for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> BIOLOGY (Total: 3153 journals)
    - BIOCHEMISTRY (243 journals)
    - BIOENGINEERING (119 journals)
    - BIOLOGY (1504 journals)
    - BIOPHYSICS (48 journals)
    - BIOTECHNOLOGY (240 journals)
    - BOTANY (229 journals)
    - CYTOLOGY AND HISTOLOGY (30 journals)
    - ENTOMOLOGY (69 journals)
    - GENETICS (164 journals)
    - MICROBIOLOGY (259 journals)
    - MICROSCOPY (10 journals)
    - ORNITHOLOGY (26 journals)
    - PHYSIOLOGY (73 journals)
    - ZOOLOGY (139 journals)

BIOLOGY (1504 journals)                  1 2 3 4 5 6 7 8 | Last

Showing 1 - 200 of 1720 Journals sorted alphabetically
AAPS Journal     Hybrid Journal   (Followers: 22)
Achievements in the Life Sciences     Open Access   (Followers: 5)
ACS Synthetic Biology     Hybrid Journal   (Followers: 25)
Acta Biologica Colombiana     Open Access   (Followers: 7)
Acta Biologica Hungarica     Full-text available via subscription   (Followers: 4)
Acta Biologica Sibirica     Open Access   (Followers: 1)
Acta Biomaterialia     Hybrid Journal   (Followers: 27)
Acta Biotheoretica     Hybrid Journal   (Followers: 4)
Acta Chiropterologica     Full-text available via subscription   (Followers: 6)
acta ethologica     Hybrid Journal   (Followers: 4)
Acta Fytotechnica et Zootechnica     Open Access   (Followers: 1)
Acta Limnologica Brasiliensia     Open Access   (Followers: 3)
Acta Médica Costarricense     Open Access   (Followers: 2)
Acta Musei Silesiae, Scientiae Naturales     Open Access  
Acta Neurobiologiae Experimentalis     Open Access  
Acta Parasitologica     Hybrid Journal   (Followers: 10)
Acta Scientiarum. Biological Sciences     Open Access   (Followers: 2)
Acta Scientifica Naturalis     Open Access   (Followers: 3)
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis     Open Access  
Actualidades Biológicas     Open Access   (Followers: 1)
Advanced Health Care Technologies     Open Access   (Followers: 4)
Advanced Journal of Graduate Research     Open Access  
Advanced Studies in Biology     Open Access  
Advances in Antiviral Drug Design     Full-text available via subscription   (Followers: 2)
Advances in Bioinformatics     Open Access   (Followers: 17)
Advances in Biological Regulation     Hybrid Journal   (Followers: 4)
Advances in Biology     Open Access   (Followers: 9)
Advances in Biosensors and Bioelectronics     Open Access   (Followers: 7)
Advances in Cell Biology/ Medical Journal of Cell Biology     Open Access   (Followers: 25)
Advances in Cellular and Molecular Biology of Membranes and Organelles     Full-text available via subscription   (Followers: 12)
Advances in Developmental Biology     Full-text available via subscription   (Followers: 12)
Advances in DNA Sequence-Specific Agents     Full-text available via subscription   (Followers: 5)
Advances in Ecological Research     Full-text available via subscription   (Followers: 44)
Advances in Environmental Sciences - International Journal of the Bioflux Society     Open Access   (Followers: 17)
Advances in Enzyme Research     Open Access   (Followers: 10)
Advances in Experimental Biology     Full-text available via subscription   (Followers: 7)
Advances in Genome Biology     Full-text available via subscription   (Followers: 8)
Advances in High Energy Physics     Open Access   (Followers: 19)
Advances in Human Biology     Open Access   (Followers: 3)
Advances in Life Science and Technology     Open Access   (Followers: 16)
Advances in Life Sciences     Open Access   (Followers: 6)
Advances in Marine Biology     Full-text available via subscription   (Followers: 17)
Advances in Molecular and Cell Biology     Full-text available via subscription   (Followers: 22)
Advances in Organ Biology     Full-text available via subscription   (Followers: 1)
Advances in Planar Lipid Bilayers and Liposomes     Full-text available via subscription   (Followers: 3)
Advances in Regenerative Biology     Open Access   (Followers: 1)
Advances in Space Biology and Medicine     Full-text available via subscription   (Followers: 6)
Advances in Structural Biology     Full-text available via subscription   (Followers: 5)
Advances in Virus Research     Full-text available via subscription   (Followers: 5)
African Journal of Range & Forage Science     Hybrid Journal   (Followers: 6)
AFRREV STECH : An International Journal of Science and Technology     Open Access   (Followers: 1)
Ageing Research Reviews     Hybrid Journal   (Followers: 11)
Aging Cell     Open Access   (Followers: 16)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Agrokreatif Jurnal Ilmiah Pengabdian kepada Masyarakat     Open Access  
AJP Cell Physiology     Hybrid Journal   (Followers: 15)
AJP Endocrinology and Metabolism     Hybrid Journal   (Followers: 24)
AJP Lung Cellular and Molecular Physiology     Hybrid Journal   (Followers: 3)
Al-Kauniyah : Jurnal Biologi     Open Access  
Alasbimn Journal     Open Access   (Followers: 1)
Alces : A Journal Devoted to the Biology and Management of Moose     Open Access  
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Biology Teacher     Full-text available via subscription   (Followers: 14)
American Fern Journal     Full-text available via subscription   (Followers: 1)
American Journal of Agricultural and Biological Sciences     Open Access   (Followers: 8)
American Journal of Bioethics     Hybrid Journal   (Followers: 12)
American Journal of Human Biology     Hybrid Journal   (Followers: 14)
American Journal of Medical and Biological Research     Open Access   (Followers: 8)
American Journal of Plant Sciences     Open Access   (Followers: 19)
American Journal of Primatology     Hybrid Journal   (Followers: 15)
American Malacological Bulletin     Full-text available via subscription   (Followers: 3)
American Naturalist     Full-text available via subscription   (Followers: 74)
Amphibia-Reptilia     Hybrid Journal   (Followers: 6)
Anadolu University Journal of Science and Technology : C Life Sciences and Biotechnology     Open Access  
Anaerobe     Hybrid Journal   (Followers: 4)
Analytical Methods     Full-text available via subscription   (Followers: 11)
Anatomical Science International     Hybrid Journal   (Followers: 3)
Animal Cells and Systems     Hybrid Journal   (Followers: 4)
Animal Models and Experimental Medicine     Open Access  
Annales de Limnologie - International Journal of Limnology     Hybrid Journal   (Followers: 1)
Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale     Full-text available via subscription   (Followers: 3)
Annales Henri Poincaré     Hybrid Journal   (Followers: 3)
Annals of Applied Biology     Hybrid Journal   (Followers: 7)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 18)
Annals of Human Biology     Hybrid Journal   (Followers: 5)
Annals of Science and Technology     Open Access  
Annual Review of Biomedical Engineering     Full-text available via subscription   (Followers: 14)
Annual Review of Biophysics     Full-text available via subscription   (Followers: 23)
Annual Review of Cancer Biology     Full-text available via subscription   (Followers: 2)
Annual Review of Cell and Developmental Biology     Full-text available via subscription   (Followers: 37)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 13)
Annual Review of Genomics and Human Genetics     Full-text available via subscription   (Followers: 23)
Annual Review of Phytopathology     Full-text available via subscription   (Followers: 12)
Anthropological Review     Open Access   (Followers: 23)
Anti-Infective Agents     Hybrid Journal   (Followers: 3)
Antibiotics     Open Access   (Followers: 9)
Antioxidants     Open Access   (Followers: 4)
Antioxidants & Redox Signaling     Hybrid Journal   (Followers: 8)
Antonie van Leeuwenhoek     Hybrid Journal   (Followers: 5)
Anzeiger für Schädlingskunde     Hybrid Journal   (Followers: 1)
Apidologie     Hybrid Journal   (Followers: 4)
Apmis     Hybrid Journal   (Followers: 1)
APOPTOSIS     Hybrid Journal   (Followers: 8)
Applied Bionics and Biomechanics     Open Access   (Followers: 8)
Applied Vegetation Science     Full-text available via subscription   (Followers: 10)
Aquaculture Environment Interactions     Open Access   (Followers: 3)
Aquaculture International     Hybrid Journal   (Followers: 24)
Aquaculture Reports     Open Access   (Followers: 3)
Aquaculture, Aquarium, Conservation & Legislation - International Journal of the Bioflux Society     Open Access   (Followers: 7)
Aquatic Biology     Open Access   (Followers: 5)
Aquatic Ecology     Hybrid Journal   (Followers: 34)
Aquatic Ecosystem Health & Management     Hybrid Journal   (Followers: 15)
Aquatic Science and Technology     Open Access   (Followers: 3)
Aquatic Toxicology     Hybrid Journal   (Followers: 23)
Archaea     Open Access   (Followers: 3)
Archiv für Molluskenkunde: International Journal of Malacology     Full-text available via subscription   (Followers: 3)
Archives of Biological Sciences     Open Access  
Archives of Microbiology     Hybrid Journal   (Followers: 8)
Archives of Natural History     Hybrid Journal   (Followers: 6)
Archives of Oral Biology     Hybrid Journal   (Followers: 2)
Archives of Virology     Hybrid Journal   (Followers: 5)
Archivum Immunologiae et Therapiae Experimentalis     Hybrid Journal   (Followers: 2)
Arid Ecosystems     Hybrid Journal   (Followers: 2)
Arquivos do Instituto Biológico     Open Access   (Followers: 1)
Arquivos do Museu Dinâmico Interdisciplinar     Open Access  
Arthropod Structure & Development     Hybrid Journal   (Followers: 2)
Arthropods     Open Access   (Followers: 1)
Artificial DNA: PNA & XNA     Hybrid Journal   (Followers: 3)
Asian Bioethics Review     Full-text available via subscription   (Followers: 3)
Asian Journal of Biodiversity     Open Access   (Followers: 4)
Asian Journal of Biological Sciences     Open Access   (Followers: 3)
Asian Journal of Cell Biology     Open Access   (Followers: 5)
Asian Journal of Developmental Biology     Open Access   (Followers: 2)
Asian Journal of Medical and Biological Research     Open Access   (Followers: 4)
Asian Journal of Nematology     Open Access   (Followers: 4)
Asian Journal of Poultry Science     Open Access   (Followers: 4)
Atti della Accademia Peloritana dei Pericolanti - Classe di Scienze Medico-Biologiche     Open Access  
Australian Life Scientist     Full-text available via subscription   (Followers: 2)
Australian Mammalogy     Hybrid Journal   (Followers: 6)
Autophagy     Hybrid Journal   (Followers: 2)
Avian Biology Research     Full-text available via subscription   (Followers: 4)
Avian Conservation and Ecology     Open Access   (Followers: 11)
Bacteriology Journal     Open Access   (Followers: 1)
Bacteriophage     Full-text available via subscription   (Followers: 3)
Bangladesh Journal of Bioethics     Open Access  
Bangladesh Journal of Plant Taxonomy     Open Access  
Bangladesh Journal of Scientific Research     Open Access   (Followers: 1)
Batman Üniversitesi Yaşam Bilimleri Dergisi     Open Access  
Berita Biologi     Open Access   (Followers: 1)
Between the Species     Open Access   (Followers: 1)
Bio Tribune Magazine     Hybrid Journal  
BIO Web of Conferences     Open Access  
BIO-Complexity     Open Access  
Bio-Grafía. Escritos sobre la Biología y su enseñanza     Open Access  
Bioanalytical Reviews     Hybrid Journal   (Followers: 2)
Biocatalysis and Biotransformation     Hybrid Journal   (Followers: 6)
BioCentury Innovations     Full-text available via subscription   (Followers: 1)
Biochemistry and Cell Biology     Hybrid Journal   (Followers: 15)
Biochimie     Hybrid Journal   (Followers: 7)
BioControl     Hybrid Journal   (Followers: 5)
Biocontrol Science and Technology     Hybrid Journal   (Followers: 5)
Biodemography and Social Biology     Hybrid Journal  
BioDiscovery     Open Access   (Followers: 2)
Biodiversitas : Journal of Biological Diversity     Open Access  
Biodiversity Data Journal     Open Access   (Followers: 4)
Biodiversity Informatics     Open Access   (Followers: 1)
Biodiversity Information Science and Standards     Open Access  
Biodiversity: Research and Conservation     Open Access   (Followers: 26)
Bioedukasi : Jurnal Pendidikan Biologi FKIP UM Metro     Open Access  
Bioeksperimen : Jurnal Penelitian Biologi     Open Access  
Bioelectrochemistry     Hybrid Journal   (Followers: 2)
Bioelectromagnetics     Hybrid Journal   (Followers: 1)
Bioenergy Research     Hybrid Journal   (Followers: 2)
Bioengineering and Bioscience     Open Access   (Followers: 1)
BioEssays     Hybrid Journal   (Followers: 10)
Bioethics     Hybrid Journal   (Followers: 15)
BioéthiqueOnline     Open Access  
Biofabrication     Hybrid Journal   (Followers: 5)
Biofilms     Full-text available via subscription   (Followers: 1)
Biogeosciences (BG)     Open Access   (Followers: 10)
Biogeosciences Discussions (BGD)     Open Access   (Followers: 2)
Bioinformatics     Hybrid Journal   (Followers: 305)
Bioinformatics and Biology Insights     Open Access   (Followers: 11)
Bioinspiration & Biomimetics     Hybrid Journal   (Followers: 7)
Biointerphases     Open Access   (Followers: 1)
Biojournal of Science and Technology     Open Access  
BioLink : Jurnal Biologi Lingkungan, Industri, Kesehatan     Open Access  
Biologia     Hybrid Journal  
Biologia on-line : Revista de divulgació de la Facultat de Biologia     Open Access  
Biological Bulletin     Partially Free   (Followers: 6)
Biological Control     Hybrid Journal   (Followers: 4)
Biological Invasions     Hybrid Journal   (Followers: 20)
Biological Journal of the Linnean Society     Hybrid Journal   (Followers: 18)
Biological Letters     Open Access   (Followers: 5)
Biological Procedures Online     Open Access  
Biological Psychiatry     Hybrid Journal   (Followers: 48)
Biological Psychology     Hybrid Journal   (Followers: 6)
Biological Research     Open Access  
Biological Rhythm Research     Hybrid Journal   (Followers: 2)

        1 2 3 4 5 6 7 8 | Last

Journal Cover
Aquatic Toxicology
Journal Prestige (SJR): 1.456
Citation Impact (citeScore): 4
Number of Followers: 23  
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0166-445X - ISSN (Online) 1879-1514
Published by Elsevier Homepage  [3162 journals]
  • Metabolomic alterations and oxidative stress are associated with
           environmental pollution in Procambarus clarkii
    • Abstract: Publication date: Available online 13 October 2018Source: Aquatic ToxicologyAuthor(s): Ricardo Fernández-Cisnal, Miguel A. García-Sevillano, Tamara García-Barrera, José L. Gómez-Ariza, Nieves Abril Soils contaminated by toxic metallic elements from agricultural activities raise grave concern about their potential risk to human health through direct intake, bioaccumulation through the food chain, and their impacts on ecological systems. We have measured here the lipid and protein oxidation status and used metabolomic methodologies to identify and characterize the changes caused by metal pollution exposure in the digestive glands and gills of Procambarus clarkii, the red swamp crayfish. Specimens captured at two sites with intensive agriculture practices using diverse types of agrochemicals, located in the borders of Doñana Natural Park, were compared to ones caught in the core of the Park, a proven non-polluted place. As a highly metabolically active organ, the digestive gland accumulated more metallic elements than the gills and was consequently more affected at the metabolic level. Results also indicate that chronic pollution exposure generates oxidative stress and mitochondrial dysfunction that imposes a metabolic shift to enhanced aerobic glycolysis and lipid metabolism alteration. The integration of metabolomics with previous proteomic data gives a comprehensive vision of the metabolic disorders caused by chronic metal exposure to P. clarkii and identifies potential biomarkers useful for routine risk assessment of the aquatic ecosystems health.Graphical abstractGraphical abstract for this article
  • Environmentally-relevant mixture of pharmaceutical drugs stimulates
           sex-steroid hormone production and modulates the expression of candidate
           genes in the ovary of juvenile female rainbow trout
    • Abstract: Publication date: Available online 13 October 2018Source: Aquatic ToxicologyAuthor(s): Mélodie Schmitz, Mahaut Beghin, Syaghalirwa N.M. Mandiki, Katherine Nott, Michaël Gillet, Sébastien Ronkart, Christelle Robert, Sébastien Baekelandt, Patrick Kestemont Because of their intrinsic biological activity and ubiquitous environmental occurrence, human pharmaceutical compounds have received increasing attention from health and environmental agencies. In the present study, all-female juvenile rainbow trout (Oncorhynchus mykiss) were exposed to environmentally-realistic concentrations of a mixture of nonsteroidal pharmaceuticals for 42 days, and the effects on plasma levels of sex-steroids and the expression of genes encoding key proteins involved in ovarian development were assessed. Paracetamol, carbamazepine, diclofenac, irbesartan and naproxen were selected, as these have been detected in the Meuse River in Belgium. Fish were exposed to three concentrations of the mixture including the environmental concentration, 10- and 100-times the environmental concentration. Plasma levels of sex-steroid hormones, particularly 11-ketotestosterone, increased in a concentration-dependent way in exposed females. In addition, some key genes involved in ovarian steroidogenesis were significantly overexpressed after 7 days of exposure, such as key genes involved in the maintenance of the ovary. The steady-state mRNA level of genes implicated in germ cell fate were especially affected, such as that of foxl3 which increased by 5 fold at the highest concentration of the mixture. In conclusion, this study highlights that combined occurrence of common pharmaceutical drugs at concentrations present in surface water environments may act as endocrine-disrupting compounds in rainbow trout.Graphical abstractGraphical abstract for this article
  • Interaction between 1,2-benzisothiazol-3(2H)-one and microalgae: growth
           inhibition and detoxification mechanism
    • Abstract: Publication date: Available online 10 October 2018Source: Aquatic ToxicologyAuthor(s): WANG Xiao-Xiong, ZHANG Tian-Yuan, DAO Guo-Hua, HU Hong-Ying Isothiazolinones, such as 1,2-benzisothiazol-3(2 H)-one (BIT), are widely used as biocides for bacterial growth control in many domestic and industrial processes. Despite their advantages as biocides, they are highly toxic and pose a potential risk to the environment. This study investigated the inhibition process and detoxification mechanism involved in microalgal survival and growth recovery after BIT poisoning. BIT could seriously inhibit the growth of Scenedesmus sp. LX1, Chlorella sp. HQ, and Chlamydomonas reinhardtii with half maximal effective concentrations at 72 h (72h-EC50) of 1.70, 0.41, and 1.16 mg/L, respectively. The primary inhibition mechanism was the BIT-induced damage to microalgal photosynthetic systems. However, the inhibited strains could recover when their growth was not completely inhibited. The influence of this inhibiting effect on subsequent algal regrowth was negligible or weak. BIT consumption was the primary reason for their recovery. Notably, algae did not die even if their growth was completely inhibited. If the BIT concentration did not exceed a certain high level, then the inhibited algae could recover their growth relatively well. Microalgal generation of reduced glutathione (GSH) and the oxygen radical scavenging enzymes, superoxide dismutase (SOD) and catalase (CAT), played a key role in detoxification against BIT poisoning.
  • Effects of environmentally relevant metformin exposure on Japanese medaka
           (Oryzias latipes)
    • Abstract: Publication date: Available online 9 October 2018Source: Aquatic ToxicologyAuthor(s): Erin Ussery, Kristin N. Bridges, Zacharias Pandelides, Andrea E. Kirkwood, Dario Bonetta, Barney J. Venables, John Guchardi, Douglas HoldwayABSTRACTMetformin is one of the most prevalent pharmaceuticals in both surface and waste waters, yet little is known about the bioavailability and/or effects of developmental exposure on early life stage (ELS) fish. Here, we demonstrate that embryo-larval stages of medaka are capable of taking up metformin from the aquatic environment, provided exposure occurs prior to chorion hardening (~6-hpf). Once transferred to clean water, ELS medaka are able to completely depurate metformin in < 24-hours. Furthermore, ELS medaka exposed to a range of relevant concentrations of waterborne metformin (from 6 hpf through 28-days post hatch) had significantly reduced growth metrics, altered metabolomes, and changes in the expression of genes associated with cell growth. The range of concentrations investigated were 1.0, 3.2, 10, 32, and 100 µg · L-1. To examine effects of chronic, low level metformin exposure across the full medaka life-cycle, we exposed newly fertilized embryos to 3.2 µg · L-1 waterborne metformin for 165-days. The weight and length of adult fish were examined, as were effects on the production of some steroid hormones, specifically a significant increase (control females: 0.161 ± 0.023 pg/mg; metformin treated females: 3.42 ± 0.543) in the production of 11-ketotestosterone was observed in adult female medaka. Collectively, these results suggest that current environmental exposure scenarios may be sufficient to cause effects on developing fish.
  • The stresses of allelochemicals isolated from culture solution of diatom
           Phaeodactylum tricornutum Bohlin on growth and physiology of two marine
    • Abstract: Publication date: Available online 9 October 2018Source: Aquatic ToxicologyAuthor(s): Qiaona Xue, Rui Wang, Wenjing Xu, Jiangtao Wang, Liju Tan The allelopathic effects of extracts isolated from the culture filtrate of diatom Phaeodactylum triconutum Bohlin on typical marine microalgae Prorocentrum donghaiense Lu and Dunaliella salina Teodoresco were investigated by determining different physiological and biochemical parameters, such as growth rate, membrane systems and esterase activity under controlled laboratory conditions. The growth of P. donghaiense was significantly inhibited immediately after exposure to the allelochemicals, while the algae density of D. salina was less sensitive. Chlorophyll-a content, membrane systems, as well as esterase activity were simultaneously investigated by flow cytometry with particular fluorescent markers and exhibited changeable sensitivities. The results demonstrated that the membrane systems of P. donghaiense were suppressed by the allelochemicals directly, causing loss of integrity and membrane penetration. Esterase activity was the most sensitive indicator as that of P. donghaiense cells significantly increased in short time and was inhibited subsequently. However, the membrane of D. salina remained intact still after exposure to the extracts and the esterase activity was only inhibited on last day during experiment period. Membrane potential and chlorophyll-a content of the two marine algae also showed somewhat different changes, as that of P. donghaiense cells were impaired after 5 day exposure to all volume conditions while these two characteristics of D. salina was only suppressed by exposure to high volume of the allelochemicals on day 6. The present results indicated that the inhibition of culture filtrate of P. triconutum on P. donghaiense was algicidal whereas the effect on D. salina appeared to be algistatic.
  • Assessment of Adverse Outcome of Excel Mera 71 in Anabas testudineus by
           Histological and Ultrastructural Alterations
    • Abstract: Publication date: Available online 3 October 2018Source: Aquatic ToxicologyAuthor(s): Palas Samanta, Sandipan Pal, Tarakeshwar Senapati, Aloke Kumar Mukherjee, Apurba Ratan Ghosh Present study was designed to evaluate the adverse effect of glyphosate-based herbicide, Excel Mera 71 in Anabas testudineus on comparative basis under field and laboratory conditions. Field (750 g/acre) and laboratory (17.2 mg/L) experiments were performed for a period of 30 days. For field experiment special type of cages were prepared. Fish gill, liver, and kidney were analyzed for histology and ultrastructural responses. A significant increment in morphometric indices (DTC) was observed in gill, liver and kidney of A. testudineus under laboratory condition (p  kidney> gills. However, under field study significant increase in DTC value was observed in gill and liver (p 
  • Natural variability and modulation by environmental stressors of global
           genomic cytosine methylation levels in a freshwater crustacean, Gammarus
    • Abstract: Publication date: Available online 2 October 2018Source: Aquatic ToxicologyAuthor(s): Pauline Cribiu, Arnaud Chaumot, Olivier Geffard, Jean-Luc Ravanat, Thérèse Bastide, Nicolas Delorme, Hervé Quéau, Sylvain Caillat, Alain Devaux, Sylvie BonyABSTRACTTo improve the assessment of aquatic organism responses to environmental stressors, there is an interest in studying epigenetic marks in addition to other validated biomarkers. Indeed, the epigenetic marks may be influenced by the surrounding environment. Non-model invertebrates such as gammarids are sentinel organisms representative of the diversity of natural stream communities. Despite their ecologically relevance, the epigenetic responses have been to date poorly documented in these species. The present study explores the measurement of the global cytosine methylation level in the genome of the freshwater crustacean Gammarus fossarum. In a first step, natural variability of global cytosine methylation level (basal level) was assessed by studying the effect of sex, age and sampling site of organisms. Results showed a significant effect of age and sampling site. In a second step, effects of water temperature and food starvation were studied. For both factors, a hypermethylation was observed after 1 month of exposure. In a third step, gammarids were exposed to a range of environmentally relevant cadmium concentrations (0.05-5 µg/L) in order to assess the effect of a chemical stress. Whatever the cadmium concentration used, a significant hypomethylation was observed after 14 days followed by a trend for hypermethylation after 1 month of exposure. These results are the first ones dealing with the 5C-methylation status in gammarids. The results constitute potential markers of environmental stresses in relevant sentinel species widely used in ecotoxicological studies.
  • Characterization of AHR1 and its Functional Activity in Atlantic Sturgeon
           and Shortnose Sturgeon
    • Abstract: Publication date: Available online 29 September 2018Source: Aquatic ToxicologyAuthor(s): Nirmal K. Roy, Melissa DellaTorre, Allison Candelmo, R. Christopher Chambers, Ehren Habeck, Isaac Wirgin Sturgeon species are imperiled world-wide by a variety of anthropogenic stressors including chemical contaminants. Atlantic sturgeon, Acipenser oxyrinchus, and shortnose sturgeon, Acipenser brevirostrum, are largely sympatric acipenserids whose young life-stages are often exposed to high levels of benthic-borne PCBs and PCDD/Fs in large estuaries along the Atlantic Coast of North America. In previous laboratory studies, we demonstrated that both sturgeon species are sensitive to early life-stage toxicities from exposure to environmentally relevant concentrations of coplanar PCBs and TCDD. The sensitivity of young life-stages of fishes to these contaminants varies among species by three orders of magnitude and often is due to variation in the structure and function of the aryl hydrocarbon receptor (AHR) pathway. Unlike mammals, fishes have two forms of AHR (AHR1 and AHR2) with AHR2 usually being more highly expressed across tissues and functional in mediating toxicities. Based on previous studies in white sturgeon, A. transmontanus, we hypothesized that sturgeon taxa are unusually sensitive to these contaminants because of higher levels of expression and functional activity of AHR1 than in other fish taxa. To address this possibility, we characterized AHR1 in both Atlantic Coast sturgeon species, evaluated its’ in vivo expression in young life-stages and in multiple tissues of shortnose sturgeon, and tested its ability to drive reporter gene expression in AHR-deficient cells treated with graded doses of PCB126 and TCDD. Similar to white sturgeon and lake sturgeon, AHR1 amino acid sequences in Atlantic sturgeon and shortnose sturgeon were more similar to mammalian AHRs and avian AHR1s than to AHR1 in other fishes, suggesting their greater functionality in sturgeon species than in other fishes. Exposure to graded doses of coplanar PCBs and TCDD usually failed to significantly induce AHR1 expression in young life-stages or most tissues of shortnose sturgeon. However, in reporter gene assays, AHR1 drove higher levels of gene expression than AHR2 alone, but their binary combination failed to drive higher levels of expression than either AHR alone. In total, our results suggest that AHR1 may be more functional in sturgeon species than in other fishes, but probably does not explain their heightened sensitivity to these contaminants.
  • Erythromycin sensitivity across different taxa of marine phytoplankton. A
           novel approach to sensitivity of microalgae and the evolutionary history
           of the 23S gene
    • Abstract: Publication date: Available online 27 September 2018Source: Aquatic ToxicologyAuthor(s): Marta Sendra, Alejandro Damián-Serrano, Cristiano V.M. Araújo, Ignacio Moreno-Garrido, Julián Blasco Erythromycin has been recorded in coastal waters and could pose a severe threat to marine microbial life. Macrolides such as erythromycin may affect microalgae by inhibiting the pathways involved in protein synthesis. Toxicological testing of microalgae has proven to be a useful tool for the risk assessment of a substance affecting phytoplankton.Due to the controversial results concerning the sensitivity of microalgal species to erythromycin found in the literature, the goals of this work were, initially, to assess the erythromycin sensitivity of different species of marine microalgae from different and representative taxonomic groups; and, secondly, to examine whether the sensitivity to erythromycin could be explained by the differences in the phylogenetic evolution. We chose eight species: two green algae, four heterokonts, one haptophyte and one dinoflagellate, which were then exposed to erythromycin (0.1 to 10 mg L-1). Our results showed a wide range of sensitivities indicating that the biology of each species was primarily responsible for the variation observed. To test the second objective, we contrasted different ecotoxicological endpoints (growth, cellular properties and status of the photosynthetic apparatus) with the phylogenetic distribution [eukaryotic host (concatenated nuclear tree), evolutionary history of the chloroplast (16S tree), efficiency and repair of photosystem II (psbA tree), and the binding site of erythromycin (23S tree)] of the species.We found that the growth inhibition of microalgae as a toxicological endpoint was the endpoint best explained by the topology of the 23S rRNA gene tree when it was modelled following a non-stationary evolutionary process.
  • Heterologous expression and characterization of a novel serine protease
           from Daphnia magna: A possible role in susceptibility to toxic
    • Abstract: Publication date: Available online 26 September 2018Source: Aquatic ToxicologyAuthor(s): Jacqueline Lange, Fatih Demir, Pitter F. Huesgen, Ulrich Baumann, Eric von Elert, Christian Pichlo Mass developments of toxin-producing cyanobacteria are frequently observed in freshwater ecosystems due to eutrophication and global warming. These mass developments can partly be attributed to cyanobacterial toxins, such as protease inhibitors (PIs), which inhibit digestive serine proteases of Daphnia, the major herbivore of phytoplankton and cyanobacteria. To date, mechanisms of this inhibition in the gut of the crustacean Daphnia magna are not known. Here, we characterize a single serine protease, chymotrypsin 448 (CT448), which is present in the gut of the crustacean D. magna. Sequence alignments with human serine proteases revealed that CT448 has a putative N-terminal pro-peptide which is extended compared to the mammalian homologs and within this pro-peptide two N-linked glycosylation motifs were found. CT448 was heterologously expressed in Sf21 insect cells using a baculovirus expression system for optimized protein production and secretion into the medium. The protein was purified via a one-step affinity chromatography, which resulted in a protein yield of 3.45 mg/l medium. The inactive precursor (zymogen) could be activated by tryptic digestion. This is the first example of a recombinant expression of an active crustacean serine protease, which functions in the gut of a Daphnia. Proteomic identification of protease cleavage sites (PICS) and hydrolysation of various synthetic substrates showed that CT448 is a chymotrypsin-like elastase. In this study, we confirm that CT448 is a target of cyanobacterial protease inhibitors. Local evolutionary modifications of CT448 might render this proteolytic enzyme less susceptible against cyanobacterial secondary metabolites and might improve the fitness of Daphnia during cyanobacterial blooms.
  • A lipidomic approach to understand copper resilience in oyster
           Crassostrea hongkongensis
    • Abstract: Publication date: Available online 22 September 2018Source: Aquatic ToxicologyAuthor(s): Cheuk Yan Chan, Wen-Xiong Wang Copper (Cu) can cause oxidative stress and inflammatory responses, and there is arising evidence between Cu toxicity and lipid disturbance. In this study, we examined the relationships between Cu exposure and lipid metabolism in an estuarine oyster (Crassostrea hongkongensis) and aimed to understand the effects and resilience strategies of Cu on oyster metabolism. We exposed the oysters to waterborne Cu (10 and 50 µg/L) and measured the physiological changes (condition index and clearance rate), lipid accumulation and lipid peroxidation in the oysters. We found more altered lipid responses in oysters exposed to a lower Cu concentration (10 µg/L), and speculated that oysters exposed to 50 µg/L may upregulate the defenses. We further evaluated the changes in lipidome profiling of the Cu-exposed oysters in aspects of membrane dynamics, lipid signaling and energy metabolism. We documented the phospholipid remodeling as well as quick modulation in inflammatory responses and extensive vesicle formation for subcellular compartmentalization and autophagosome formation, as well as the possible impacts on mitochondrial bioenergetics in the Cu-exposed oysters. The lipidomics approach provided a comprehensive lipid profile of possible alteration by Cu exposure. In combination with other omics approaches, it may be possible to elucidate the pathways and mechanisms in stress acclimation and resilience associated between Cu contamination and lipid metabolism.
    • Abstract: Publication date: Available online 22 September 2018Source: Aquatic ToxicologyAuthor(s): Hossein AnvariFar, Abdolsamad Keramat Amirkolaie, Ali M. Jalali, Hamed Kolangi Miandare, Alaa El-Din Hamid Sayed, Semaİşisağ Üçüncü, Hossein Ouraji, Marcello Ceci, Nicla Romano The industrial wastes, sewage effluents, agricultural run-off and decomposition of biological waste may cause high environmental concentration of chemicals that can interfere with the cell cycle activating the programmed process of cells death (apoptosis). In order to provide a detailed understanding of environmental pollutants-induced apoptosis, here we reviewed the current knowledge on the interactions of environmental chemicals and programmed cell death. Metals (aluminum, arsenic, cadmium, chromium, cobalt, zinc, copper, mercury and silver)as well as other chemicals including bleached kraft pulp mill effluent (BKME), persistent organic pollutants (POPs), and pesticides (organo-phosphated, organo-chlorinated, carbamates, phyretroids and biopesticides) were evaluated in relation to apoptotic pathways, heat shock proteins and metallothioneins. Although research performed over the past decades has improved our understanding of processes involved in apoptosis in fish, yet there is lack of knowledge on associations between environmental pollutants and apoptosis. Thus, this review could be useful tool to study the cytotoxic/apoptotic effects of different pollutants in fish species.Graphical abstractGraphical abstract for this article
  • Exploring the interactions between polyunsaturated fatty acids and cadmium
           in rainbow trout liver cells: A genetic and proteomic study
    • Abstract: Publication date: Available online 22 September 2018Source: Aquatic ToxicologyAuthor(s): Aline Ferain, Chloé Bonnineau, Ineke Neefs, Nancy De Saeyer, Benjamin Lemaire, Valérie Cornet, Yvan Larondelle, Karel A.C. De Schamphelaere, Cathy Debier, Jean-François ReesABSTRACTPolyunsaturated fatty acids (PUFAs) have key biological roles in fish cells. We recently showed that the phospholipid composition of rainbow trout liver cells (RTL-W1 cell line) modulates their tolerance to an acute Cd challenge. Here, we investigated (i) the extent to which PUFAs and Cd impact fatty acid homeostasis and metabolism in these cells and (ii) possible mechanisms by which specific PUFAs may confer cytoprotection against Cd. First, RTL-W1 cells were cultivated for one week in growth media spiked with 50 µmol L-1 of either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), linoleic acid (LA, 18:2n-6) or arachidonic acid (AA, 20:4n-6) in order to modulate their fatty acid profile. Then, the cells were challenged with Cd (0, 50 or 100 µmol L-1) for 24 h prior to assaying viability, fatty acid profile, intracellular Cd content, proteomic landscape and expression levels of genes involved in fatty acid metabolism, synthesis of PUFA-derived signalling molecules and stress response. We observed that the fatty acid supply and, to a lesser extent, the exposure to Cd influenced cellular fatty acid homeostasis and metabolism. The cellular fatty acid composition of fish liver cells modulated their tolerance to an acute Cd challenge. Enrichments in ALA, EPA, and, to a lesser extent, AA conferred cytoprotection while enrichment in LA had no impact on cell viability. The present study ruled out the possibility that cytoprotection reflects a decreased Cd burden. Our results rather suggest that the PUFA-derived cytoprotection against Cd occurs through a reduction of the oxidative stress induced by Cd and a differential induction of the eicosanoid cascade, with a possible role of peroxiredoxin and glutaredoxin (antioxidant enzymes) as well as cytosolic phospholipase A2 (enzyme initiating the eicosanoid cascade).
  • A novel transcription factor Rwdd1 and its SUMOylation inhibit the
           expression of sqr, a key gene of mitochondrial sulfide metabolism in
           Urechis unicinctus
    • Abstract: Publication date: Available online 20 September 2018Source: Aquatic ToxicologyAuthor(s): Xueyu Li, Xiaolong Liu, Zhenkui Qin, Maokai Wei, Xitan Hou, Tingting Zhang, Zhifeng Zhang Sulfide-quinone oxidoreductase (SQR) is a key enzyme of sulfide metabolism in metazoans, and responsible for oxidizing sulfide into thiosulfate and transmitting the generated electrons to the ubiquinone. It has been revealed that the sqr mRNA level increases significantly in echiuran worm Urechis unicinctus exposed to sulfide, and HSF1, NF1 and Sp1 have been verified to participate in its transcriptional regulation. In this study, we obtained 23 potential transcription factors interacting possibly with the proximal region (-391~+50) of sqr promoter, and focused on the RWD domain-containing 1 (Rwdd1), a protein with the maximum number of clones in yeast one-hybrid (Y1H) screening, to investigate its transcriptional regulation to U. unincitus sqr. The ChIP and EMSA assays identified that the Rwdd1 can bind directly to the promoter (+18/+36) of U. unicinctus sqr. The point mutation and transient transfection experiments discovered that TACG was the key sequence of the DNA element bound by the Rwdd1. Furthermore, the U. unicinctus Rwdd1 (UuRwdd1) was identified to be a transcription repressor inhibiting the sqr promoter activity, and the SUMOylation of UuRwdd1 at the lysine of 90th enhanced its inhibitory effect on sqr transcription further. Western blotting found Rwdd1 responded to sulfide in hindguts from U. unincitus, and the protein content showed a remarkable drop in hindgut nuclei in the early sulfide exposure, and then increased significantly both in the total protein and the nuclear protein extract. We suggested that the Rwdd1 is a novel transcription factor, and these data improve our understanding of the sqr transcriptional regulation and the mitochondrial sulfide metabolism.
  • Effects of ocean warming and acidification on accumulation and cellular
           responsiveness to cadmium in mussels Mytilus galloprovincialis: importance
           of the seasonal status
    • Abstract: Publication date: Available online 18 September 2018Source: Aquatic ToxicologyAuthor(s): Alessandro Nardi, Maura Benedetti, Giuseppe d’Errico, Daniele Fattorini, Francesco Regoli Ocean warming and acidification could represent an additional threat to marine organisms already coping with other anthropogenic impacts, such as chemical contamination in coastal areas. In this study, interactions between such multiple stressors and their synergistic effects in terms of accumulation, detoxification and biological effects of metals were investigated in the Mediterranean mussel Mytilus galloprovincialis. Organisms sampled during the winter period were exposed for 28 days to different combinations of two temperatures (10 °C and 15 °C), two pH/pCO2 (8.20/~400µatm and 7.4/~3000µatm) and two cadmium concentrations (0 and 20 µg/L). Cadmium concentrations increased in digestive glands and gills of metal-exposed mussels and were further enhanced by co-exposure at higher temperature. Interactive effects of temperature and/or pH were observed on Cd-mediated metallothionein induction, responsiveness of antioxidant system and onset of oxidative damages in lipids, with tissue-specific effects. Immunological effects showed a generalized sensitivity of lysosomal membrane stability toward the investigated stressors with major effects in co-exposed organisms. Cadmium and temperature affected phagocytosis efficiency and composition of haemocyte populations probably influencing the micronucleus frequency through varied mitotic rate. Several differences were highlighted between these results and those previously obtained from mussels exposed in summer, supporting the importance of season when addressing the tolerance of temperate organisms to variations of environmental factors. The elaboration of the whole biomarker results through weighted criteria allowed to summarize specific hazard indices, highlighting tissue-specific sensitivity toward multiple stressors and the need of improving the knowledge on interactions between multiple stressors.
  • A Temporal High-Resolution Investigation of the Ah-Receptor Pathway during
           Early Development of Zebrafish (Danio rerio)
    • Abstract: Publication date: Available online 15 September 2018Source: Aquatic ToxicologyAuthor(s): Henriette Meyer-Alert, Kim Ladermann, Maria Larsson, Sabrina Schiwy, Henner Hollert, Steffen H. KeiterABSTRACTIn order to contribute to a comprehensive understanding of the regulating mechanisms of the aryl-hydrocarbon-receptor (AHR) in zebrafish embryos, we aimed to elucidate the interaction of proteins taking part in this signaling pathway during early development of the zebrafish (Danio rerio) after chemical exposure. We managed to illustrate initial transcription processes of the implemented proteins after exposure to two environmentally relevant chemicals: polychlorinated biphenyl 126 (PCB126) and β-Naphthoflavone (BNF). Using qPCR, we quantified mRNA every 4 hours until 118 hours post fertilization and found the expression of biotransformation enzymes (cyp1 family) and the repressor of the AHR (AHR-R) to be dependent on the duration of chemical exposure and the biodegradability of the compounds. PCB126 induced persistent increased the amount of transcripts as it is not metabolized, whereas activation by BNF was limited to the initial period of exposure. We did not find a clear relation between the amount of transcripts and activity of the induced cyp-proteins, so posttranscriptional mechanisms are likely to regulate biotransformation of BNF. With regard to zebrafish embryos and their application in risk assessment of hazardous chemicals, our examination of the AHR pathway especially supports the relevance of the time point or period of exposure that is used for bioanalytical investigations and consideration of chemical properties determining biodegradability.
  • Development of the sea urchin Heliocidaris crasssispina from Hong Kong is
           robust to ocean acidification and copper contamination
    • Abstract: Publication date: Available online 12 September 2018Source: Aquatic ToxicologyAuthor(s): Narimane Dorey, Elizaldy Maboloc, Kit Yu Karen Chan Metallic pollution is of particular concern in coastal cities. In the Asian megacity of Hong Kong, despite water qualities have improved over the past decade, some local zones are still particularly affected and could represent sinks for remobilization of labile toxic species such as copper. Ocean acidification is expected to increase the fraction of the most toxic form of copper (Cu2+) by 2.3-folds by 2100 (pH ≈7.7), increasing its bioavailability to marine organisms. Multiple stressors are likely to exert concomitant effects (additive, synergic or antagonist) on marine organisms.Here, we tested the hypothesis that copper contaminated waters are more toxic to sea urchin larvae under future pH conditions. We exposed sea urchin embryos and larvae to two low-pH and two copper treatments (0.1 and 1.0 μM) in three separate experiments. Over the short time typically used for toxicity tests (up to 4-arm plutei, i.e. 3 days), larvae of the sea urchin Heliocidaris crassispina were robust and survived the copper levels present in Hong Kong waters today (≤0.19 μM) as well as the average pH projected for 2100. We, however, observed significant mortality with lowering pH in the longer, single-stressor experiment (Expt A: 8-arm plutei, i.e. 9 days). Abnormality and arm asymmetry were significantly increased by pH or/and by copper presence (depending on the experiment and copper level). Body size (d3; but not body growth rates in Expt A) was significantly reduced by both lowered pH and added copper. Larval respiration (Expt A) was doubled by a decrease at pHT from 8.0 to 7.3 on d6. In Expt B1.0 and B0.1, larval morphology (relative arm lengths and stomach volume) were affected by at least one of the two investigated factors.Although the larvae appeared robust, these sub-lethal effects may have indirect consequences on feeding, swimming and ultimately survival. The complex relationship between pH and metal speciation/uptake is not well-characterized and further investigations are urgently needed to detangle the mechanisms involved and to identify possible caveats in routinely used toxicity tests.
  • Effects of imidacloprid and a neonicotinoid mixture on aquatic
           invertebrate communities under Mediterranean conditions
    • Abstract: Publication date: Available online 12 September 2018Source: Aquatic ToxicologyAuthor(s): Andreu Rico, Alba Arenas-Sánchez, Julia Pasqualini, Ariadna García-Astillero, Laura Cherta, Leonor Nozal, Marco Vighi Neonicotinoid insecticides are considered contaminants of concern due to their high toxicity potential to non-target terrestrial and aquatic organisms. In this study we evaluated the sensitivity of aquatic invertebrates to a single application of imidacloprid and an equimolar mixture of five neonicotinoids (imidacloprid, acetamiprid, thiacloprid, thiamethoxam, clothianidin) using mesocosms under Mediterranean conditions. Cyclopoida, Cloeon dipterum and Chironomini showed the highest sensitivity to neonicotinoids, with calculated NOECs below 0.2 µg/L. The sensitivity of these taxa was found to be higher than that reported in previous studies performed under less warm conditions, proving the high influence of temperature on neonicotinoid toxicity. The short-term responses of the zooplankton and the macroinvertebrate communities to similar imidacloprid and neonicotinoid mixture concentrations were very similar, suggesting that the concentration addition model can be used as a plausible hyphotesis to assess neonicotinoid mixture effects in aquatic ecosystems. Long-term mixture toxicity assessments, however, should consider the fate of the evaluated substances in the environment of concern. As part of this study, we also demonstrated that Species Sensitivity Distributions constructed with chronic laboratory toxicity data and calculated (multi-substance) Potentially Affected Fractions provide an accurate estimation to asssess the ecotoxicologial risks of imidacloprid and neonicotinoid mixtures to aquatic invertebrate species assemblages.
  • Morphological and molecular effects of two diluted bitumens on developing
           fathead minnow (Pimephales promelas)
    • Abstract: Publication date: Available online 10 September 2018Source: Aquatic ToxicologyAuthor(s): F.M. Alsaadi, B.N. Madison, R.S. Brown, P.V. Hodson, V.S. Langlois Canada has experienced a significant increase in the transport of diluted bitumen (dilbit), a predominant oil sands product that combines bitumen with diluents derived from oil-gas condensates and other proprietary compounds. The toxicity of dilbit to fish embryos, which are immobile and thus at a high risk of exposure to oil in the event of a spill, remains largely unknown for most species. This study assessed the toxicity of water accommodated fractions (WAF) and chemically enhanced water accommodated fractions (CEWAF) of two winter dilbit blends, Access Western Blend (AWB) and Cold Lake Blend (CLB), to fathead minnow (Pimephales promelas) embryos. The TPH-F EC50 s for malformations were 834 and 1058 μg/L for AWB WAF and CEWAF, respectively, and 500 and 715 μg/L for CLB WAF and CEWAF, respectively. Levels of cyp1a mRNA increased up to 46- and 69-fold, respectively, reflecting increasing exposure to polycyclic aromatic compounds (PACs) in AWB and CLB. Similarly, levels of gst mRNA were elevated up to 3.8-fold and 2.7-fold with increasing total concentrations of PACs in AWB and CLB, respectively. However, there were no significant changes in mRNA levels of p53, sod, cat, and gsr. These results suggest that the expression of cyp1a and gst may serve as biomarkers for dilbit exposure in fathead minnow, furthering our understanding of dilbit-responsive indicators of toxicity in fish species native to North America. This study is important as it utilizes the same exposure methodology to examine the toxicity of two commonly used Canadian dilbits, facilitating comparison of dilbit toxicity.
  • Deepwater Horizon Oil alone and in Conjunction with Vibrio anguillarum
           Exposure Modulates Immune Response and Growth in Red Snapper (Lutjanus
    • Abstract: Publication date: Available online 8 September 2018Source: Aquatic ToxicologyAuthor(s): Maria L. Rodgers, Ryan Takeshita, Robert J. Griffitt This study examined the impacts of Macondo oil from the Deepwater Horizon oil spill, both alone and in conjunction with exposure to the known fish pathogen Vibrio anguillarum, on the expression of five immune-related gene transcripts of red snapper (il8, il10, tnfa, il1b, and igm). In order to elucidate this impact, six different test conditions were used: one Control group (No oil/No pathogen), one Low oil/No pathogen group (tPAH50 = 0.563 µg/L), one High oil/No pathogen group (tPAH50 = 17.084 µg/L, one No oil/Pathogen group, one Low oil/Pathogen group (tPAH50 = 0.736 µg/L), and one High oil/Pathogen group (tPAH50 = 15.799 µg/L). Fish were exposed to their respective oil concentrations for one week. On day 7 of the experiment, all fish were placed into new tanks (with or without V. anguillarum) for one hour. At three time points (day 8, day 10, and day 17), fish organs were harvested and placed into RNAlater, and qPCR was run for examination of the above specific immune genes as well as cyp1a1. Our results suggest that cyp1a1 transcripts were upregulated in oil-exposed groups throughout the experiment, confirming oil exposure, and that all five immune gene transcripts were upregulated on day 8, but were generally downregulated or showed no differences from controls on days 10 and 17. Finally, both oil and pathogen exposure had impacts on growth.
  • Characterization of Laguncularia racemosa transcriptome and molecular
           response to oil pollution
    • Abstract: Publication date: Available online 7 September 2018Source: Aquatic ToxicologyAuthor(s): Fernanda Alves de Freitas Guedes, Priscilla de Barros Rossetto, Fábia Guimarães, Maurício Wolf Wilwerth, Jorge Eduardo Santos Paes, Marisa Fabiana Nicolás, Fernanda Reinert, Raquel Soares Peixoto, Márcio Alves-Ferreira Mangroves are ecosystems of economic and ecological importance. Laguncularia racemosa (Combretaceae), popularly known as white mangrove, is a species that greatly contributes to the community structure of neotropical and West African mangrove forests. Despite the significance of these ecosystems, they have been destroyed by oil spills that can cause yellowing of leaves, increased sensitivity to other stresses and death of trees. However, the molecular response of plants to oil stress is poorly known. In this work, Illumina reads were de novo assembled into 46,944 transcripts of L. racemosa roots and leaves, including putative isoform variants. In addition to improving the genomic information available for mangroves, the L. racemosa assembled transcriptome allowed us to identify reference genes to normalize quantitative real-time PCR (qPCR) expression data from oil-stressed mangrove plants, which were used in RNASeq validation. The analysis of expression changes induced by the oil exposure revealed 310 and 286 responsive transcripts of leaves and roots, respectively, mainly up-regulated. Enriched GO categories related to chloroplasts and photosynthesis were found among both leaf and root oil-responsive transcripts, while “response to heat” and “response to hypoxia” were exclusively enriched in leaves and roots, respectively. The comparison of L. racemosa 12-h-oil-stressed leaf expression profile to previous Arabidopsis heat-stress studies and co-expression evidence also pointed to similarities between the heat and oil responses, in which the HSP-coding genes seem to play a key role. A subset of the L. racemosa oil-responsive root genes exhibited similar up-regulation profiles to their Arabidopsis homologs involved in hypoxia responses, including the HRA1 and LBD41 TF-coding genes. Genes linked to the ethylene pathway such as those coding for ERF TFs were also modulated during the L. racemosa root response to oil stress. Taken together, these results show that oil contamination affects photosynthesis, protein metabolism, hypoxia response and the ethylene pathway in L. racemosa 12-h-oil-exposed leaves and roots.
  • Toxic effects of nickel oxide (NiO) nanoparticles on the freshwater alga
           Pseudokirchneriella subcapitata
    • Abstract: Publication date: Available online 1 September 2018Source: Aquatic ToxicologyAuthor(s): Cátia A. Sousa, Helena M.V.M. Soares, Eduardo V. Soares Over the last decade, concerns have been raised regarding the potential health and environmental effects associated with the release of metal oxide nanoparticles (NPs) into ecosystems. In the present work, the potential hazards of nickel oxide (NiO) NPs were investigated using the ecologically relevant freshwater alga Pseudokirchneriella subcapitata. NiO NP suspensions in algal OECD medium were characterized with regard to their physicochemical properties: agglomeration, surface charge, stability (dissolution of the NPs) and abiotic reactive oxygen species (ROS) production. NiO NPs formed loose agglomerates and released Ni2+. NiO NPs presented a 72 h-EC50 of 1.6 mg L-1, which was evaluated using the algal growth inhibition assay and allowed this NP to be classified as toxic. NiO NPs caused the loss of esterase activity (metabolic activity), the bleaching of photosynthetic pigments and the intracellular accumulation of reactive oxygen species (ROS) in the absence of the disruption of plasma membrane integrity. NiO NPs also disturbed the photosynthetic process. A reduction in the photosynthetic efficiency (ΦPSII) accompanied by a decrease in the flow rate of electrons through the photosynthetic chain was also observed. The leakage of electrons from the photosynthetic chain may be the origin of the ROS found in the algal cells. The exposure to NiO NPs led to the arrest of the cell cycle prior to the first cell division (primary mitosis), an increase in cell volume and the presence of aberrant morphology in the algal cells. In this work, the use of different approaches allowed new clues related to the toxicity mechanisms of NiO NPs to be obtained. This work also contributes to the characterization of the environmental and toxicological hazards of NiO NPs and provides information on the possible adverse effects of these NPs on aquatic systems.
  • Effects of zinc pyrithione on biochemical parameters of the freshwater
           Asian clam Corbicula fluminea
    • Abstract: Publication date: Available online 30 August 2018Source: Aquatic ToxicologyAuthor(s): Ana Filipa Nogueira, Joana Luísa Pereira, Sara Cristina Antunes, Fernando Gonçalves, Bruno NunesABSTRACTZinc pyrithione (ZnPT) is an organometallic biocide with bactericide, algaecide, and fungicide activity. Considering this biological activity, ZnPT has been used in anti-fouling paints, and also in human therapeutics and cosmetics, in shampoos to treat dandruff and seborrhoea. Despite its potential uses and consequent presence in the aquatic environment, the ecotoxicological effects of ZnPT are poorly understood. This work aims to characterize the effects of ZnPT in biochemical parameters of the Asian clam, one of the most invasive bivalves known for its biofouling action in hydro-dependent industries, using a classical (LC50 determination) and a biomarker-based approach (quantification of the activities of catalase, GSTs, and acetylcholinesterase, and also the muscle glycogen content). The here determined LC50-96 h for zinc pyrithione was 2.17 mg/L. ZnPT caused significant increases in the activity of catalase and of cholinesterases. These findings evidence the pro-oxidative effects caused by the metabolism of ZnPT. Despite the absence of clear effects, it is important to stress that the presence of ZnPT in the wild is usually accompanied by other pyrithiones, whose co-existence can contribute to the exertion of considerable toxic effects.
  • Do trace metal contamination and parasitism influence the activities of
           the bioturbating mud shrimp Upogebia cf. pusilla'
    • Abstract: Publication date: Available online 28 August 2018Source: Aquatic ToxicologyAuthor(s): Annabelle Dairain, Xavier de Montaudouin, Patrice Gonzalez, Aurélie Ciutat, Magalie Baudrimont, Olivier Maire, Alexia Legeay Mud shrimp are considered as among the most influential ecosystem engineers in marine soft bottom environments because of their significant bioturbation activity and their high density. These organisms play a key role on the physical structure of sediments through intense sediment reworking activity and also deeply influence geochemical properties of sediments via frequent bioirrigation events. The influence that mud shrimp have on the environment is related to the magnitude of bioturbation processes and subsequently depends on their physiological condition. In natural environments, several factors act together and influence the well-being of organisms. Among them, the deleterious role of parasites on the physiology and the behavior of their host is well established. Aquatic organisms are also subject to pollutants released by anthropogenic activities. However, the effect of both stressors on the fitness and bioturbation activity of mud shrimp has never been investigated yet.We conducted a 14-day ex-situ experiment to evaluate the influence of trace metal contamination (cadmium Cd) and parasitism infestation on the gene expression (molecular endpoint) and sediment reworking activity (behavioral endpoint) of the mud shrimp Upogebia cf. pusilla. At completion, mud shrimp exhibited substantial Cd bioaccumulation, with parasitized organisms showing a significantly lower contaminant burden than unparasitized organisms. Cadmium contamination induces modifications of gene expression in both unparasitized and parasitized organisms. We report an antagonistic effect of both stressors on gene expression, which cannot be fully explained by lower Cd bioaccumulation. At the behaviour level, parasitism seems to reduce the sediment reworking activity of mud shrimp, while Cd contamination appears to stimulate this activity. This study highlights that the effects of multiple stressors may be quite different from the effect of each stressor considered individually. It should also motivate for more studies evaluating the influence of multiple stressors on different endpoints encompassing various levels of organization.
  • Comparative Transcriptome Analysis between the Short-term Stress and
           Long-term Adaptation of the Ruditapes philippinarum in Response to
    • Abstract: Publication date: Available online 28 August 2018Source: Aquatic ToxicologyAuthor(s): Hongdan Wang, Luqing Pan, Xu Ruiyi, Jingjing Miao, Lingjun Si, Luqing Pan In order to monitor the pollution of polycyclic aromatic hydrocarbons (PAHs) in the seawater environment, screening biomarkers capable of monitoring PAHs is the focus of many studies. The transcriptomic profiles of the digestive gland tissue from the R. philippinarum groups after the exposure to BaP (4 μg/L) at four time points (0, 0.5, 6 and 15 days) were investigated to globally screen the key genes and pathways involved in the responses to short-term stress and long-term adaptation of BaP resistance. By comparative transcriptome analysis, 233, 282 and 58 differentially expressed genes (DEGs) were identified at 0.5 day, 6 day and 15 day (vs 0 day). The differential expression genes were related to stress response, detoxification metabolic process and innate immunity. DEGs of each group at different stages were clustered in six profiles based on gene expression pattern. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis were used on all genes to determine the biological functions and processes. We selected Multidrug resistance protein 3 (MRP3), transcriptional regulator ATRX-like isoform X2 (ATRX) as biomarker indicator genes for short-term pollution monitoring and NADH dehydrogenase [ubiquinone] 1 (NQO1), Complement C1q-like protein 4 (C1q), Glutathione-S-transferase theta (GST), E3 ubiquitin-protein ligase (E3) for long-term pollution monitoring based on the different expression patterns and the function in detoxification and antioxidant defense system. Besides, the expression of seven genes was measured through Quantitative real-time PCR (qPCR) according to their gene expression patterns which was confirmed by the DGE analysis. Taken together, adoption of transcriptomic analysis to explore the bivalves’ mRNA abundance changes and detoxification metabolic mechanism under the BaP stress at different time points can aid the development of sensitive and informed molecular endpoints for application towards ecotoxicogenomic monitoring of bivalves.
  • Adverse effects of two pharmaceuticals acetaminophen and oxytetracycline
           on life cycle parameters, oxidative stress, and defensome system in the
           marine rotifer Brachionus rotundiformis
    • Abstract: Publication date: Available online 27 August 2018Source: Aquatic ToxicologyAuthor(s): Jun Chul Park, Deok-Seo Yoon, Eunjin Byeon, Jung Soo Seo, Un-Ki Hwang, Jeonghoon Han, Jae-Seong Lee To investigate the adverse effect of two widely used pharmaceuticals, paracetamol (acetaminophen [APAP]) and oxytetracycline (OTC) on the marine rotifer Brachionus rotundiformis (B. rotundiformis), the animals were exposed to nvarious environmentally-relevant concentrations. Up to date, acetaminophen and oxytetracycline have been considered as toxic, if used above threshold concentration, i.e. overdosed. However, this study demonstrated these two pharmaceuticals even at low concentration (i.e., μg/L scale) elicited oxidative stress through the generation of reactive oxygen species (ROS) along with the increased glutathione S-transferase activity, despite no-observed effect in in-vivo population growth. To validate the adverse effects of the two pharmaceuticals at relatively low concentrations, mRNA expression analysis was performed of the entire set of gened encoding 26 cytochrome P450s (CYPs) of phase I and 19 glutathione S-transferases (GSTs) of phase II of the rotifer B. rotundiformis. The mRNA expression analysis suggested specific genes CYP3045A2 and GSTσ1, GSTσ4, and GSTω1 take part in detoxification of APAP and OTC, resulting in no significant changes in the population growth and undetermined no observed effect concentration (NOEC) in the marine rotifer B. rotundiformis.
  • Monitoring sublethal changes in fish physiology following exposure to a
           light, unweathered crude oil
    • Abstract: Publication date: Available online 24 August 2018Source: Aquatic ToxicologyAuthor(s): Sharon E. Hook, Julie Mondon, Andrew T. Revill, Paul A. Greenfield, Sarah A. Stephenson, Joanna Strzlecki, Patricia Corbett, Emily Armstrong, Jing Song, Hai Doan, Skye Barrett Biomarkers are frequently used to determine the exposure of fish to petroleum hydrocarbons following an oil spill. These biomarkers must be chosen carefully if they are to be used to determine sublethal toxic impacts as well as oil exposure. Many commonly used biomarkers relate to the metabolism of high molecular weight, typically pyrogenic, polycyclic aromatic hydrocarbons (PAHs), which are not abundant in unweathered crude oil. The goal of this study was to compare the efficacy of different biomarkers, including histological examination and transcriptomic profiling, in showing exposure to oil and the potential for sublethal toxic impacts. To achieve these goals, subadults/adults of the spotted dragonet (Repomucenus calcaratus) was exposed to a representative light, unweathered Australian oil for 96 h, so that the physiological changes that occur with exposure could be documented. Fish were then transferred to clean sediment for 90 h to quantify recovery. Biomarker changes, including PAH metabolites, 7-ethoxyresorufin O-deethylase (EROD), and histopathology, are presented in this work. In addition, a de novo transcriptome for the spotted dragonet was assembled, and differential transcript abundance was determined for the gill and liver of petroleum-exposed fish relative to a control. Increased levels of some biliary phenanthrene metabolites were seen throughout the exposure period. EROD levels showed modest, but not significant, increases. Transcriptomic differences were noted in the abundances of transcripts with a role in inflammation, primary metabolism and cardiac function. The patterns of transcript abundance in the gill and the liver changed in a manner that reflected exposure and recovery. The histology showed elevated prevalence of lesions, most notably vacuolization in liver and heart tissue, multi-organ necrosis, and lamellar epithelial lifting and telangiectasia in the gill. These findings suggest that short-term exposures to low molecular weight PAHs could elicit changes in the health of fish that are well predicted by the transcriptome. Furthermore, when light oil is released into the environment, exposure and subsequent risk would be better estimated using phenanthrene metabolite levels rather than EROD. This study also adds to the weight of evidence that exposure to low molecular weight PAHs may cause cardiac problems in fish. Further study is needed to determine the impact of these changes on reproductive capacity, long-term survival, and other population specific parameters.
  • Age-dependent survival, stress defense, and AMPK in Daphnia pulex after
           short-term exposure to a polystyrene nanoplastic
    • Abstract: Publication date: Available online 23 August 2018Source: Aquatic ToxicologyAuthor(s): Zhiquan Liu, Mingqi Cai, Ping Yu, Minghai Chen, Donglei Wu, Meng Zhang, Yunlong Zhao The widespread occurrence and accumulation of micro- and nanoplastics in aquatic environments has become a growing global concern. Generally, natural aquatic populations are characterized by a variety of multi-structured age groups, for which physiological and biochemical responses typically differ. The freshwater cladoceran, Daphnia pulex, is a model species used extensively in environmental monitoring studies and ecotoxicology testing. Here, the effects of a polystyrene nanoplastic on the physiological changes (i.e., survival) and expression levels of stress defense genes (i.e., those encoding antioxidant-mediated and heat shock proteins) in this freshwater flea were measured. Results from acute bioassays were used to determine the respective nanoplastic LC50 values for five age groups (1-, 4-, 7-, 14- and 21-day-old individuals): the obtained values for the 1- and 21-day-old D. pulex groups were similar (i.e., not significantly different). The expression levels of genes encoding key stress defense enzymes and proteins—SOD, CAT, GST, GPx, HSP70, and HSP90—were influenced by the nanoplastic in all the age groups, but not in the same way for each. Significant differences were observed among all age groups in their expression of the gene encoding the energy-sensing enzyme AMPK (adenosine monophosphate-activated protein kinase) α, β, and γ following exposure to the nanoplastic. Moreover, the expression of AMPK α was significantly increased in the 1-, 7-, and 21-day-old individuals exposed to nanoplastic relative to the control group. Together, these results indicate that age in D. pulex affects the sensitivity of its individuals to pollution from this nanoplastic, primarily via alterations to vital physiological and biochemical processes, such as cellular energy homeostasis and oxidation, which were demonstrated in vivo. We speculate that such age-related effects may extend to other nanoplastics and forms of pollution in D. pulex and perhaps similar marine organisms.
  • The role of GST omega in metabolism and detoxification of arsenic in clam
           Ruditapes philippinarum
    • Abstract: Publication date: Available online 23 August 2018Source: Aquatic ToxicologyAuthor(s): Lizhu Chen, Huifeng Wu, Jianmin Zhao, Wei Zhang, Li Zhang, Shan Sun, Dinglong Yang, Bo Cheng, Qing Wang The major hazard of arsenic in living organisms is increasingly being recognized. Marine mollusks are apt to accumulate high levels of arsenic, but knowledge related to arsenic detoxification in marine mollusks is still less than sufficient. In this study, arsenic bioaccumulation as well as the role of glutathione S-transferase omega (GSTΩ) in the process of detoxification were investigated in the Ruditapes philippinarum clam after waterborne exposure to As(III) or As(V) for 30 days. The results showed that the gills accumulated significantly higher arsenic levels than the digestive glands. Arsenobetaine (AsB) and dimethylarsenate (DMA) accounted for most of the arsenic found, and monomethylarsonate (MMA) can be quickly metabolized. A subcellular distribution analysis showed that most arsenic was in biologically detoxified metal fractions (including metal-rich granules and metallothionein-like proteins), indicating their important roles in protecting cells from arsenic toxicity. The relative mRNA expressions of two genes encoding GSTΩ were up-regulated after arsenic exposure, and the transcriptional responses were more sensitive to As(III) than As(V). The recombinant GSTΩs exhibited high activities at optimal conditions, especially at 37 °C and pH 4 – 5, with an As(V) concentration of 60 mM. Furthermore, the genes encoding GSTΩ significantly enhance the arsenite tolerance but not the arsenate tolerance of E. coli AW3110 (DE3) (ΔarsRBC). It can be deduced from these results that GSTΩs play an important role in arsenic detoxification in R. philippinarum.
  • Environmental Risks of ZnO Nanoparticle Exposure on Microcystis
           aeruginosa: Toxic Effects and Environmental Feedback
    • Abstract: Publication date: Available online 16 August 2018Source: Aquatic ToxicologyAuthor(s): Yulin Tang, Huaijia Xin, Shu Yang, Meiting Guo, Tyler Malkoske, Daqiang Yin, Shengji Xia The vast majority of studies measure the toxic effect of organisms exposed to nanoparticles (NPs) while there is still a lack of knowledge about the influence of NPs on the aquatic environment. It is unknown whether or not the interaction between NPs and algae will result in the variation of algal organic matter (AOM) and stimulate the production of more algal toxins. In this study, zinc oxide nanoparticles (nano-ZnO) as a typical representative of metal oxide NPs were used to evaluate the toxic effects and environmental feedback of Microcystis aeruginosa. Reactive oxygen species (ROS) and malondialdehyde (MDA) were measured to explain the toxicity mechanism. Changes of AOM, including the production of toxins, the molecular weight distribution and the excitation-emission matrices of algal solution were also studied as environmental feedback indicators after nano-ZnO destroyed the algae. As the nano-ZnO exceeded the comparable critical concentration (1.0 mg/L), the algae were destroyed and intracellular organic matters were released into the aquatic environment, which stimulated the generation of microcystin-LR (MC-LR). However, it is worth noting that the concentration of nano-ZnO would need to be high (at mg/L range) to stimulate more MC-LR production. These findings are expected to be beneficial in interpreting the toxicity and risks of the releasing of NPs through the feedback between algae and the aquatic environment.
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-