamine through one-step phenol-amine molecular assembling process. The resulting NO-generating coating with phenolic-cystamine or -selenocystamine framework showed the ability for long-term, steady and controllable range of NO release rates being unparalleled with any existing NO-releasing or NO-generating surface engineering toolkits.Statement of SignificanceDeveloping a facile and versatile strategy for a NO-generating coating with long-term, stable and adjustable NO release is of great interest for the application of blood-contacting materials and devices. Covalent immobilization of glutathione peroxidase (GPx)-like compound to generate NO from a material surface by exposure of endogenously existed S-nitrothiol (RSNO) is a popular strategy. However, it is generally involved in multi-step and complicated processes. Moreover, the amount of immobilized GPx-like compounds is limited by the density of introduced reactive functional groups on a surface. Herein, we propose a novel concept of catalytic plant-inspired gallolamine surface chemistry for material-independent NO-generating coatings. The concept is realized using plant polyphenol, gallic acid, and a GPx-like organoselenium compound cystamine or selenocystamine through one-step phenol-amine molecular assembling process. Without tedious multi-step synthesis, complicated surface treatments, and leakage of toxic chemicals, our unprecedentedly simple, histocompatible and biocompatible phenolic-cystamine or -selenocystamine framework demonstrated long-term, on-demand and facile dose controls of NO generated from the engineering surfaces. These unique features of such a NO-generating coating imparted a material with ability to impressively improve anti-thrombogenicity in vivo. This work constitutes the first report of an interfacial catalytic coating based on material-independent surface chemistry by plant polyphenols. This concept not only expands the application of material-independent surface chemistry in an interfacial catalytic area, but also can be a new platform for antithrombotic materials.Graphical abstractGraphical abstract for this article
       
  • Templated dentin formation by dental pulp stem cells on banded collagen
           bundles nucleated on electrospun poly (4-vinyl pyridine) fibers in vitro
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Linxi Zhang, Yingjie Yu, Kuan-che Feng, Ya-chen Chuang, Xianghao Zuo, Yuchen Zhou, Chung-cheuh Chang, Marcia Simon, Miriam Rafailovich Eventhough it is well established that materials can promote stem cell differentiation, hard tissue formation is a templated process for which little is known regarding the in vitro process. We have found that surface curvature enables self-assembly of triple helical collagen fibrils into banded bundle structures from rat tail and human collagen secreted by dental pulp stem cells. Collagen fibrils were adsorbed at 4 °C on spun cast flat P4VP films and electrospun fibers. Protein adsorption was observed on both surfaces, but large banded bundles with a uniform spacing of approximately 55 nm were present only on the fiber surfaces. SEM/EDS mapping showed that dental pulp stem cells plated on the same surfaces biomineralized copiously only along the electrospun fibers. Raman spectroscopy indicated that despite the presence of adsorbed collagen on the flat surfaces, only the deposits present on the fibrous surface had a protein to hydroxyl apatite ratio similar to natural dentin from human teeth. RT-PCR indicated up regulation of collagen, osteocalcin and dental sialophosphate protein, confirming that odontogenic differentiation is promoted only on the fiber scaffolds. Taken together the results indicate that, in addition to surface chemistry, the supermolecular structure of ECM collagen, which is essential in directing DPSCs differentiation and templating biomineralization, can be modified by the underlying surface morphology.Statement of SignificanceThe past decade has been focused efforts in the use of dental pulp stem cells (DPSC) for dental regeneration. Eventhough the factors required for DPSCs differentiation have been well studied, actual mineral deposition, positively identified as dentin, has not been achieved in vitro. Hard tissue is known to be a templated process in vivo where the mineral to protein ratio is tightly controlled via proteins which aid in collagen conformation and mineral sequestration. Here we show that one can mimic this process in vitro via the combination of materials selection and morphology. The material chemistry is shown to induce genetic upregulation the genes responsible for collagen and osteocalcin, while Raman spectroscopy confirms the translation and adsorption the proteins on the substrate. But, we show that the simple presence of collagen is not enough to template actual biomineral deposition similar to that found in vivo. Mineral deposition is a complicated process templated on collagen bundles and mediated by specific sibling proteins that determine the protein to mineral ratio. Here we show that surface curvature can reduce the barrier to collagen bundle formation, directing DPSC differentiation along odontogenic lineage, and subsequently templating actual dentin, comparable to that found in vivo in human teeth.Graphical abstractGraphical abstract for this article
       
  • Additive manufacturing of hierarchical injectable scaffolds for tissue
           engineering
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): A. Béduer, N. Piacentini, L. Aeberli, A. Da Silva, C.A. Verheyen, F. Bonini, A. Rochat, A. Filippova, L. Serex, P. Renaud, T. Braschler We present a 3D-printing technology allowing free-form fabrication of centimetre-scale injectable structures for minimally invasive delivery. They result from the combination of 3D printing onto a cryogenic substrate and optimisation of carboxymethylcellulose-based cryogel inks. The resulting highly porous and elastic cryogels are biocompatible, and allow for protection of cell viability during compression for injection. Implanted into the murine subcutaneous space, they are colonized with a loose fibrovascular tissue with minimal signs of inflammation and remain encapsulation-free at three months. Finally, we vary local pore size through control of the substrate temperature during cryogenic printing. This enables control over local cell seeding density in vitro and over vascularization density in cell-free scaffolds in vivo. In sum, we address the need for 3D-bioprinting of large, yet injectable and highly biocompatible scaffolds and show modulation of the local response through control over local pore size.Statement of SignificanceThis work combines the power of 3D additive manufacturing with clinically advantageous minimally invasive delivery. We obtain porous, highly compressible and mechanically rugged structures by optimizing a cryogenic 3D printing process. Only a basic commercial 3D printer and elementary control over reaction rate and freezing are required. The porous hydrogels obtained are capable of withstanding delivery through capillaries up to 50 times smaller than their largest linear dimension, an as yet unprecedented compression ratio. Cells seeded onto the hydrogels are protected during compression. The hydrogel structures further exhibit excellent biocompatibility 3 months after subcutaneous injection into mice.We finally demonstrate that local modulation of pore size grants control over vascularization density in vivo. This provides proof-of-principle that meaningful biological information can be encoded during the 3D printing process, deploying its effect after minimally invasive implantation.Graphical abstractGraphical abstract for this article
       
  • Dual surface modification of PDMS-based silicone implants to suppress
           capsular contracture
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Byoung Yong Yoo, Byung Hwi Kim, Jae Sang Lee, Byung Ho Shin, Heeyeon Kwon, Won-Gun Koh, Chan Yeong Heo In this study, we report a new physicochemical surface on poly(dimethylsiloxane) (PDMS)-based silicone implants in an effort to minimize capsular contracture. Two different surface modification strategies, namely, microtexturing as a physical cue and multilayer coating as a chemical cue, were combined to achieve synergistic effects. The deposition of uniformly sized microparticles onto uncured PDMS surfaces and the subsequent removal after curing generated microtextured surfaces with concave hemisphere micropatterns. The size of the individual micropattern was controlled by the microparticle size. Micropatterns of three different sizes (37.16, 70.22, and 97.64 μm) smaller than 100 μm were produced for potential application to smooth and round-shaped breast implants. The PDMS surface was further chemically modified by layer-by-layer (LbL) deposition of poly-l-lysine and hyaluronic acid. Short-term in vitro experiments demonstrated that all the PDMS samples were cytocompatible. However, lower expression of TGF-β and α-SMA, the major profibrotic cytokine and myofibroblast marker, respectively, was observed in only multilayer-coated PDMS samples with larger size micropatterns (70.22 and 97.64 μm), thereby confirming the synergistic effects of physical and chemical cues. An in vivo study conducted for 8 weeks after implantation in rats also indicated that PDMS samples with larger size micropatterns and multilayer coating most effectively inhibited capsular contracture based on analyses of tissue inflammation, number of macrophage, fibroblast and myofibroblast, TGF-β expression, collagen density, and capsule thickness.Statement of SignificanceAlthough poly(dimethylsiloxane) (PDMS)-based silicone implants have been widely used for various applications including breast implants, they usually cause typical side effects called as capsular contracture. Prior studies have shown that microtexturing and surface coating could reduce capsular contracture. However, previous methods are limited in their scope for application, and it is difficult to obtain FDA approval because of the large and nonuniform size of the microtexture as well as the use of toxic chemical components. Herein, those issues could be addressed by creating a microtexture of size less than 100 m, with a narrow size distribution and using layer-by-layer deposition of a biocompatible polymer without using any toxic compounds. Furthermore, this is the first attempt to combine microtexture with multilayer coating to obtain synergetic effects in minimizing the capsular contracture.Graphical abstractGraphical abstract for this article
       
  • l-lactic+acid)+scaffold+and+matrilin-3&rft.title=Acta+Biomaterialia&rft.issn=1742-7061&rft.date=&rft.volume=">Suppressing mesenchymal stem cell hypertrophy and endochondral
           ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic
           acid) scaffold and matrilin-3
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Qihai Liu, Jun Wang, Yupeng Chen, Zhanpeng Zhang, Laura Saunders, Ernestina Schipani, Qian Chen, Peter X. Ma Articular cartilage has a very limited ability to self-heal after injury or degeneration due to its low cellularity, poor proliferative activity, and avascular nature. Current clinical options are able to alleviate patient suffering, but cannot sufficiently regenerate the lost tissue. Biomimetic scaffolds that recapitulate the important features of the extracellular matrix (ECM) of cartilage are hypothesized to be advantageous in supporting cell growth, chondrogenic differentiation, and integration of regenerated cartilage with native cartilage, ultimately restoring the injured tissue to its normal function. It remains a challenge to support and maintain articular cartilage regenerated by bone marrow-derived mesenchymal stem cells (BMSCs), which are prone to hypertrophy and endochondral ossification after implantation in vivo. In the present work, a nanofibrous poly(l-lactic acid) (NF PLLA) scaffold developed by our group was utilized because of the desired highly porous structure, high interconnectivity, and collagen-like NF architecture to support rabbit BMSCs for articular cartilage regeneration. We further hypothesized that matrilin-3 (MATN3), a non-collagenous, cartilage-specific ECM protein, would enhance the microenvironment of the NF PLLA scaffold for cartilage regeneration and maintain the cartilage property. To test this hypothesis, we seeded BMSCs on the NF PLLA scaffold with or without MATN3. We found that MATN3 suppresses hypertrophy in this 3D culture system in vitro. Subcutaneous implantation of the chondrogenic cell/scaffold constructs in a nude mouse model showed that pretreatment with MATN3 was able to maintain chondrogenesis and prevent hypertrophy and endochondral ossification in vivo. These results demonstrate that the porous NF PLLA scaffold treated with MATN3 represents an advantageous 3D microenvironment for cartilage regeneration and phenotype maintenance, and is a promising strategy for articular cartilage repair.Statement of SignificanceArticular cartilage defects, caused by trauma, inflammation, or joint instability, may ultimately lead to debilitating pain and disability. Bone marrow-derived mesenchymal stem cells (BMSCs) are an attractive cell source for articular cartilage tissue engineering. However, chondrogenic induction of BMSCs is often accompanied by undesired hypertrophy, which can lead to calcification and ultimately damage the cartilage. Therefore, a therapy to prevent hypertrophy and endochondral ossification is of paramount importance to adequately regenerate articular cartilage. We hypothesized that MATN3 (a non-collagenous ECM protein expressed exclusively in cartilage) may improve regeneration of articular cartilage with BMSCs by maintaining chondrogenesis and preventing hypertrophic transition in an ECM mimicking nanofibrous scaffold. Our results showed that the administration of MATN3 to the cell/nanofibrous scaffold constructs favorably maintained chondrogenesis and prevented hypertrophy/endochondral ossification in the chondrogenic constructs in vitro and in vivo. The combination of nanofibrous PLLA scaffolds and MATN3 treatment provides a very promising strategy to generate chondrogenic grafts with phenotypic stability for articular cartilage repair.Graphical abstractGraphical abstract for this article
       
  • Substrate micropatterns produced by polymer demixing regulate focal
           adhesions, actin anisotropy, and lineage differentiation of stem cells
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Sebastián L. Vega, Varun Arvind, Prakhar Mishra, Joachim Kohn, N. Sanjeeva Murthy, Prabhas V. Moghe Stem cells are adherent cells whose multipotency and differentiation can be regulated by numerous microenvironmental signals including soluble growth factors and surface topography. This study describes a simple method for creating distinct micropatterns via microphase separation resulting from polymer demixing of poly(desaminotyrosyl-tyrosine carbonate) (PDTEC) and polystyrene (PS). Substrates with co-continuous (ribbons) or discontinuous (islands and pits) PDTEC regions were obtained by varying the ratio of PDTEC and sacrificial PS. Human mesenchymal stem cells (MSCs) cultured on co-continuous PDTEC substrates for 3 days in bipotential adipogenic/osteogenic (AD/OS) induction medium showed no change in cell morphology but exhibited increased anisotropic cytoskeletal organization and larger focal adhesions when compared to MSCs cultured on discontinuous micropatterns. After 14 days in bipotential AD/OS induction medium, MSCs cultured on co-continuous micropatterns exhibited increased expression of osteogenic markers, whereas MSCs on discontinuous PDTEC substrates showed a low expression of adipogenic and osteogenic differentiation markers. Substrates with graded micropatterns were able to reproduce the influence of local underlying topography on MSC differentiation, thus demonstrating their potential for high throughput analysis. This work presents polymer demixing as a simple, non-lithographic technique to produce a wide range of micropatterns on surfaces with complex geometries to influence cellular and tissue regenerative responses.Statement of SignificanceA better understanding of how engineered microenvironments influence stem cell differentiation is integral to increasing the use of stem cells and materials in a wide range of tissue engineering applications. In this study, we show the range of topography obtained by polymer demixing is sufficient for investigating how surface topography affects stem cell morphology and differentiation. Our findings show that co-continuous topographies favor early (3-day) cytoskeletal anisotropy and focal adhesion maturation as well as long-term (14-day) expression of osteogenic differentiation markers. Taken together, this study presents a simple approach to pattern topographies that induce divergent responses in stem cell morphology and differentiation.Graphical abstractGraphical abstract for this article
       
  • Liposome-chaperoned cell-free synthesis for the design of proteoliposomes:
           Implications for therapeutic delivery
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Mei Lu, Xiaoyun Zhao, Haonan Xing, Zhe Xun, Tianzhi Yang, Cuifang Cai, Dongkai Wang, Pingtian Ding Cell-free (CF) protein synthesis has emerged as a powerful technique platform for efficient protein production in vitro. Liposomes have been widely studied as therapeutic carriers due to their biocompatibility, biodegradability, low toxicity, flexible surface manipulation, easy preparation, and higher cargo encapsulation capability. However, rapid immune clearance, insufficient targeting capacity, and poor cytoplasmic delivery efficiency substantially restrict their clinical application. The incorporation of functional membrane proteins (MPs) or peptides allows the transfer of biological properties to liposomes and imparts them with improved circulation, increased targeting, and efficient intracellular delivery. Liposome-chaperoned CF synthesis enables production of proteoliposomes in one-step reaction, which not only substantially simplifies the production procedure but also keeps protein functionality intact. Building off these observations, proteoliposomes with integrated MPs represent an excellent candidate for therapeutic delivery. In this review, we describe recent advances in CF synthesis with emphasis on detailing key factors for improving CF expression efficiency. Furthermore, we provide insights into strategies for rational design of proteoliposomal nanodelivery systems via CF synthesis.Statement of SignificanceLiposome-chaperoned CF synthesis has emerged as a powerful approach for the design of recombinant proteoliposomes in one-step reaction. The incorporation of bioactive MPs or peptides into liposomes via CF synthesis can facilitate the development of proteoliposomal nanodelivery systems with improved circulation, increased targeting, and enhanced cellular delivery capacity. Moreover, by adapting lessons learned from natural delivery vehicles, novel bio-inspired proteoliposomes with enhanced delivery properties could be produced in CF systems. In this review, we first give an overview of CF synthesis with focus on enhancing protein expression in liposome-chaperoned CF systems. Furthermore, we intend to provide insight into harnessing CF-synthesized proteoliposomes for efficient therapeutic delivery.Graphical abstractGraphical abstract for this article
       
  • The response of pre-osteoblasts and osteoclasts to gallium containing
           mesoporous bioactive glasses
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): N. Gómez-Cerezo, E. Verron, V. Montouillout, F. Fayon, P. Lagadec, J.M. Bouler, B. Bujoli, D. Arcos, M. Vallet-Regí Mesoporous bioactive glasses (MBGs) in the system SiO2-CaO-P2O5-Ga2O3 have been synthesized by the evaporation induced self-assembly method and subsequent impregnation with Ga cations. Two different compositions have been prepared and the local environment of Ga(III) has been characterized using 29Si, 71Ga and 31P NMR analysis, demonstrating that Ga(III) is efficiently incorporated as both, network former (GaO4 units) and network modifier (GaO6 units). In vitro bioactivity tests evidenced that Ga-containing MBGs retain their capability for nucleation and growth of an apatite-like layer in contact with a simulated body fluid with ion concentrations nearly equal to those of human blood plasma. Finally, in vitro cell culture tests evidenced that Ga incorporation results in a selective effect on osteoblasts and osteoclasts. Indeed, the presence of this element enhances the early differentiation towards osteoblast phenotype while disturbing osteoclastogenesis. Considering these results, Ga-doped MBGs might be proposed as bone substitutes, especially in osteoporosis scenarios.Statement of SignifcanceOsteoporosis is the most prevalent bone disease affecting millions of patients every year. However, there is a lack of bone grafts specifically designed for the treatment of bone defects occurred because of osteoporotic fractures. The consequence is that osteoporotic bone defects are commonly treated with the same biomaterials intended for high quality bone tissue. In this work we have prepared mesoporous bioactive glasses doped with gallium, demonstrating osteoinductive capability by promoting the differentiation of pre-osteoblast toward osteoblasts and partial inhibition of osteoclastogenesis. Through a deep study of the local environment of gallium within the mesoporous matrix, this work shows that gallium release is not required to produce this effect on osteoblasts and osteoclasts. In this sense, the presence of this element at the surface of the mesoporous bioactive glasses would be enough to locally promote bone formation while reducing bone resorption.Graphical abstractGraphical abstract for this article
       
  • Differential effect of hydroxyapatite nano-particle versus nano-rod
           decorated titanium micro-surface on osseointegration
    • Abstract: Publication date: August 2018Source: Acta Biomaterialia, Volume 76Author(s): Long Bai, Yanlian Liu, Zhibin Du, Zeming Weng, Wei Yao, Xiangyu Zhang, Xiaobo Huang, Xiaohong Yao, Ross Crawford, Ruiqiang Hang, Di Huang, Bin Tang, Yin Xiao Coating materials applied for intraosseous implants must be optimized to stimulate osseointegration. Osseointegration is a temporal and spatial physiological process that not only requires interactions between osteogenesis and angiogenesis but also necessitates a favorable immune microenvironment. It is now well-documented that hierarchical nano-micro surface structures promote the long-term stability of implants, the interactions between nano-micro structure and the immune response are largely unknown. Here, we report the effects of microporous titanium (Ti) surfaces coated with nano-hydroxyapatite (HA) produced by micro-arc oxidation and steam-hydrothermal treatment (SHT) on multiple cell behavior and osseointegration. By altering the processing time of SHT it was possible to shift HA structures from nano-particles to nano-rods on the microporous Ti surfaces. Ti surfaces coated with HA nano-particles were found to modulate the inflammatory response resulting in an osteoimmune microenvironment more favorable for osteo-/angio-genesis, most likely via the activation of certain key signaling pathways (TGF-β, OPG/RANKL, and VEGF). By contrast, Ti surfaces coated with nano-rod shaped HA particles had a negative impact on osteo-/angio-genesis and osteoimmunomodulation. In vivo results further demonstrated that Ti implant surfaces decorated with HA nano-particles can stimulate new bone formation and osseointegration with enhanced interaction between osteocytes and implant surfaces. This study demonstrated that Ti implants with micro-surfaces coated with nano-particle shaped HA have a positive impact on osseointegration.Statement of SignificanceOsteo-/angio-genesis are of importance during osteointegration of the implants. Recent advances unravel that immune response of macrophages and its manipulated osteoimmunomodulation also exerts a pivotal role to determine the fate of the implant. Surface nano-micro modification has evidenced to be efficient to influence osteogenesis, however, little is known links nano-microstructured surface to immune response, as well the osteoimmunomodulation. This study demonstrates that the nano-particles decorated micro-surface, compared with the nano-rods decorated micro-surface enables osteogenesis and angiogenesis concurrently that has not been investigated previously. This study also unravels that the immune response of macrophages can be manipulated by the nano-micro surface, especially the nano-dimension matters, leading to a differential effect on osteointegration. The additional knowledge obtained from this study may provide foundation and reference for future design of the coating materials for implantable materials.Graphical abstractGraphical abstract for this article
       
  • Incorporation of Fast Dissolving Glucose Porogens and
           Poly(lactic-co-glycolic acid) Microparticles Within Calcium Phosphate
           Cements for Bone Tissue Regeneration
    • Abstract: Publication date: Available online 1 August 2018Source: Acta BiomaterialiaAuthor(s): Brandon T. Smith, Alexander Lu, Emma Watson, Marco Santoro, Anthony J. Melchiorri, Eline C. Grosfeld, Jeroen J.J.P. van den Beucken, John A. Jansen, David W. Scott, John P. Fisher, Antonios G. Mikos This study investigated the effects of incorporating glucose microparticles (GMPs) and poly(lactic-co-glycolic acid) microparticles (PLGA MPs) within a calcium phosphate cement on the cement’s handling, physicochemical properties, and the respective pore formation. Composites were fabricated with two different weight fractions of GMPs (10 and 20 wt%) and two different weight fractions of PLGA MPs (10 and 20 wt%). Samples were assayed for porosity, pore morphology, and compressive mechanical properties. An in vitro degradation study was also conducted. Samples were exposed to a physiological solution for 3 days, 4 wks, and 8 wks in order to understand how the inclusion of GMPs and PLGA MPs affects the composite’s porosity and mass loss over time. GMPs and PLGA MPs were both successfully incorporated within the composites and all formulations showed an initial setting time that is appropriate for clinical applications. Through a main effects analysis, we observed that the incorporation of GMPs had a significant effect on the overall porosity, mean pore size, mode pore size, and in vitro degradation rate of PLGA MPs as early as after 3 days (p < 0.05). After 4 wks and 8 wks, these same properties were affected by the inclusion of both types of MPs (p < 0.05). Advanced polymer chromatography confirmed that the degradation of PLGA MPs coincided with an increase in composite porosity, mean pore size, and mode pore size. Finally, it was observed that the inclusion of GMPs slowed the degradation of PLGA MPs in vitro and reduced the solution acidity due to PLGA degradation products. Our results suggest that the dual inclusion of GMPs and PLGA MPs is a valuable approach for the generation of early macropores, while also mitigating the effect of acidic degradation products from PLGA MPs on their degradation kinetics.Statement of significance:A multitude of strategies and techniques have been investigated for the introduction of macropores with calcium phosphate cements (CPC). However, many of these strategies take several weeks to months to generate a maximal porosity or the degradation products of the porogen can trigger a localized inflammatory response in vivo. As such, it was hypothesized that the fast dissolution of glucose microparticles (GMPs) in a CPC composite also incorporating poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) will create an initial macroporosity and increase the surface area within the CPC, thus enhancing the diffusion of PLGA degradation products and preventing a significant decrease in pH. Furthermore, as PLGA degradation occurs over several weeks to months, additional macroporosity will be generated at later time points within CPCs. The results offer a new method for generating macroporosity in a multimodal fashion that also mitigates the effects of acidic degradation products.Graphical abstractGraphical abstract for this article
       
  • Additive Manufactured Biodegradable Poly(glycerol sebacate methacrylate)
           Nerve Guidance Conduits
    • Abstract: Publication date: Available online 1 August 2018Source: Acta BiomaterialiaAuthor(s): Dharaminder Singh, Adam J. Harding, Emad Albadawi, Fiona M. Boissonade, John W. Haycock, Frederik Claeyssens Entubulating devices to repair peripheral nerve injuries are limited in their effectiveness particularly for critical gap injuries. Current clinically used nerve guidance conduits are often simple tubes, far stiffer than that of the native tissue. This study assesses the use of poly(glycerol sebacate methacrylate) (PGSm), a photocurable formulation of the soft biodegradable material, PGS, for peripheral nerve repair. The material was synthesized, the degradation rate and mechanical properties of material were assessed and nerve guidance conduits were structured via stereolithography. In vitro cell studies confirmed PGSm as a supporting substrate for both neuronal and glial cell growth. Ex vivo studies highlight the ability of the cells from a dissociated dorsal root ganglion to grow out and align along the internal topographical grooves of printed nerve guide conduits. In vivo results in a mouse common fibular nerve injury model show regeneration of axons through the PGSm conduit into the distal stump after 21 days. After conduit repair levels of spinal cord glial activation (an indicator for neuropathic pain development) were equivalent to those seen following graft repair. In conclusion, results indicate that PGSm can be structured via additive manufacturing into functional NGCs. This study opens the route of personalized conduit manufacture for nerve injury repair.Statement of significanceThis study describes the use of photocurable of Poly(Glycerol Sebacate) (PGS) for light-based additive manufacturing of Nerve Guidance Conduits (NGCs). PGS is a promising flexible biomaterial for soft tissue engineering, and in particular for nerve repair. Its mechanical properties and degradation rate are within the desirable range for use in neuronal applications. The nerve regeneration supported by the PGS NGCs is similar to an autologous nerve transplant, the current gold standard. A second assessment of regeneration is the activation of glial cells within the spinal cord of the tested animals which reveals no significant increase in neuropathic pain by using the NGCs. This study highlights the successful use of a biodegradable additive manufactured NGC for peripheral nerve repair.Graphical abstractGraphical abstract for this article
       
  • Improving functional re-endothelialization of acellular liver scaffold
           using REDV cell-binding domain
    • Abstract: Publication date: Available online 31 July 2018Source: Acta BiomaterialiaAuthor(s): Julie Devalliere, Yibin Chen, Kevin Dooley, Martin L. Yarmush, Basak E. Uygun Engineering of functional vascularized liver tissues hold great promise in addressing donor organ shortage for transplantation. Whole organ decellularization is a cell removal method that retains the native vascular structures of the organ such that it can be anastomosed with the recipient circulation after recellularization with healthy cells. However, a main hurdle to successful implantation of bioengineered organ is the inability to efficiently re-endothelialize the vasculature with a functional endothelium, resulting in blood clotting which is the primary cause of failure in early transplant studies. Here, we present an efficient approach for enhancing re-endothelialization of decellularized rat liver scaffolds by conjugating the REDV cell-binding domain to improve attachment of endothelial cells (EC) on vascular wall surfaces. In order to facilitate expression and purification of the peptide, REDV was fused with elastin-like peptide (ELP) that confers thermally triggered aggregation behavior to the fusion protein. After validating the adhesive properties of the REDV-ELP peptide, we covalently coupled REDV-ELP to the blood vasculature of decellularized rat livers and seeded EC using perfusion of the portal vein. We showed that REDV-ELP increased cell attachment, spreading and proliferation of EC within the construct resulting in uniform endothelial lining of the scaffold vasculature. We further observed that REDV-ELP conjugation dramatically reduced platelet adhesion and activation. Altogether, our results demonstrate that this method allowed functional re-endothelialization of liver scaffold and show great potential toward the generation of functional bioengineered liver for long-term transplantation.Statement of significanceThere is a critical need for novel organ replacement therapies as the grafts for transplantation fall short of demand. Recent advances in tissue engineering, through the use of decellularized scaffolds, have opened the possibility that engineered grafts could be used as substitutes for donor livers. However, successful implantation has been challenged by the inability to create a functional vasculature. Our research study reports a new strategy to increase efficiency of endothelialization by increasing the affinity of the vascular matrix for endothelial cells. We functionalized decellularized liver scaffold using elastin-like peptides grafted with REDV cell binding domain. We showed that REDV-ELP conjugation improve endothelial cell attachment and proliferation within the scaffold, demonstrating the feasibility of re-endothelializing a whole liver vasculature using our technique.Graphical abstractGraphical abstract for this article
       
  • A Hierarchical Assembly Strategy to Engineer Dextran-Enveloped
           Polyurethane Nanopolyplexes for Robust Ovarian Cancer Gene Therapy
    • Abstract: Publication date: Available online 31 July 2018Source: Acta BiomaterialiaAuthor(s): Bo Lou, Rong Jin, Jian Cheng, Xuejun Wen, Peng Zhao, Chao Lin A hierarchical assembly strategy is herein investigated to generate bio-responsive, dextran-enveloped, bioreducible polyurethane nanopolyplexes for nonviral gene therapy against ovarian tumor. Initially, a group of poly(urethane amine)s were designed and characterized for in vitro gene transfection. The polyurethane containing 1,4-bis(3-aminopropyl)piperazine residue (PUBAP) could induce the best in vitro transfection efficacy against SKOV-3 or A2780 ovarian cancer cells. Next, dextran-enveloped PUBAP polyplexes (e-polyplexes) were constructed by a hierarchical assembly procedure involving gene neutralization with PUBAP and subsequent gene condensation with a cationic dextran (SSDP800). Such dextran comprised dextran (15 kDa) as the main chain and multiple disulfide-linked branched polyethylenimine (BPEI) oligomers as the side grafts. Additionally, folate-dextran-enveloped PUBAP polyplexes (FA-e-polyplexes) were fabricated by folate-modified SSDP800. These nanoscale-enveloped polyplexes elicited an improved colloidal stability against salt ions and negatively charged heparin, efficient endosomal escaping, and bioreduction-triggered intracellular gene release. In vitro transfection against SKOV-3 cells illustrated that FA-e-polyplexes exerted higher transfection efficiency in the serum than e-polyplexes and 25 kDa BPEI-polyplexes. In vivo, FA-e-polyplexes yielded higher transgene expression level than e-polyplexes in an SKOV-3 tumor-bearing nude mouse model. In the tumor gene therapy with a small hairpin RNA silencing vascular endothelial growth factor, FA-e-polyplexes afforded higher tumor growth inhibition than polyplexes of folate-PEGylated PUBAP and 25 kDa linear polyethylenimine as positive controls. Importantly, such gene therapy had minor toxic effects on the health of the mouse. This work highlights a practical hierarchical assembly method to construct innovative enveloped polyurethane nanopolyplexes enabling robust ovarian cancer gene therapy.Statement of SignificanceIt is indispensable to rationally update binary cationic polyplexes into ternary polyplexes for vigorous tumor gene therapy. In this work, we have confirmed that a hierarchical assembly strategy, using initial gene neutralization and subsequent gene condensation, is facile and effective to promote cationic polyurethane polyplexes into ternary folate-dextran-enveloped polyurethane polyplexes with a relatively high gene loading capacity. When compared to PEGylated polyplex counterpart, the enveloped polyplex system enables more efficient gene transfection in ovarian cancer in vitro and in vivo, thereby affording robust ovarian cancer gene therapy. The development of innovative enveloped polyplexes may be a new direction for non-viral gene delivery system.Graphical abstractGraphical abstract for this article
       
  • Application of amphiphilic fluorophore-derived nanoparticles to provide
           contrast to human embryonic stem cells without affecting their
           pluripotency and to monitor their differentiation into neuron-like cells
    • Abstract: Publication date: Available online 31 July 2018Source: Acta BiomaterialiaAuthor(s): Shixin Zhou, Hongxi Zhao, Ruopeng Feng, Lan Ding, Zhiqiang Li, Changwen Deng, Qihua He, Yinan Liu, Bo Song, Yang Li Fluorogenic labeling is a potential technique in biology that allows for direct detection and tracking of cells undergoing various biological processes. Compared to traditional genetic modification approaches, labeling cells with nanoparticles has advantages, especially for the additional safety they provide by avoiding genomic integration. However, it remains a challenge to determine whether nanoparticles interfere with cell traits and provide long-lasting signals in living cells. We employed an amphiphilic fluorophore-derived nanoparticle (denoted by TPE-11) bearing a tetraphenylethene (TPE) moiety and two ionic heads; this nanoparticle has an aggregation-induced emission (AIE) effect and the ability to self-assemble. TPE-11 exhibited the property of higher or longer fluorescence intensities in cell imaging than the other two nanomaterials under the same conditions. We used this nanomaterial to label human embryonic stem (hES) cells and monitor their differentiation. Treatment with low concentrations of TPE-11 (8.0 μg/mL) resulted in high-intensity labeling of hES cells, and immunostaining analysis and teratoma formation assays showed that at this concentration, their pluripotency remained unaltered. TPE-11 nanoparticles allowed for long-term monitoring of hES cell differentiation into neuron-like cells; remarkably, strong nanoparticle signals were detected throughout the nearly 40-day differentiation process. Thus, these results demonstrate that the TPE-11 nanoparticle has excellent biocompatibility for hES cells and is a potential fluorogen for labeling and tracking the differentiation of human pluripotent stem cells.Statement of SignificanceThis study uses a nanoparticle-based approach to label human embryonic stem (hES) cells and monitor their differentiation. hES cells are distinguished by two distinctive properties: the state of their pluripotency and the potential to differentiate into various cell types. Thus, these cells will be useful as a source of cells for transplantation or tissue engineering applications. We noticed the effect of aggregation-induced emission, and the ability to self-assemble could enhance the persistence of signals. Treatment with low concentrations of TPE-11 nanoparticles showed high-intensity labeling of hES cells, and immunostaining analysis and teratoma formation assays showed that at this concentration, their pluripotency remained unaltered. Additionally, these nanoparticles allowed for long-term monitoring of hES cell differentiation into neuron-like cells lasting for 40 days.Graphical abstractGraphical abstract for this article
       
  • Unveiling the fate of adhering bacteria to antimicrobial surfaces:
           expression of resistance-associated genes and macrophage-mediated
           phagocytosis
    • Abstract: Publication date: Available online 31 July 2018Source: Acta BiomaterialiaAuthor(s): Diana F. Alves, Andreia P. Magalhães, Damian Neubauer, Marta Bauer, Wojciech Kamysz, Maria O. Pereira Since most antibacterial coatings reported to fight biomaterial-associated infections (BAI) fail in completely preventing bacterial colonization, it is crucial to know the impact of that small fraction of adhered bacteria in BAI recrudescence. This study aims to understand the fate of Staphylococcus aureus able to adhere to an antimicrobial coating previously developed, in terms of potential development of bacterial resistance and their macrophage-mediated phagocytosis. Antimicrobial coating comprised the co-immobilization of Palm peptide and DNase I onto polydimethylsiloxane. Expression of genes associated to resistance and virulence mechanisms showed that cells in contact with antimicrobial surfaces for a long period of 30 days, exhibit genes equally or less expressed, as compared to cells recovered from control surfaces. Recovered cells also exhibit the same susceptibility patterns, which strengthens the evidence of no resistance development. Remarkably, cells adhered to modified surfaces shows a reduced metabolic activity upon vancomycin treatment unlike the cells found on control surfaces, which can be identified as a clinical opportunity for prophylactically administration after implant surgery. Furthermore, results highlight that functionalization of PDMS with Palm and DNase I should not compromise the action of host immune cells. The overall results reinforce the potential of this antimicrobial strategy to fight BAI.Graphical abstractGraphical abstract for this article
       
  • Prospects of nonmulberry silk protein sericin-based nanofibrous matrices
           for wound healing – in vitro and in vivo investigations
    • Abstract: Publication date: Available online 29 July 2018Source: Acta BiomaterialiaAuthor(s): Sunaina Sapru, Subhayan Das, Mahitosh Mandal, Ananta K. Ghosh, Subhas C. Kundu Recently, the progress in biomaterials for biomedical applications brings the focus of the research community toward nanomaterials. The nanofibrous matrices offer certain advantages (structural similarity to extracellular matrix, high surface area-to-volume ratio, increased elasticity, biostability, and strength) compared to other prevalent type of materials. This affirms their superiority and flexibility to be used in regenerative medicine. We have fabricated nonmulberry (Antheraea mylitta) silk protein sericin-based nanofibrous matrices (fiber thickness; 80-400 nm) with improved mechanical strength and desired stability (>4 weeks) as required for tissue reconstruction. These matrices support the adhesion, proliferation, and cellular interconnection of human keratinocytes. These are minimally hemolytic, nonimmunogenic, and capable of wound healing in vivo. Antibiotic (cephalexin hydrate [CH])-loaded nanofibrous matrices accelerate the full-thickness wound repair with minimal inflammation and without any signs of infection. The histological analysis authenticates skin restoration with re-epithelialization, generation of associated skin appendages, and synthesis of dense collagen fibrils. In addition, analysis of inflammatory genes and immunohistochemical assays have proved their biocompatibility and wound healing potential. Angiogenesis is also prevalent in the animal tissue treated with nanofibrous matrices. The results of in vitro and in vivo experimentations indicate a clear prospect of the fabricated sericin-based nanofibrous matrices to be used for skin regeneration.Statement of SignificanceNonmulberry silk protein sericin-based nanofibrous matrix is a useful biomaterial for wound healing, collagen production, and skin tissue repair. It has been used in different formulations including hydrogels and nanofibrous membranes with chitosan (CS) and polyvinyl alcohol (PVA). No experiments have been carried out to evaluate sericin-based nanofibrous membranes for skin tissue engineering application. The present study shows that the nanofibrous matrices fabricated by electrospinning nonmulberry silk protein sericin with CS and PVA mimic the architectural environment of the extracellular matrix fibrils. These matrices are minimally hemolytic, are nonimmunogenic, and support better growth of human keratinocytes in vitro and wound healing in vivo with re-epithelialization of the skin tissue and angiogenesis. This work indicates that these nonmulberry sericin-based nanofibrous matrices with CS may be used as an ideal physical environment and biological cues for the promotion of skin tissue reconstruction and repair.Graphical abstractGraphical abstract for this article
       
  • Dual release of growth factor from a nanocomposite fibrous scaffold
           promotes vascularisation and bone regeneration in a rat critical sized
           calvarial defect
    • Abstract: Publication date: Available online 29 July 2018Source: Acta BiomaterialiaAuthor(s): Shruthy Kuttappan, Dennis Mathew, Jun-ichiro Jo, Ryusuke Tanaka, Deepthy Menon, Takuya Ishimoto, Takayoshi Nakano, Shantikumar V. Nair, Manitha B. Nair, Yasuhiko Tabata A promising strategy for augmenting bone formation involves the delivery of multiple osteoinductive and vasculogenic growth factors locally. However, success depends on sustained growth factors release and its appropriate combination to induce stem cells and osteogenic cells at the bony site. Herein, we have developed a nanocomposite fibrous scaffold loaded with fibroblast growth factor 2 (FGF2) and bone morphogenetic protein 2 (BMP2) and its ability to promote vascularisation and bone regeneration in critical sized calvarial defect was compared to the scaffold with vascular endothelial growth factor (VEGF) + BMP2. Simple loading of growth factors on the scaffold could provide a differential release pattern, both in vitro and in vivo (VEGF release for 1 week where as BMP2 and FGF2 release for 3 weeks). Among all the groups, dual growth factor loaded scaffold (VEGF+BMP2 & FGF2+BMP2) enhanced vascularisation and new bone formation, but there was no difference between FGF2 and VEGF loaded scaffolds although its release pattern was different. FGF2 mainly promoted cell migration, whereas VEGF augmented new blood vessel formation at the defect site. This study suggests that biomimetic nanocomposite scaffold is a promising growth factor delivery vehicle to improve bone regeneration in critical sized bone defects.Statement of SignificanceMany studies have shown the effect of growth factors like VEGF-BMP2 or FGF2-BMP2 in enhancing bone formation in critical sized defects, but there are no reports that demonstrate the direct comparison of VEGF-BMP2 and FGF2-BMP2. In this study, we have developed a nanocomposite fibrous scaffold that could differentially release growth factors like VEGF, BMP2 and FGF2 (VEGF release for 1 week where as BMP2 and FGF2 release for 3 weeks), which in turn promoted neovascularisation and new bone formation in critical size defect. There was no difference in vascularisation and bone formation induced by VEGF+BMP2 or FGF2+BMP2. The growth factor was loaded in a simple manner, which would ensure ease of use for the end-user, especially for the surgeon treating a patient in an operating room.Graphical abstractGraphical abstract for this article
       
  • Glial-Derived Growth Factor and Pleiotrophin Synergistically Promote
           Axonal Regeneration in Critical Nerve Injuries
    • Abstract: Publication date: Available online 29 July 2018Source: Acta BiomaterialiaAuthor(s): Nesreen Zoghoul Alsmadi, Geetanjali S Bendale, Aswini Kanneganti, Tarik Shihabeddin, An H. Nguyen, Elijah Hor, Swarup Dash, Benjamin Johnston, Rafael Granja-Vazquez, Mario I. Romero-Ortega The repair of nerve gap injuries longer than 3 cm is limited by the need of sacrifice donor tissue and morbidity associated with the autograft gold standard, while decellularized grafts and biodegradable conduits are effective only in short nerve defects. The advantage of isogenic nerve implants seems to be the release of various growth factors by the denervated Schwann cells. We evaluated the effect of vascular endothelial growth factor, neurotrophins, and pleiotrophin (PTN) supplementation of multi-luminal conduits, in the repair of 3 and 4 cm nerve gaps in the rabbit peroneal nerve. In vitro screening revealed a synergistic regenerative effect of PTN with glial-derived neurotrophic factor (GDNF) in promoting sensory axon density, and in motor axonal growth from spinal cord explants. In vivo, pleiotrophins were able to support nerve regrowth across a 3 cm gap. In the 4 cm lesions, PTN-GDNF had a modest effect in the number of axons distal to the implant, while increasing the mean axon diameter (1 ± 0.4; p ≤ 0.001) over PTN or GDNF alone (0.80 ± 0.2, 0.84 ± 0.5; respectively). Some regenerated axons reinnervated muscle targets as indicated by neuromuscular junction staining. However, many were wrapped in Remak bundles, suggesting a delay in axonal sorting, explaining the limited electrophysiological function of the reinnervated muscle, and the modest recovery in toe spreading in the PTN-GDNF repaired animals. These results support the use of synergistic neurotrophic/pleiotrophic growth factors in long gap repair and underscore the need for re-myelination strategies distal to the injury site.Statement of significanceNerve injuries due to trauma or tumor resection often result in long gaps that are challenging to repair. The best clinical option demands the use of autologous grafts that are associated with serious side effects. Bioengineered nerves are considered a good alternative, particularly if supplemented with growth factors, but current options do not match the regenerative capacity of autografts. This study revealed the synergistic effect of neurotrophins and pleiotrophins designed to achieve a broad cellular regenerative effect, and reports that GDNF- PTN are able to mediated axonal growth and partial functional recovery in a 4 cm nerve gap injury, albeit delays in remyelination. This report underscores the need for defining an optimal growth factor support for biosynthetic nerve implants.Graphical abstractGraphical abstract for this article
       
  • The mechanical response of the mouse cervix to tensile cyclic loading in
           term and preterm pregnancy
    • Abstract: Publication date: Available online 29 July 2018Source: Acta BiomaterialiaAuthor(s): C. Jayyosi, N. Lee, A. Willcockson, S. Nallasamy, M. Mahendroo, K. Myers A well-timed modification of both the collagen and elastic fiber network in the cervix during pregnancy accompanies the evolution of tissue mechanical parameters that are key to a successful pregnancy. Understanding of the cervical mechanical behaviour along normal and abnormal pregnancy is crucial to define the molecular events that regulate remodeling in term and preterm birth (PTB). In this study, we measured the mechanical response of mouse cervical tissue to a history of cyclic loading and quantified the tissues ability to recover from small and large deformations. Assessments were made in nonpregnant, pregnant (gestation days 6, 12, 15 and 18) and mouse models of infection mediated PTB treated with lipopolysaccharide on gestation d15 (LPS treated) and hormone withdrawal mediated PTB on gestation d15 (RU486 treated). The current study uncovers the contributions of collagen and elastic fiber networks to the progressive change in mechanical function of the cervix through pregnancy. Premature cervical remodeling induced on gestation day 15 in the LPS infection model is characterized by distinct mechanical properties that are similar but not identical to mechanical properties at term ripening on day 18. Remodeling in the LPS infection model results in a weaker cervix, unable to withstand high loads. In contrast, the RU486 preterm model resembles the cyclic mechanical behaviour seen for term d18 cervix, where the extremely compliant tissue is able to withstand multiple cycles under large deformations without breaking. The distinct material responses to load-unload cycles in the two PTB models matches the differing microstructural changes in collagen and elastic fibers in these two models of preterm birth. Improved understanding of the impact of microstructural changes to mechanical performance of the cervix will provide insights to aid in the development of therapies for prevention of preterm birth.Statement of significancePreterm Birth (PTB) still represents a serious challenge to be overcome, considering its implications on infant mortality and lifelong health consequences. While the causes and etiologies of PTB are diverse and yet to be fully elucidated, a common pathway leading to a preterm delivery is premature cervical remodeling. Throughout pregnancy, the cervix remodels through changes of its microstructure, thus altering its mechanical properties. An appropriate timing for these transformations is critical for a healthy pregnancy and avoidance of PTB. Hence, this study aims at understanding how the mechanical function of the cervix evolves during a normal and preterm pregnancy. By performing cyclic mechanical testing on cervix samples from animal models, we assess the cervix’s ability to recover from moderate and severe loading. The developed methodology links mechanical parameters to specific microstructural components. This work identifies a distinct biomechanical signature associated with inflammation mediated PTB that differs from PTB induced by hormone withdrawal and from normal term remodeling.Graphical abstractGraphical abstract for this article
       
  • Comparison of a resorbable magnesium implant in small and large growing
           animal models
    • Abstract: Publication date: Available online 29 July 2018Source: Acta BiomaterialiaAuthor(s): N.G. Grün, P. Holweg, S. Tangl, J. Eichler, L. Berger, J.J.J.P. van den Beucken, J.F. Löffler, T. Klestil, A.M. Weinberg Fracture treatment in children needs new implant materials to overcome disadvantages associated with removal surgery. Magnesium-based implants constitute a biocompatible and bioresorbable alternative. In adults and especially in children, implant safety needs to be evaluated. In children the bone turnover rate is higher and implant material might influence growth capacity, and the long-term effect of accumulated particles or ions is more critical due to the host’s prolonged post-surgery lifespan. In this study we aimed to investigate the degradation behavior of ZX00 (Mg–0.45Zn–0.45Ca; in wt.%) in a small and a large animal model to find out whether there is a difference (i) in degradation rate between the two models with regard to the 3Rs; and (ii) in bone formation and in-growth. Our results 6, 12 and 24 weeks after ZX00 implantation showed no negative effects on bone formation and in-growth, and no adverse effects such as fibrotic or sclerotic encapsulation. The degradation rate did not significantly differ between the two growing animal models, and both showed slow and homogeneous degradation performance. Our conclusion is that small animal models are sufficient to investigate degradation rates and provide preliminary evidence on bone formation and in-growth of implant materials in a growing animal model.Statement of SignificanceThe safety of implant material is of the utmost importance, especially in children, who have enhanced bone turnover, more growth capacity and longer postoperative lifespans. Magnesium (Mg)-based implants have long been of great interest in pediatric orthopedic and trauma surgery, due to their good biocompatibility, biodegradability and biomechanics. In the study documented in this manuscript we investigated Mg-Zn-Ca implant material without rare earth elements, and compared its outcome in a small and a large growing animal model. In both models we observed bone formation and in growth which featured no adverse effects such as fibrotic or sclerotic encapsulation, and slow homogeneous degradation performance on the part of the Mg-based implant material.Graphical abstractGraphical abstract for this article
       
  • Corrigendum to “Photo-assisted generation of phospholipid polymer
           substrates for regiospecific protein conjugation and control of cell
           adhesion” [Acta Biomater. 40 (2016) 54–61]
    • Abstract: Publication date: Available online 29 July 2018Source: Acta BiomaterialiaAuthor(s): Masako Tanaka, Yasuhiko Iwasaki
       
  • Matrix degradation in osteoarthritis primes the superficial region of
           cartilage for mechanical damage
    • Abstract: Publication date: Available online 29 July 2018Source: Acta BiomaterialiaAuthor(s): Megan E Cooke, Bernard M Lawless, Simon W Jones, Liam M Grover Osteoarthritis (OA) is a degenerative disease that affects 25% of the world’s population over fifty years of age. It is a chronic disease of the synovial joints, primarily the hip and knee. The main pathologies are degradation of the articular cartilage and changes to the subchondral bone, as a result of both mechanical wear and a locally elevated inflammatory state. This study compares the viscoelastic properties of cartilage that represents the biochemical changes in OA and age-matched healthy tissue. Further, the mechanical damage induced by this compressive loading cycle was characterised and the mechanism for it was investigated. The storage modulus of OA cartilage was shown to be significantly lower than that of healthy cartilage whilst having a higher capacity to hold water. Following mechanical testing, there was a significant increase in the surface roughness of OA cartilage. This change in surface structure occurred following a reduction in sulphated glycosaminoglycan content of the superficial region in OA, as seen by alcian blue staining and quantified by micro x-ray fluorescence. These findings are important in understanding how the chemical changes to cartilage matrix in OA influence its dynamic mechanical properties and structural integrity.Statement of SignificanceCartilage has a very specialised tissue structure which acts to resist compressive loading. In osteoarthritis (OA), there is both mechanically- and chemically-induced damage to cartilage, resulting in severe degradation of the tissue. In this study we have undertaken a detailed mechanical and chemical analysis of macroscopically undamaged OA and healthy cartilage tissue. We have demonstrated, for the first time in human tissue, that the mechanical degradation of the tissue is attributed to a chemical change across the structure. In macroscopically undamaged OA tissue, there is a reduction in the elastic response of cartilage tissue and an associated destabilisation of the matrix that leaves it susceptible to damage. Understanding this allows us to better understand the progression of OA to design better therapeutic interventions.Graphical abstractGraphical abstract for this article
       
  • Surface Fluorination of Polylactide as a Path to Improve Platelet
           Associated Hemocompatibility
    • Abstract: Publication date: Available online 21 July 2018Source: Acta BiomaterialiaAuthor(s): Razieh Khalifehzadeh, Winston Ciridon, Buddy D. Ratner Surface-induced thrombosis is still a significant clinical concern for many types of blood-contacting medical devices. In particular, protein adsorption and platelet adhesion are important events due to their ability to trigger the coagulation cascade and initiate thrombosis. Poly(lactic acid) (PLA) has been the predominant polymer used for making bioresorbable stent. Despite long-term advantages, these stents are associated with higher rates of early thrombosis compared with permanent metallic stents. To address this issue, we modified the surface of PLA with a perfluoro compound facilitated by surface activation using radio frequency (RF) plasma. Fluoropolymers have been extensively used in blood contacting materials, such as blood vessel replacements due to their reduced thrombogenicity and reduced platelet reactivity. The compositions of plasma-treated surfaces were determined by electron spectroscopy for chemical analysis (ESCA). Also, contact angle measurements, cell cytotoxicity and the degradation profile of the treated polymers are presented. Finally, relevant blood compatibility parameters, including plasma protein adsorption, platelet adhesion and morphology, were evaluated. We hypothesized that tight binding of adsorbed albumin by fluoropolymers enhances its potential for blood-contacting applications.Statement of SignificanceAlthough bioresorbable stents made from poly(lactic acid) (PLA) may have long-term clinical advantages, they have shown higher rates of early thrombosis as compared with permanent metallic stents. To improve the thromboresistance of PLA, we developed a novel method for surface fluorination of this polymer with a perfluoro compound. Fluoropolymers (e.g., expanded polytetrafluoroethylene) have long been used in blood-contacting applications due to their satisfactory clinical performance. This is the first report of PLA surface fluorination which might be applied to the fabrication of a new generation of fluorinated PLA stents with improved platelet interaction, tunable degradability and drug release capabilities. Also, we describe a general strategy for improving the platelet interactions with biomaterials based on albumin retention.Graphical abstractGraphical abstract for this article
       
  • Nanoparticles provide long-term stability of bevacizumab preserving its
           antiangiogenic activity
    • Abstract: Publication date: Available online 21 July 2018Source: Acta BiomaterialiaAuthor(s): Flávia Sousa, Andrea Cruz, Inês Mendes Pinto, Bruno Sarmento Bevacizumab is one of the most common monoclonal antibodies used to treat cancer due to its antiangiogenic role. However, the frequent parenteral administrations are not attractive for the patient adhesion to the therapy. Nanoencapsulation of bevacizumab might be a useful alternative to increase administration intervals, due to controlled release properties. To achieve a long-term bevacizumab stability into PLGA nanoparticles, we developed an optimized and validated lyophilization protocol. The co-encapsulation of trehalose and bevacizumab into PLGA nanoparticles, associated to their lyophilization with external 10% (w/v) of trehalose, allowed maintenance of the physical-chemical characteristics of nanoparticles and bevacizumab secondary and tertiary structure. More relevant, the antiangiogenic activity of bevacizumab was kept over 6 months of storage while formulated with this protocol. No significant differences were found upon 6 months of storage at 4 °C and 25 °C/60% HR, and minor differences were observed for storage at 40°C/75% HR, bringing to our knowledge, the first successfully report for monoclonal antibody storage at room temperature, without losing its structural and functional features. Our results served as starting point to understand the monoclonal antibody-based nanoparticle behavior over time, creating an innovative approach for a long-term monoclonal antibody stability.Statement of SignificanceNanoencapsulation of monoclonal antibodies has boost the interest of researchers as an alternative to the current antibody-based therapy, changing the route of administrations through controlled release of monoclonal antibodies. Despite good results have been achieved with nanoencapsulation process, no strategy has still found concerning a long-term stability of nanoparticles and monoclonal antibodies. In this study, the aim was to find out a validated and optimized method that allows a long-term stability of nanoparticles and antibodies. Over 6 months of storage, an optimized nanosystem was considered stable for both nanoparticles and antibody structure, at 4°C and 25°C, resulting the first successfully report for monoclonal antibody storage at room temperature.Graphical abstractGraphical abstract for this article
       
  • Bacterial microbots for acid-labile release of hybrid micelles to promote
           the synergistic antitumor efficacy
    • Abstract: Publication date: Available online 21 July 2018Source: Acta BiomaterialiaAuthor(s): Songzhi Xie, Maohua Chen, Xiaojie Song, Zhao Zhang, Zhanlin Zhang, Zhoujiang Chen, Xiaohong Li Bacteria have inherent properties of self-propelled navigation and specific infiltration into solid tumors. In the current study, we investigate a novel type of bacterial microbots for delivery of hybrid micelles to promote the synergistic antitumor efficacy. Escherichia coli Nissle 1917 (EcN) is used as a bacterial carrier to immobilize amphiphilic copolymers through acid-labile 2-propionic-3-methylmaleic anhydride (CDM) linkers. Doxorubicin (DOX) and α-tocopheryl succinate (TOS) are conjugated with poly(ethylene glycol) through disulfide linkers to obtain amphiphilic promicelle polymers (PMTOS and PMDOX). Tetrazine and norbornene terminals are grafted on EcN and PMTOS/PMDOX copolymers, respectively, and the mild and site-specific bioorthogonal reaction between them maintains the viability, motion ability, and tumor accumulation capability of the conjugated EcN. The PMTOS/PMDOX copolymers are released from bacterial microbots in response to the slightly acidic tumor microenvironment, followed by in situ formation of these copolymers as hybrid micelles (MD/T). The self-assembled micelles from PMTOS/PMDOX with a ratio of 1:2 demonstrate the most significant synergistic efficacy, and the released MD/T hybrid micelles exhibit cellular uptake efficiency, glutathione (GSH)-sensitive drug release, and cytotoxicities similar to those exhibited by micelles prepared by solvent evaporation. Because of the consecutive process of the self-propelling nature of bacteria and preferential accumulation of EcN in tumors, in situ formation of MD/T hybrid micelles, and intracellular drug release, bacterial microbots have shown remarkable antitumor efficacy with regard to animal survival, tumor growth, and apoptosis induction in tumor cells. Therefore, we demonstrate a feasible strategy for the construction of bacterial microbots to achieve tumor accumulation and on-demand release of multiple therapeutic agents for synergistic antitumor efficacy.Statement of significanceChallenges remain in the targeted delivery of nanoparticles to solid tumors and the realization of synergistic efficacy in cancer chemotherapy. In the current study, we explore a novel class of bacterial microbots to load, deliver, and release hybrid micelles. Escherichia coli Nissle 1917 (EcN) is used as a bacterial carrier to immobilize amphiphilic copolymers through acid-labile linkers, and the released copolymers are self-assembled into micelles. The resulting bacterial microbots integrate self-propelling bacteria and self-assembling amphiphilic polymers into micelles and realize pH-responsive release of promicelle polymers from bacterial microbots and glutathione-responsive intracellular release of drugs. A synergistic antitumor efficacy is achieved using hybrid micelles, which release both doxorubicin and α-tocopheryl succinate to display toxicities in the nucleus and mitochondria, respectively.Graphical abstractGraphical abstract for this article
       
  • Antimicrobial polymers as therapeutics for treatment of
           multidrug-resistant Klebsiella pneumoniae lung infection
    • Abstract: Publication date: Available online 20 July 2018Source: Acta BiomaterialiaAuthor(s): Weiyang Lou, Shrinivas Venkataraman, Guansheng Zhong, Bisha Ding, Jeremy P.K. Tan, Liang Xu, Weimin Fan, Yi Yan Yang Klebsiella pneumoniae (K. pneumoniae) is one of the most common pathogens in hospital-acquired infections. It is often resistant to multiple antibiotics (including carbapenems), and can cause severe pneumonia. In search of effective antimicrobials, we recently developed polyionenes that were demonstrated to be potent against broad-spectrum microbes in vitro. In this study, polyionenes containing rigid amide bonds were synthesized to treat multidrug-resistant (MDR) K. pneumoniae lung infection. The polyionene exhibited broad-spectrum activity against clinically-isolated MDR bacteria with low minimum inhibitory concentrations (MICs). It also demonstrated stronger antimicrobial activity against 20 clinical strains of K. pneumoniae and more rapid killing kinetics than imipenem and other commonly used antibiotics. Multiple treatments with imipenem and gentamycin led to drug resistance in K. pneumoniae, while repeated use of the polymer did not cause resistance development due to its membrane-disruption antimicrobial mechanism. Additionally, the polymer showed potent anti-biofilm activity. In a MDR K. pneumoniae lung infection mouse model, the polymer demonstrated lower effective dose than imipenem with negligible systemic toxicity. The polymer treatment significantly alleviated lung injury, markedly reduced K. pneumoniae counts in the blood and major organs, and decreased mortality. Given its potent in vivo antimicrobial activity, negligible toxicity and ability of mitigating resistance development, the polyionene may be used to treat MDR K. pneumoniae lung infection.Statement of significanceKlebsiella pneumoniae (K. pneumoniae) is one of the most common pathogens in hospital-acquired infections, is often resistant to multiple antibiotics including carbapenems and can cause severe pneumonia. In this study, we report synthesis of antimicrobial polymers (polyionenes) and their use as antimicrobial agents for treatment of K. pneumoniae-caused pneumonia. The polymers have broad spectrum antibacterial activity against clinically isolated MDR bacteria, and eliminate MDR K. pneumoniae more effectively and rapidly than clinically used antibiotics. The polymer treatment also provides higher survival rate and faster bacterial removal from the major organs and the blood than the antibiotics. Repeated use of the polymer does not lead to resistance development. More importantly, at the therapeutic dose, the polymer treatment does not cause acute toxicity. Given its in vivo efficacy and negligible toxicity, the polymer is a promising candidate for the treatment of MDR K. pneumoniae-caused pneumonia.Graphical abstractGraphical abstract for this article
       
  • Rational design of multimodal therapeutic nanosystems for effective
           inhibition of tumor growth and metastasis
    • Abstract: Publication date: Available online 20 July 2018Source: Acta BiomaterialiaAuthor(s): Feihu Wang, Qian Huang, Yun Wang, Wenjun Zhang, Ran Lin, Yanna Yu, Yuanyuan Shen, Honggang Cui, Shengrong Guo Simultaneous inhibition of both tumor growth and metastasis is the key to treating metastatic cancer, yet the development of effective drug delivery systems represents a great challenge since multimodal therapeutic agents must be rationally combined to overcome the biological mechanisms underpinning tumor cell proliferation and invasion. In this context, we report a hybrid therapeutic nanoscale platform that incorporates an anti-proliferative drug, doxorubicin (DOX), and an anti-NF-κB agent, p65-shRNA, for effective treatment of metastatic breast cancer. In our design, we first conjugated DOX via an acid-labile linker onto gold nanorods that were pre-modified with the tumor targeting peptide RGD and a positively charged, disulfide cross-linked short polyethylenimines (DSPEI), and then incorporated shRNA through electrostatic complexation with DSPEI. We show that this “all in one” nanotherapeutic system (RDG/shRNA@DOX) can be effectively internalized through RGD-mediated endocytosis, followed by stimuli-responsive intracellular co-release of DOX and shRNA. Our in vitro experiments suggest that this multimodal system can significantly inhibit cell proliferation, angiogenesis, and invasion of metastatic MDA-MB-435 cancer cells. Systemic administration of RDG/shRNA@DOX into a metastatic mouse model led to enhanced tumor accumulation, and, most importantly, significant inhibition of in situ tumor growth and almost complete suppression of tumor metastasis. We believe this hybrid multimodal nanotherapeutic system provides important insight into the rational design of therapeutic systems for the effective treatment of metastatic carcinoma.Statement of SignificanceThe key to successfully treat metastatic cancer is the simultaneous inhibition of both tumor growth and metastasis. This represents a great challenge for the design of drug delivery systems since multimodal therapeutic agents must be rationally combined to overcome the respective biological mechanisms underpinning tumor cell proliferation and invasion. Toward this end, we developed a hybrid nanomedicine platform that incorporates an anti-proliferative drug, doxorubicin (DOX), and an anti-NF-κB agent, p65-shRNA, for effective treatment of metastatic breast cancer. We showed that this multimodal system (RDG/shRNA@DOX) enhanced tumor accumulation, led to prolonged circulation, and most importantly, significant inhibition of in situ tumor growth and almost complete suppression of tumor metastasis. We believe this hybrid multimodal nanotherapeutic system provides significant insight into the rational design of therapeutic systems for the effective treatment of metastatic cancer.Graphical abstractGraphical abstract for this article
       
  • An immunopotentiator, ophiopogonin D, encapsulated in a nanoemulsion as a
           robust adjuvant to improve vaccine efficacy
    • Abstract: Publication date: Available online 19 July 2018Source: Acta BiomaterialiaAuthor(s): Ya-nan Tong, Liu-yang Yang, Yun Yang, Zhen Song, Liu-sheng Peng, Ji-ning Gao, Hao Zeng, Quan-ming Zou, Hong-wu Sun, Xuhu Mao As an ingredient of vaccines, adjuvants are indispensable for enhancing and directly inducing robust and extensive adaptive immune responses associated with vaccine antigens. In this study, we initially determined that a new molecular immunopotentiator, ophiopogonin D (OP-D), enhanced the antibody response to antigen. Because OP-D has certain disadvantages, including poor solubility, we next encapsulated OP-D in a nanoemulsion adjuvant (nanoemulsion-encapsulated OP-D, NOD) using low-energy emulsification methods. The NOD thus produced was small, with an average size of 76.45 nm, and exhibited good distribution (PdI value 0.16), significantly increasing the solubility of OP-D. Furthermore, NOD exhibited reduced cellular toxicity and acute toxicity. Our results showed that a fusion antigen of MRSA (HlaH35LIsdB348-465) formulated with NOD significantly improved humoral and cellular immune responses compared to those observed in the antigen/OP-D and antigen/AlPO4 groups. Compared with antigen/OP-D, the antigen formulated with NOD more effectively promoted antigen uptake by dendritic cells (DCs) and the activation of antigen-presenting cells (APCs). Moreover, the NOD-formulated antigen had ideal protective efficacy in a MRSA sepsis model by inducing more potent antibody responses and a Th1/Th17-biased CD4+ T cell immune response. Therefore, these results suggest that NOD is a promising and robust adjuvant platform for a MRSA vaccine.Statement of SignificanceThe importance of adjuvants to new generation vaccines can be compared with the Prometheus Fire for humans. We first identified a new powerful immunopotentiator, Ophiopogonin D, among dozens of natural products and then used nanotechnology to construct a highly efficient and low toxic adjuvant system (NOD). Our approach intersects natural medicinal chemistry, nanomaterials and immunology, revealing that a strong adjuvant activity of this adjuvant system was verified in vitro and in vivo, and the application of MRSA subunit vaccine model for survival experiments achieved a 100% protection rate. This research illustrate that NOD is a promising and robust adjuvant platform for subunit vaccines.Graphical abstractGraphical abstract for this article
       
  • Functionally graded multilayer scaffolds for in vivo osteochondral tissue
           engineering
    • Abstract: Publication date: Available online 19 July 2018Source: Acta BiomaterialiaAuthor(s): Heemin Kang, Yuze Zeng, Shyni Varghese Osteochondral tissue repair remains a significant challenge in orthopedic surgery. Tissue engineering of osteochondral tissue has transpired as a potential therapeutic solution as it can effectively regenerate bone, cartilage, and the bone-cartilage interface. While advancements in scaffold fabrication and stem cell engineering have made significant progress towards the engineering of composite tissues, such as osteochondral tissue, new approaches are required to improve the outcome of such strategies. Herein, we discuss the use of a single-unit trilayer scaffold with depth-varying pore architecture and mineral environment to engineer osteochondral tissues in vivo. The trilayer scaffold includes a biomineralized bottom layer mimicking the calcium phosphate (CaP)-rich bone microenvironment, a cryogel middle layer with anisotropic pore architecture, and a hydrogel top layer. The mineralized bottom layer was designed to support bone formation, while the macroporous middle layer and hydrogel top layer were designed to support cartilage tissue formation. The bottom layer was kept acellular and the top two layers were loaded with cells prior to implantation. When implanted in vivo, these trilayer scaffolds resulted in the formation of osteochondral tissue with a lubricin-rich cartilage surface. The osteochondral tissue formation was a result of continuous differentiation of the transplanted cells to form cartilage tissue and recruitment of endogenous cells through the mineralized bottom layer to form bone tissue. Our results suggest that integrating exogenous cell-based cartilage tissue engineering along with scaffold-driven in situ bone tissue engineering could be a powerful approach to engineer analogs of osteochondral tissue. In addition to offering new therapeutic opportunities, such approaches and systems could also advance our fundamental understanding of osteochondral tissue regeneration and repair.Statement of SignificanceIn this work, we describe the use of a single-unit trilayer scaffold with depth-varying pore architecture and mineral environment to engineer osteochondral tissues in vivo. The trilayer scaffold was designed to support continued differentiation of the donor cells to form cartilage tissue while supporting bone formation through recruitment of endogenous cells. When implanted in vivo, these trilayer scaffolds partially loaded with cells resulted in the formation of osteochondral tissue with a lubricin-rich cartilage surface. Approaches such as the one presented here that integrates ex vivo tissue engineering along with endochondral cell-mediated tissue engineering can have a significant impact in tissue engineering composite tissues with diverse cell populations and functionality.Graphical abstractGraphical abstract for this article
       
  • Self-assembling diphenylalanine peptide nanotubes selectively eradicate
           bacterial biofilm infection
    • Abstract: Publication date: Available online 19 July 2018Source: Acta BiomaterialiaAuthor(s): Simon L. Porter, Sophie M. Coulter, Sreekanth Pentlavalli, Thomas P. Thompson, Garry Laverty Biofilms present a major problem to industry and healthcare worldwide. Composed of a population of surface-attached microbial cells surrounded by a protective extracellular polysaccharide matrix, they are responsible for increased tolerance to antibiotics, treatment failure and a resulting rise in antimicrobial resistance. Here we demonstrate that self-assembled peptide nanostructures composed of a diphenylalanine motif provide sufficient antibacterial activity to eradicate mature biofilm forms of bacteria widely implicated in hospital infections. Modification of terminal functional groups to amino (-NH2), carboxylic acid (-COOH) or both modalities, and switch to d-isomers, resulted in changes in antibacterial selectivity and mammalian cell toxicity profiles. Of the three peptide nanotubes structures studied (NH2-FF-COOH, NH2-ff-COOH and NH2-FF-NH2), NH2-FF-COOH demonstrated the most potent activity against both planktonic (liquid, free-floating) and biofilm forms of bacteria, possessing minimal mammalian cell toxicity. NH2-FF-COOH resulted in greater than 3 Log10 CFU/mL viable biofilm reduction (>99.9%) at 5 mg/mL and total biofilm kill at 10 mg/mL against Staphylococcus aureus after 24 hours exposure. Scanning electron microscopy proved that antibiofilm activity was primarily due to the formation of ion channels and/or surfactant-like action, with NH2-FF-COOH and NH2-ff-COOH capable of degrading the biofilm matrix and disrupting cell membranes, leading to cell death in Gram-positive bacterial isolates. Peptide-based nanotubes are an exciting platform for drug delivery and engineering applications. This is the first report of using peptide nanotubes to eradicate bacterial biofilms and provides evidence of a new platform that may alleviate their negative impact throughout society.Statement of significanceWe outline, for the first time, the antibiofilm activity of diphenylalanine (FF) peptide nanotubes. Biofilm bacteria exhibit high tolerance to antimicrobials 10-10,000 times that of free-flowing planktonic forms. Biofilm infections are difficult to treat using conventional antimicrobial agents, leading to a rise in antimicrobial resistance. We discovered nanotubes composed of NH2-FF-COOH demonstrated potent activity against staphylococcal biofilms implicated in hospital infections, resulting in complete kill at concentrations of 10 mg/mL. Carboxylic acid terminated FF nanotubes were able to destroy the exopolysaccharide architecture of staphylococcal biofilms expressing minimal toxicity highlighting their potential for use in patients, whilst amidated (NH2-FF-NH2) forms demonstrated reduced antibiofilm efficacy and significant toxicity. These results contribute significantly to the development of innovative antibacterial technologies and peptide nanomaterials.Graphical abstractGraphical abstract for this article
       
  • Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and
           angiogenic growth factors for endodontic regeneration
    • Abstract: Publication date: Available online 18 July 2018Source: Acta BiomaterialiaAuthor(s): Cristiana R. Silva, Pedro S. Babo, Maurizio Gulino, Lígia Costa, Joaquim M. Oliveira, Joana Silva-Correia, Rui M.A. Domingues, Rui L. Reis, Manuela E. Gomes Bioengineered soft tissues on any meaningful scale or complexity must incorporate aspects of the functional tissue, namely a vasculature, providing cells oxygen and nutrients critical for their survival. However, the ability of tissue engineering strategies to promote a fast revascularization is critically limited. Particularly in endodontic regenerative therapies, the complicated anatomy of the root canal system, and the narrow apical access limit the supply of new blood vessels and pulp tissue ingrowth.Here we characterize the viscoelastic and microstructural properties of a class of injectable hyaluronic acid (HA) hydrogels formed in situ, reinforced with cellulose nanocrystals (CNCs) and enriched with platelet lysate (PL), and test its ability to promote cells recruitment and proangiogenic activity in vitro. The incorporation of CNCs enhanced the stability of the materials against hydrolytic and enzymatic degradation. Moreover, the release of the chemotactic and pro-angiogenic growth factors (GFs) (PDGF and VEGF) from the PL-laden hydrogels showed an improved sustained profile proportional to the amount of incorporated CNCs. The PL-laden hydrogels exhibited preferential supportive properties of encapsulated human dental pulp cells (hDPCs) in in vitro culture conditions.Finally, PL-laden hydrogels stimulated chemotactic and pro-angiogenic activity by promoting hDPCs recruitment and cell sprouting in hDPCs/human umbilical vein endothelial cell co-cultures in vitro, and in an ex vivo model. These results support the use of the combined system as a scaffold for GFs delivery and cells recruitment, thereby exhibiting great clinical potential in treating injuries in vascularized tissues.Statement of SignificanceInnovative strategies for improved chemotactic and pro-angiogenic features of TE constructs are needed. In this study, we developed an injectable HA/CNC/PL hydrogel with improved structural and biologic properties, that not only provide a sustained release of chemotactic and proangiogenic GFs from PL but also enhance the cells’ viability and angiogenic activity. As a result of their unique traits, the developed hydrogels are ideally suited to simultaneously act as a GFs controlled delivery system and as a supportive matrix for cell culture, recruitment, and revascularization induction, holding great potential for the regeneration of vascularized soft tissues, such as the dentin-pulp complex.Graphical abstractGraphical abstract for this article
       
  • Functional tissue-engineered microtissue derived from cartilage
           extracellular matrix for articular cartilage regeneration
    • Abstract: Publication date: Available online 18 July 2018Source: Acta BiomaterialiaAuthor(s): Heyong Yin, Yu Wang, Xun Sun, Ganghua Cui, Zhen Sun, Peng Chen, Yichi Xu, Xueling Yuan, Haoye Meng, Wenjing Xu, Aiyuan Wang, Quanyi Guo, Shibi Lu, Jiang Peng We developed a promising cell carrier prepared from articular cartilage slices, designated cartilage extracellular matrix (ECM)-derived particles (CEDPs), through processes involving physical pulverization, size screening, and chemical decellularization. Rabbit articular chondrocytes (ACs) or adipose-derived stem cells (ASCs) rapidly attached to the surface of the CEDPs and proliferated with high cell viability under microgravity (MG) condition in a rotary cell culture system (RCCS) or static condition. Gene profiling results demonstrated that ACs expanded on CEDPs exhibited significantly enhanced chondrogenic phenotypes compared with monolayer culture, and that ASCs differentiated into a chondrogenic phenotype without the use of exogenous growth factors. Moreover, MG culture conditions in a RCCS bioreactor were superior to static culture conditions in terms of maintaining the chondrogenic phenotype of ACs and inducing ACS chondrogenesis. With prolonged expansion, functional microtissue aggregates of AC- or ASC-laden CEDPs were formed. Further, AC- or ASC-based microtissues were directly implanted in vivo to repair articular osteochondral defects in a rabbit model. Histological results, biomechanical evaluations, and radiographic assessments indicated that AC- and ASC-based microtissues displayed equal levels of superior hyaline cartilage repair, whereas the other two treatment groups, in which osteochondral defects were treated with CEDPs alone or fibrin glue, exhibited primarily fibrous tissue repair. These findings provide an alternative method for cell culture and stem cell differentiation and a promising strategy for constructing tissue-engineered cartilage microtissues for cartilage regeneration.Statement of SignificanceDespite the remarkable progress in cartilage tissue engineering, cartilage repair still remains elusive. In the present study, we developed a cell carrier, namely cartilage extracellular matrix-derived particles (CEDPs), for cell proliferation of articular chondrocytes (ACs) and adipose-derived stem cells (ASCs), which improved the maintenance of chondrogenic phenotype of ACs, and induced chondrogenesis of ASCs. Moreover, the functional microtissue aggregates of AC- or ASC-laden CEDPs induced equal levels of superior hyaline cartilage repair in a rabbit model. Therefore, our study demonstrated an alternative method for chondrocyte culture and stem cell differentiation, and a promising strategy for constructing tissue-engineered cartilage microtissues for in vivo articular cartilage repair and regeneration.Graphical abstractGraphical abstract for this article
       
  • Mechanical Confinement via a PEG/Collagen Interpenetrating Network
           Inhibits Behavior Characteristic of Malignant Cells in the Triple Negative
           Breast Cancer Cell Line MDA.MB.231
    • Abstract: Publication date: Available online 18 July 2018Source: Acta BiomaterialiaAuthor(s): Daniel S. Reynolds, Kristen M. Bougher, Justin H. Letendre, Stephen F. Fitzgerald, Undina O. Gisladottir, Mark W. Grinstaff, Muhammad H. Zaman To decouple the effects of collagen fiber density and network mechanics on cancer cell behavior, we describe a highly tunable in vitro 3D interpenetrating network (IPN) consisting of a primary fibrillar collagen network reinforced by a secondary visible light-mediated thiol-ene poly(ethylene glycol) (PEG) network. This PEG/Collagen IPN platform is cytocompatible, inherently bioactive via native cellular adhesion sites, and mechanically tunable over several orders of magnitude—mimicking both healthy and cancerous breast tissue. Furthermore, we use the PEG/Collagen IPN platform to investigate the effect of mechanical confinement on cancer cell behavior as it is hypothesized that cells within tumors that have yet to invade into the surrounding tissue experience mechanical confinement. We find that mechanical confinement via the IPN impairs behavior characteristic of malignant cells (i.e., viability, proliferation, and cellular motility) in the triple negative breast cancer cell line MDA.MB.231, and is more effective than removal of soluble growth signals. The PEG/Collagen IPN platform is a useful tool for studying mechanotransductive signaling pathways and motivates further investigation into the role of mechanical confinement in cancer progression.Statement of SignificanceIn this study, we have developed, optimized, and applied a novel 3D in vitro cell culture platform composed of an interpenetrating network (IPN) that is both mechanically tunable and inherently bioactive. The IPN consists of a primary fibrillar collagen type-1 network reinforced by a secondary thiol-ene poly(ethylene glycol) (PEG) network. The IPNs are formed via a novel strategy in which cell-laden collagen gels are formed first, and soluble PEG monomers are added later and crosslinked via visible light. This approach ensures that the collagen gels contain a fibrillar architecture similar to the collagen architecture present in vivo. We applied our IPN platform to study the effect of mechanical confinement on cancer cell behavior and found that it inhibits malignant-like behavior.Graphical abstractGraphical abstract for this article
       
  • Effects of locally applied adipose tissue-derived microvascular fragments
           by thermoresponsive hydrogel on bone healing
    • Abstract: Publication date: Available online 17 July 2018Source: Acta BiomaterialiaAuthor(s): M. Orth, M.A.B. Altmeyer, C. Scheuer, B.J. Braun, J.H. Holstein, D. Eglin, M. D'Este, T. Histing, M.W. Laschke, T. Pohlemann, M.D. Menger Insufficient vascularization is a major cause for the development of non-unions. To overcome this problem, adipose tissue-derived microvascular fragments (MVF) may serve as vascularization units. However, their application into bone defects needs a carrier system. Herein, we analyzed whether this is achieved by a thermoresponsive hydrogel (TRH). MVF were isolated from CD-1 mice and cultivated after incorporation into TRH, while non-incorporated MVF served as controls. Viability of MVF was assessed immunohistochemically over a 7-day period. Moreover, osteotomies were induced in femurs of CD-1 mice. The osteotomy gaps were filled with MVF-loaded TRH (TRH+MVF), unloaded TRH (TRH) or no material (control). Bone healing was evaluated 14 and 35 days postoperatively. MVF incorporated into TRH exhibited less apoptotic cells and showed a stable vessel morphology compared to controls. Micro-computed tomography revealed a reduced bone volume in TRH+MVF femurs. Histomorphometry showed less bone and more fibrous tissue after 35 days in TRH+MVF femurs compared to controls. Accordingly, TRH+MVF femurs exhibited a lower osseous bridging score and a reduced bending stiffness. Histology and Western blot analysis revealed an increased vascularization and CD31 expression, whereas vascular endothelial growth factor (VEGF) expression was reduced in TRH+MVF femurs. Furthermore, the callus of TRH+MVF femurs showed increased receptor activator of NF-κB ligand expression and higher numbers of osteoclasts. These findings indicate that TRH is an appropriate carrier system for MVF. Application of TRH+MVF increases the vascularization of bone defects. However, this impairs bone healing, most likely due to lower VEGF expression during the early course of bone healing.Statement of SignificanceIn the present study we analyzed for the first time the in vivo performance of a thermoresponsive hydrogel (TRH) as a delivery system for bioactive microvascular fragments (MVF). We found that TRH represents an appropriate carrier for MVF as vascularization units and maintains their viability. Application of MVF-loaded TRH impaired bone formation in an established murine model of bone healing, although vascularization was improved. This unexpected outcome was most likely due to a reduced VEGF expression in the early phase bone healing.Graphical abstractGraphical abstract for this article
       
  • Characterization of unusual MgCa particles involved in the formation of
           foraminifera shells using a novel quantitative cryo SEM/EDS protocol
    • Abstract: Publication date: Available online 17 July 2018Source: Acta BiomaterialiaAuthor(s): Gal Mor Khalifa, Keren Kahil, Jonathan Erez, Ifat Kaplan Ashiri, Eyal Shimoni, Iddo Pinkas, Lia Addadi, Steve Weiner Quantifying ion concentrations and mapping their intracellular distributions at high resolution can provide much insight into the formation of biomaterials. The key to achieving this goal is cryo-fixation, where the biological materials, tissues and associated solutions are rapidly frozen and preserved in a vitreous state. We developed a correlative cryo- Scanning Electron Microscopy (SEM)/ Energy Dispersive Spectroscopy (EDS) protocol that provides quantitative elemental analysis correlated with spatial imaging of cryo-immobilized specimens. We report the accuracy and sensitivity of the cryo-EDS method, as well as insights we derive on biomineralization pathways in a foraminifer. Foraminifera are marine protozoans that produce Mg-containing calcitic shells and are major calcifying organisms in the oceans. We use the cryo-SEM/EDS correlative method to characterize unusual Mg and Ca-rich particles in the cytoplasm of a benthic foraminifer. The Mg/Ca ratio of these particles is consistently lower than that of seawater, the source solution for these ions. We infer that these particles are involved in Ca ion supply to the shell. We document the internal structure of the MgCa particles, which in some cases include a separate Si rich core phase. This approach to mapping ion distribution in cryo-preserved specimens may have broad applications to other mineralized biomaterials.Statement of significanceIons are an integral part of life, and some ions play fundamental roles in cell metabolism. Determining the concentrations of ions in cells and between cells, as well as their distributions at high resolution can provide valuable insights into ion uptake, storage, functions and the formation of biomaterials. Here we present a new cryo-SEM/EDS protocol that allows the mapping of different ion distributions in solutions and biological samples that have been cryo-preserved. We demonstrate the value of this novel approach by characterizing a novel biogenic mineral phase rich in Mg found in foraminifera, single celled marine organisms. This method has wide applicability in biology, and especially in understanding the formation and function of mineral-containing hard tissues.Graphical abstractGraphical abstract for this article
       
  • In situ monitoring and analysis of enamel demineralisation using
           synchrotron X-ray scattering
    • Abstract: Publication date: Available online 17 July 2018Source: Acta BiomaterialiaAuthor(s): Tan Sui, Enrico Salvati, Robert A. Harper, Hongjia Zhang, Richard M. Shelton, Gabriel Landini, Alexander M. Korsunsky Dental caries is one of the most common chronic diseases that affect human teeth. It often initiates in enamel, undermining its mechanical function and structural integrity. Little is known about the enamel demineralisation process caused by dental caries in terms of the microstructural changes and crystallography of the inorganic mineral phase. To improve the understanding of the carious lesion formation process and to help identify efficient treatments, the evolution of the microstructure at the nano-scale in an artificially induced enamel erosion region was probed using advanced synchrotron small-angle and wide-angle X-ray scattering (SAXS and WAXS). This is the first in vitro and time-resolved investigation of enamel demineralisation using synchrotron X-ray techniques which allows in situ quantification of the microstructure evolution over time in a simulated carious lesion. The analysis revealed that alongside the reduction of mineral volume, a heterogeneous evolution of hydroxyapatite (HAp) crystallites (in terms of size, preferred orientation and degree of alignment) could be observed. It was also found that the rate and direction of dissolution depends on the crystallographic orientation. Based on these findings, a novel conceptual view of the process is put forward that describes the key structural parameters in establishing high fidelity ultrastructure-based numerical models for the simulation of the enamel demineralisation process.Statement of significanceHydroxyapatite (HAp) crystallites in the enamel dissolve during dental caries although little is known about the structural-chemical relationships that control the dynamic demineralisation process. For the first time this work investigated the in situ evolution of nano-scale morphology and the spatial distribution of ultrastructural HAp crystallites of human enamel during demineralisation in simulated caries. Advanced synchrotron SAXS and WAXS techniques showed that the heterogeneous evolution of crystallites (size, preferred orientation and degree of alignment) could be attributed to crystallographic-orientation-dependent anisotropic dissolution. Hence we propose a novel conceptual schematic diagram to describe the demineralisation process. These findings have important implications for understanding the detailed mechanisms of enamel demineralisation and provide insight into potential enamel remineralisation that could restore structural integrity and function.Graphical abstractGraphical abstract for this article
       
  • Molecular and cellular mechanisms for zoledronic acid-loaded
           magnesium-strontium alloys to inhibit giant cell tumors of bone
    • Abstract: Publication date: Available online 17 July 2018Source: Acta BiomaterialiaAuthor(s): Mei Li, Weidan Wang, Ye Zhu, Yao Lu, Peng Wan, Ke Yang, Yu Zhang, Chuanbin Mao Giant Cell Tumors of Bone (GCTB) are benign but aggressive and metastatic tumors. Surgical removal cannot eradicate GCTB due to the subsequent recurrence and osteolysis. Here we developed Zoledronic acid (ZA)-loaded magnesium- strontium (Mg-Sr) alloys that can inhibit GCTB and studied the molecular and cellular mechanisms of such inhibition. We first formed a calcium phosphate (CaP) coating on the Mg-1.5wt.%Sr implants by coprecipitation and then loaded ZA on the CaP coating. We examined the response of GCTB cells to the ZA-loaded alloys. At the cellular level, the alloys not only induced apoptosis and oxidative stress of GCTB cells, and suppressed their resultant pre-osteoclast recruitment, but also inhibited their migration. At the molecular level, the alloys could significantly activate the mitochondrial pathway and inhibit the NF-κB pathway in the GCTB cells. These collectively enable the ZA-loaded alloys to suppress GCTB cell growth and osteolysis, and thus improve our understanding of the materials-induced tumor inhibition. Our study shows that ZA-loaded alloys could be a potential implant in repairing the bone defects after tumor removal in GCTB therapy.Statement of SignificanceIn clinics, giant cell tumors of bone (GCTB) are removed by surgery. However, the resultant defects in bone still contain aggressive and metastatic GCTB cells that can recruit osteoclasts to damage bone, leading to new GCTB tumor growth and bone damage after tumor surgery. Hence, it is of high demand in developing a material that can not only fill the bone defects as an implant but also inhibit GCTB in the defect area as a therapeutic agent. More importantly, the molecular and cellular mechanism by which such a material inhibits GCTB growth has never been explored. To solve these two problems, we prepared a new biomaterial, the Mg-Sr alloys that were first coated with calcium phosphate and then loaded with a tumor-inhibiting molecule (Zoledronic acid, ZA). Then, by using a variety of molecular and cellular biological assays, we studied how the ZA-loaded alloys induced the death of GCTB cells (derived from patients) and inhibited their growth at the molecular and cellular level. At the cellular level, our results showed that ZA-loaded Mg-Sr alloys not only induced apoptosis and oxidative stress of GCTB cells, and suppressed their induced pre-osteoclast recruitment, but also inhibited their migration. At the molecular level, our data showed that ZA released from the ZA-loaded Mg-Sr alloys could significantly activate the mitochondrial pathway and inhibit the NF-kappa B pathway in the GCTB cells. Both mechanisms collectively induced GCTB cell death and inhibited GCTB cell growth. This work showed how a biomaterial inhibit tumor growth at the molecular and cellular level, increasing our understanding in the fundamental principle of materials-induced cancer therapy. This work will be interesting to readers in the fields of metallic materials, inorganic materials, biomaterials and cancer therapy.Graphical abstractZoledronic acid (ZA)-loaded magnesium- strontium (Mg-Sr) alloys are developed to inhibit Giant Cell Tumors of Bone (GCTB). At the molecular level, the alloys could significantly activate the mitochondrial pathway and inhibit the NF-κB pathway in the GCTB cells, and thus suppress GCTB cell growth and osteolysis.Graphical abstract for this article
       
  • Controlled-Temperature Photothermal and Oxidative Bacteria Killing and
           Acceleration of Wound Healing by Polydopamine-Assisted Au-Hydroxyapatite
           Nanorods
    • Abstract: Publication date: Available online 17 July 2018Source: Acta BiomaterialiaAuthor(s): Xiaomo Xu, Xiangmei Liu, Lei Tan, Zhenduo Cui, Xianjin Yang, Shengli Zhu, Zhaoyang Li, Xubo Yuan, Yufeng Zheng, Kelvin Wai Kwok Yeung, Paul K. Chu, Shuilin Wu Since skin wounds are subject to bacterial infection and tissue regeneration may be impeded, there is demand for biomaterials that possess rapid bactericidal and tissue repair capability. Herein we report in situ promotion of wound healing by a photothermal therapy (PTT) assisted nanocatalytic antibacterial system utilizing a polydopamine (PDA) coating on hydroxyapatite (HAp) incorporated with gold nanoparticles (Au-HAp). The PDA@Au-HAp NPs produce hydroxyl radicals (•OH) via catalysis of a small concentration of H2O2 to render bacteria more vulnerable to the temperature change. The antibacterial efficacy against Escherichia coli and Staphylococcus aureus is 96.8% and 95.2%, respectively, at a controlled photo-induced temperature of 45 oC that causes no damage to normal tissues. By combining catalysis with near-infrared (NIR) photothermal therapy, the PDA@Au-HAp NPs provide safe, rapid, and effective antibacterial activity compared to •OH or PTT alone. In addition, this system stimulates the tissue repairing-related gene expression to facilitate the formation of granulation tissues and collagen synthesis and thus accelerate wound healing. After the 10-day treatment of skin wounds in vivo, PDA@Au-HAp group exhibits quicker recovery than the control group and both sterilization and healing are completed after the 10-day treatment.Statement of SignificanceThis study presents in situ promotion of wound healing by a low-temperature photothermal therapy (PTT) assisted nanocatalytic antibacterial system utilizing a polydopamine (PDA) coating on hydroxyapatite (HAp) incorporated with gold nanoparticles (Au-HAp). The PDA@Au-HAp NPs produce hydroxyl radicals (•OH) via catalysis of a small concentration of H2O2 to render bacteria more vulnerable to temperature change. After irradiation by 808 nm laser, the antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) is 96.8% and 95.2%, respectively, at a low photo-induced temperature of 45 oC which causes no damage to normal tissues. In addition, this system stimulates the tissue repairing-related gene expression to facilitate the formation of granulation tissues and collagen synthesis and accelerate wound healing.Graphical abstractGraphical abstract for this article
       
  • Tough and deformable glasses with bioinspired cross-ply architectures
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Zhen Yin, Ahmad Dastjerdi, Francois Barthelat Glasses are optically transparent, hard materials that have been in sustained demand and usage in architectural windows, optical devices, electronics and solar panels. Despite their outstanding optical qualities and durability, their brittleness and low resistance to impact still limits wider applications. Here we present new laminated glass designs that contain toughening cross-ply architectures inspired from fish scales and arthropod cuticles. This seemingly minor enrichment completely transforms the way laminated glass deforms and fractures, and it turns a traditionally brittle material into a stretchy and tough material with little impact on surface hardness and optical quality. Large ply rotation propagates over large volumes, and localization is delayed in tension, even if a strain softening interlayer is used, in a remarkable mechanism which is generated by the kinematics of the plies and geometrical hardening. Compared to traditional laminated glass which degrades significantly in performance when damaged, our cross-ply architecture glass is damage-tolerant and 50 times tougher in energy terms.Statement of SignificanceDespite the outstanding optical qualities and durability of glass, its brittleness and low resistance to impact still limits its wider application. Here we present new laminated glass designs that contain toughening cross-ply architectures inspired from fish scales and arthropod cuticles. Enriching laminated designs with crossplies completely transforms the material deforms and fractures, and turns a traditionally brittle material into a stretchy and tough material – with little impact on surface hardness and optical quality. Large ply rotation propagates over large volumes and localization is delayed in tension because of a remarkable and unexpected geometrical hardening effect. Compared to traditional laminated glass which degrades significantly in performance when damaged, our cross-ply architecture glass is damage-tolerant and it is 50 times tougher in energy terms. Our glass-based, transparent material is highly innovative and it is the first of its kind. We believe it will have impact in broad range of applications in construction, coatings, chemical engineering, electronics, photovoltaics.Graphical abstractGraphical abstract for this article
       
  • Nanopatterned bulk metallic glass-based biomaterials modulate macrophage
           polarization
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Mahdis Shayan, Jagannath Padmanabhan, Aaron H. Morris, Bettina Cheung, Ryan Smith, Jan Schroers, Themis R. Kyriakides Polarization of macrophages by chemical, topographical and mechanical cues presents a robust strategy for designing immunomodulatory biomaterials. Here, we studied the ability of nanopatterned bulk metallic glasses (BMGs), a new class of metallic biomaterials, to modulate murine macrophage polarization. Cytokine/chemokine analysis of IL-4 or IFNγ/LPS-stimulated macrophages showed that the secretion of TNF-α, IL-1α, IL-12, CCL-2 and CXCL1 was significantly reduced after 24-hour culture on BMGs with 55 nm nanorod arrays (BMG-55). Additionally, under these conditions, macrophages increased phagocytic potential and exhibited decreased cell area with multiple actin protrusions. These in vitro findings suggest that nanopatterning can modulate biochemical cues such as IFNγ/LPS. In vivo evaluation of the subcutaneous host response at 2 weeks demonstrated that the ratio of Arg-1 to iNOS increased in macrophages adjacent to BMG-55 implants, suggesting modulation of polarization. In addition, macrophage fusion and fibrous capsule thickness decreased and the number and size of blood vessels increased, which is consistent with changes in macrophage responses. Our study demonstrates that nanopatterning of BMG implants is a promising technique to selectively polarize macrophages to modulate the immune response, and also presents an effective tool to study mechanisms of macrophage polarization and function.Statement of SignificanceImplanted biomaterials elicit a complex series of tissue and cellular responses, termed the foreign body response (FBR), that can be influenced by the polarization state of macrophages. Surface topography can influence polarization, which is broadly characterized as either inflammatory or repair-like. The latter has been linked to improved outcomes of the FBR. However, the impact of topography on macrophage polarization is not fully understood, in part, due to a lack of high moduli biomaterials that can be reproducibly processed at the nanoscale. Here, we studied macrophage interactions with nanopatterned bulk metallic glasses (BMGs), a class of metallic alloys with amorphous microstructure and formability like polymers. We show that nanopatterned BMGs modulate macrophage polarization and transiently induce less fibrotic and more angiogenic responses. Overall, we demonstrate nanopatterning of BMG implants as a technique to polarize macrophages and modulate the FBR.Graphical abstractGraphical abstract for this article
       
  • A dual-targeting reconstituted high density lipoprotein leveraging the
           synergy of sorafenib and antimiRNA21 for enhanced hepatocellular carcinoma
           therapy
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Min Li, Yujie Su, Fangrong Zhang, Kerong Chen, Xiangting Xu, Lin Xu, Jianping Zhou, Wei Wang Sorafenib (So) is a multi-target kinase inhibitor extensively used in clinic for hepatocellular carcinoma therapy. It demonstrated strong inhibition both in tumor proliferation and tumor angiogenesis, while hampered by associated cutaneous side-effect and drug resistance. The knockdown of miR-21 with antisense oligonucleotides (antimiRNA21) was regarded as an efficient strategy for increasing tumor sensibility to chemotherapy, which could be employed to appreciate the efficacy of So. Herein, we successfully formulated a dual-targeting delivery system for enhanced hepatocellular carcinoma therapy by encapsulating So and antimiRNA21 in RGD pentapeptide-modified reconstituted high-density lipoprotein (RGD-rHDL/So/antimiRNA21). The RGD and apolipoprotein A-I (ApoA-I) on nanoparticles (NPs) could drive the system simultaneously to tumor neovascular and parenchyma by binding to the overexpressed ανβ3-integrin and SR-B1 receptors, achieving precise delivery of therapeutics to maximize the efficacy. A series in vitro and in vivo experiments revealed that co-delivery of So and antimiRNA21 by RGD-rHDL significantly strengthened the anti-tumor and anti-angiogenic effect of So with negligible toxicity towards major organs, reversed drug-resistance and was capable of remodeling tumor environments. The constructed RGD-rHDL/So/antimiRNA21 with improved efficacy and excellent tumor targeting ability provided new idea for chemo-gene combined therapy in hepatocellular carcinoma.Statement of SignificanceSorafenib (So) is a multi-target kinase inhibitor which was approved by FDA as first-line drug for hepatocellular carcinoma (HCC) therapy. However, long term application of So in clinic was hampered by serious dermal toxicity and drug resistance. Although numerous researchers were devoted to finding alternatives or therapies as combination treatments with So to reach more desired therapeutic efficacy, the therapeutic options were still limited. The present study prepares RGD pentapeptide decorated biomimic reconstituted high-density lipoprotein (rHDL) loaded with So and antimiRNA21 (RGD-rHDL/So/antimiRNA21) for enhanced HCC therapy. The RGD-rHDL/So/antimiRNA21 NPs offer an effective platform for anti-tumor and anti-angiogenesis therapy in HCC and provide new approach to reverse drug-resistance of So for feasible clinical application.Graphical abstractGraphical abstract for this article
       
  • A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic
           drugs as a tool to reverse multidrug resistance in breast cancer
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Fengchun Tian, Fatima Zohra Dahmani, Jianan Qiao, Jiang Ni, Hui Xiong, Tengfei Liu, Jianping Zhou, Jing Yao Several obstacles are currently impeding the successful treatment of breast cancer, namely impaired drug accumulation into the tumor site, toxicity to normal cells and narrow therapeutic index of chemotherapy, multidrug resistance (MDR) and the metastatic spread of cancer cells through the blood and lymphatic vessels. In this regard, we designed a novel multifunctional nano-sized drug delivery system based on LyP-1 peptide-modified low-molecular-weight heparin-quercetin conjugate (PLQ). This nanosystem was developed for targeted co-delivery of multiple anticancer drugs to p32-overexpressing tumor cells and peritumoral lymphatic vessels, using LyP-1 peptide as active targeting ligand, with the aim to achieve a targeted combinatorial chemo/angiostatic therapy and MDR reversal. The cellular uptake of PLQ nanoparticles by p32-overexpressing breast cancer cells was significantly higher than nonfunctionalized nanoparticles. Besides, the anti-angiogenic activity of PLQ nanoparticles was proven by the effective inhibition of the bFGF-induced neovascularization in subcutaneous Matrigel plugs. More importantly, PLQ/GA nanoparticles with better targeting ability toward p32-positive tumors, displayed a high antitumor outcome by inhibition of tumor cells proliferation and angiogenesis. Immunohistochemistry and western blot assay showed that PLQ/GA nanoparticles significantly disrupted the lymphatic formation of tumor, and inhibited the P-glycoprotein (P-gp) expression in MCF-7 tumor cells, respectively. In conclusion, PLQ/GA nanoparticles provide a synergistic strategy for effective targeted co-delivery of chemotherapeutic and antiangiogenic agents and reversing MDR and metastasis in breast cancer.Statement of SignificanceHerein, we successfully developed a novel amphiphilic nanomaterial, LyP-1-LMWH-Qu (PLQ) conjugate, consisting of a tumor-targeting moiety LyP-1, a hydrophobic quercetin (a multidrug resistance [MDR]–reversing drug) inner core, and a hydrophilic low-molecular-weight heparin (an antiangiogenic agent) outer shell for encapsulating and delivering a hydrophobic chemotherapeutic agent (gambogic acid). This versatile nanoplatform with multiple targeted features, i.e., dual chemo/angiostatic effects, destruction ability of the peritumoral lymphatic vessels, and reversal of MDR, resulted in a significantly stronger antitumor efficacy and lower toxic side effect than those of nontargeted nanoparticles and the free drug solution. Therefore, this versatile nanosystem might provide a novel insight for the treatment and palliation of breast cancer by targeted co-delivery of chemo/antiangiogenic agents and reversing MDR and metastasis.Graphical abstractGraphical abstract for this article
       
  • Bubble-generating polymersomes loaded with both indocyanine green and
           
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Dunwan Zhu, Fan Fan, Chenlu Huang, Zhiming Zhang, Yu Qin, Li Lu, Hai Wang, Xu Jin, Hanxue Zhao, Hu Yang, Chao Zhang, Jun Yang, Zhipeng Liu, Hongfan Sun, Xigang Leng, Deling Kong, Linhua Zhang The combination of chemotherapy and photothermal therapy (PTT) via stimuli-responsive nanovesicles has great potential in tumor treatment. In the present study, bubble-generating polymersomes, which can generate bubbles in response to low pH or hyperthermia, were fabricated to simultaneously encapsulate chemotherapeutic drug and photosensitizing agent for the synergistic chemo-photothermal tumor therapy. Photosensitizer indocyanine green (ICG) was encapsulated into the bilayer of polymersomes formed by amphiphilic triblock copolymer PCL8000-PEG8000-PCL8000 through thin film re-hydration method, while chemotherapeutic doxorubicin (DOX) was loaded into the hydrophilic lumen using a transmembrane ammonium bicarbonate gradient loading procedure. Under acidic condition or laser irradiation, the ammonium bicarbonate (NH4HCO3) encapsulated in the bubble-generating DOX-ICG-co-delivery polymersomes (BG-DIPS) would decompose to produce CO2 bubbles, resulting in destruction of vesicle structure and rapid drug release. In vitro drug release study confirmed that acidic environment and NIR laser irradiation could accelerate DOX release from the BG-DIPS. Cellular uptake study indicated that laser-induced hyperthermia highly enhanced endocytosis of BG-DIPS into 4T1-Luc cancer cells. In vitro cytotoxicity study demonstrated that BG-DIPS exhibited much higher cytotoxicity than free drugs under laser irradiation. In vivo biodistribution study indicated that BG-DIPS could accumulate in the tumor region, prolong drug retention, and increase photothermal conversion efficiency. Furthermore, in vivo antitumor study showed that BG-DIPS with laser irradiation efficiently inhibited 4T1-Luc tumor growth with reduced systemic toxicity. Hence, the formulated bubble-generating polymersomes system was a superior multifunctional nanocarrier for stimuli-response controlled drug delivery and combination chemo-photothermal tumor therapy.Statement of SignificanceThe combination of chemotherapy and photothermal therapy via stimuli-responsive nanovesicles has great potential in tumor treatment. Herein, bubble-generating polymersomes, which can generate bubbles in response to low pH or hyperthermia, were fabricated to simultaneously encapsulate chemotherapeutic drug (DOX) and photosensitizing agent (ICG) for the synergistic chemo-photothermal tumor therapy. The results in vitro and in vivo demonstrated that bubble-generating DOX-ICG-co-delivery polymersomes (BG-DIPS) would accelerate DOX release from the BG-DIPS and accumulate in the tumor region, prolong drug retention, and increase photothermal conversion efficiency. BG-DIPS with laser irradiation could efficiently inhibited 4T1-Luc tumor growth with reduced systemic toxicity. Hence, the formulated bubble-generating polymersomes system was a superior multifunctional nanocarrier for stimuli-response controlled drug delivery and combination chemo-photothermal tumor therapy.Graphical abstractGraphical abstract for this article
       
  • Dual pH/reduction-responsive hybrid polymeric micelles for targeted
           chemo-photothermal combination therapy
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Linhua Zhang, Yu Qin, Zhiming Zhang, Fan Fan, Chenlu Huang, Li Lu, Hai Wang, Xu Jin, Hanxue Zhao, Deling Kong, Chun Wang, Hongfan Sun, Xigang Leng, Dunwan Zhu The combination of chemotherapy and photothermal therapy in multifunctional nanovesicles has emerged as a promising strategy to improve cancer therapeutic efficacy. Herein, we designed new pH/reduction dual-responsive and folate decorated polymeric micelles (FA Co-PMs) as theranostic nanocarrier to co-encapsulate doxorubicin (DOX) and indocyanine green (ICG) for targeted NIR imaging and chemo-photothermal combination therapy. The Co-PMs exhibited nano-sized structure (∼100 nm) with good monodispersity, high encapsulation efficiency of both ICG and DOX, triggered DOX release in response to acid pH and reduction environment, and excellent temperature conversion with laser irradiation. In vitro cellular uptake study indicated FA Co-PMs achieved significant targeting to BEL-7404 cells via folate receptor-mediated endocytosis, and laser-induced hyperthermia further enhanced drug accumulation into cancer cells. In vivo biodistribution study indicated that FA Co-PMs prolonged drug circulation and enhanced drug accumulation into the tumor via EPR effect and FA targeting. Furthermore, the ICG-based photo-triggered hyperthermia combined with DOX-based chemotherapy synergistically induced the BEL-7404 cell death and apoptosis, and efficiently suppressed the BEL-7404 xenografted tumor growth while significantly reduced systemic toxicity in vivo. Therefore, the designed dual-responsive Co-PMs were promising theranostic nanocarriers for versatile antitumor drug delivery and imaging-guided cancer chemo-photothermal combination therapy.Statement of SignificanceThe combination of chemotherapy and photothermal therapy in multifunctional nanovesicles has emerged as a promising strategy to improve cancer therapeutic efficacy. Herein, we designed novel pH/reduction dual-responsive and folate decorated polymeric micelles (FA Co-PMs) as theranostic nanocarrier to co-encapsulate doxorubicin (DOX) and indocyanine green (ICG) for targeted NIR imaging and chemo-photothermal combination therapy. The Co-PMs triggered DOX release in response to acid pH and reduction environment and exhibited excellent temperature conversion with laser irradiation. The results indicated FA Co-PMs achieved significant targeting to BEL-7404 cells in vitro and efficiently suppressed the BEL-7404 xenografted tumor growth while significantly reduced systemic toxicity in vivo. Therefore, the designed dual-responsive Co-PMs displayed great potential in imaging-guided cancer chemo-photothermal combination therapy as theranostic nanocarriers.Graphical abstractGraphical abstract for this article
       
  • Fluorescence Correlation Spectroscopy to find the critical balance between
           extracellular association and intracellular dissociation of mRNA complexes
           
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Heyang Zhang, Stefaan C. De Smedt, Katrien Remaut Fluorescence Correlation Spectroscopy (FCS) is a promising tool to study interactions on a single molecule level. The diffusion of fluorescent molecules in and out of the excitation volume of a confocal microscope leads to the fluorescence fluctuations that give information on the average number of fluorescent molecules present in the excitation volume and their diffusion coefficients. In this context, we complexed mRNA into lipoplexes and polyplexes and explored the association/dissociation degree of complexes by using gel electrophoresis and FCS. FCS enabled us to measure the association and dissociation degree of mRNA-based complexes both in buffer and protein-rich biological fluids such as human serum and ascitic fluid, which is a clear advantage over gel electrophoresis that was only applicable in protein-free buffer solutions. Furthermore, following the complex stability in buffer and biological fluids by FCS assisted to understand how complex characteristics, such as charge ratio and strength of mRNA binding, correlated to the transfection efficiency. We found that linear polyethyleneimine prevented efficient translation of mRNA, most likely due to a too strong mRNA binding, whereas the lipid based carrier Lipofectamine® messengerMAX did succeed in efficient release and subsequent translation of mRNA in the cytoplasm of the cells. Overall, FCS is a reliable tool for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production.Statement of SignificanceThe delivery of messenger RNA (mRNA) to cells is promising to treat a variety of diseases. Therefore, the mRNA is typically packed in small lipid particles or polymer particles that help the mRNA to reach the cytoplasm of the cells. These particles should bind and carry the mRNA in the extracellular environment (e.g. blood, peritoneal fluid, …), but should release the mRNA again in the intracellular environment. In this paper, we evaluated a method (Fluorescence Correlation Spectroscopy) that allows for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production.Graphical abstractGraphical abstract for this article
       
  • Polyion complex hydrogels from chemically modified cellulose nanofibrils:
           Structure-function relationship and potential for controlled and
           pH-responsive release of doxorubicin
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Sry D. Hujaya, Gabriela S. Lorite, Seppo J. Vainio, Henrikki Liimatainen Herein, we report the fabrication of a polyion complex hydrogel from two oppositely charged derivatives of cellulose nanofibrils (CNF). CNF was produced from dissolving pulp through subsequent periodate oxidation, chemical modification, and microfluidization. Three different durations for periodate oxidation (30 min, 120 min, and 180 min) resulted in three different aldehyde contents. Further, two types of chemical modifications were introduced to react with the resulting aldehydes: chlorite oxidation to yield anionic CNF with carboxylic acid groups (DCC) and imination with Girard’s reagent T to yield cationic CNF containing quaternary ammonium groups (CDAC). Functional group contents were assessed using conductometric titration and elemental analysis, while nanofibril morphologies were assessed using atomic force microscopy (AFM). Longer durations of periodate oxidation did not yield different width profile but was found to decrease fibril length. The formation of self-standing hydrogel through mixing of DCC and CDAC dispersions was investigated. Oscillatory rheology was performed to assess the relative strengths of different gels. Self-standing hydrogels were obtained from mixture of DCC180 and CDAC180 dispersions in acetate buffer at pH 4 and 5 at a low concentration of 0.5% w/w that displayed approximately 10-fold increase in storage and loss moduli compared to those of the individual dispersions. Self-standing gels containing doxorubicin (an anticancer drug) displayed pH-responsive release profiles. At physiological pH 7.4, approximately 65% of doxorubicin was retained past a burst release regime, while complete release was observed within 5 days at pH 4. Biocompatibility of DCC180, CDAC180, and their mixture were investigated through quantification of the metabolic activity of NIH3T3 cells in vitro. No significant cytotoxicity was observed at concentrations up to 900 µg/mL. In short, the nanocellulose-based polyion complex hydrogels obtained in this study are promising nature-derived materials for biomedical applications.Statement of SignificanceWe demonstrate that polyion complex can be formed between two cellulose nanofibrils containing complementary charges. To the best of our knowledge, this is the first time that polyion complex formation between complementarily-modified cellulose nanofibrils has been reported, and the results may lead to new ideas on applications of the very promising nanocellulosic materials. The polyion complex helps form a self-standing network that is demonstrated to provide controlled and pH-responsive release of doxorubicin. Particularly, the report explores the connection between the physical properties of functionalizable nanocellulosic materials and their potential biomedical applications. Thus, the study encompasses several broad fields of materials science and engineering, chemistry, and biomedical science that we believe is in line with the readers’ interests.Graphical abstractGraphical abstract for this article
       
  • Glutathione detonated and pH responsive nano-clusters of Au nanorods with
           a high dose of DOX for treatment of multidrug resistant cancer
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Yun Wang, Feihu Wang, Ying Liu, Shaohui Xu, Yuanyuan Shen, Nianping Feng, Shengrong Guo Effects of nanosized drug delivery systems on cancer are often compromised due to their low drug loadings, premature drug release and multi-drug resistance (MDR). Herein, we reported a glutathione detonated and pH responsive nano-cluster of Au nanorods (AuNRs) with chemotherapeutic doxorubicin (DOX) and pre-chemosensitizer polycurcumin to treat MCF-7/ADR cells. The nano-cluster was prepared by self-assembling of AuNRs conjugated with DOX and amphiphilic poly(curcumin-co-dithiodipropionic acid)-b-biotinylated poly(ethylene glycol) via an emulsion/solvent evaporation technique, termed AuNR Cluster. The AuNR Cluster had a high drug loading (31.5% DOX), presenting much better aqueous solubility and stability at physiological pH than their individual AuNRs. The AuNR Cluster could be detonated to be their individual AuNRs at an intracellular concentration level of glutathione (GSH) (5 mM) and triggered to release DOX at an acidic pH (pH 6.8 or 5.0), which effectively facilitated cellular uptake of DOX (607 vs 356 a.u. for AuNRs at 12 h) and inhibited DOX efflux (471.33 vs 39.17 a.u. for free DOX at 24 h). The IC50 value of DOX against MCF-7/ADR cells for AuNR Cluster was 4.15 µg/mL, much lower than that for free DOX (90.97 µg/mL). The AuNR Cluster took much more photothermal effects than their corresponding AuNRs and presented enhanced anti-tumor effect (IC50: 2.61 µg/mL) under 808 nm laser irradiation.Statement of SignificanceNano-sized drug delivery systems for anti-MDR cancer is still a challenging task. Herein, AuNR Cluster was self-assembled by individual AuNRs via emulsion/solvent evaporation technique, having a structure consisting of hydrophobic DOX/PCDA-AuNR core and hydrophilic biotin-PEG chain shell. AuNR Cluster is detonated to disintegrate and yield its individual AuNRs at an intracellular concentration level of glutathione (5 mM) and triggered to release DOX at an acidic pH (6.8 or 5.0). In comparison with its individual AuNRs, AuNR Cluster has better water solubility and stability, greater photothermal effects under NIR irradiation, bigger cytotoxicity against MCF-7/ADR cells. AuNR Cluster is expected to be a potential nanomedicine for treatment of MDR cancer.Graphical abstractGraphical abstract for this article
       
  • Hyaluronic acid formulation of near infrared fluorophores optimizes
           surgical imaging in a prostate tumor xenograft
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Joshua J. Souchek, Nicholas E. Wojtynek, William M. Payne, Megan B. Holmes, Samikshan Dutta, Bowen Qi, Kaustubh Datta, Chad A. LaGrange, Aaron M. Mohs The presence of positive surgical margins confers an increased risk of biochemical relapse and need for salvage therapy in men undergoing radical prostatectomy. Image-guided surgery using near-infrared (NIR) fluorescent contrast agents is a potential method to detect remaining cancerous tissue. The objective of this study was to evaluate three hyaluronic acid (HA) nanoparticle (NP) formulations loaded with NIR fluorophore for their ability to contrast-enhance prostate cancer. HA was modified by conjugation with the hydrophobic ligand, aminopropyl-1-pyrenebutanamide to drive nanoparticle self-assembly. Indocyanine green (ICG) was physicochemically entrapped in the HA-NP, termed NanoICG. Alternatively, Cy7.5 was directly conjugated to amphiphilic HA, termed NanoCy7.5. NanoCy7.5 was synthesized with two HA molecular weights to determine the HA size contribution to delivery to PC3 prostate tumor xenografts. Contrast-enhancement of the tumors and relative biodistribution were assessed by a series of fluorescence imaging, image-guided surgery with spectroscopy, and microscopic techniques. Intravenously administered NanoICG improved tumor signal-to-noise ratio (SNR) at 24 h over ICG by 2.9-fold. NanoCy7.5 with 10 kDa and 100 kDa HA improved tumor SNR by 6.6- and 3.1-fold over Cy7.5 alone, respectively. The PC3 xenograft was clearly identified with the image-guided system providing increased contrast enhancement compared to surrounding tissue for NanoICG and NanoCy7.5 with 10 kDa HA. NIR fluorescence microscopy showed that Cy7.5 in NPs with 10 kDa HA were distributed throughout the tumor, while NanoCy7.5 with 100 kDa HA or NanoICG delivered dye mainly to the edge of the tumor. CD31 staining suggested that PC3 tumors are poorly vascularized. These studies demonstrate the efficacy of a panel of HA-derived NPs in identifying prostate tumors in vivo, and suggest that by tuning the structural properties of these NPs, optimized delivery can be achieved to poorly vascularized tumors.Statement of SignificanceWe have demonstrated the potential of a panel of near-infrared fluorescent (NIRF) nanoparticles (NPs) for image-guided surgery in a prostate cancer xenograft model. Image-guided surgery and imaging of organs ex vivo showed greater tumor signal and contrast when mice were administered NIRF dyes that were covalently conjugated to (NanoCy7.510k-PBA) or physicochemically entrapped in (NanoICGPBA) hyaluronic acid (HA) NPs, compared to free dyes. These results show the potential to use these NPs as tools to detect the margins of tumors and to differentiate healthy and tumor tissue intraoperatively. Moreover, this project provides insight into selecting optimal formulation strategies for poorly vascularized tumors.Graphical abstractGraphical abstract for this article
       
  • A multi-functional polymeric carrier for simultaneous positron emission
           tomography imaging and combination therapy
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Jingjing Sun, Lingyi Sun, Jianchun Li, Jieni Xu, Zhuoya Wan, Zubin Ouyang, Lei Liang, Song Li, Dexing Zeng Multifunctional nanoplatforms offering simultaneous imaging and therapeutic functions have been recognized as a highly promising strategy for personalized nanomedicine. In this work, we synthesized a farnesylthiosalicylate (FTS, a nontoxic Ras antagonist) based triblock copolymer POEG-b-PVBA-b-PFTS (POVF) composed of a poly(oligo(ethylene glycol) methacrylate) (POEG) hydrophilic block, a poly(FTS) hydrophobic block, and a poly(4-vinylbenzyl azide) (PVBA) middle block. The POVF polymer itself was active in inhibiting the tumor growth in vitro and in vivo. Besides, it could serve as a carrier to effectively encapsulate paclitaxel (PTX) to form stable PTX/POVF mixed micelles with a diameter around 100 nm. Meanwhile, POVF polymer provides the active azide group for incorporating a positron emission tomography (PET) imaging modality via a facile strategy based on metal-free click chemistry. This nanocarrier system could not only be used for co-delivery of PTX and FTS, but also for PET imaging guided drug delivery. In the 4T1.2 tumor bearing mice, PET imaging showed rapid uptake and slow clearance of radiolabeled PTX/POVF nanomicelles in the tumor tissues. In addition, the FTS-based multi-functional nanocarrier was able to inhibit tumor growth effectively, and the co-delivery of PTX by the carrier further improved the therapeutic effect.Statement of SignificanceDue to the intrinsic heterogeneity of cancer and variability in individual patient response, personalized nanomedicine based on multi-functional carriers that integrate the functionalities of combination therapy and imaging guidance is highly demanded. Here we developed a multi-functional nanocarrier based on triblock copolymer POEG-b-PVBA-b-PFTS (POVF), which could not only be used for co-delivery of anticancer drugs PTX and Ras inhibitor FTS, but also for PET imaging guided drug delivery. The POVF carrier itself was active in inhibiting the tumor growth in vitro and in vivo. Besides, it was effective in formulating PTX with high drug loading capacity, which further enhanced the tumor inhibition effect. Meanwhile, we developed a simple and universal approach to incorporate a PET radioisotope (Zr-89 and Cu-64) into the azide-containing PTX/POVF micelles via metal-free click chemistry in aqueous solution. The radiolabeled PTX/POVF micelles exhibited excellent serum stability, rapid tumor uptake and slow clearance, which validated the feasibility of the PET image-guided delivery of PTX/POVF micelles.Graphical abstractGraphical abstract for this article
       
  • l-lactide)+microcarriers+for+cell+culture&rft.title=Acta+Biomaterialia&rft.issn=1742-7061&rft.date=&rft.volume=">Solvent-free preparation of porous poly(l-lactide) microcarriers for cell
           culture
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Mirasbek Kuterbekov, Paul Machillot, Pierre Lhuissier, Catherine Picart, Alain M. Jonas, Karine Glinel Porous polymeric microcarriers are a versatile class of biomaterial constructs with extensive use in drug delivery, cell culture and tissue engineering. Currently, most methods for their production require potentially toxic organic solvents with complex setups which limit their suitability for biomedical applications and their large-scale production. Herein, we report an organic, solvent-free method for the fabrication of porous poly(l-lactide) (PLLA) microcarriers. The method is based on the spherulitic crystallization of PLLA in its miscible blends with poly(ethylene glycol) (PEG). It is shown that the PLLA spherulites are easily recovered as microcarriers from the blends by a water-based process. Independent control over microcarrier size and porosity is demonstrated, with a higher crystallization temperature leading to a larger size, and a higher PLLA content in the starting blend resulting in a lower microcarrier porosity. Microcarriers are shown to be biocompatible for the culture of murine myoblasts and human adipose stromal/stem cells (hASC). Moreover, they support not only the long-term proliferation of both cell types but also hASC differentiation toward osseous tissues. Furthermore, while no significant differences are observed during cell proliferation on microcarriers of two different porosities, microcarriers of lower porosity induce a stronger hASC osteogenic differentiation, as evidenced by higher ALP enzymatic activity and matrix mineralization. Consequently, the proposed organic-solvent-free method for the fabrication of biocompatible porous PLLA microcarriers represents an innovative methodology for ex vivo cell expansion and its application in stem cell therapy and tissue engineering.Statement of SignificanceWe report a new solvent-free method for the preparation of porous polymeric microcarriers for cell culture, based on biocompatible poly(l-lactide), with independently controllable size and porosity. This approach, based on the spherulitic crystallization in polymer blends, offers the advantages of simple implementation, biological and environmental safety, easy adaptability and up-scalablility. The suitability of these microcarriers is demonstrated for long-term culture of both murine myoblasts and human adipose stromal/stem cells (hASCs). We show that prepared microcarriers support the osteogenic differentiation of hASCs, provided microcarriers of properly-tuned porosity are used. Hence, this new method is an important addition to the arsenal of microcarrier fabrication techniques, which will contribute to the adoption, regulatory approval and eventually clinical availability of microcarrier-based treatments and therapies.Graphical abstractGraphical abstract for this article
       
  • Polymeric microsphere-facilitated site-specific delivery of quercetin
           prevents senescence of pancreatic islets in vivo and improves
           transplantation outcomes in mouse model of diabetes
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Shiva Pathak, Shobha Regmi, Tiep Tien Nguyen, Biki Gupta, Milan Gautam, Chul Soon Yong, Jong Oh Kim, Youlim Son, Jae-Ryong Kim, Min Hui Park, Young Kyung Bae, So Young Park, Daewon Jeong, Simmyung Yook, Jee-Heon Jeong Attenuation of senescence progression may be attractive way to preserve the functionality of pancreatic islets (PI) after transplantation. In this study, we developed a model for in vitro induction of premature senescence in rat PI and showed the effectiveness of quercetin (QU) to prevent the senescence. To provide targeted-delivery of QU to the PI after transplantation, we prepared the hybrid clusters (HC) of islet single cells (ISC) and QU-loaded polymeric microspheres (QU; ∼7.55 ng HC−1). Long-term culture of the HC revealed reduced levels of reactive oxygen species and decreased expression of senescence-associated beta galactosidase, Rb, p53, p16, and p21 compared to that of the control islets. Transplantation of HC into subcutaneous space of the immune-deficient mice produced better glycemic control compared to the control islets or the ICC-transplanted mice. SA-β-Gal staining of the in vivo transplanted HC sample showed lower intensity compared to that of the control islets or the islet cell clusters. Thus, in situ delivery of therapeutic agent may be a promising approach to improve therapeutic outcomes in cell therapy.Statement of SignificanceIn this study, we aimed to improve outcomes in islet transplantation using in situ delivery of quercetin to pancreatic islets, using polymeric microspheres. We prepared prolonged release-type microspheres and constructed hybrid clusters of pancreatic islets and the microspheres using hanging drop method. The presence of quercetin in the cellular microenvironment attenuated the progression of senescence in the pancreatic islets in a long-term in vitro culture. Moreover, transplantation of the hybrid clusters in the diabetic mice produced better glycemic control compared to that of the control islets. In addition, quercetin delayed the progression of senescence in the pancreatic islets after in vivo transplantation. Thus, local delivery of antioxidants like quercetin may be an attractive way to improve outcomes in cell therapy.Graphical abstractGraphical abstract for this article
       
  • Dentin horn angle and enamel thickness interactively control tooth
           resilience and bite force
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Herzl Chai Fossil teeth are a primary source for inferring species development via evolutionary adaptation due to their linkage to feeding ecology and well perseverance. The main working tools in such studies are bite force analysis derived from jaw musculature and lever arms and morphogenetic based on enamel thickness and occlusal surface area. Despite progress made, quantitative correlation between predictions and behavior is still lacking. We studied histological sections in varieties of extracted premolar and molar human teeth. Sections corresponding to planes intersecting tips of primary cusps as well as more random planes were considered. The results revealed a unique, conclusive link between cuspal enamel thickness dc and dentin horn angle φ, a developmental parameter which contribution to tooth functioning has been overlooked. Naturally led by design principles of corbel arches, we examined the bending stress at the horn apex due to axial cuspal loading. The results show that this dc vs. φ relationship produces a constant force causing cusp fracture PF, making the latter a viable measure of tooth resilience. A preliminary study on published sections of extinct hominin teeth showed that their dc vs. φ behavior is consistent with modern humans albeit with varying PF. Scaling BF with PF enables direct estimate of bite force from measures of dc and φ in fossil teeth, achievable nondestructively from micro-computed tomography scans.Statement of SignificanceThe correspondence between cuspal enamel thickness and dentin horn angle in the postcanine row is a natural design here revealed for the first time. This correspondence yields constant force causing fracture at the horn apex, PF, making the latter a viable measure of tooth resilience. Scaling bite force (BF) with PF enables direct estimate of BF. The proposed mechanistic link between bite force and anatomical parameters dc and φ, expressed in a simple analytic form, offers direct, development-based expectation for examining evolutionary processes in hominins.Graphical abstractGraphical abstract for this article
       
  • Location-dependent correlation between tissue structure and the mechanical
           behaviour of the urinary bladder
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Enrique Morales-Orcajo, Tobias Siebert, Markus Böl The mechanical properties of the urinary bladder wall are important to understand its filling-voiding cycle in health and disease. However, much remains unknown about its mechanical properties, especially regarding regional heterogeneities and wall microstructure. The present study aimed to assess the regional differences in the mechanical properties and microstructure of the urinary bladder wall. Ninety (n=90) samples of porcine urinary bladder wall (ten samples from nine different locations) were mechanically and histologically analysed. Half of the samples (n=45) were equibiaxially tested within physiological conditions, and the other half, matching the sample location of the mechanical tests, was frozen, cryosectioned, and stained with Picro-Sirius red to differentiate smooth muscle cells, extracellular matrix, and fat. The bladder wall shows a non-linear stress-stretch relationship with hysteresis and softening effects. Regional differences were found in the mechanical response and in the microstructure. The trigone region presents higher peak stresses and thinner muscularis layer compared to the rest of the bladder. Furthermore, the ventral side of the bladder presents anisotropic characteristics, whereas the dorsal side features perfect isotropic behaviour. This response matches the smooth muscle fibre bundle orientation within the tunica muscularis. This layer, comprising approximately 78% of the wall thickness, is composed of two fibre bundle arrangements that are cross-oriented, one with respect to the other, varying the angle between them across the organ. That is, the ventral side presents a 60°/120° cross-orientation structure, while the muscle bundles were oriented perpendicular in the dorsal side.Statement of SignificanceIn the present study, we demonstrate that the mechanical properties and the microstructure of the urinary bladder wall are heterogeneous across the organ. The mechanical properties and the microstructure of the urinary bladder wall within nine specific locations matching explicitly the mechanical and structural variations have been examined. On the one hand, the results of this study contribute to the understanding of bladder mechanics and thus to their functional understanding of bladder filling and voiding. On the other hand, they are relevant to the fields of constitutive formulation of bladder tissue, whole bladder mechanics, and bladder-derived scaffolds i.e., tissue-engineering grafts.Graphical abstractGraphical abstract for this article
       
  • Viscoelasticity of spinal cord and meningeal tissues
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Nicole L. Ramo, Kevin L. Troyer, Christian M. Puttlitz Compared to the outer dura mater, the mechanical behavior of spinal pia and arachnoid meningeal layers has received very little attention in the literature. This is despite experimental evidence of their importance with respect to the overall spinal cord stiffness and recovery following compression. Accordingly, inclusion of the mechanical contribution of the pia and arachnoid maters would improve the predictive accuracy of finite element models of the spine, especially in the distribution of stresses and strain through the cord’s cross-section. However, to-date, only linearly elastic moduli for what has been previously identified as spinal pia mater is available in the literature. This study is the first to quantitatively compare the viscoelastic behavior of isolated spinal pia-arachnoid-complex, neural tissue of the spinal cord parenchyma, and intact construct of the two. The results show that while it only makes up 5.5% of the overall cross-sectional area, the thin membranes of the innermost meninges significantly affect both the elastic and viscous response of the intact construct. Without the contribution of the pia and arachnoid maters, the spinal cord has very little inherent stiffness and experiences significant relaxation when strained. The ability of the fitted non-linear viscoelastic material models of each condition to predict independent data within experimental variability supports their implementation into future finite element computational studies of the spine.Statement of SignificanceThe neural tissue of the spinal cord is surrounded by three fibrous layers called meninges which are important in the behavior of the overall spinal-cord-meningeal construct. While the mechanical properties of the outermost layer have been reported, the pia mater and arachnoid mater have received considerably less attention. This study is the first to directly compare the behavior of the isolated neural tissue of the cord, the isolated pia-arachnoid complex, and the construct of these individual components. The results show that, despite being very thin, the inner meninges significantly affect the elastic and time-dependent response of the spinal cord, which may have important implications for studies of spinal cord injury.Graphical abstractGraphical abstract for this article
       
  • Mechanical response of human subclavian and iliac arteries to extension,
           inflation and torsion
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Gerhard Sommer, Christoph Benedikt, Justyna A. Niestrawska, Gloria Hohenberger, Christian Viertler, Peter Regitnig, Tina U. Cohnert, Gerhard A. Holzapfel Peripheral vascular trauma due to injuries of the upper and lower limbs are life-threatening, and their treatment require rapid diagnosis and highly-qualified surgical procedures. Experienced surgeons have recognized that subclavian arteries, affected by injuries of the upper limbs, require a more careful handling due to fragility than common iliac arteries, which are may be affected by injures of the lower limbs. We investigated these two artery types with comparable diameter to evaluate the differences in the biomechanical properties between subclavian and iliac arteries. Human subclavian and common iliac arteries of 14 donors either from the right or the left side (age: 63 yrs, SD: 19,9 female and 5 male) were investigated. Extension-inflation-torsion experiments at different axial strains (0–20%), transmural pressures (0–200 mmHg) and torsion (±25°) on preconditioned arterial tubes were performed. Residual stresses in both circumferential and axial direction were determined. Additionally, the microstructure of the tissues was determined via second-harmonic generation imaging and by histological investigations. At physiological conditions (pi=13.3 kPa, λz=1.1) common iliac arteries revealed higher Cauchy stresses in circumferential and axial directions but a more compliant response in the circumferential direction than subclavian arteries. Both arteries showed distinct stiffer behavior in circumferential than in axial direction. Circumferential stiffness of common iliac arteries at physiological conditions increased significantly with aging (r=-0.67,p=0.02). The median inversion stretches, where the axial force is basically independent of the transmural pressure, were determined to be 1.05 for subclavian arteries and 1.11 for common iliac arteries. Both arteries exhibited increased torsional stiffness, when either axial prestretch or inflation pressure was increased. Residual stresses in the circumferential direction were significantly lower for subclavian arteries than for common iliac arteries at measurements after 30 min (p=0.05) and 16 hrs (p=0.01). Investigations of the collagen microstructure revealed different collagen fiber orientations and dispersions in subclavian and iliac arteries. The difference in the collagen microstructure revealed further that the adventitia seems to contribute significantly to the passive mechanical response of the tested arteries at physiological loadings. Histological investigations indicated pronounced thickened intimal layers in subclavian and common iliac arteries, with a thickness comparable to the adventitial layer. In conclusion, we obtained biomechanical differences between subclavian and common iliac arteries, which possibly resulted from their different mechanical loadings/environments and respective in vivo movements caused by their anatomical locations. The biomechanical differences explored in this study are well reflected by the microstructure of the collagen and the histology of the investigated arteries, and the results can improve trauma patient care and endovascular implant design.Statement of SignificanceDuring surgical interventions surgeons experienced that subclavian arteries (SAs) supplying the upper extremities, appear more fragile and prone to damage during surgical repair than common iliac arteries (CIAs), supplying the lower extremities. To investigate this difference in a systematic way the aim of this study was to compare the biomechanical properties of these two arteries from the same donors in terms of geometry, extension-inflation-torsion behavior, residual stresses, microstructure, and histology. In regard to cardiovascular medicine the material behavior of aged human arteries is of crucial interest. Moreover, the investigation of SA is important as it can help to improve surgical procedures at this challenging location. Over the long-term it might well be of value in the construction of artificial arteries for substituting native arteries. In addition, t...
       
  • Comparative analysis of two porcine kidney decellularization methods for
           maintenance of functional vascular architectures
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Joao Paulo Zambon, In Kap Ko, Mehran Abolbashari, Jennifer Huling, Cara Clouse, Tae Hyoung Kim, Charesa Smith, Anthony Atala, James J. Yoo Kidney transplantation is currently the only definitive solution for the treatment of end-stage renal disease (ESRD), however transplantation is severely limited by the shortage of available donor kidneys. Recent progress in whole organ engineering based on decellularization/recellularization techniques has enabled pre-clinical in vivo studies using small animal models; however, these in vivo studies have been limited to short-term assessments. We previously developed a decellularization system that effectively removes cellular components from porcine kidneys. While functional re-endothelialization on the porcine whole kidney scaffold was able to improve vascular patency, as compared to the kidney scaffold only, the duration of patency lasted only a few hours. In this study, we hypothesized that significant damage in the microvasculatures within the kidney scaffold resulted in the cessation of blood flow, and that thorough investigation is necessary to accurately evaluate the vascular integrity of the kidney scaffolds. Two decellularization protocols [sodium dodecyl sulfate (SDS) with DNase (SDS + DNase) or Triton X-100 with SDS (TRX + SDS)] were used to evaluate and optimize the levels of vascular integrity within the kidney scaffold. Results from vascular analysis studies using vascular corrosion casting and angiograms demonstrated that the TRX + SDS method was able to better maintain intact and functional microvascular architectures such as glomeruli within the acellular matrices than that by the SDS + DNase treatment. Importantly, in vitro blood perfusion of the re-endothelialized kidney construct revealed improved vascular function of the scaffold by TRX + SDS treatment compared with the SDS + DNase. Our results suggest that the optimized TRX + SDS decellularization method preserves kidney-specific microvasculatures and may contribute to long-term vascular patency following implantation.Statement of SignificanceKidney transplantation is the only curative therapy for patients with end-stage renal disease (ESRD). However, in the United States, the supply of donor kidneys meets less than one-fifth of the demand; and those patients that receive a donor kidney need life-long immunosuppressive therapy to avoid organ rejection. In the last two decades, regenerative medicine and tissue engineering have emerged as an attractive alternative to overcome these limitations.In 2013, Song et al. published the first experimental orthotopic transplantation of a bioengineering kidney in rodents. In this study, they demonstrated evidences of kidney tissue regeneration and partial function restoration. Despite these initial promising results, there are still many challenges to achieve long-term blood perfusion without graft thrombosis. In this paper, we demonstrated that perfusion of detergents through the renal artery of porcine kidneys damages the glomeruli microarchitecture as well as peritubular capillaries. Modifying dynamic parameters such as flow rate, detergent concentration, and decellularization time, we were able to establish an optimized decellularization protocol with no evidences of disruption of glomeruli microarchitecture. As a proof of concept, we recellularized the kidney scaffolds with endothelial cells and in vitro perfused whole porcine blood successfully for 24 h with no evidences of thrombosis.Graphical abstractGraphical abstract for this article
       
  • Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid
           invasion
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Chun Liu, Daniela Lewin Mejia, Benjamin Chiang, Kathryn E. Luker, Gary D. Luker Extracellular matrix regulates hallmark features of cancer through biochemical and mechanical signals, although mechanistic understanding of these processes remains limited by lack of models that recreate physiology of tumors. To tissue-engineer models that recapitulate three-dimensional architecture and signaling in tumors, there is a pressing need for new materials permitting flexible control of mechanical and biophysical features. We developed a hybrid hydrogel system composed of collagen and alginate to model tumor environments in breast cancer and other malignancies. Material properties of the hydrogel, including stiffness, microstructure and porosimetry, encompass parameters present in normal organs and tumors. The hydrogel possesses a well-organized, homogenous microstructure with adjustable mechanical stiffness and excellent permeability. Upon embedding multicellular tumor spheroids, we constructed a 3D tumor invasion model showing follow-the-leader migration with fibroblasts leading invasion of cancer cells similar to in vivo. We also demonstrated effects of CXCL12-CXCR4 signaling, a pathway implicated in tumor progression and metastasis, in a dual-tumor spheroid invasion model in 3D hydrogels. These studies establish a new hydrogel platform with material properties that can be tuned to investigate effects of environmental conditions on tumor progression, which will advance future studies of cancer cell invasion and response to therapy.Statement of SignificanceOur manuscript describes a novel design of hybrid hydrogel system composed of collagen and alginate modeling 3D tumor environments in breast cancer. The hydrogel possesses a well-organized, homogenous microstructure with adjustable mechanical stiffness. Upon embedding tumor spheroids, we successfully showed a 3D tumor invasion model showing follow-the-leader migration with fibroblasts leading invasion of cancer cells similar to in vivo. To the best of our knowledge, this is the first study showing two spheroids invade simultaneously and forming bridge-like connection and effects of chemical gradients in 3D hydrogel environment. This research provides a new model for tumor-stromal interactions in cancer cell migration and establishes a novel hydrogel system for analyzing physical and biochemical signals regulating cancer progression and response to therapy.Graphical abstractGraphical abstract for this article
       
  • 3D breast cancer microtissue reveals the role of tumor microenvironment on
           the transport and efficacy of free-doxorubicin in vitro
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Virginia Brancato, Filomena Gioiella, Giorgia Imparato, Daniela Guarnieri, Francesco Urciuolo, Paolo A. Netti The use of 3D cancer models will have both ethical and economic impact in drug screening and development, to promote the reduction of the animals employed in preclinical studies. Nevertheless, to be effective, such cancer surrogates must preserve the physiological relevance of the in vivo models in order to provide realistic information on drugs’ efficacy. To figure out the role of the architecture and composition of 3D cancer models on their tumor-mimicking capability, here we studied the efficacy of doxorubicin (DOX), a well-known anticancer molecule in two different 3D cancer models: our 3D breast cancer microtissue (3D-μTP) versus the golden standard represented by spheroid model (sph). Both models were obtained by using cancer associated fibroblast (CAF) and breast cancer cells (MCF-7) as cellular component. Unlike spheroid model, 3D-μTP was engineered in order to induce the production of endogenous extracellular matrix by CAF. 3D-μTP have been compared to spheroid in mono- (MCF-7 alone) and co-culture (MCF-7/CAF), after the treatment with DOX in order to study cytotoxicity effect, diffusional transport and expression of proteins related to cancer progression. Compared to the spheroid model, 3D-μTP showed higher diffusion coefficient of DOX and lower cell viability. Also, the expression of some tumoral biomarkers related to cell junctions were different in the two models.Statements of SignificanceCancer biology has made progress in unraveling the mechanism of cancer progression, anyway the most of the results are still obtained by 2D cell cultures or animal models, that do not faithfully copycat the tumor microenvironment. The lack of correlation between preclinical models and in vivo organisms negatively influences the clinical efficacy of chemotherapeutic drugs. Consequently, even if a huge amount of new drugs has been developed in the last decades, still people are dying because of cancer. Pharmaceutical companies are interested in 3D tumor model as valid alternative in drug screening in preclinical studies. However, a 3D tumor model that completely mimics tumor heterogeneity is still far to achieve. In our work we compare 3D human breast cancer microtissues and spheroids in terms of response to doxorubicin and drug diffusion. We believe that our results are interesting because they highlight the potential role of the proposed tumor model in the attempts to improve efficacy tests.Graphical abstractGraphical abstract for this article
       
  • Cell-laden and orthogonal-multilayer tissue-engineered corneal stroma
           induced by a mechanical collagen microenvironment and transplantation in a
           rabbit model
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Zekai Cui, Qiaolang Zeng, Shiwei Liu, Yanan Zhang, Deliang Zhu, Yonglong Guo, Mengyuan Xie, Sanjana Mathew, Dongqing Cai, Jun Zhang, Jiansu Chen The development of functional therapies for corneal repair and regeneration is a pressing issue. Corneal stroma provides the principal functions of the cornea. However, because of the highly organized nature of the stromal matrix, the attempts to reproduce corneal stroma might follow a scar model. Here, we have developed a protocol for the efficient generation of a cell-laden and orthogonal-multilayer tissue-engineered (TE) corneal stroma, which is induced by the mechanical effects of compressed collagen (CC) or stretched compressed collagen (SCC). Within SCC, with applied compression and force extension, collagen microfibres and corneal stromal cells (CSCs) are arranged orderly, while collagen fibres and CSCs in CC are randomly arranged. Dehydrated SCC has higher tensile strength than dehydrated CC. Hydrated SCC has similar transparency with hydrated native corneal stroma. Compared with those cultured on tissue culture plates (TCP), down-regulation of the genes and proteins of cytoskeleton, activation, proliferation, collagen and TRPV4, up-regulation of proteoglycans, gap junction proteins and TRPA1 are in CSCs of CC and SCC. Moreover, SCC and CC grafts displayed biocompatibility and integration with host corneal tissue after rabbit intra-corneal stromal transplantation by wk 6 under slit lamp microscopy, in vivo confocal microscopy and histological examination. The SCC model facilitates the construction of physiological feature TE corneal stroma, which serves as a foundation for physiological TE construction of other tissues.Statement of SignificanceThe development of functional therapies for corneal repair and regeneration is a pressing issue. Corneal stroma provides the principal functions of the cornea. Here, we have developed a protocol for the efficient generation of a cell-laden and orthogonal-multilayer tissue-engineered (TE) corneal stroma, which is induced by the mechanical effects of compressed collagen (CC) or stretched compressed collagen (SCC). These models facilitate the construction of physiological feature TE corneal stroma, which serves as a foundation for physiological TE construction of other tissues and helps to reverse fibrosis pathologies in general.Graphical abstractGraphical abstract for this article
       
  • Optimizing resin-dentin bond stability using a bioactive adhesive with
           concomitant antibacterial properties and anti-proteolytic activities
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Ya-ping Gou, Mohamed M. Meghil, Cesar R. Pucci, Lorenzo Breschi, David H. Pashley, Christopher W. Cutler, Li-na Niu, Ji-yao Li, Franklin R. Tay Secondary caries and hybrid layer degradation are two major challenges encountered in long-term resin-dentin bond stability. As a link between resin and dentin, adhesives that possess both antimicrobial and anti-proteolytic activities are in demand for eliminating bacteria-induced secondary caries and preventing hybrid layers from degradation. In the present study, a new quaternary ammonium methacryloxy silane (QAMS) prepared from sol-gel chemistry was incorporated into experimental adhesives to examine their antimicrobial effect and anti-proteolytic potential. This functional methacrylate resin monomer contains polymerizable methacryloxy functionalities as well as a positively-charged quaternary ammonium functionality with a long, lipophilic -C18H37 alkyl chain for puncturing the cell wall/membrane of surface-colonizing organisms. Antibacterial testing performed using agar diffusion test, live/dead bacterial staining and colony-forming unit counts all indicated that the QAMS-containing adhesives killed Streptococcus mutans and Actinomyces naeslundii in a dose-dependent manner via a predominant contact-killing mechanism. Gelatinolytic activity within the hybrid layers created by these adhesives was examined using in-situ zymography. Hybrid layers created with 0% QAMS-containing adhesive exhibited intense green fluorescence emitted by the hydrolyzed fluorescein-conjugated gelatin, with 4-fold increase in enzymatic activity compared with an experimental adhesive containing 5% QAMS. Taken together, incorporation of 5% QAMS in the experimental adhesive provides simultaneous antimicrobial and anti-proteolytic activities that are crucial for the maintenance of long-term resin-dentin bond integrity.Statement of SignificanceDurability of resin-dentin interfacial bond remains a clinically-significant challenge. Secondary caries caused by bacteria and the degradation of hybrid layers via endogenous dentin proteases are two important contributors to the poor resin-dentin bond durability. The present study developed a new 5% QAMS-containing adhesive that provides simultaneous antimicrobial and dentin protease inhibition functions to extend the longevity of resin-dentin bonds.Graphical abstractGraphical abstract for this article
       
  • Structure-function study of poly(sulfobetaine 3,4-ethylenedioxythiophene)
           (PSBEDOT) and its derivatives
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): Chen-Jung Lee, Huifeng Wang, Megan Young, Shengxi Li, Fang Cheng, Hongbo Cong, Gang Cheng Poly(3,4-ethylenedioxythiophene) (PEDOT) has been widely studied in recent decades due to its high stability, biocompatibility, low redox potential, moderate band gap, and optical transparency in its conducting state. However, for its long-term in vivo applications, the biocompatibility of PEDOT still needs to be improved. To address this challenge, zwitterionic poly(sulfobetaine 3,4-ethylenedioxythiophene) (PSBEDOT) that contains EDOT backbone with sulfobetaine functional side chains was developed in our previous study. Although PSBEDOT showed great resistance to proteins, cells, and bacteria, it is still not clear how the zwitterionic sulfobetaine side chain affects the electrochemical properties of the polymer and reactivity of the monomer. To achieve better understanding of the structure-function relationships of zwitterionic conducting polymers, we synthesized two derivatives of PSBEDOT, PSBEDOT-4 and PSBEDOT-5, by introducing the alkoxyl spacer between PEDOT backbone and sulfobetaine side chain. The interfacial impedance of PSBEDOT-4 and PSBEDOT-5 was examined by electrochemical impedance spectroscopy and showed significant improvement which is about 20 times lower than PSBEDOT on both gold and indium tin oxide substrates at 1 Hz. In the protein adsorption study, PSBEDOT, PSBEDOT-4 and PSBEDOT-5 exhibited comparable resistance to the fibrinogen solution. All three polymers had low protein adsorption around 3–5% comparing to PEDOT. Additionally, the morphology of PSBEDOT, PSBEDOT-4 and PSBEDOT-5 have been investigated by scanning electron microscopy. We believe that these stable and biocompatible materials can be excellent candidates for developing long-term bioelectronic devices.Statement of SignificanceTo address the challenges associated with existing conducting polymers for bioelectronics, we developed a versatile and high performance zwitterionic conducting material platform with excellent stability, electrochemical, antifouling and controllable antimicrobial/antifouling properties. In this work, we developed two high-performance conducting polymers and systematically investigated how the structure affects their properties. Our study shows we can accurately tune the molecular structure of the monomer to improve the performance of zwitterionic conducting polymer. This zwitterionic conducting polymer platform may dramatically increase the performance and service life of bio-electrochemical devices for many long-term applications, such as implantable biosensing, tissue engineering, wound healing, robotic prostheses, biofuel cell etc., which all require high performance conducting materials with excellent antifouling property/biocompatibility at complex biointerfaces.Graphical abstractGraphical abstract for this article
       
  • Microfiber drug/gene delivery platform for study of myelination
    • Abstract: Publication date: 15 July 2018Source: Acta Biomaterialia, Volume 75Author(s): William Ong, Junquan Lin, Marie E. Bechler, Kai Wang, Mingfeng Wang, Charles ffrench-Constant, Sing Yian Chew Our ability to rescue functional deficits after demyelinating diseases or spinal cord injuries is limited by our lack of understanding of the complex remyelination process, which is crucial to functional recovery. In this study, we developed an electrospun suspended poly(ε-caprolactone) microfiber platform to enable the screening of therapeutics for remyelination. As a proof of concept, this platform employed scaffold-mediated non-viral delivery of a microRNA (miR) cocktail to promote oligodendrocyte precursor cells (OPCs) differentiation and myelination. We observed enhanced OPCs differentiation when the cells were transfected with miR-219 and miR-338 on the microfiber substrates. Moreover, miRs promoted the formation of MBP+ tubular extensions around the suspended fibers, which was indicative of myelination, instead of flat myelin membranes on 2D substrates. In addition, OPCs that were transfected with the cocktail of miRs formed significantly longer and larger amounts of MBP+ extensions. Taken together, these results demonstrate the efficacy of this functional screening platform for understanding myelination.Statement of SignificanceThe lack of understanding of the complex myelination process has hindered the discovery of effective therapeutic treatments for demyelinating diseases. Hence, in vitro models that enable systematic understanding, visualization and quantification of myelination are valuable. Unfortunately, achieving reproducible in vitro myelination by oligodendrocytes (OLs) remains highly challenging. Here, we engineered a suspended microfiber platform that enables sustained non-viral drug/gene delivery to study OL differentiation and myelination. Sustained drug delivery permits the investigation of OL development, which spans several weeks. We show that promyelinogenic microRNAs promoted OL differentiation and myelination on this platform. Our engineered microfiber substrate could serve as a drug/gene screening platform and facilitate future translation into direct implantable devices for in vivo remyelination purposes.Graphical abstractGraphical abstract for this article
       
  • Ultra-dense polymer brush coating reduces Staphylococcus epidermidis
           biofilms on medical implants and improves antibiotic treatment outcome
    • Abstract: Publication date: Available online 4 July 2018Source: Acta BiomaterialiaAuthor(s): Sandra M. Skovdal, Nis Pedersen Jørgensen, Eskild Petersen, Søren Jensen-Fangel, Ryosuke Ogaki, Guanghong Zeng, Mikkel Illemann Johansen, Mikala Wang, Holger Rohde, Rikke L. Meyer Staphylococcal biofilm formation is a severe complication of medical implants, leading to high antibiotic tolerance and treatment failure. Ultra-dense poly(ethylene glycol) (udPEG) coating resists adsorption of proteins, polysaccharides and extracellular DNA. It is therefore uniquely resistant to attachment by Staphylococcus epidermidis, which remains loosely adhered to the surface. Our aim was to determine if S. epidermidis remains susceptible to antibiotics when adhering to udPEG, and if udPEG coatings can improve the treatment outcome for implant-associated infections. We tested the in vitro efficacy of vancomycin treatment on recently adhered S. epidermidis AUH4567 on udPEG, conventional PEG or titanium surfaces using live/dead staining and microscopy. udPEG was then applied to titanium implants and inserted subcutaneously in mice and inoculated with S. epidermidis to induce infection. Mice were given antibiotic prophylaxis or a short antibiotic treatment. One group was given immunosuppressive therapy. After five days, implants and surrounding tissue were harvested for CFU enumeration.Only few S. epidermidis cells adhered to udPEG compared to conventional PEG and uncoated titanium, and a much lower fraction of cells on udPEG survived antibiotic treatment in vitro. In vivo, the bacterial load on implants in mice receiving vancomycin treatment was significantly lower on udPEG-coated compared to uncoated implants, also in neutropenic mice. Our results suggest that the improved outcome results from the coating’s anti-adhesive properties that leads to less biofilm and increased efficacy of antibiotic treatment. Thus, the combination of udPEG with antibiotics is a promising strategy to prevent acute implant-associated infections that arise due to perioperative contaminations.Statement of SignificanceInfections of medical implants is an ever-present danger. Here, bacteria develop biofilms that cannot be eradicated with antibiotics. By using an ultra-dense polymer-brush coating (udPEG), bacterial attachment and the subsequent biofilm formation can be reduced, resulting in increased antibiotic susceptibility of bacteria surrounding the implant. udPEG combined with antibiotics proved to significantly reduce bacteria on implants inserted into mice, in our animal model. As the coating is not antibacterial per se, it does not induce antimicrobial resistance and its effect is independent of the bacterial species. Our results are encouraging for the prospect of preventing and treating implant-associated infections that arise due to perioperative contaminations.Graphical abstractGraphical abstract for this article
       
  • On the correlation between the curvature of the human eyelash and its
           geometrical features
    • Abstract: Publication date: Available online 4 July 2018Source: Acta BiomaterialiaAuthor(s): Hironori Tohmyoh, Mitsuharu Ishihara, Kaori Ikuta, Tomoko Watanabe Although human eyelashes are generally curved, the cause of the natural curvature of eyelashes has not yet to be clarified elsewhere. Related with this, this paper reports our discovery of a correlation between the curvature of the eyelash and its geometrical features. Eyelashes can be divided into root, middle and tip sections. Because the curvature at the root is larger than that at the tip, we expected that the root section could be more easily deformed by bending compared with the tip section. However, the structural elasticity in bending, which is the flexural rigidity without depending on the external dimensions, at the root was found to be greater than that at the tip, contrary to our initial expectations. Next we examined the internal dimensions of cross sections of the eyelashes, and found that the thicknesses of the cuticle layer at the root were different for the convex and concave sides of the curved eyelash, although these were almost the same at the tip. Theoretical analysis of this variation in thickness of the outer cuticle layer shows that this displaces the neutral axis. Finally, we found that there is a good correlation between the displacement of the neutral axis and the curvature of the eyelash.Statement of SignificanceWhy are human eyelashes naturally curved? To find a hint for this question, the mechanical and geometrical properties of human eyelash were investigated. Although the curvature at the root of the eyelash was larger than that at the tip, this was not related to the deformability of the eyelash by bending. From the cross-sectional observation of eyelash, we noticed that the thickness of the outer cuticle layer was non-uniform depending on the position, and this brought the displacement of the neutral axis of the eyelash for bending. Finally, a good correlation between the curvature and the change in the neutral axis was discovered. With practically using this findings, the curvature of the eyelash might be controlled artificially in the future.Graphical abstractGraphical abstract for this article
       
  • Cancer-derived exosomes trigger endothelial to mesenchymal transition
           followed by the induction of cancer-associated fibroblasts
    • Abstract: Publication date: Available online 4 July 2018Source: Acta BiomaterialiaAuthor(s): Ju Hun Yeon, Hyo Eun Jeong, Hyemin Seo, Siwoo Cho, Kimin Kim, Dokyun Na, Seok Chung, Jaesung Park, Nakwon Choi, Ji Yoon Kang Cancer-associated fibroblasts (CAFs) play a pivotal role in tumor growth, but very little has been known about its characteristics and origin. Recently, cancer-derived exosome has been suggested to transdifferentiate CAFs, by a new mechanism of endothelial to mesenchymal transition (EndMT), initiating angiogenic processes and triggering metastatic evolution. However, an enabling tool in vitro is yet to be developed to investigate complicated procedures of the EndMT and the transdifferentiation under reconstituted tumor microenvironment. Here we proposed an in vitro microfluidic model which enables to monitor a synergetic effect of complex tumor microenvironment in situ, including extracellular matrix (ECM), interstitial flow and environmental exosomes. The number of CAFs differentiated from human umbilical vein endothelial cells (HUVECs) increased with melanoma-derived exosomes, presenting apparent morphological and molecular changes with pronounced motility. Mesenchymal stem cell (MSC)-derived exosomes were found to suppress EndMT, induce angiogenesis and maintain vascular homeostasis, while cancer-derived exosomes promoted EndMT. Capabilities of the new microfluidic model exist in precise regulation of the complex tumor microenvironment and therefore successful reconstitution of 3D microvasculature niches, enabling in situ investigation of EndMT procedure between various cell types.Statement of SignificanceThis study presents an in vitro 3D EndMT model to understand the progress of the CAF generation by recapitulating the 3D tumor microenvironment in a microfluidic device. Both cancer-derived exosomes and interstitial fluid flow synergetically played a pivotal role in the EndMT and consequent formation of CAFs through a collagen-based ECM. Our approach also enabled the demonstration of a homeostatic capability of MSC-derived exosomes, ultimately leading to the recovery of CAFs back to endothelial cells. The in vitro 3D EndMT model can serve as a powerful tool to validate exosomal components that could be further developed to anti-cancer drugs.Graphical abstractGraphical abstract for this article
       
  • Photo-responsive hollow silica nanoparticles for light-triggered genetic
           and photodynamic synergistic therapy
    • Abstract: Publication date: Available online 4 July 2018Source: Acta BiomaterialiaAuthor(s): Xinyi Lin, Ming Wu, Ming Li, Zhixiong Cai, Haiyan Sun, Xionghong Tan, Jiong Li, Yongyi Zeng, Xiaolong Liu, Jingfeng Liu The development of multifunctional carriers incorporating genetic and photodynamic therapy (PDT) for synergistic antitumor treatment has attracted intensive interests very recently. However, most of the currently reported systems employ passive gene release strategies depending on tumor microenvironment, which are negatively affected by the heterogeneity of cancer cells, thus resulting in limited controllability in therapeutic progress. Herein, a novel photo-responsive hollow silica nanoparticle (HNP)-based gene and photosensitizer (PS) co-delivery nanovehicle is designed for dual-wavelength light-triggered synergistic gene and PDT therapy. The resultant HNP conjugated with PDMAEMA polycation through a 405-nm light-cleavable Cou-linker, namely, HNP-Cou-PD, exhibits excellent gene condensation capacity, good biocompatibility, outstanding PS loading ability, and light-triggered gene release properties. HNP-Cou-PD with Chlorin e6 (Ce6) loaded inside the silica cavity and a plasmid encoding caspase-8 gene (CSP8) attached to the PDMAEMA outside layer (Ce6-HNP-Cou-PD/CSP8) has been proven to possess better antitumor effects under the irradiation of pre-405-nm and post-670-nm light both in vitro and in vivo because of the light-triggered intracellular gene release and reactive oxygen species (ROS) generation. Therefore, HNP-Cou-PD designed as a gene and PS co-delivery carrier might have promising applications in the future to precisely treat various types of cancers.Statement of SignificanceMultifunctional carriers incorporating genetic and photodynamic therapy (PDT) have drawn intense attention very recently, ascribing to their enhanced anticancer effects. However, in the present gene and PDT synergistic system, gene release strategies passively relying on tumor microenvironment often result in no or poor controllability compared with PDT (a spatial and temporal therapeutic modal), which may hinder their synergistic efficacy, especially in an on-demand manner. To resolve this problem, we designed a hollow silica nanoparticle-based dual-wavelength light-responsive gene and photosensitizer (PS) co-delivery platform to achieve photo-triggered gene and PDT synergistic therapy. We believe that our work may have extensive application prospects in precise treatment of various cancers and be of interest to the readership.Graphical abstractGraphical abstract for this article
       
  • Host-guest self-assembly toward reversible visible-light-responsive
           switching for bacterial adhesion
    • Abstract: Publication date: Available online 3 July 2018Source: Acta BiomaterialiaAuthor(s): Qing Bian, Shuo Chen, Youmei Xing, Dong Yuan, Le Lv, Guojie Wang Here we report a facile method to construct reversible visible-light-responsive switching from antibacterial to bioadhesion by host-guest self-assembly of β-cyclodextrin (β-CD) and azobenzene functionalized polycation/polyanion. The visible-light-responsible azobenzene functionalized polycation, poly{6-[(2,6-dimethoxyphenyl)azo-4-(2′,6′-dimethoxy)phenoxy]propyl dimethylaminoethyl methacrylate-random-poly(2-(N,N-dimethylaminoethyl) methacrylate) (Azo-PDMAEMA), was synthesized via quaternization reaction between 2,6,2′,6′-tetramethoxy-4-(3-bromopropoxy)azobenzene (AzoOMeBr) and poly(2-(N,N-dimethylaminoethyl) methacrylate) (PDMAEMA), and the polyanion, poly{6-[(2,6-dimethoxyphenyl)azo-4-(2′,6′-dimethoxy) phenoxy]hexyl acrylate-random-acrylic acid} (Azo-PAA), was synthesized via esterification reaction between 2,6,2′,6′-tetramethoxy-4-(6-hydroxyhexyloxy) azobenzene (AzoOMeOH) and poly(acryloyl chloride) (PAC) and subsequent hydrolysis reactions. The switch surface could be achieved via the alternate host-guest assembly of Azo-PDMAEMA and Azo-PAA onto a β-CD-terminated substratum (Sub-CD) through visible light irradiation. The positively charged Azo-PDMAEMA with quaternary ammonium groups exhibited antimicrobial properties and few bacteria were adhered on the surface, while the negatively charged Azo-PAA with carboxyl acid groups exhibited excellent bioadhesive properties and a large number of bacteria were adhered. Interestingly, the switch between antibacterial and bioadhesive could be realized upon visible light irradiation via alternate assembly of Azo-PDMAEMA and Azo-PAA. The proposed approach to manufacturing visible-light-responsive surface with reversible and alterable biofunctionality switching between antibacterial and bioadhesive is simple and efficient, which is promising for preparation of multifunctional polymeric surfaces to encounter multifarious demands for the biomedical and biotechnological applications.Statement of SignificanceLight has attracted great attention in building biointerfaces for its precise spatiotemporal control and convenient operation. However, UV light may damage to biological samples and living tissues, which will limit its applications. This study demonstrates a novel visible-light-responsive surface fabricated through reversible assembly of azobenzene functionalized polycations/polyanions on cyclodextrin (CD)-terminated substrate by host-guest interactions between the visible-light-responsive azobenzene mAzo and CD, which has not been examined previously. It is noted that the azobenzene functionalized polycations show strong antibacterial activities, while the polyanions show excellent bioadhesive properties, as can be switched through the alternate assembly upon visible-light irradiation. This facile and versatile approach to visible-light-responsive surfaces holds great potential for switching of bioadhesion.Graphical abstractGraphical abstract for this article
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.156.85.167
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-