Subjects -> BIOLOGY (Total: 3416 journals)
    - BIOCHEMISTRY (264 journals)
    - BIOENGINEERING (141 journals)
    - BIOLOGY (1630 journals)
    - BIOPHYSICS (49 journals)
    - BIOTECHNOLOGY (265 journals)
    - BOTANY (249 journals)
    - CYTOLOGY AND HISTOLOGY (31 journals)
    - ENTOMOLOGY (75 journals)
    - GENETICS (171 journals)
    - MICROBIOLOGY (283 journals)
    - MICROSCOPY (12 journals)
    - ORNITHOLOGY (28 journals)
    - PHYSIOLOGY (72 journals)
    - ZOOLOGY (146 journals)

BIOLOGY (1630 journals)                  1 2 3 4 5 6 7 8 | Last

Showing 1 - 200 of 1720 Journals sorted alphabetically
AAPS Journal     Hybrid Journal   (Followers: 29)
Achievements in the Life Sciences     Open Access   (Followers: 8)
ACS Pharmacology & Translational Science     Hybrid Journal   (Followers: 2)
ACS Synthetic Biology     Hybrid Journal   (Followers: 31)
Acta Biologica Colombiana     Open Access   (Followers: 7)
Acta Biologica Hungarica     Full-text available via subscription   (Followers: 5)
Acta Biologica Sibirica     Open Access   (Followers: 2)
Acta Biologica Turcica     Open Access   (Followers: 1)
Acta Biologica Venezuelica     Open Access  
Acta Biomaterialia     Hybrid Journal   (Followers: 30)
Acta Biotheoretica     Hybrid Journal   (Followers: 3)
Acta Chiropterologica     Full-text available via subscription   (Followers: 6)
acta ethologica     Hybrid Journal   (Followers: 4)
Acta Fytotechnica et Zootechnica     Open Access   (Followers: 1)
Acta Limnologica Brasiliensia     Open Access   (Followers: 4)
Acta Médica Costarricense     Open Access   (Followers: 2)
Acta Musei Silesiae, Scientiae Naturales     Open Access   (Followers: 1)
Acta Neurobiologiae Experimentalis     Open Access  
Acta Parasitologica     Hybrid Journal   (Followers: 12)
Acta Scientiae Biological Research     Open Access   (Followers: 1)
Acta Scientiarum. Biological Sciences     Open Access   (Followers: 2)
Acta Scientifica Naturalis     Open Access   (Followers: 3)
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis     Open Access   (Followers: 1)
Actualidades Biológicas     Open Access   (Followers: 1)
Advanced Biosystems     Hybrid Journal  
Advanced Health Care Technologies     Open Access   (Followers: 9)
Advanced Journal of Graduate Research     Open Access   (Followers: 1)
Advanced Nonlinear Studies     Hybrid Journal  
Advanced Quantum Technologies     Hybrid Journal  
Advanced Studies in Biology     Open Access   (Followers: 1)
Advances in Antiviral Drug Design     Full-text available via subscription   (Followers: 2)
Advances in Bioinformatics     Open Access   (Followers: 20)
Advances in Biological Regulation     Hybrid Journal   (Followers: 4)
Advances in Biology     Open Access   (Followers: 12)
Advances in Cell Biology/ Medical Journal of Cell Biology     Open Access   (Followers: 30)
Advances in Cellular and Molecular Biology of Membranes and Organelles     Full-text available via subscription   (Followers: 14)
Advances in Developmental Biology     Full-text available via subscription   (Followers: 14)
Advances in DNA Sequence-Specific Agents     Full-text available via subscription   (Followers: 7)
Advances in Ecological Research     Full-text available via subscription   (Followers: 44)
Advances in Environmental Sciences - International Journal of the Bioflux Society     Open Access   (Followers: 18)
Advances in Enzyme Research     Open Access   (Followers: 11)
Advances in Experimental Biology     Full-text available via subscription   (Followers: 9)
Advances in Genome Biology     Full-text available via subscription   (Followers: 11)
Advances in High Energy Physics     Open Access   (Followers: 22)
Advances in Human Biology     Open Access   (Followers: 5)
Advances in Life Science and Technology     Open Access   (Followers: 20)
Advances in Life Sciences     Open Access   (Followers: 7)
Advances in Marine Biology     Full-text available via subscription   (Followers: 21)
Advances in Molecular and Cell Biology     Full-text available via subscription   (Followers: 26)
Advances in Organ Biology     Full-text available via subscription   (Followers: 2)
Advances in Planar Lipid Bilayers and Liposomes     Full-text available via subscription   (Followers: 3)
Advances in Space Biology and Medicine     Full-text available via subscription   (Followers: 7)
Advances in Structural Biology     Full-text available via subscription   (Followers: 6)
Advances in Tropical Biodiversity and Environmental Sciences     Open Access   (Followers: 3)
Advances in Virus Research     Full-text available via subscription   (Followers: 6)
African Journal of Range & Forage Science     Hybrid Journal   (Followers: 11)
AFRREV STECH : An International Journal of Science and Technology     Open Access   (Followers: 3)
Ageing Research Reviews     Hybrid Journal   (Followers: 12)
Aging Cell     Open Access   (Followers: 25)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Agrokreatif Jurnal Ilmiah Pengabdian kepada Masyarakat     Open Access  
AJP Cell Physiology     Hybrid Journal   (Followers: 18)
AJP Endocrinology and Metabolism     Hybrid Journal   (Followers: 25)
AJP Lung Cellular and Molecular Physiology     Hybrid Journal   (Followers: 3)
Al-Kauniyah : Jurnal Biologi     Open Access  
Alasbimn Journal     Open Access   (Followers: 2)
Alces : A Journal Devoted to the Biology and Management of Moose     Open Access  
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Biology Teacher     Full-text available via subscription   (Followers: 14)
American Fern Journal     Full-text available via subscription   (Followers: 1)
American Journal of Agricultural and Biological Sciences     Open Access   (Followers: 9)
American Journal of Bioethics     Hybrid Journal   (Followers: 16)
American Journal of Human Biology     Hybrid Journal   (Followers: 18)
American Journal of Medical and Biological Research     Open Access   (Followers: 10)
American Journal of Plant Sciences     Open Access   (Followers: 21)
American Journal of Primatology     Hybrid Journal   (Followers: 16)
American Malacological Bulletin     Full-text available via subscription   (Followers: 3)
American Naturalist     Full-text available via subscription   (Followers: 81)
Amphibia-Reptilia     Hybrid Journal   (Followers: 6)
Anadol University Journal of Science and Technology B : Theoritical Sciences     Open Access  
Anadolu University Journal of Science and Technology : C Life Sciences and Biotechnology     Open Access   (Followers: 2)
Anaerobe     Hybrid Journal   (Followers: 4)
Analytical Methods     Full-text available via subscription   (Followers: 13)
Anatomical Science International     Hybrid Journal   (Followers: 3)
Animal Cells and Systems     Hybrid Journal   (Followers: 5)
Animal Models and Experimental Medicine     Open Access  
Annales de Limnologie - International Journal of Limnology     Hybrid Journal   (Followers: 1)
Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale     Full-text available via subscription   (Followers: 3)
Annales Henri Poincaré     Hybrid Journal   (Followers: 3)
Annales Universitatis Mariae Curie-Sklodowska, sectio C – Biologia     Open Access   (Followers: 1)
Annals of Applied Biology     Hybrid Journal   (Followers: 8)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 19)
Annals of Human Biology     Hybrid Journal   (Followers: 6)
Annals of Science and Technology     Open Access  
Annual Research & Review in Biology     Open Access   (Followers: 2)
Annual Review of Biomedical Engineering     Full-text available via subscription   (Followers: 15)
Annual Review of Biophysics     Full-text available via subscription   (Followers: 26)
Annual Review of Cancer Biology     Full-text available via subscription   (Followers: 4)
Annual Review of Cell and Developmental Biology     Full-text available via subscription   (Followers: 42)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 15)
Annual Review of Genomics and Human Genetics     Full-text available via subscription   (Followers: 27)
Annual Review of Phytopathology     Full-text available via subscription   (Followers: 13)
Anthropological Review     Open Access   (Followers: 24)
Antibiotics     Open Access   (Followers: 9)
Antioxidants     Open Access   (Followers: 5)
Antioxidants & Redox Signaling     Hybrid Journal   (Followers: 9)
Antonie van Leeuwenhoek     Hybrid Journal   (Followers: 5)
Anzeiger für Schädlingskunde     Hybrid Journal   (Followers: 1)
Apidologie     Hybrid Journal   (Followers: 5)
Apmis     Hybrid Journal   (Followers: 1)
APOPTOSIS     Hybrid Journal   (Followers: 9)
Applied Biology     Open Access   (Followers: 2)
Applied Bionics and Biomechanics     Open Access   (Followers: 7)
Applied Vegetation Science     Full-text available via subscription   (Followers: 10)
Aquaculture Environment Interactions     Open Access   (Followers: 4)
Aquaculture International     Hybrid Journal   (Followers: 26)
Aquaculture Reports     Open Access   (Followers: 3)
Aquaculture, Aquarium, Conservation & Legislation - International Journal of the Bioflux Society     Open Access   (Followers: 7)
Aquatic Biology     Open Access   (Followers: 8)
Aquatic Ecology     Hybrid Journal   (Followers: 38)
Aquatic Ecosystem Health & Management     Hybrid Journal   (Followers: 16)
Aquatic Science and Technology     Open Access   (Followers: 4)
Aquatic Toxicology     Hybrid Journal   (Followers: 23)
Archaea     Open Access   (Followers: 4)
Archiv für Molluskenkunde: International Journal of Malacology     Full-text available via subscription   (Followers: 3)
Archives of Biological Sciences     Open Access  
Archives of Microbiology     Hybrid Journal   (Followers: 10)
Archives of Natural History     Hybrid Journal   (Followers: 8)
Archives of Oral Biology     Hybrid Journal   (Followers: 3)
Archives of Virology     Hybrid Journal   (Followers: 5)
Archivum Immunologiae et Therapiae Experimentalis     Hybrid Journal   (Followers: 2)
Arid Ecosystems     Hybrid Journal   (Followers: 3)
Arquivos do Instituto Biológico     Open Access   (Followers: 1)
Arquivos do Museu Dinâmico Interdisciplinar     Open Access  
Arthropod Structure & Development     Hybrid Journal   (Followers: 2)
Arthropods     Open Access   (Followers: 1)
Artificial DNA: PNA & XNA     Hybrid Journal   (Followers: 3)
Asian Bioethics Review     Full-text available via subscription   (Followers: 3)
Asian Journal of Biodiversity     Open Access   (Followers: 5)
Asian Journal of Biological Sciences     Open Access   (Followers: 3)
Asian Journal of Biology     Open Access   (Followers: 2)
Asian Journal of Biotechnology and Bioresource Technology     Open Access   (Followers: 1)
Asian Journal of Cell Biology     Open Access   (Followers: 6)
Asian Journal of Developmental Biology     Open Access   (Followers: 3)
Asian Journal of Medical and Biological Research     Open Access   (Followers: 5)
Asian Journal of Nematology     Open Access   (Followers: 4)
Asian Journal of Poultry Science     Open Access   (Followers: 5)
Atti della Accademia Peloritana dei Pericolanti - Classe di Scienze Medico-Biologiche     Open Access  
Australian Life Scientist     Full-text available via subscription   (Followers: 2)
Australian Mammalogy     Hybrid Journal   (Followers: 8)
Autophagy     Hybrid Journal   (Followers: 4)
Avian Biology Research     Full-text available via subscription   (Followers: 6)
Avian Conservation and Ecology     Open Access   (Followers: 14)
Bacterial Empire     Open Access   (Followers: 1)
Bacteriology Journal     Open Access   (Followers: 1)
Bacteriophage     Full-text available via subscription   (Followers: 3)
Bangladesh Journal of Bioethics     Open Access  
Bangladesh Journal of Plant Taxonomy     Open Access  
Bangladesh Journal of Scientific Research     Open Access   (Followers: 1)
Batman Üniversitesi Yaşam Bilimleri Dergisi     Open Access  
Berita Biologi     Open Access   (Followers: 1)
Between the Species     Open Access   (Followers: 1)
Bio Tribune Magazine     Hybrid Journal  
BIO Web of Conferences     Open Access  
BIO-Complexity     Open Access  
Bio-Grafía. Escritos sobre la Biología y su enseñanza     Open Access  
Bio-Lectura     Open Access  
BIO-SITE : Biologi dan Sains Terapan     Open Access   (Followers: 1)
Bioanalytical Reviews     Hybrid Journal   (Followers: 2)
Biocatalysis and Biotransformation     Hybrid Journal   (Followers: 6)
BioCentury Innovations     Full-text available via subscription   (Followers: 1)
Biochemistry and Cell Biology     Hybrid Journal   (Followers: 17)
Biochimie     Hybrid Journal   (Followers: 6)
BioControl     Hybrid Journal   (Followers: 6)
Biocontrol Science and Technology     Hybrid Journal   (Followers: 8)
Biodemography and Social Biology     Hybrid Journal  
BIODIK : Jurnal Ilmiah Pendidikan Biologi     Open Access   (Followers: 1)
BioDiscovery     Open Access   (Followers: 2)
Biodiversidade e Conservação Marinha : Revista CEPSUL     Open Access  
Biodiversitas : Journal of Biological Diversity     Open Access  
Biodiversity Data Journal     Open Access   (Followers: 4)
Biodiversity Informatics     Open Access   (Followers: 1)
Biodiversity Information Science and Standards     Open Access   (Followers: 2)
Biodiversity: Research and Conservation     Open Access   (Followers: 27)
Bioedukasi : Jurnal Pendidikan Biologi FKIP UM Metro     Open Access  
Bioeksperimen : Jurnal Penelitian Biologi     Open Access  
Bioelectrochemistry     Hybrid Journal   (Followers: 2)
Bioelectromagnetics     Hybrid Journal   (Followers: 2)
Bioenergy Research     Hybrid Journal   (Followers: 4)
Bioengineering and Bioscience     Open Access   (Followers: 3)
BioEssays     Hybrid Journal   (Followers: 11)
Bioethics     Hybrid Journal   (Followers: 18)
BioéthiqueOnline     Open Access  
Biofabrication     Hybrid Journal   (Followers: 5)
Biofilms     Full-text available via subscription   (Followers: 2)
Biogeosciences (BG)     Open Access   (Followers: 12)
Biogeosciences Discussions (BGD)     Open Access   (Followers: 3)
Bioinformatics     Hybrid Journal   (Followers: 386)
Bioinformatics and Biology Insights     Open Access   (Followers: 12)

        1 2 3 4 5 6 7 8 | Last

Similar Journals
Journal Cover
Biochemistry and Cell Biology
Journal Prestige (SJR): 0.856
Citation Impact (citeScore): 2
Number of Followers: 17  
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0829-8211 - ISSN (Online) 1208-6002
Published by NRC Research Press Homepage  [21 journals]
  • Note of appreciation / Note de reconnaissance
    • Abstract: Biochemistry and Cell Biology, e-First Articles.

      Citation: Biochemistry and Cell Biology
      PubDate: 2020-01-20T07:40:35Z
      DOI: 10.1139/bcb-2020-0008
  • Proceedings of the 14th annual RiboWest conference: perspectives and
    • Authors: Nehal Thakor, Ute Kothe, Hans-Joachim Wieden, Trushar R. Patel
      Abstract: Biochemistry and Cell Biology, e-First Articles.
      The RiboWest Conference brings together RNA researchers in Canada with the 2-fold goals of fostering internationally competitive RNA research and of training the next generation of scientists. The 14th Annual RiboWest conference (RiboWest 2018) was held at the University of Lethbridge (Lethbridge, Alberta) from June 10th to 13th, 2018. This meeting was focused on all major aspects of RNA research, ranging from understanding the cellular role of RNA, studying RNA interactions and structures, and employing them as a therapeutic tool. The invited keynote speakers (5) provided insights into the wide-range of RNA-based research. One of the unique features of this conference was that the majority of the oral presentations were given by the trainees (undergraduate/graduate students and postdoctoral researchers). Hosted by the Alberta RNA Research and Training Institute (ARRTI) at the University of Lethbridge as the leading center of RNA research in Western Canada, the RiboWest 2018 was well attended by researchers from across the country (>110 attendees in total). This conference proceedings editorial presents the overview of the conference, and briefly introduces articles published in this special issue of Biochemistry and Cell Biology.
      Citation: Biochemistry and Cell Biology
      PubDate: 2020-01-14T04:27:24Z
      DOI: 10.1139/bcb-2019-0187
  • Long noncoding RNA MALAT1 enhances the apoptosis of cardiomyocytes through
           autophagy modulation
    • Authors: Hao Hu, Jiawei Wu, Xiaofan Yu, Junling Zhou, Hua Yu, Likun Ma
      Pages: 1 - 7
      Abstract: Biochemistry and Cell Biology, e-First Articles.
      Induction of autophagy promotes cardiomyocyte survival and confers a cardioprotective effect on acute myocardial infarction (AMI). Our previous study showed that knockdown of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) attenuated myocardial apoptosis in mouse AMI. Herein, this study further investigated whether the mechanisms by which MALAT1 enhanced cardiomyocyte apoptosis involved the autophagy regulation. To address this, cardiomyocytes were isolated from neonatal mice and then stimulated with hypoxia/reoxygenation (H/R) injury to mimic AMI. The cell apoptosis was evaluated using TUNEL staining and Western blot analysis of apoptosis-related proteins. The autophagy level was assessed using GFP-LC3 immunofluorescence and Western blot analysis of autophagy-related proteins. The results showed that H/R injury increased MALAT1 expression. Furthermore, MALAT1 overexpression significantly enhanced apoptosis and regulated autophagy of cardiomyocytes, whereas MALAT1 knockdown exerted the opposite effect. Moreover, rapamycin (an autophagy activator) effectively attenuated the MALAT1-mediated enhancement of cardiomyocyte apoptosis. Overall, our findings demonstrated that the increased MALAT1 expression induced by H/R injury enhances cardiomyocyte apoptosis, at least in part, through autophagy modulation.
      Citation: Biochemistry and Cell Biology
      PubDate: 2020-01-27T08:00:00Z
      DOI: 10.1139/bcb-2019-0062
  • Ankyrin-B p.S646F undergoes increased proteasome degradation and reduces
           cell viability in the H9c2 rat ventricular cardiomyoblast cell line
    • Authors: Lena Chen, Catherine S.W. Choi, Juan C. Sanchez-Arias, Laura T. Arbour, Leigh Anne Swayne
      Pages: 1 - 8
      Abstract: Biochemistry and Cell Biology, e-First Articles.
      Ankyrin-B (AnkB) is scaffolding protein that anchors integral membrane proteins to the cardiomyocyte cytoskeleton. We recently identified an AnkB variant, AnkB p.S646F (ANK2 c.1937 C>T) associated with a phenotype ranging from predisposition for cardiac arrhythmia to cardiomyopathy. AnkB p.S646F exhibited reduced expression levels in the H9c2 rat ventricular-derived cardiomyoblast cell line relative to wildtype AnkB. Here, we demonstrate that AnkB is regulated by proteasomal degradation and proteasome inhibition rescues AnkB p.S646F expression levels in H9c2 cells, although this effect is not conserved with differentiation. We also compared the impact of wildtype AnkB and AnkB p.S646F on cell viability and proliferation. AnkB p.S646F expression resulted in decreased cell viability at 30 h after transfection, whereas we observed a greater proportion of cycling, Ki67-positive cells at 48 h after transfection. Notably, the number of GFP-positive cells was low and was consistent between wildtype AnkB and AnkB p.S646F expressing cells, suggesting that AnkB and AnkB p.S646F affected paracrine communication between H9c2 cells differentially. This work reveals that AnkB levels are regulated by the proteasome and that AnkB p.S646F compromises cell viability. Together, these findings provide key new insights into the putative cellular and molecular mechanisms of AnkB-related cardiac disease.
      Citation: Biochemistry and Cell Biology
      PubDate: 2020-01-22T08:00:00Z
      DOI: 10.1139/bcb-2019-0082
  • Non-coding RNAs: what are we missing'
    • Authors: Cristina Carvalho Barbosa, Sydnee H. Calhoun, Hans-Joachim Wieden
      Pages: 23 - 30
      Abstract: Biochemistry and Cell Biology, Volume 98, Issue 1, Page 23-30, February 2020.
      Over the past two decades, the importance of small non-coding RNAs (sncRNAs) as regulatory molecules has become apparent in all three domains of life (archaea, bacteria, eukaryotes). In fact, sncRNAs play an important role in the control of gene expression at both the transcriptional and the post-transcriptional level, with crucial roles in fine-tuning cell responses during internal and external stress. Multiple pathways for sncRNA biogenesis and diverse mechanisms of regulation have been reported, and although biogenesis and mechanisms of sncRNAs in prokaryotes and eukaryotes are different, remarkable similarities exist. Here, we briefly review and compare the major sncRNA classes that act post-transcriptionally, and focus on recent discoveries regarding the ribosome as a target of regulation and the conservation of these mechanisms between prokaryotes and eukaryotes.
      Citation: Biochemistry and Cell Biology
      PubDate: 2019-05-31T07:00:00Z
      DOI: 10.1139/bcb-2019-0037
      Issue No: Vol. 98, No. 1 (2019)
  • miR-140-5p targeted FGF9 and inhibited the cell growth of laryngeal
           squamous cell carcinoma
    • Authors: Ying Wang, Qingli Huang, Faping Li
      Pages: 1 - 7
      Abstract: Biochemistry and Cell Biology, e-First Articles.
      Increasing evidence has suggested that microRNAs (miRNAs) play critical roles in the initiation and development of cancers. Here, we found that miR-140-5p was significantly downregulated in both laryngeal squamous cell carcinoma (LSCC) tissues and cell lines. Decreased expression of miR-140-5p was significantly associated with the metastasis of LSCC. Overexpression of miR-140-5p inhibited proliferation and induced apoptosis of LSCC cells. Mechanistically, the fibroblast growth factor 9 (FGF9) was identified as the target of miR-140-5p. miR-140-5p bound the 3′-untranslated region (3′-UTR) of FGF9 and suppressed the expression of FGF9 in LSCC cells. Additionally, the level of FGF9 was upregulated in LSCC tissues and negatively correlated with the expression of miR-140-5p. Restoration of FGF9 attenuated the suppressive role of miR-140-5p in regulating the growth of LSCC cells. Collectively, these results indicated that the tumor suppressive function of miR-140-5p in LSCC was partially exercised by modulating the expression of FGF9.
      Citation: Biochemistry and Cell Biology
      PubDate: 2019-12-23T08:00:00Z
      DOI: 10.1139/bcb-2018-0351
  • The impact of epigenetics on cardiovascular disease
    • Authors: Dimple Prasher, Steven C. Greenway, Raja B. Singh
      Pages: 1 - 11
      Abstract: Biochemistry and Cell Biology, e-First Articles.
      Mortality and morbidity from cardiovascular diseases (CVDs) represents a huge burden to society. It is recognized that environmental factors and individual lifestyles play important roles in disease susceptibility, but the link between these external risk factors and our genetics has been unclear. However, the discovery of sequence-independent heritable DNA changes (epigenetics) have helped us to explain the link between genes and the environment. Multiple diverse epigenetic processes, including DNA methylation, histone modification, and the expression of non-coding RNA molecules affect the expression of genes that produce important changes in cellular differentiation and function, influencing the health and adaptability of the organism. CVDs such as congenital heart disease, cardiomyopathy, heart failure, cardiac fibrosis, hypertension, and atherosclerosis are now being viewed as much more complex and dynamic disorders. The role of epigenetics in these and other CVDs is currently under intense scrutiny, and we can expect important insights to emerge, including novel biomarkers and new approaches to enable precision medicine. This review summarizes the recent advances in our understanding of the role of epigenetics in CVD.
      Citation: Biochemistry and Cell Biology
      PubDate: 2019-05-21T07:00:00Z
      DOI: 10.1139/bcb-2019-0045
  • Label-free proteomic analysis reveals large dynamic changes to the
           cellular proteome upon expression of the miRNA-23a-27a-24-2 microRNA
    • Authors: Ramanaguru S. Piragasam, S. Faraz Hussain, Steven G. Chaulk, Zaeem A. Siddiqi, Richard P. Fahlman
      Pages: 1 - 9
      Abstract: Biochemistry and Cell Biology, e-First Articles.
      In deciphering the regulatory networks of gene expression controlled by the small non-coding RNAs known as microRNAs (miRNAs), a major challenge has been with the identification of the true mRNA targets by these RNAs within the context of the enormous numbers of predicted targets for each of these small RNAs. To facilitate the system-wide identification of miRNA targets, a variety of system wide methods, such as proteomics, have been implemented. Here we describe the utilization of quantitative label-free proteomics and bioinformatics to identify the most significant changes to the proteome upon expression of the miR-23a-27a-24-2 miRNA cluster. In light of recent work leading to the hypothesis that only the most pronounced regulatory events by miRNAs may be physiologically relevant, our data reveal that label-free analysis circumvents the limitations of proteomic labeling techniques that limit the maximum differences that can be quantified. The result of our analysis identifies a series of novel candidate targets that are reduced in abundance by more than an order of magnitude upon the expression of the miR-23a-27a-24-2 cluster.
      Citation: Biochemistry and Cell Biology
      PubDate: 2019-05-16T07:00:00Z
      DOI: 10.1139/bcb-2019-0014
  • Sirt6 stabilizes atherosclerosis plaques by promoting macrophage autophagy
           and reducing contact with endothelial cells
    • Authors: Tingting Wang, Chuang Sun, Lang Hu, Erhe Gao, Congye Li, Haichang Wang, Dongdong Sun
      Pages: 1 - 10
      Abstract: Biochemistry and Cell Biology, e-First Articles.
      Sirt6 has been reported to play a protective role in macrophage foam cell formation, but whether Sirt6 controls atherosclerosis plaque stability and whether it can reduce the interaction between endothelial cells and macrophages remains unclear. The aim of this study was to investigate the effect of Sirt6 on atherosclerosis plaque stability and the underlying mechanisms. We used Tie2-Cre transgenic mice as a Cre-lox tool to delete Sirt6 floxed sequences in endothelial cells during adulthood to establish Sirt6−/− mice. ApoE−/−:Sirt6−/− and ApoE−/−:Sirt6Tg mice were used in our investigation. After a 16 week high-fat diet, the mice developed markedly atherosclerotic plaques. Sirt6 knockout exacerbated atherosclerotic plaque progression in both size and stability. In vitro, murine macrophage RAW264.7 cells were treated with ox-low density lipoproteins for 24 h to simulate atherosclerosis. Furthermore, Sirt6 overexpression remarkably increased autophagic flux in macrophages and inhibited macrophage apoptosis. Moreover, Sirt6 overexpression inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and platelet selectin (P-selectin), leading to reduced infiltration of macrophages and foam cells. In conclusion, our study indicates a new mechanism-based strategy to therapeutically stimulate atherosclerosis plaque stability.
      Citation: Biochemistry and Cell Biology
      PubDate: 2019-05-07T07:00:00Z
      DOI: 10.1139/bcb-2019-0057
  • Role of syndecan-1 and exogenous heparin in hepatoma sphere formation
    • Authors: Shih-Chiang Lin, Ching-Po Wu, TingTing Tseng, Yaoyun Jhang, Shao-Chen Lee
      Pages: 1 - 8
      Abstract: Biochemistry and Cell Biology, e-First Articles.
      Glycosaminoglycan-modified proteoglycans play important roles in many cell activities, including cell differentiation and stem cell development. Tumor sphere formation ability is one of properties in cancer stem cells (CSCs). The correlation between CSC markers and proteoglycan remains to be clarified. Upon hepatoma sphere formation, expression of CSC markers CD13, CD90, CD133, and CD44, as well the syndecan family protein syndecan-1 (SDC1), increased as analyzed by PCR. Further examination by suppression of CD13 expression showed downregulation of SDC1 and CD44 gene expression, whereas suppression of SDC1 gene expression downregulated CD13 and CD44 gene expression. Suppression of SDC1 gene expression also suppressed sphere development, as analyzed by a novel sphereocrit assay to quantify the level of sphere formation. The heparin disaccharide components, but not those of chondroitin disaccharide, changed with hepatoma sphere development, revealing the increased levels of N-sulfation and 2-O-sulfation. These explained the inhibition of hepatoma sphere formation by exogenous heparin. In conclusion, we found that SDC1 affected CSC marker CD13 and CD44 expression. SDC1 proteoglycan and heparin components changed and affected hepatoma sphere development. Application of heparin mimics in reduction of hepatoma stem cells might be possible.
      Citation: Biochemistry and Cell Biology
      PubDate: 2019-05-01T07:00:00Z
      DOI: 10.1139/bcb-2018-0246
  • miR-628-5p promotes growth and migration of osteosarcoma by targeting
    • Authors: Ju-Yong Wang, Ju-Qiang Wang, Shi-Bao Lu
      Pages: 1 - 7
      Abstract: Biochemistry and Cell Biology, e-First Articles.
      This study investigated the role of miR-628-5p and interferon-induced protein 44-like (IFI44L) in osteosarcoma (OS) and determined whether miR-628-5p modulated OS growth by regulating IFI44L. Based on the data downloaded from Gene Expression Omnibus (GEO) database, we revealed that the expression of IFI44L was downregulated in OS and low expression of IFI44L was correlated with better prognosis of patients with OS. Biological prediction of its upstream regulatory miRNAs on the miRWalk website found that miR-628-5p is a possible upstream regulatory miRNA of IFI44L. Luciferase activity assay demonstrated that miR-628-5p could bind to the 3′ untranslated region (UTR) of IFI44L, which proved the above prediction. The expression of miR-628-5p is upregulated in OS and high expression of miR-628-5p is correlated with poor prognosis of patients with OS. The results of RT-qPCR showed that the expression of miR-628-5p in MG-63, U2OS, Saos-2, and SW1353 cells was significantly higher than that in the hFOB1.19 cells. Downregulation of miR-628-5p by miR-628-5p inhibitor significantly inhibited the proliferation, migration, and invasion of MG-63 cells. By rescue assay, we found that knockdown of IFI44L rescued the proliferation and motility of miR-628-5p depleted MG-63 cells. Collectively, our present data illustrated that miR-628-5p promoted the growth and motility of OS at least partly by targeting IFI44L. Moreover, miR-628-5p and IFI44L might be proposed as promising biomarkers in OS diagnosis and treatment.
      Citation: Biochemistry and Cell Biology
      PubDate: 2019-04-24T07:00:00Z
      DOI: 10.1139/bcb-2019-0001
  • Impact of double-stranded RNA characteristics on the activation of human
           2′–5′-oligoadenylate synthetase 2 (OAS2)
    • Authors: Amit Koul, Soumya Deo, Evan P. Booy, George L. Orriss, Matthew Genung, Sean A. McKenna
      Pages: 1 - 13
      Abstract: Biochemistry and Cell Biology, e-First Articles.
      Human 2′–5′ oligoadenylate synthetases (OAS) are a family of interferon-inducible proteins that, upon activation by double-stranded RNA, polymerize ATP into 2′–5′ linked oligoadenylates. In this study, we probed the RNA cofactor specificity of the two smallest isozymes, OAS1 and OAS2. First, we developed a strategy for the expression and purification of recombinant human OAS2 from eukaryotic cells and quantified the activity of the enzyme relative to OAS1 in vitro. We then confirmed that both OAS2 domains, as opposed to only the domain containing the canonical catalytic aspartic acid triad, are required for enzymatic activity. Enzyme kinetics of both OAS1 and OAS2 in the presence of a variety of RNA binding partners enabled characterization of the maximum reaction velocity and apparent RNA-protein affinity of activating RNAs. While in this study OAS1 can be catalytically activated by dsRNA of any length greater than 19 bp, OAS2 showed a marked increase in activity with increasing dsRNA length with a minimum requirement of 35 bp. Interestingly, activation of OAS2 was also more efficient when the dsRNA contained 3′-overhangs, despite no significant impact on binding affinity. Highly structured viral RNAs that are established OAS1 activators were not able to activate OAS2 enzymatic activity based on the lack of extended stretches of dsRNA of greater than 35 bp. Together these results may highlight distinct subsets of biological RNAs to which different human OAS isozymes respond.
      Citation: Biochemistry and Cell Biology
      PubDate: 2019-04-09T07:00:00Z
      DOI: 10.1139/bcb-2019-0060
  • Current approaches for RNA-labelling to identify RNA-binding proteins
    • Authors: Darren Gemmill, Simmone D’souza, Vanessa Meier-Stephenson, Trushar R. Patel
      Pages: 1 - 11
      Abstract: Biochemistry and Cell Biology, e-First Articles.
      RNA is involved in all domains of life, playing critical roles in a host of gene expression processes, host-defense mechanisms, cell proliferation, and diseases. A critical component in many of these events is the ability for RNA to interact with proteins. Over the past few decades, our understanding of such RNA–protein interactions and their importance has driven the search and development of new techniques for the identification of RNA-binding proteins. In determining which proteins bind to the RNA of interest, it is often useful to use the approach where the RNA molecule is the “bait” and allow it to capture proteins from a lysate or other relevant solution. Here, we review a collection of methods for modifying RNA to capture RNA-binding proteins. These include small-molecule modification, the addition of aptamers, DNA-anchoring, and nucleotide substitution. With each, we provide examples of their application, as well as highlight their advantages and potential challenges.
      Citation: Biochemistry and Cell Biology
      PubDate: 2019-03-30T07:00:00Z
      DOI: 10.1139/bcb-2019-0041
  • Cellular roles of the human Obg-like ATPase 1 (hOLA1) and its YchF
    • Authors: Nirujah Balasingam, Harland E. Brandon, Joseph A. Ross, Hans-Joachim Wieden, Nehal Thakor
      Pages: 1 - 11
      Abstract: Biochemistry and Cell Biology, e-First Articles.
      P-loop NTPases comprise one of the major superfamilies of nucleotide binding proteins, which mediate a variety of cellular processes, such as mRNA translation, signal transduction, cell motility, and growth regulation. In this review, we discuss the structure and function of two members of the ancient Obg-related family of P-loop GTPases: human Obg-like ATPase 1 (hOLA1), and its bacterial/plant homolog, YchF. After a brief discussion of nucleotide binding proteins in general and the classification of the Obg-related family in particular, we discuss the sequence and structural features of YchF and hOLA1. We then explore the various functional roles of hOLA1 in mammalian cells during stress response and cancer progression, and of YchF in bacterial cells. Finally, we directly compare and contrast the structure and function of hOLA1 with YchF before summarizing the future perspectives of hOLA1 research. This review is timely, given the variety of recent studies aimed at understanding the roles of hOLA1 and YchF in such critical processes as cellular-stress response, oncogenesis, and protein synthesis.
      Citation: Biochemistry and Cell Biology
      PubDate: 2019-02-11T08:00:00Z
      DOI: 10.1139/bcb-2018-0353
  • ARS2 is required for retinal progenitor cell S-phase progression and
           Müller glial cell fate specification
    • Authors: Connor O’Sullivan, Philip E.B. Nickerson, Oliver Krupke, Jennifer Christie, Li-Li Chen, Monica Mesa-Peres, Minyan Zhu, Bridget Ryan, Robert L. Chow, Perry L. Howard
      Pages: 1 - 11
      Abstract: Biochemistry and Cell Biology, e-First Articles.
      During a developmental period that extends postnatally in the mouse, proliferating multipotent retinal progenitor cells produce one of 7 major cell types (rod, cone, bipolar, horizontal, amacrine, ganglion, and Müller glial cells) as they exit the cell cycle in consecutive waves. Cell production in the retina is tightly regulated by intrinsic, extrinsic, spatial, and temporal cues, and is coupled to the timing of cell cycle exit. Arsenic-resistance protein 2 (ARS2, also known as SRRT) is a component of the nuclear cap-binding complex involved in RNA Polymerase II transcription, and is required for cell cycle progression. We show that postnatal retinal progenitor cells (RPCs) require ARS2 for proper progression through S phase, and ARS2 disruption leads to early exit from the cell cycle. Furthermore, we observe an increase in the proportion of cells expressing a rod photoreceptor marker, and a loss of Müller glia marker expression, indicating a role for ARS2 in regulating cell fate specification or differentiation. Knockdown of Flice Associated Huge protein (FLASH), which interacts with ARS2 and is required for cell cycle progression and 3′-end processing of replication-dependent histone transcripts, phenocopies ARS2 knockdown. These data implicate ARS2–FLASH-mediated histone mRNA processing in regulating RPC cell cycle kinetics and neuroglial cell fate specification during postnatal retinal development.
      Citation: Biochemistry and Cell Biology
      PubDate: 2019-01-23T08:00:00Z
      DOI: 10.1139/bcb-2018-0250
  • FKBP25 participates in DNA double-strand break repair
    • Authors: David Dilworth, Fade Gong, Kyle Miller, Christopher J. Nelson
      Pages: 1 - 8
      Abstract: Biochemistry and Cell Biology, e-First Articles.
      FK506-binding proteins (FKBPs) alter the conformation of proteins via cis–trans isomerization of prolyl-peptide bonds. While this activity can be demonstrated in vitro, the intractability of detecting prolyl isomerization events in cells has limited our understanding of the biological processes regulated by FKBPs. Here we report that FKBP25 is an active participant in the repair of DNA double-strand breaks (DSBs). FKBP25 influences DSB repair pathway choice by promoting homologous recombination (HR) and suppressing single-strand annealing (SSA). Consistent with this observation, cells depleted of FKBP25 form fewer Rad51 repair foci in response to etoposide and ionizing radiation, and they are reliant on the SSA repair factor Rad52 for viability. We find that FKBP25’s catalytic activity is required for promoting DNA repair, which is the first description of a biological function for this enzyme activity. Consistent with the importance of the FKBP catalytic site in HR, rapamycin treatment also impairs homologous recombination, and this effect is at least in part independent of mTor. Taken together these results identify FKBP25 as a component of the DNA DSB repair pathway.
      Citation: Biochemistry and Cell Biology
      PubDate: 2019-01-08T08:00:00Z
      DOI: 10.1139/bcb-2018-0328
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-