for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> BIOLOGY (Total: 2998 journals)
    - BIOCHEMISTRY (236 journals)
    - BIOENGINEERING (108 journals)
    - BIOLOGY (1428 journals)
    - BIOPHYSICS (44 journals)
    - BIOTECHNOLOGY (215 journals)
    - BOTANY (219 journals)
    - CYTOLOGY AND HISTOLOGY (28 journals)
    - ENTOMOLOGY (64 journals)
    - GENETICS (162 journals)
    - MICROBIOLOGY (255 journals)
    - MICROSCOPY (10 journals)
    - ORNITHOLOGY (25 journals)
    - PHYSIOLOGY (70 journals)
    - ZOOLOGY (134 journals)

BIOLOGY (1428 journals)                  1 2 3 4 5 6 7 8 | Last

Showing 1 - 200 of 1720 Journals sorted alphabetically
AAPS Journal     Hybrid Journal   (Followers: 20)
Achievements in the Life Sciences     Open Access   (Followers: 4)
ACS Synthetic Biology     Full-text available via subscription   (Followers: 23)
Acta Biologica Colombiana     Open Access   (Followers: 7)
Acta Biologica Hungarica     Full-text available via subscription   (Followers: 4)
Acta Biologica Sibirica     Open Access  
Acta Biomaterialia     Hybrid Journal   (Followers: 25)
Acta Biotheoretica     Hybrid Journal   (Followers: 5)
Acta Chiropterologica     Full-text available via subscription   (Followers: 6)
acta ethologica     Hybrid Journal   (Followers: 4)
Acta Limnologica Brasiliensia     Open Access   (Followers: 3)
Acta Médica Costarricense     Open Access   (Followers: 2)
Acta Musei Silesiae, Scientiae Naturales : The Journal of Silesian Museum in Opava     Open Access  
Acta Neurobiologiae Experimentalis     Open Access  
Acta Parasitologica     Hybrid Journal   (Followers: 9)
Acta Scientiarum. Biological Sciences     Open Access   (Followers: 2)
Acta Scientifica Naturalis     Open Access   (Followers: 2)
Actualidades Biológicas     Open Access   (Followers: 1)
Advanced Health Care Technologies     Open Access   (Followers: 4)
Advanced Studies in Biology     Open Access  
Advances in Antiviral Drug Design     Full-text available via subscription   (Followers: 3)
Advances in Bioinformatics     Open Access   (Followers: 19)
Advances in Biological Regulation     Hybrid Journal   (Followers: 4)
Advances in Biosensors and Bioelectronics     Open Access   (Followers: 6)
Advances in Cell Biology     Open Access   (Followers: 24)
Advances in Cellular and Molecular Biology of Membranes and Organelles     Full-text available via subscription   (Followers: 12)
Advances in Developmental Biology     Full-text available via subscription   (Followers: 11)
Advances in DNA Sequence-Specific Agents     Full-text available via subscription   (Followers: 5)
Advances in Ecological Research     Full-text available via subscription   (Followers: 45)
Advances in Environmental Sciences - International Journal of the Bioflux Society     Open Access   (Followers: 21)
Advances in Enzyme Research     Open Access   (Followers: 9)
Advances in Experimental Biology     Full-text available via subscription   (Followers: 7)
Advances in Genome Biology     Full-text available via subscription   (Followers: 12)
Advances in High Energy Physics     Open Access   (Followers: 19)
Advances in Human Biology     Open Access   (Followers: 1)
Advances in Life Science and Technology     Open Access   (Followers: 14)
Advances in Life Sciences     Open Access   (Followers: 5)
Advances in Marine Biology     Full-text available via subscription   (Followers: 16)
Advances in Molecular and Cell Biology     Full-text available via subscription   (Followers: 22)
Advances in Organ Biology     Full-text available via subscription   (Followers: 2)
Advances in Planar Lipid Bilayers and Liposomes     Full-text available via subscription   (Followers: 3)
Advances in Regenerative Biology     Open Access   (Followers: 1)
Advances in Space Biology and Medicine     Full-text available via subscription   (Followers: 5)
Advances in Structural Biology     Full-text available via subscription   (Followers: 8)
Advances in Virus Research     Full-text available via subscription   (Followers: 5)
African Journal of Range & Forage Science     Hybrid Journal   (Followers: 6)
AFRREV STECH : An International Journal of Science and Technology     Open Access   (Followers: 1)
Ageing Research Reviews     Hybrid Journal   (Followers: 8)
Aging Cell     Open Access   (Followers: 11)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Agrokreatif Jurnal Ilmiah Pengabdian kepada Masyarakat     Open Access  
AJP Cell Physiology     Full-text available via subscription   (Followers: 13)
AJP Endocrinology and Metabolism     Full-text available via subscription   (Followers: 23)
AJP Lung Cellular and Molecular Physiology     Full-text available via subscription   (Followers: 3)
Al-Kauniyah : Jurnal Biologi     Open Access  
Alasbimn Journal     Open Access   (Followers: 1)
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Biology Teacher     Full-text available via subscription   (Followers: 13)
American Fern Journal     Full-text available via subscription   (Followers: 1)
American Journal of Agricultural and Biological Sciences     Open Access   (Followers: 10)
American Journal of Bioethics     Hybrid Journal   (Followers: 10)
American Journal of Biostatistics     Open Access   (Followers: 9)
American Journal of Human Biology     Hybrid Journal   (Followers: 12)
American Journal of Medical and Biological Research     Open Access   (Followers: 7)
American Journal of Plant Sciences     Open Access   (Followers: 19)
American Journal of Primatology     Hybrid Journal   (Followers: 15)
American Malacological Bulletin     Full-text available via subscription   (Followers: 3)
American Naturalist     Full-text available via subscription   (Followers: 73)
Amphibia-Reptilia     Hybrid Journal   (Followers: 6)
Anaerobe     Hybrid Journal   (Followers: 4)
Analytical Methods     Full-text available via subscription   (Followers: 10)
Anatomical Science International     Hybrid Journal   (Followers: 2)
Animal Cells and Systems     Hybrid Journal   (Followers: 4)
Annales de Limnologie - International Journal of Limnology     Hybrid Journal   (Followers: 1)
Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale     Full-text available via subscription   (Followers: 3)
Annales Henri Poincaré     Hybrid Journal   (Followers: 3)
Annales UMCS, Biologia     Open Access   (Followers: 1)
Annals of Applied Biology     Hybrid Journal   (Followers: 7)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 18)
Annals of Human Biology     Hybrid Journal   (Followers: 4)
Annual Review of Biomedical Engineering     Full-text available via subscription   (Followers: 17)
Annual Review of Biophysics     Full-text available via subscription   (Followers: 25)
Annual Review of Cancer Biology     Full-text available via subscription   (Followers: 1)
Annual Review of Cell and Developmental Biology     Full-text available via subscription   (Followers: 39)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 16)
Annual Review of Genomics and Human Genetics     Full-text available via subscription   (Followers: 20)
Annual Review of Phytopathology     Full-text available via subscription   (Followers: 10)
Anthropological Review     Open Access   (Followers: 24)
Anti-Infective Agents     Hybrid Journal   (Followers: 3)
Antibiotics     Open Access   (Followers: 9)
Antioxidants     Open Access   (Followers: 4)
Antioxidants & Redox Signaling     Hybrid Journal   (Followers: 8)
Antonie van Leeuwenhoek     Hybrid Journal   (Followers: 5)
Anzeiger für Schädlingskunde     Hybrid Journal   (Followers: 1)
Apidologie     Hybrid Journal   (Followers: 4)
Apmis     Hybrid Journal   (Followers: 1)
APOPTOSIS     Hybrid Journal   (Followers: 8)
Applied Bionics and Biomechanics     Open Access   (Followers: 8)
Applied Vegetation Science     Full-text available via subscription   (Followers: 9)
Aquaculture Environment Interactions     Open Access   (Followers: 2)
Aquaculture International     Hybrid Journal   (Followers: 22)
Aquaculture Reports     Open Access   (Followers: 3)
Aquaculture, Aquarium, Conservation & Legislation - International Journal of the Bioflux Society     Open Access   (Followers: 6)
Aquatic Biology     Open Access   (Followers: 5)
Aquatic Ecology     Hybrid Journal   (Followers: 32)
Aquatic Ecosystem Health & Management     Hybrid Journal   (Followers: 14)
Aquatic Science and Technology     Open Access   (Followers: 3)
Aquatic Toxicology     Hybrid Journal   (Followers: 20)
Archaea     Open Access   (Followers: 3)
Archiv für Molluskenkunde: International Journal of Malacology     Full-text available via subscription   (Followers: 3)
Archives of Biomedical Sciences     Open Access   (Followers: 7)
Archives of Microbiology     Hybrid Journal   (Followers: 8)
Archives of Natural History     Hybrid Journal   (Followers: 8)
Archives of Oral Biology     Hybrid Journal   (Followers: 2)
Archives of Virology     Hybrid Journal   (Followers: 5)
Archivum Immunologiae et Therapiae Experimentalis     Hybrid Journal   (Followers: 2)
Arid Ecosystems     Hybrid Journal   (Followers: 3)
Arquivos do Instituto Biológico     Open Access   (Followers: 1)
Arquivos do Museu Dinâmico Interdisciplinar     Open Access  
Arthropod Structure & Development     Hybrid Journal   (Followers: 2)
Arthropods     Open Access   (Followers: 1)
Artificial DNA: PNA & XNA     Hybrid Journal   (Followers: 2)
Artificial Photosynthesis     Open Access   (Followers: 1)
Asian Bioethics Review     Full-text available via subscription   (Followers: 2)
Asian Journal of Biodiversity     Open Access   (Followers: 5)
Asian Journal of Biological Sciences     Open Access   (Followers: 3)
Asian Journal of Cell Biology     Open Access   (Followers: 6)
Asian Journal of Developmental Biology     Open Access   (Followers: 2)
Asian Journal of Medical and Biological Research     Open Access   (Followers: 2)
Asian Journal of Nematology     Open Access   (Followers: 3)
Asian Journal of Poultry Science     Open Access   (Followers: 4)
Australian Life Scientist     Full-text available via subscription   (Followers: 2)
Australian Mammalogy     Hybrid Journal   (Followers: 6)
Autophagy     Hybrid Journal   (Followers: 2)
Avian Biology Research     Full-text available via subscription   (Followers: 5)
Avian Conservation and Ecology     Open Access   (Followers: 13)
Bacteriology Journal     Open Access   (Followers: 2)
Bacteriophage     Full-text available via subscription   (Followers: 4)
Bangladesh Journal of Bioethics     Open Access  
Bangladesh Journal of Plant Taxonomy     Open Access  
Bangladesh Journal of Scientific Research     Open Access   (Followers: 2)
Berita Biologi     Open Access   (Followers: 1)
Between the Species     Open Access   (Followers: 1)
Bio Tribune Magazine     Hybrid Journal  
BIO Web of Conferences     Open Access  
BIO-Complexity     Open Access  
Bio-Grafía. Escritos sobre la Biología y su enseñanza     Open Access  
Bioanalytical Reviews     Hybrid Journal   (Followers: 2)
Biocatalysis and Biotransformation     Hybrid Journal   (Followers: 6)
Biochemistry and Cell Biology     Hybrid Journal   (Followers: 14)
Biochimie     Hybrid Journal   (Followers: 7)
BioControl     Hybrid Journal   (Followers: 5)
Biocontrol Science and Technology     Hybrid Journal   (Followers: 5)
Biodemography and Social Biology     Hybrid Journal   (Followers: 1)
BioDiscovery     Open Access   (Followers: 1)
Biodiversity : Research and Conservation     Open Access   (Followers: 28)
Biodiversity and Natural History     Open Access   (Followers: 6)
Biodiversity Data Journal     Open Access   (Followers: 3)
Biodiversity Informatics     Open Access   (Followers: 1)
Biodiversity Information Science and Standards     Open Access  
Bioedukasi : Jurnal Pendidikan Biologi FKIP UM Metro     Open Access  
Bioeksperimen : Jurnal Penelitian Biologi     Open Access  
Bioelectrochemistry     Hybrid Journal   (Followers: 2)
Bioelectromagnetics     Hybrid Journal   (Followers: 1)
Bioenergy Research     Hybrid Journal   (Followers: 2)
Bioengineering and Bioscience     Open Access   (Followers: 1)
BioEssays     Hybrid Journal   (Followers: 10)
Bioethics     Hybrid Journal   (Followers: 14)
BioéthiqueOnline     Open Access  
Biofabrication     Hybrid Journal   (Followers: 3)
Biogeosciences (BG)     Open Access   (Followers: 10)
Biogeosciences Discussions (BGD)     Open Access   (Followers: 1)
Bioinformatics     Hybrid Journal   (Followers: 276)
Bioinformatics and Biology Insights     Open Access   (Followers: 15)
Bioinspiration & Biomimetics     Hybrid Journal   (Followers: 7)
Biointerphases     Open Access   (Followers: 1)
Biojournal of Science and Technology     Open Access  
Biologia     Hybrid Journal  
Biologia on-line : Revista de divulgació de la Facultat de Biologia     Open Access  
Biological Bulletin     Partially Free   (Followers: 5)
Biological Control     Hybrid Journal   (Followers: 4)
Biological Invasions     Hybrid Journal   (Followers: 17)
Biological Journal of the Linnean Society     Hybrid Journal   (Followers: 16)
Biological Letters     Open Access   (Followers: 4)
Biological Procedures Online     Open Access  
Biological Psychiatry     Hybrid Journal   (Followers: 43)
Biological Psychology     Hybrid Journal   (Followers: 6)
Biological Research     Open Access  
Biological Rhythm Research     Hybrid Journal   (Followers: 2)
Biological Theory     Hybrid Journal   (Followers: 2)
Biological Trace Element Research     Hybrid Journal  
Biologicals     Full-text available via subscription   (Followers: 9)
Biologics: Targets & Therapy     Open Access   (Followers: 1)
Biologie Aujourd'hui     Full-text available via subscription  
Biologie in Unserer Zeit (Biuz)     Hybrid Journal   (Followers: 42)
Biologija     Open Access  
Biology     Open Access   (Followers: 5)
Biology and Philosophy     Hybrid Journal   (Followers: 17)
Biology Bulletin     Hybrid Journal   (Followers: 1)

        1 2 3 4 5 6 7 8 | Last

Journal Cover Applied Bionics and Biomechanics
  [SJR: 0.23]   [H-I: 13]   [8 followers]  Follow
    
  This is an Open Access Journal Open Access journal
   ISSN (Print) 1176-2322 - ISSN (Online) 1754-2103
   Published by Hindawi Homepage  [270 journals]
  • Kinect V2 Performance Assessment in Daily-Life Gestures: Cohort Study on
           Healthy Subjects for a Reference Database for Automated Instrumental
           Evaluations on Neurological Patients

    • Abstract: Background. The increase of sanitary costs related to poststroke rehabilitation requires new sustainable and cost-effective strategies for promoting autonomous and dehospitalized motor training. In the Riprendo@Home and Future Home for Future Communities research projects, the promising approach of introducing low-cost technologies that promote home rehabilitation is exploited. In order to provide reliable evaluation of patients, a reference database of healthy people’s performances is required and should consider variability related to healthy people performances. Methods. 78 healthy subjects performed several repetitions of daily-life gestures, the reaching movement (RM) and hand-to-mouth (HtMM) movement with both the dominant and nondominant upper limbs. Movements were recorded with a Kinect V2. A synthetic biomechanical protocol based on kinematical, dynamical, and motor control parameters was used to assess motor performance of the healthy people. The investigation was conducted by clustering participants depending on their limb dominancy (right/left), gender (male/female), and age (young/middle/senior) as sources of variability. Results. Results showed that limb dominancy has minor relevance in affecting RM and HtMM; gender has relevance in affecting the HtMM; age has major effect in affecting RM and HtMM. Conclusions. An investigation of healthy subjects’ upper limb performances during daily-life gestures was performed with the Kinect V2 sensor. Findings will be the basis for a database of normative data for neurological patients’ motor evaluation.
      PubDate: Wed, 22 Nov 2017 00:00:00 +000
       
  • Cervical Spine Mechanism for Reproduction of the Biomechanical Behaviours
           of the Human Neck during Rotation-Traction Manipulation

    • Abstract: Rotation-traction (RT) manipulation is a commonly used physical therapy procedure in TCM (traditional Chinese medicine) for cervical spondylosis. This procedure temporarily separates the C3 and C4 cervical vertebrae from each other when a physician applies a jerky action while the neck is voluntarily turned by the patient to a specific position as instructed by the physician, where the cervical vertebrae are twisted and locked. However, a high rate of cervical injury occurs due to inexperienced physician interns who lack sufficient training. Therefore, we developed a cervical spine mechanism that imitates the dynamic behaviours of the human neck during RT manipulation. First, in vivo and in vitro experiments were performed to acquire the biomechanical feature curves of the human neck during RT manipulation. Second, a mass-spring-damper system with an electromagnetic clutch was designed to emulate the entire dynamic response of the human neck. In this system, a spring is designed as rectilinear and nonlinear to capture the viscoelasticity of soft tissues, and an electromagnetic clutch is used to simulate the sudden disengagement of the cervical vertebrae. Test results show that the mechanism can exhibit the desired behaviour when RT manipulation is applied in the same manner as on humans.
      PubDate: Sun, 12 Nov 2017 00:00:00 +000
       
  • Full Step Cycle Kinematic and Kinetic Comparison of Barefoot Walking and a
           Traditional Shoe Walking in Healthy Youth: Insights for Barefoot
           Technology

    • Abstract: Objective. Barefoot technology shoes are becoming increasingly popular, yet modifications are still needed. The present study aims to gain valuable insights by comparing barefoot walking to neutral shoe walking in a healthy youth population. Methods. 28 healthy university students (22 females and 6 males) were recruited to walk on a 10-meter walkway both barefoot and in neutral running shoes at their comfortable walking speed. Full step cycle kinematic and kinetic data were collected using an 8-camera motion capture system. Results. In the early stance phase, the knee extension moment (MK1), the first peak absorbed joint power at the knee joint (PK1), and the flexion angle of knee/dorsiflexion angle of the ankle were significantly reduced when walking in neutral running shoes. However, in the late stance, barefoot walking resulted in decreased hip joint flexion moment (MH2), second peak extension knee moment (MK3), hip flexors absorbed power (PH2), hip flexors generated power (PH3), second peak absorbed power by knee flexors (PK2), and second peak anterior-posterior component of joint force at the hip (APFH2), knee (APFK2), and ankle (APFA2). Conclusions. These results indicate that it should be cautious to discard conventional elements from future running shoe designs and rush to embrace the barefoot technology fashion.
      PubDate: Tue, 07 Nov 2017 00:00:00 +000
       
  • Concept and Design of a 3D Printed Support to Assist Hand Scanning for the
           Realization of Customized Orthosis

    • Abstract: In the rehabilitation field, the use of additive manufacturing techniques to realize customized orthoses is increasingly widespread. Obtaining a 3D model for the 3D printing phase can be done following different methodologies. We consider the creation of personalized upper limb orthoses, also including fingers, starting from the acquisition of the hand geometry through accurate 3D scanning. However, hand scanning procedure presents differences between healthy subjects and patients affected by pathologies that compromise upper limb functionality. In this work, we present the concept and design of a 3D printed support to assist hand scanning of such patients. The device, realized with FDM additive manufacturing techniques in ABS material, allows palmar acquisitions, and its design and test are motivated by the following needs: (1) immobilizing the hand of patients during the palmar scanning to reduce involuntary movements affecting the scanning quality and (2) keeping hands open and in a correct position, especially to contrast the high degree of hypertonicity of spastic subjects. The resulting device can be used indifferently for the right and the left hand; it is provided in four-dimensional sizes and may be also suitable as a palmar support for the acquisition of the dorsal side of the hand.
      PubDate: Mon, 06 Nov 2017 06:49:15 +000
       
  • Interaction between Flow Diverter and Parent Artery of Intracranial
           Aneurysm: A Computational Study

    • Abstract: To evaluate the influence of deployment strategy on the mechanical interaction between braided stent and parent artery of intracranial aneurysm (the elasticity of the arterial wall is considered), finite-element analyses are carried out by referring to computational models of flow-diverter device and arterial wall. Two implantation strategies are used to virtually implant the braided stent into the ideal intracranial aneurysm model. One is the noncompacted implantation method, and the other is the implantation method of using push-pull technique. During the process of the implantation, the changes of the arterial shape around the aneurysm and the changes of the wall pressure at the contact area between the braided stent and the inner wall of the artery are analyzed. The results indicate that the average contact pressure in the area of low porosity is 57 mmHg using the push-pull technique, and the average contact pressure of the parent artery is 10.45 mmHg using the non-push-pull technique. The diameter of the parent artery at the aneurismal orifice increased about 0.2 mm when using the push-pull technique, so the elasticity of the vessel should be considered in the mechanical analysis of interaction between stent and vessel.
      PubDate: Wed, 25 Oct 2017 10:07:56 +000
       
  • Design and Test Research on Cutting Blade of Corn Harvester Based on
           Bionic Principle

    • Abstract: Existing corn harvester cutting blades have problems associated with large cutting resistance, high energy consumption, and poor cut quality. Using bionics principles, a bionic blade was designed by extracting the cutting tooth profile curve of the B. horsfieldi palate. Using a double-blade cutting device testing system, a single stalk cutting performance contrast test for corn stalks obtained at harvest time was carried out. Results show that bionic blades have superior performance, demonstrated by strong cutting ability and good cut quality. Using statistical analysis of two groups of cutting test data, the average cutting force and cutting energy of bionic blades and ordinary blades were obtained as 480.24 N and 551.31 N and 3.91 J and 4.38 J, respectively. Average maximum cutting force and cutting energy consumption for the bionic blade were reduced by 12.89% and 10.73%, respectively. Variance analysis showed that both blade types had a significant effect on maximum cutting energy and cutting energy required to cut a corn stalk. This demonstrates that bionic blades have better cutting force and energy consumption reduction performance than ordinary blades.
      PubDate: Sun, 22 Oct 2017 00:00:00 +000
       
  • The Structure and Flexural Properties of Typha Leaves

    • Abstract: The Typha leaf has a structure of lightweight cantilever beam, exhibiting excellent mechanical properties with low density. Especially, the leaf blade evolved high strength and low density with high porosity. In this paper, the structure of Typha leaf was characterized by microcomputed tomography (Micro-CT) and scanning electron microscopy (SEM), and the relationship with flexural properties was analyzed. The three-point bending test was performed on leaves to examine flexural properties, which indicated that the flexural properties vary from the base to the apex in gradient. The cross-sectional geometry shape of the leaf blade presented a strong influence on the optimized flexural stiffness. The load carrying capacity of the leaf depended on the development level of the epidermal tissue, the vascular bundle, the mechanical tissue, and the geometric properties. The investigation can be the basis for lightweight structure design and the application in the bionic engineering field.
      PubDate: Sun, 15 Oct 2017 00:00:00 +000
       
  • Crashworthiness Design for Bionic Bumper Structures Inspired by Cattail
           and Bamboo

    • Abstract: Many materials in nature exhibit excellent mechanical properties. In this study, we evaluated the bionic bumper structure models by using nonlinear finite element (FE) simulations for their crashworthiness under full-size impact loading. The structure contained the structural characteristics of cattail and bamboo. The results indicated that the bionic design enhances the specific energy absorption (SEA) of the bumper. The numerical results showed that the bionic cross-beam and bionic box of the bionic bumper have a significant effect on the crashworthiness of the structure. The crush deformation of bionic cross-beam and box bumper model was reduced by 33.33%, and the total weight was reduced by 44.44%. As the energy absorption capacity under lateral impact, the bionic design can be used in the future bumper body.
      PubDate: Sun, 08 Oct 2017 00:00:00 +000
       
  • Study on Effects of Titanium Surface Microporous Coatings Containing Zinc
           on Osteoblast Adhesion and Its Antibacterial Activity

    • Abstract: Metal surface structure/biomedical function integration is the current research focus. In previous studies, we have successfully prepared the microporous coatings containing zinc on the pure titanium surface by MAO. In the study, osteoblasts were seeded on the surface of the microporous coatings containing zinc and the adhesion of osteoblasts were evaluated, and the antibacterial activity of the microporous coatings containing zinc is observed through in vitro bacterial experiments. The result indicates that the adhesion ability of osteoblasts on the surface of microporous coatings containing zinc was very good, and the coatings could obviously inhibit the growth of Staphylococcus aureus and had good antibacterial activity. In conclusion, the microporous coatings containing zinc on titanium surface have good osteogenic and antibacterial properties and have good application prospect.
      PubDate: Mon, 02 Oct 2017 06:26:03 +000
       
  • Using a Bayesian Network to Predict L5/S1 Spinal Compression Force from
           Posture, Hand Load, Anthropometry, and Disc Injury Status

    • Abstract: Stochastic biomechanical modeling has become a useful tool most commonly implemented using Monte Carlo simulation, advanced mean value theorem, or Markov chain modeling. Bayesian networks are a novel method for probabilistic modeling in artificial intelligence, risk modeling, and machine learning. The purpose of this study was to evaluate the suitability of Bayesian networks for biomechanical modeling using a static biomechanical model of spinal forces during lifting. A 20-node Bayesian network model was used to implement a well-established static two-dimensional biomechanical model for predicting L5/S1 compression and shear forces. The model was also implemented as a Monte Carlo simulation in MATLAB. Mean L5/S1 spinal compression force estimates differed by 0.8%, and shear force estimates were the same. The model was extended to incorporate evidence about disc injury, which can modify the prior probability estimates to provide posterior probability estimates of spinal compression force. An example showed that changing disc injury status from false to true increased the estimate of mean L5/S1 compression force by 14.7%. This work shows that Bayesian networks can be used to implement a whole-body biomechanical model used in occupational biomechanics and incorporate disc injury.
      PubDate: Sun, 01 Oct 2017 00:00:00 +000
       
  • Analysis of Drag Reduction Methods and Mechanisms of Turbulent

    • Abstract: Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected.
      PubDate: Mon, 18 Sep 2017 07:10:54 +000
       
  • A Survey of Bioinspired Jumping Robot: Takeoff, Air Posture Adjustment,
           and Landing Buffer

    • Abstract: A bioinspired jumping robot has a strong ability to overcome obstacles. It can be applied to the occasion with complex and changeable environment, such as detection of planet surface, postdisaster relief, and military reconnaissance. So the bioinspired jumping robot has broad application prospect. The jumping process of the robot can be divided into three stages: takeoff, air posture adjustment, and landing buffer. The motivation of this review is to investigate the research results of the most published bioinspired jumping robots for these three stages. Then, the movement performance of the bioinspired jumping robots is analyzed and compared quantitatively. Then, the limitation of the research on bioinspired jumping robots is discussed, such as the research on the mechanism of biological motion is not thorough enough, the research method about structural design, material applications, and control are still traditional, and energy utilization is low, which make the robots far from practical applications. Finally, the development trend is summarized. This review provides a reference for further research of bioinspired jumping robots.
      PubDate: Thu, 14 Sep 2017 02:02:36 +000
       
  • New Design of a Soft Robotics Wearable Elbow Exoskeleton Based on Shape
           Memory Alloy Wire Actuators

    • Abstract: The elbow joint is a complex articulation composed of the humeroulnar and humeroradial joints (for flexion-extension movement) and the proximal radioulnar articulation (for pronation-supination movement). During the flexion-extension movement of the elbow joint, the rotation center changes and this articulation cannot be truly represented as a simple hinge joint. The main goal of this project is to design and assemble a medical rehabilitation exoskeleton for the elbow with one degree of freedom for flexion-extension, using the rotation center for proper patient elbow joint articulation. Compared with the current solutions, which align the exoskeleton axis with the elbow axis, this offers an ergonomic physical human-robot interface with a comfortable interaction. The exoskeleton is actuated with shape memory alloy wire-based actuators having minimum rigid parts, for guiding the actuators. Thanks to this unusual actuation system, the proposed exoskeleton is lightweight and has low noise in operation with a simple design 3D-printed structure. Using this exoskeleton, these advantages will improve the medical rehabilitation process of patients that suffered stroke and will influence how their lifestyle will change to recover from these diseases and improve their ability with activities of daily living, thanks to brain plasticity. The exoskeleton can also be used to evaluate the real status of a patient, with stroke and even spinal cord injury, thanks to an elbow movement analysis.
      PubDate: Tue, 05 Sep 2017 00:00:00 +000
       
  • Macrodamage Accumulation Model for a Human Femur

    • Abstract: The objective of this study was to more fully understand the mechanical behavior of bone tissue that is important to find an alternative material to be used as an implant and to develop an accurate model to predict the fracture of the bone. Predicting and preventing bone failure is an important area in orthopaedics. In this paper, the macrodamage accumulation models in the bone tissue have been investigated. Phenomenological models for bone damage have been discussed in detail. In addition, 3D finite element model of the femur prepared from imaging data with both cortical and trabecular structures is delineated using MIMICS and ANSYS® and simulated as a composite structure. The damage accumulation occurring during cyclic loading was analyzed for fatigue scenario. We found that the damage accumulates sooner in the multiaxial than in the uniaxial loading condition for the same number of cycles, and the failure starts in the cortical bone. The damage accumulation behavior seems to follow a three-stage growth: a primary phase, a secondary phase of damage growth marked by linear damage growth, and a tertiary phase that leads to failure. Finally, the stiffness of the composite bone comprising the cortical and trabecular bone was significantly different as expected.
      PubDate: Tue, 29 Aug 2017 00:00:00 +000
       
  • Prediction of Epileptic Seizure by Analysing Time Series EEG Signal Using
           -NN Classifier

    • Abstract: Electroencephalographic signal is a representative signal that contains information about brain activity, which is used for the detection of epilepsy since epileptic seizures are caused by a disturbance in the electrophysiological activity of the brain. The prediction of epileptic seizure usually requires a detailed and experienced analysis of EEG. In this paper, we have introduced a statistical analysis of EEG signal that is capable of recognizing epileptic seizure with a high degree of accuracy and helps to provide automatic detection of epileptic seizure for different ages of epilepsy. To accomplish the target research, we extract various epileptic features namely approximate entropy (ApEn), standard deviation (SD), standard error (SE), modified mean absolute value (MMAV), roll-off (), and zero crossing (ZC) from the epileptic signal. The -nearest neighbours (-NN) algorithm is used for the classification of epilepsy then regression analysis is used for the prediction of the epilepsy level at different ages of the patients. Using the statistical parameters and regression analysis, a prototype mathematical model is proposed which helps to find the epileptic randomness with respect to the age of different subjects. The accuracy of this prototype equation depends on proper analysis of the dynamic information from the epileptic EEG.
      PubDate: Sun, 13 Aug 2017 00:00:00 +000
       
  • Comparison of Machine Learning Methods for the Arterial Hypertension
           Diagnostics

    • Abstract: The paper presents results of machine learning approach accuracy applied analysis of cardiac activity. The study evaluates the diagnostics possibilities of the arterial hypertension by means of the short-term heart rate variability signals. Two groups were studied: 30 relatively healthy volunteers and 40 patients suffering from the arterial hypertension of II-III degree. The following machine learning approaches were studied: linear and quadratic discriminant analysis, k-nearest neighbors, support vector machine with radial basis, decision trees, and naive Bayes classifier. Moreover, in the study, different methods of feature extraction are analyzed: statistical, spectral, wavelet, and multifractal. All in all, 53 features were investigated. Investigation results show that discriminant analysis achieves the highest classification accuracy. The suggested approach of noncorrelated feature set search achieved higher results than data set based on the principal components.
      PubDate: Mon, 31 Jul 2017 09:27:07 +000
       
  • Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design
           Software

    • Abstract: We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient’s lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the “STL” file. The designed AFO was printed using a fused filament fabrication type 3D printer, and a mechanical stress test was performed. The patient alternated between the 3D-printed and conventional AFOs for 2 months. There was no crack or damage, and the shape and stiffness of the AFO did not change after the durability test. The gait speed increased after wearing the conventional AFO (56.5 cm/sec) and 3D-printed AFO (56.5 cm/sec) compared to that without an AFO (42.2 cm/sec). The patient was more satisfied with the 3D-printed AFO than the conventional AFO in terms of the weight and ease of use. The 3D-printed AFO exhibited similar functionality as the conventional AFO and considerably satisfied the patient in terms of the weight and ease of use. We suggest the possibility of the individualized AFO with 3D printing techniques and automated design software.
      PubDate: Sun, 30 Jul 2017 00:00:00 +000
       
  • Positioning Performance of Power and Manual Drivers in Posterior Spinal
           Fusion Procedures

    • Abstract: This work presents an analysis and comparison of the efficacy of two methods for pedicle screw placement during posterior spinal fusion surgery. A total of 100 screws (64 manual and 36 power driven), all placed utilizing a surgical navigation system, were analyzed and compared. Final screw placement was compared to initial surgical plans using the navigation system, and the final screw locations were analyzed on the basis of angular deviation from these planned trajectories as well as screw translation within a critical reference plane. The power driver was found to insignificantly decrease the resulting angular deviation of these pedicle screws with a mean deviation of 3.35 degrees compared to 3.44 degrees with the manual driver (). Conversely, the power driver was found to increase the translational distance in the critical region, with mean deviations of 2.45 mm for the power driver compared to 1.54 mm with the manual driver. The increase in translational deviation was significant () indicating that there may be some loss in performance from the adoption of the power driver.
      PubDate: Thu, 27 Jul 2017 00:00:00 +000
       
  • A FEM-Experimental Approach for the Development of a Conceptual Linear
           Actuator Based on Tendril’s Free Coiling

    • Abstract: Within the vastness of the plant species, certain living systems show tendril structures whose motion is of particular interest for biomimetic engineers. Tendrils sense and coil around suitable grips, and by shortening in length, they erect the remaining plant body. To achieve contraction, tendrils rotate along their main axis and shift from a linear to a double-spring geometry. This phenomenon is denoted as the free-coiling phase. In this work, with the aim of understanding the fundamentals of the mechanics behind the free coiling, a reverse-engineering approach based on the finite element method was firstly applied. The model consisted of an elongated cylinder with suitable material properties, boundary, and loading conditions, in order to reproduce the kinematics of the tendril. The simulation succeeded in mimicking coiling faithfully and was therefore used to validate a tentative linear actuator model based on the plant’s working principle. More in detail, exploiting shape memory alloy materials to obtain large reversible deformations, the main tendril features were implemented into a nickel-titanium spring-based testing model. The results of the experimental tests confirmed the feasibility of the idea in terms of both functioning principles and actual performance. It can be concluded that the final set-up can be used as a base for a prototype design of a new kind of a linear actuator.
      PubDate: Tue, 25 Jul 2017 00:00:00 +000
       
  • Bilateral, Misalignment-Compensating, Full-DOF Hip Exoskeleton: Design and
           Kinematic Validation

    • Abstract: A shared design goal for most robotic lower limb exoskeletons is to reduce the metabolic cost of locomotion for the user. Despite this, only a limited amount of devices was able to actually reduce user metabolic consumption. Preservation of the natural motion kinematics was defined as an important requirement for a device to be metabolically beneficial. This requires the inclusion of all human degrees of freedom (DOF) in a design, as well as perfect alignment of the rotation axes. As perfect alignment is impossible, compensation for misalignment effects should be provided. A misalignment compensation mechanism for a 3-DOF system is presented in this paper. It is validated by the implementation in a bilateral hip exoskeleton, resulting in a compact and lightweight device that can be donned fast and autonomously, with a minimum of required adaptations. Extensive testing of the prototype has shown that hip range of motion of the user is maintained while wearing the device and this for all three hip DOFs. This allowed the users to maintain their natural motion patterns when they are walking with the novel hip exoskeleton.
      PubDate: Sun, 16 Jul 2017 06:48:26 +000
       
  • Structural-Geometric Functionalization of the Additively Manufactured
           Prototype of Biomimetic Multispiked Connecting Ti-Alloy Scaffold for
           Entirely Noncemented Resurfacing Arthroplasty Endoprostheses

    • Abstract: The multispiked connecting scaffold (MSC-Scaffold) prototype, inspired by the biological system of anchorage of the articular cartilage in the periarticular trabecular bone by means of subchondral bone interdigitations, is the essential innovation in fixation of the bone in resurfacing arthroplasty (RA) endoprostheses. The biomimetic MSC‐Scaffold, due to its complex geometric structure, can be manufactured only using additive technology, for example, selective laser melting (SLM). The major purpose of this work is determination of constructional possibilities for the structural-geometric functionalization of SLM‐manufactured MSC‐Scaffold prototype, compensating the reduced ability—due to the SLM technological limitations—to accommodate the ingrowing bone filling the interspike space of the prototype, which is important for the prototype bioengineering design. Confocal microscopy scanning of components of the SLM‐manufactured prototype of total hip resurfacing arthroplasty (THRA) endoprosthesis with the MSC‐Scaffold was performed. It was followed by the geometric measurements of a variety of specimens designed as the fragments of the MSC-Scaffold of both THRA endoprosthesis components. The reduced ability to accommodate the ingrowing bone tissue in the SLM‐manufactured prototypes versus that in the corresponding CAD models has been quantitatively determined. Obtained results enabled to establish a way of compensatory structural‐geometric functionalization, allowing the MSC‐Scaffold adequate redesigning and manufacturing in additive SLM technology.
      PubDate: Thu, 13 Jul 2017 00:00:00 +000
       
  • In Vivo Assessment of Elasticity of Child Rib Cortical Bone Using
           Quantitative Computed Tomography

    • Abstract: Elasticity of the child rib cortical bone is poorly known due to the difficulties in obtaining specimens to perform conventional tests. It was shown on the femoral cortical bone that elasticity is strongly correlated with density for both children and adults through a unique relationship. Thus, it is assumed that the relationships between the elasticity and density of adult rib cortical bones could be expanded to include that of children. This study estimated in vivo the elasticity of the child rib cortical bone using quantitative computed tomography (QCT). Twenty-eight children (from 1 to 18 y.o.) were considered. Calibrated QCT images were prescribed for various thoracic pathologies. The Hounsfield units were converted to bone mineral density (BMD). A relationship between the BMD and the elasticity of the rib cortical bone was applied to estimate the elasticity of children’s ribs in vivo. The estimated elasticity increases with growth (7.1 ± 2.5 GPa at 1 y.o. up to 11.6 ± 1.9 GPa at 18 y.o.). This data is in agreement with the few previous values obtained using direct measurements. This methodology paves the way for in vivo assessment of the elasticity of the child cortical bone based on calibrated QCT images.
      PubDate: Sun, 09 Jul 2017 00:00:00 +000
       
  • A New Model to Study Fatigue in Dental Implants Based on Probabilistic
           Finite Elements and Cumulative Damage Model

    • Abstract: The aim of this study was to predict the fatigue life of two different connections of a dental implant as in load transfer to bone. Two three-dimensional models were created and assembled. All models were subjected to a natural masticatory force of 118 N in the angle of 75° to the occlusal plane. All degrees of freedom in the inferior border of the cortical bone were restrained, and the mesial and distal borders of the end of the bone section were constrained. Fatigue material data and loads were assumed as random variables. Maximum principal stresses on bone were evaluated. Then, the probability of failure was obtained by the probabilistic approach. The maximum principal stress distribution predicted in the cortical and trabecular bone is 32 MPa for external connection and 39 MPa for internal connection. A mean life of 103 and 210 million cycles were obtained for external and internal connection, respectively. Probability cumulative function was also evaluated for both connection types. This stochastic model employs a cumulative damage model and probabilistic finite element method. This methodology allows the possibility of measured uncertainties and has a good precision on the results.
      PubDate: Wed, 05 Jul 2017 08:27:04 +000
       
  • Bionic Design for Reducing Adhesive Resistance of the Ridger Inspired by a
           Boar’s Head

    • Abstract: The main feature of the boar’s head used to root around for food is the front part, which is similar to the ridger in terms of function, load, and environment. In this paper, the boar’s head was selected as the biological prototype for developing a new ridger. The point cloud of the head was captured by a 3D scanner, and then, the head surface was reconstructed using 3D coordinates. The characteristic curves of the front part of the boar’s head were extracted, and then, five cross-sectional curves and one vertical section curve were fitted. Based on the fitted curves, five kinds of bionic ridgers were designed. The penetrating resistances of the bionic ridgers and traditional ridger were tested at different speeds in an indoor soil bin. The test results showed that bionic ridger B had the best penetrating resistance reduction ratio of 16.67% at 4.2 km/h velocity. In order to further evaluate the performance of the best bionic ridger (bionic ridger B), both the bionic ridger and traditional ridger were tested in a field under the same working conditions. The field results indicate that the bionic ridger reduces penetrating resistance by 6.91% compared to the traditional ridger, and the test results validate that the bionic ridger has an effect on reducing penetrating resistance.
      PubDate: Mon, 03 Jul 2017 05:42:12 +000
       
  • Reliability of an Integrated Ultrasound and Stereophotogrammetric System
           for Lower Limb Anatomical Characterisation

    • Abstract: Background. Lower extremity analysis for preoperative total knee and hip arthroplasty routines can increase surgery success rate and hence reduce associated costs. Current tools are limited by being invasive, limited to supine analysis, or too expensive. This study aimed to propose and validate a device, OrthoPilot®, based on the combined use of a stereophotogrammetric and ultrasound system which can in vivo and noninvasively measure varus/valgus, flexion/extension, femur and tibia torsion, and femur and tibia lengths. Methods. A phantom was measured by four operators to determine the resolution of the system. Interoperator variability was measured on three operators who measured the above six variables on both legs of three subjects in standing and supine positions. Intraoperator variability was assessed on data from three repeats from 9 subjects (18 legs). Results. All 6 variables were reliably detected on a phantom, with a resolution of 1 mm and 0.5°. Inter- and intraoperator consistency was observed for varus/valgus, flexion/extension, and length measurements on the healthy subjects in standing and supine positions (all ICC > 0.93). For torsion measurements, there was a considerable variation. Conclusion. The proposed system, when used on healthy subjects, allowed reliable measurements of key parameters for preoperative procedures in both supine and standing positions. Accuracy testing and further validation on patient populations will be the next step toward its clinical adoption.
      PubDate: Mon, 19 Jun 2017 07:32:32 +000
       
  • Comparison of Joint Loading in Badminton Lunging between Professional and
           Amateur Badminton Players

    • Abstract: The knee and ankle are the two most injured joints associated with the sport of badminton. This study evaluates biomechanical factors between professional and amateur badminton players using an injury mechanism model. The aim of this study was to investigate the kinematic motion and kinetic loading differences of the right knee and ankle while performing a maximal right lunge. Amateur players exhibited greater ankle range of motion (, ) and inversion joint moment (, ) in the frontal plane as well as greater internal joint rotation moment (, ) in the horizontal plane. In contrast, professional badminton players presented a greater knee joint moment in the sagittal (, ) and frontal (, ) planes, which may be associated with increased knee ligamentous injury risk. To avoid injury, the players need to forcefully extend the knee with internal rotation, strengthen the muscles around the ankle ligament, and maximise joint coordination during training. The injuries recorded and the forces responsible for the injuries seem to have developed during training activity. Training programmes and injury prevention strategies for badminton players should account for these findings to reduce potential injury to the ankle and knee.
      PubDate: Tue, 13 Jun 2017 00:00:00 +000
       
  • Influence of Cleats-Surface Interaction on the Performance and Risk of
           Injury in Soccer: A Systematic Review

    • Abstract: Objective. To review the influence of cleats-surface interaction on the performance and risk of injury in soccer athletes. Design. Systematic review. Data Sources. Scopus, Web of science, PubMed, and B-on. Eligibility Criteria. Full experimental and original papers, written in English that studied the influence of soccer cleats on sports performance and injury risk in artificial or natural grass. Results. Twenty-three articles were included in this review: nine related to performance and fourteen to injury risk. On artificial grass, the soft ground model on dry and wet conditions and the turf model in wet conditions are related to worse performance. Compared to rounded studs, bladed ones improve performance during changes of directions in both natural and synthetic grass. Cleat models presenting better traction on the stance leg improve ball velocity while those presenting a homogeneous pressure across the foot promote better kicking accuracy. Bladed studs can be considered less secure by increasing plantar pressure on lateral border. The turf model decrease peak plantar pressure compared to other studded models. Conclusion. The soft ground model provides lower performance especially on artificial grass, while the turf model provides a high protective effect in both fields.
      PubDate: Thu, 08 Jun 2017 00:00:00 +000
       
  • Fluid Shear Stress and Fibroblast Growth Factor-2 Increase Endothelial
           Cell-Associated Vitronectin

    • Abstract: Vitronectin is a matricellular protein that plays an important role in both coagulation and angiogenesis through its effects on cell adhesion and the plasminogen system. Vitronectin is known to bind to endothelial cells upon integrin activation. However, the effect of integrin activation by shear stress and growth factors on cell-associated vitronectin and plasminogen system activity has not yet been studied. We therefore exposed human umbilical vein endothelial cells to steady laminar flow, oscillating disturbed flow, or fibroblast growth factor-2 (FGF-2) for 24 hours. We then measured cell-associated vitronectin by Western blot and plasminogen system activity using a Chromozym assay. Steady laminar flow, oscillating disturbed flow, and FGF-2 all increased cell-associated vitronectin, although the vitronectin molecular weight varied among the different conditions. FGF-2 also increased cell-associated vitronectin in microvascular endothelial cells and vascular smooth muscle cells. The increase in cell-associated vitronectin increased plasminogen system activity. Confocal microscopy showed that vitronectin was primarily located in the basal and intracellular regions. αvβ5 integrin inhibition via genistein, an anti-αvβ5 antibody, or β5 siRNA knockdown abrogated the FGF-2-induced increase in cell-associated vitronectin and increased plasminogen system activity. These data show that shear stress and growth factors increase cell-associated vitronectin through integrin activation, which may affect coagulation and angiogenesis.
      PubDate: Thu, 01 Jun 2017 00:00:00 +000
       
  • CathROB: A Highly Compact and Versatile Remote Catheter Navigation System

    • Abstract: Several remote catheter navigation systems have been developed and are now commercially available. However, these systems typically require specialized catheters or equipment, as well as time-consuming operations for the system set-up. In this paper, we present CathROB, a highly compact and versatile robotic system for remote navigation of standard tip-steerable electrophysiology (EP) catheters. Key features of CathROB include an extremely compact design that minimizes encumbrance and time for system set-up in a standard cath lab, a force-sensing mechanism, an intuitive command interface, and functions for automatic catheter navigation and repositioning. We report in vitro and in vivo animal evaluation of CathROB. In vitro results showed good accuracy in remote catheter navigation and automatic repositioning (1.5 ± 0.6 mm for the left-side targets, 1.7 ± 0.4 mm for the right-side targets). Adequate tissue contact was achieved with remote navigation in vivo. There were no adverse events, including absence of cardiac perforation or cardiac damage, indicative of the safety profile of CathROB. Although further preclinical and clinical studies are required, the presented CathROB system seems to be a promising solution for an affordable and easy-to-use remote catheter navigation.
      PubDate: Thu, 25 May 2017 00:00:00 +000
       
  • An Investigation into a Gear-Based Knee Joint Designed for Lower Limb
           Prosthesis

    • Abstract: A gear-based knee joint is designed to improve the performance of mechanical-type above-knee prostheses. The gear set with the help of some bracing, and bracket arrangement, is used to enable the prosthesis to follow the residual limb movement. The motion analysis and finite-element analysis (FEA) of knee joint components are carried out to assess the feasibility of the design. The maximum stress of 29.74 MPa and maximum strain of 2.393e−004 are obtained in the gear, whereas the maximum displacement of 7.975 mm occurred in the stopper of the knee arrangement. The factor of safety of 3.5 obtained from the FE analysis indicated no possibility of design failure. The results obtained from the FE analysis are then compared with the real data obtained from the literature for a similar subject. The pattern of motion analysis results has shown a great resemblance with the gait cycle of a healthy biological limb.
      PubDate: Thu, 11 May 2017 00:00:00 +000
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.163.61.66
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016