for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> ENGINEERING (Total: 2449 journals)
    - CHEMICAL ENGINEERING (208 journals)
    - CIVIL ENGINEERING (208 journals)
    - ELECTRICAL ENGINEERING (116 journals)
    - ENGINEERING (1288 journals)
    - HYDRAULIC ENGINEERING (56 journals)
    - INDUSTRIAL ENGINEERING (81 journals)
    - MECHANICAL ENGINEERING (98 journals)

CIVIL ENGINEERING (208 journals)                  1 2 | Last

Showing 1 - 200 of 208 Journals sorted alphabetically
ACI Structural Journal     Full-text available via subscription   (Followers: 20)
Acta Polytechnica : Journal of Advanced Engineering     Open Access   (Followers: 3)
Acta Structilia : Journal for the Physical and Development Sciences     Open Access   (Followers: 3)
Advances in Civil Engineering     Open Access   (Followers: 41)
Advances in Structural Engineering     Full-text available via subscription   (Followers: 33)
Agregat     Open Access   (Followers: 1)
Ambiente Construído     Open Access   (Followers: 1)
American Journal of Civil Engineering and Architecture     Open Access   (Followers: 35)
Architectural Engineering     Open Access   (Followers: 5)
Architecture and Engineering     Open Access  
Architecture, Civil Engineering, Environment     Open Access  
Archives of Civil and Mechanical Engineering     Full-text available via subscription   (Followers: 3)
Archives of Civil Engineering     Open Access   (Followers: 12)
Archives of Hydro-Engineering and Environmental Mechanics     Open Access   (Followers: 2)
ATBU Journal of Environmental Technology     Open Access   (Followers: 4)
Australian Journal of Structural Engineering     Full-text available via subscription   (Followers: 7)
Baltic Journal of Road and Bridge Engineering     Open Access   (Followers: 1)
BER : Building and Construction : Full Survey     Full-text available via subscription   (Followers: 10)
BER : Building Contractors' Survey     Full-text available via subscription   (Followers: 2)
BER : Building Sub-Contractors' Survey     Full-text available via subscription   (Followers: 2)
BER : Survey of Business Conditions in Building and Construction : An Executive Summary     Full-text available via subscription   (Followers: 3)
Berkeley Planning Journal     Open Access   (Followers: 5)
Bioinspired Materials     Open Access   (Followers: 5)
Bridge Structures : Assessment, Design and Construction     Hybrid Journal   (Followers: 14)
Building & Management     Open Access   (Followers: 2)
Building and Environment     Hybrid Journal   (Followers: 15)
Building Women     Full-text available via subscription  
Built Environment Project and Asset Management     Hybrid Journal   (Followers: 15)
Bulletin of Pridniprovsk State Academy of Civil Engineering and Architecture     Open Access   (Followers: 6)
Canadian Journal of Civil Engineering     Hybrid Journal   (Followers: 13)
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 6)
Case Studies in Nondestructive Testing and Evaluation     Open Access   (Followers: 11)
Case Studies in Structural Engineering     Open Access   (Followers: 9)
Cement and Concrete Composites     Hybrid Journal   (Followers: 20)
Challenge Journal of Concrete Research Letters     Open Access   (Followers: 3)
Challenge Journal of Structural Mechanics     Open Access   (Followers: 5)
Change Over Time     Full-text available via subscription   (Followers: 2)
Civil and Environmental Engineering     Open Access   (Followers: 8)
Civil and Environmental Engineering Reports     Open Access   (Followers: 8)
Civil and Environmental Research     Open Access   (Followers: 17)
Civil Engineering = Siviele Ingenieurswese     Full-text available via subscription   (Followers: 4)
Civil Engineering and Architecture     Open Access   (Followers: 23)
Civil Engineering and Environmental Systems     Hybrid Journal   (Followers: 3)
Civil Engineering and Technology     Open Access   (Followers: 12)
Civil Engineering Dimension     Open Access   (Followers: 11)
Civil Engineering Infrastructures Journal     Open Access   (Followers: 1)
Cohesion and Structure     Full-text available via subscription   (Followers: 2)
Composite Structures     Hybrid Journal   (Followers: 290)
Computer-aided Civil and Infrastructure Engineering     Hybrid Journal   (Followers: 11)
Computers & Structures     Hybrid Journal   (Followers: 37)
Concrete Research Letters     Open Access   (Followers: 7)
Construction Economics and Building     Open Access   (Followers: 4)
Construction Engineering     Open Access   (Followers: 11)
Construction Management and Economics     Hybrid Journal   (Followers: 21)
Constructive Approximation     Hybrid Journal  
Curved and Layered Structures     Open Access   (Followers: 3)
DFI Journal : The Journal of the Deep Foundations Institute     Hybrid Journal   (Followers: 1)
Earthquake Engineering and Structural Dynamics     Hybrid Journal   (Followers: 17)
Enfoque UTE     Open Access   (Followers: 4)
Engineering Project Organization Journal     Hybrid Journal   (Followers: 7)
Engineering Structures     Hybrid Journal   (Followers: 13)
Engineering Structures and Technologies     Open Access   (Followers: 2)
Engineering, Construction and Architectural Management     Hybrid Journal   (Followers: 10)
Environmental Geotechnics     Hybrid Journal   (Followers: 5)
European Journal of Environmental and Civil Engineering     Hybrid Journal   (Followers: 10)
Fatigue & Fracture of Engineering Materials and Structures     Hybrid Journal   (Followers: 19)
Frontiers in Built Environment     Open Access   (Followers: 1)
Frontiers of Structural and Civil Engineering     Hybrid Journal   (Followers: 6)
Geomaterials     Open Access   (Followers: 3)
Geosystem Engineering     Hybrid Journal   (Followers: 2)
Geotechnik     Hybrid Journal   (Followers: 4)
Géotechnique Letters     Hybrid Journal   (Followers: 8)
GISAP : Technical Sciences, Construction and Architecture     Open Access  
HBRC Journal     Open Access   (Followers: 2)
Hormigón y Acero     Full-text available via subscription  
HVAC&R Research     Hybrid Journal  
Indonesian Journal of Urban and Environmental Technology     Open Access  
Indoor and Built Environment     Hybrid Journal   (Followers: 3)
Infrastructure Asset Management     Hybrid Journal   (Followers: 3)
Infrastructures     Open Access  
Ingenio Magno     Open Access   (Followers: 1)
Insight - Non-Destructive Testing and Condition Monitoring     Full-text available via subscription   (Followers: 30)
International Journal for Service Learning in Engineering     Open Access  
International Journal of 3-D Information Modeling     Full-text available via subscription   (Followers: 3)
International Journal of Advanced Structural Engineering     Open Access   (Followers: 17)
International Journal of Civil, Mechanical and Energy Science     Open Access   (Followers: 2)
International Journal of Concrete Structures and Materials     Open Access   (Followers: 15)
International Journal of Condition Monitoring     Full-text available via subscription   (Followers: 2)
International Journal of Construction Engineering and Management     Open Access   (Followers: 10)
International Journal of Engineering and Geosciences     Open Access  
International Journal of Geo-Engineering     Open Access   (Followers: 3)
International Journal of Geosynthetics and Ground Engineering     Full-text available via subscription   (Followers: 4)
International Journal of Masonry Research and Innovation     Hybrid Journal   (Followers: 1)
International Journal of Pavement Research and Technology     Open Access   (Followers: 6)
International Journal of Protective Structures     Hybrid Journal   (Followers: 6)
International Journal of Steel Structures     Hybrid Journal   (Followers: 2)
International Journal of Structural Engineering     Hybrid Journal   (Followers: 9)
International Journal of Structural Integrity     Hybrid Journal   (Followers: 2)
International Journal of Structural Stability and Dynamics     Hybrid Journal   (Followers: 7)
International Journal of Sustainable Built Environment     Open Access   (Followers: 5)
International Journal of Sustainable Construction Engineering and Technology     Open Access   (Followers: 8)
International Journal on Pavement Engineering & Asphalt Technology     Open Access   (Followers: 7)
International Journal Sustainable Construction & Design     Open Access   (Followers: 2)
Journal of Applied Research in Water and Wastewater     Open Access   (Followers: 1)
Journal of Bridge Engineering     Full-text available via subscription   (Followers: 13)
Journal of Building Engineering     Hybrid Journal   (Followers: 2)
Journal of Building Materials and Structures     Open Access   (Followers: 2)
Journal of Building Performance Simulation     Hybrid Journal   (Followers: 6)
Journal of Civil Engineering     Open Access  
Journal of Civil Engineering and Construction Technology     Open Access   (Followers: 15)
Journal of Civil Engineering and Management     Open Access   (Followers: 7)
Journal of Civil Engineering and Science     Open Access   (Followers: 9)
Journal of Civil Engineering Research     Open Access   (Followers: 7)
Journal of Civil Engineering, Science and Technology     Open Access   (Followers: 1)
Journal of Civil Society     Hybrid Journal   (Followers: 5)
Journal of Civil Structural Health Monitoring     Hybrid Journal   (Followers: 4)
Journal of Composites     Open Access   (Followers: 78)
Journal of Composites for Construction     Full-text available via subscription   (Followers: 13)
Journal of Computing in Civil Engineering     Full-text available via subscription   (Followers: 23)
Journal of Construction Engineering     Open Access   (Followers: 9)
Journal of Construction Engineering and Management     Full-text available via subscription   (Followers: 17)
Journal of Constructional Steel Research     Hybrid Journal   (Followers: 6)
Journal of Earth Sciences and Geotechnical Engineering     Open Access   (Followers: 4)
Journal of Fluids and Structures     Hybrid Journal   (Followers: 6)
Journal of Frontiers in Construction Engineering     Open Access   (Followers: 2)
Journal of Green Building     Full-text available via subscription   (Followers: 10)
Journal of Highway and Transportation Research and Development (English Edition)     Full-text available via subscription   (Followers: 14)
Journal of Infrastructure Systems     Full-text available via subscription   (Followers: 19)
Journal of Legal Affairs and Dispute Resolution in Engineering and Construction     Full-text available via subscription   (Followers: 5)
Journal of Marine Science and Engineering     Open Access   (Followers: 1)
Journal of Materials and Engineering Structures     Open Access   (Followers: 5)
Journal of Materials in Civil Engineering     Full-text available via subscription   (Followers: 8)
Journal of Nondestructive Evaluation     Hybrid Journal   (Followers: 9)
Journal of Performance of Constructed Facilities     Full-text available via subscription   (Followers: 3)
Journal of Pipeline Systems Engineering and Practice     Full-text available via subscription   (Followers: 6)
Journal of Rehabilitation in Civil Engineering     Open Access   (Followers: 3)
Journal of Solid Waste Technology and Management     Full-text available via subscription   (Followers: 1)
Journal of Structural Engineering     Full-text available via subscription   (Followers: 35)
Journal of Structural Fire Engineering     Full-text available via subscription   (Followers: 6)
Journal of Structural Mechanics     Open Access   (Followers: 1)
Journal of Structures     Open Access   (Followers: 4)
Journal of Sustainable Architecture and Civil Engineering     Open Access   (Followers: 3)
Journal of Sustainable Design and Applied Research in Innovative Engineering of the Built Environment     Open Access   (Followers: 1)
Journal of the Civil Engineering Forum     Open Access  
Journal of the South African Institution of Civil Engineering     Open Access   (Followers: 2)
Journal of Water and Environmental Nanotechnology     Open Access  
Journal of Water and Wastewater / Ab va Fazilab     Open Access  
Jurnal Spektran     Open Access   (Followers: 1)
Jurnal Teknik Sipil     Open Access  
Jurnal Teknik Sipil dan Perencanaan     Open Access   (Followers: 1)
Konstruksia     Open Access  
KSCE Journal of Civil Engineering     Hybrid Journal   (Followers: 2)
Latin American Journal of Solids and Structures     Open Access   (Followers: 4)
Materiales de Construcción     Open Access   (Followers: 1)
Mathematical Modelling in Civil Engineering     Open Access   (Followers: 4)
Media Komunikasi Teknik Sipil     Open Access  
Mokslas – Lietuvos ateitis / Science – Future of Lithuania     Open Access  
Nondestructive Testing And Evaluation     Hybrid Journal   (Followers: 15)
npj Materials Degradation     Open Access  
Obras y Proyectos     Open Access   (Followers: 1)
Open Journal of Civil Engineering     Open Access   (Followers: 9)
Periodica Polytechnica Civil Engineering     Open Access  
Photonics and Nanostructures - Fundamentals and Applications     Hybrid Journal   (Followers: 4)
Practice Periodical on Structural Design and Construction     Full-text available via subscription   (Followers: 3)
Proceedings of the Institution of Civil Engineers - Bridge Engineering     Hybrid Journal   (Followers: 8)
Proceedings of the Institution of Civil Engineers - Civil Engineering     Hybrid Journal   (Followers: 14)
Proceedings of the Institution of Civil Engineers - Management, Procurement and Law     Hybrid Journal   (Followers: 10)
Proceedings of the Institution of Civil Engineers - Municipal Engineer     Hybrid Journal   (Followers: 2)
Proceedings of the Institution of Civil Engineers - Structures and Buildings     Hybrid Journal   (Followers: 3)
Promet : Traffic &Transportation     Open Access  
Random Structures and Algorithms     Hybrid Journal   (Followers: 5)
Recent Trends In Civil Engineering & Technology     Full-text available via subscription   (Followers: 5)
Research in Nondestructive Evaluation     Hybrid Journal   (Followers: 6)
Resilience     Open Access   (Followers: 1)
Revista IBRACON de Estruturas e Materiais     Open Access   (Followers: 1)
Revista Sul-Americana de Engenharia Estrutural     Open Access  
Road Materials and Pavement Design     Hybrid Journal   (Followers: 11)
Russian Journal of Nondestructive Testing     Hybrid Journal   (Followers: 5)
Science and Engineering of Composite Materials     Hybrid Journal   (Followers: 61)
Selected Scientific Papers - Journal of Civil Engineering     Open Access   (Followers: 3)
Slovak Journal of Civil Engineering     Open Access   (Followers: 2)
Soils and foundations     Full-text available via subscription   (Followers: 5)
Steel Construction - Design and Research     Hybrid Journal   (Followers: 3)
Structural and Multidisciplinary Optimization     Hybrid Journal   (Followers: 11)
Structural Concrete     Hybrid Journal   (Followers: 11)
Structural Control and Health Monitoring     Hybrid Journal   (Followers: 8)
Structural Engineering International     Full-text available via subscription   (Followers: 11)
Structural Mechanics of Engineering Constructions and Buildings     Open Access   (Followers: 1)
Structural Safety     Hybrid Journal   (Followers: 6)
Structural Survey     Hybrid Journal  
Structure     Full-text available via subscription   (Followers: 24)
Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance     Hybrid Journal   (Followers: 12)
Structures     Hybrid Journal   (Followers: 1)
Study of Civil Engineering and Architecture     Open Access   (Followers: 10)
Superlattices and Microstructures     Hybrid Journal   (Followers: 2)
Surface Innovations     Hybrid Journal  
Technical Report Civil and Architectural Engineering     Open Access   (Followers: 1)
Teknik     Open Access  
Territorium : Revista Portuguesa de riscos, prevenção e segurança     Open Access  
The IES Journal Part A: Civil & Structural Engineering     Hybrid Journal   (Followers: 6)

        1 2 | Last

Journal Cover
International Journal of Concrete Structures and Materials
Journal Prestige (SJR): 1.601
Citation Impact (citeScore): 3
Number of Followers: 15  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1976-0485 - ISSN (Online) 2234-1315
Published by SpringerOpen Homepage  [228 journals]
  • Estimation Model for Effective Thermal Conductivity of Reinforced Concrete
           Containing Multiple Round Rebars

    • Abstract: The objective of this research is to estimate the effective thermal conductivity model for the reinforced concrete containing round rebars. The thermal network concept and Fourier’s law are used to develop a mathematical model to calculate the effective thermal conductivity (keff) of reinforced concrete with different numbers of round rebars oriented either normal or parallel to the heat-transfer direction, and different volume fractions of steel. Model predictions generally agree well with results of numerical simulations using the finite-volume method (FVM). FVM results suggest that at fixed volume fractions of steel, the effective thermal conductivity decreases as the number of round rebars increases if the rebars are in the normal orientation but increases as the number of round rebars increases if they are in the parallel orientation. This research can be used in practical conditions to predict the effective thermal conductivity of reinforced concrete containing round rebars accurately.
      PubDate: 2018-10-05
  • Investigation of Thermal Behaviour of a Hybrid Precasted Concrete Floor
           using Embedded Sensors

    • Abstract: Concrete structures expand and contract in response to temperature changes which can result in structural strain and cracking. However, there is a limited amount of robust field data on hybrid concrete floor structures. Shortage of such data impacts on our understanding of how concrete structures respond to thermal effects and ultimately the overall design of concrete structures. Thus, a comprehensive structural and environmental monitoring strategy was implemented by the authors during the construction of an educational building. Sensors were embedded in the precast and in situ components of a hybrid concrete lattice girder flat slab so that the thermal response of the floor during the manufacture, construction and operational stages could be investigated. Many aspects of the thermal behaviour of the floor during the construction phase were monitored using the embedded sensors. The early-age thermal effects during curing and the impact of the variation of ambient temperature (daily and seasonal) and solar radiation on the behaviour of concrete floor is explored in the paper. Values for restraint factors and the in situ restrained coefficient of thermal expansion of concrete are calculated using the data from the embedded sensors. Numerical modelling of the thermal behaviour of the hybrid concrete floor was undertaken and validated using the real-time field measurements. The data presented and analysed in this paper can be used to improve the understanding and modelling of the thermal behaviour of a hybrid concrete floor. This will assist with improved design of sustainable buildings as it allows the environmental performance of the floor to be optimised with respect to controlling the internal environment, thermal mass and energy efficiency.
      PubDate: 2018-10-05
  • Generalized Softened Variable Angle Truss Model for PC Beams under Torsion

    • Abstract: In a previous study, a new model (Generalized Softened Variable Angle Truss Model—GSVATM) was proposed to compute the global behavior of reinforced concrete beams under torsion, including for low loading stages. In this article, the GSVATM is extended to cover prestressed concrete (PC) beams under torsion, with longitudinal and uniform prestress. The changes in the GSVATM, in order to include the influence of the initial stress state due to prestress, the contribution of the prestress reinforcement after the decompression of concrete and the constitutive laws for prestress reinforcement, are presented, as well as the solution procedure. The theoretical predictions of the extended GSVATM are compared with experimental results of PC beams under torsion, where good agreement is observed in terms of stiffness, transition from the non-cracked stage to the cracked stage and also in terms of the maximum torque. It is also shown that when compared with the predictions of some codes of practice, namely for the cracking and ultimate torque, the estimates from the GSVATM are in general more accurate.
      PubDate: 2018-10-03
  • Assessment of Rheological and Piezoresistive Properties of Graphene based
           Cement Composites

    • Abstract: The concrete production processes including materials mixing, pumping, transportation, injection, pouring, moulding and compaction, are dependent on the rheological properties. Hence, in this research, the rheological properties of fresh cement paste with different content of graphene (0.03, 0.05 and 0.10% by weight of cement) were investigated. The parameters considered were test geometries (concentric cylinders and parallel plates), shear rate range (300–0.6, 200–0.6 and 100–0.6 s−1), resting time (0, 30 and 60 min) and superplasticizer dosage (0 and 0.1% by weight of cement). Four rheological prediction models such as Modified Bingham, Herschel–Bulkley, Bingham model and Casson model were chosen for the estimation of the yield stress, plastic viscosity and trend of the flow curves. The effectiveness of these rheological models in predicting the flow properties of cement paste was verified by considering the standard error method. Test results showed that the yield stress and the plastic viscosity increased with the increase in graphene content and resting time while the yield stress and the plastic viscosity decreased with the increase in the dosage of superplasticizer. At higher shear rate range, the yield stress increased while the plastic viscosities decreased. The Herschel–Bulkley model with the lowest average standard error and standard deviation value was found to best fit the experimental data, whereas, Casson model was found to be the most unfitted model. Graphene reduces the flow diameter and electrical resistivity up to 9.3 and 67.8% and enhances load carrying capacity and strain up to 16.7 and 70.1% of the composite specimen as compared with plain cement specimen. Moreover, it opened a new dimension for graphene-cement composite as smart sensing building construction material.
      PubDate: 2018-10-03
  • Structural Qualification of a Developed GFRP-Reinforced Concrete Bridge
           Barrier using Ultimate Load Testing

    • Abstract: Corrosion of reinforcing steel bars is the main factor affecting durability and service life of steel-reinforced bridge barriers in North America. The use of glass fiber reinforcing polymer (GFRP) bars as non-corrosive material has emerged as an innovative solution to corrosion related problems. A recent cost-effective design of PL-3 bridge barrier was developed at Ryerson University incorporating high-modulus GFRP bars with headed ends. An experimental program was conducted to investigate the load carrying capacity of the developed barrier wall. A 40-m long barrier was constructed and tested at four different locations to investigate its structural behavior, crack pattern and ultimate strength when subjected to the equivalent static loading simulating vehicle impact. Experimental results were compared with the design values specified in the Canadian Highway Bridge Design Code. Experimental findings showed a large margin of safety for the proposed GFRP-reinforced barriers. The failure pattern due to transversal loading the longitudinal barrier over 2400 mm length was initiated by a trapezoidal flexural crack pattern at front face of the barrier, followed by punching shear failure at the transverse load location. Comparison between the available punching shear equations in the literature and the punching shear failure developed in the barrier wall was conducted.
      PubDate: 2018-10-03
  • Fiber Beam Analysis of Reinforced Concrete Members with Cyclic
           Constitutive and Material Laws

    • Abstract: This paper presents a non-linear Timoshenko beam element with axial, bending, and shear force interaction for nonlinear analysis of reinforced concrete structures. The structural material tangent stiffness matrix, which relates the increments of load to corresponding increments of displacement, is properly formulated. Appropriate simplified cyclic uniaxial constitutive laws are developed for cracked concrete in compression and tension. The model also includes the softening effect of the concrete due to lateral tensile strain. To establish the validity of the proposed model, correlation studies with experimentally-tested concrete specimens have been conducted.
      PubDate: 2018-10-01
  • RC Arch Deck Development and Performance Evaluation for Enhanced Deck

    • Abstract: Due to extreme business competitions in bridge construction industries, the cost reduction became the most important issue in winning a contract bidding. The largest bridge construction cost saving can be obtained by using precasted construction method and by reducing required number of girders, columns, and decks in the bridge system. Therefore, an precasted arch deck system is proposed to widen the lateral span of the deck, which can result in reducing the number of required I-type PSC girders for construction cost saving. A usual lateral width of a flat deck is 1.5–2.0 m, but the width of arch deck is 2.5 m, an increase of 25–60%. Therefore, for a PSC girder bridge with a total width 10 m, a number of required girders needed for ordinary flat RC deck and arch deck is 5 and 4, respectively. This means that one less girder can be required, which means that 20% of girder construction cost can be achieved by using arch deck over ordinary flat deck. In this study, precasted RC arch deck is developed and manufactured to evaluate structural performance of the deck. The study results showed that arch deck has performance exceeding ordinary flat deck and can be used as alternative decks for precasted PSC I-girder bridge construction. The study results are discussed in detail in the paper.
      PubDate: 2018-09-26
  • Simulating Tensile and Compressive Failure Process of Concrete with a
           User-defined Bonded-Particle Model

    • Abstract: A user-defined bonded-particle model (UBM) which is based on the modified parallel bond was established in this paper to investigate the tensile and compressive failure mechanism of concrete on the three-dimensional (3D) level. The contact constitutive relation and the failure criterion of the UBM can be added to the commercial discrete element software PFC \(^{3D}\) by compiling them as a dynamic link library file and loading it into PFC \(^{3D}\) whenever needed. In addition, the aggregate particles can be generated according to the volume fraction and the shape of each aggregate is irregular. Then, by comparing the results of numerical simulation with the results of laboratory tests, it is found that this bonded-particle model can simulate the tensile and compressive failure process of concrete well to a certain extent. Specifically, the two have basically similar failure patterns and stress–strain responses no matter under tension or compression loading condition. All results indicate that this UBM is a promising tool in understanding and predicting the tensile and compressive failure process of concrete.
      PubDate: 2018-09-24
  • Interface Shear Strength at Joints of Ultra-High Performance Concrete

    • Abstract: When ultra-high performance concrete (UHPC) is fabricated as precast members such as in a UHPC segmental bridge, the joint design between the precast members can significantly affect the overall integrity and safety of the structure. Therefore, the structural behavior of the UHPC joint was experimentally investigated in this study with test variables including joint type, number and height of shear keys, type of filler, curing temperature, and lateral compressive stress. The UHPC considered in this study is the K-UHPC developed in Korea with a specified compressive strength as high as 180 MPa and high flowability. The joint shear strengths affected by the test variables were investigated in detail. The test results were also compared with two representative predictive equations for interface shear strength to determine an appropriate equation for the joint design of UHPC. These equations did not match well with the test data because they were originally proposed for normal strength concrete. However, the JSCE equation could be improved by modifying a coefficient to show good agreement with the test especially in the case of the dry joint with epoxy application.
      PubDate: 2018-09-24
  • Reliability Assessment of HFRC Slabs Against Projectile Impact

    • Abstract: In the present study, a probabilistic procedure is presented for estimating the reliability of hybrid fiber reinforced concrete (HFRC) slabs against the impact of hemispherical nose projectiles considering uncertainties involved in the material, geometric and impact parameters. The influence of hybrid fibers in improving the safety level of reinforced concrete slabs against impact loads has also been studied on a parametric basis. The failure of the HFRC slabs was assumed to occur when the impact velocity of the projectile exceeds the ballistic limit of the slab i.e. perforates the slab. To illustrate the procedure, a probabilistic analysis was carried out on the impact test results of HFRC slabs containing different proportions of hooked-end steel, polypropylene and Kevlar fibers, recently published by the authors. Reliability assessment was performed for a range of applied nominal impact loads by varying the impact velocity of the given projectile. Reliability analysis yields the safety level of all the HFRC slabs against the impact of the above projectile. Effect of fibers, especially steel fibers, and slab thickness on the reliability of HFRC slabs are also investigated on a parametric basis.
      PubDate: 2018-09-24
  • Recycled Glass as Aggregate for Architectural Mortars

    • Abstract: The possibility of recycling mixed colour waste glass as it is for manufacturing decorative architectural mortars, has been investigated. In mortars, the 0–33–66–100% of calcareous gravel volume has been replaced with recycled glass cullets, with no other inorganic addition. To mitigate the possible alkali–silica reaction, mixes with a hydrophobic admixture were also compared. The obtained results show that the replacement of calcareous gravel with glass cullets of similar grain size distribution permits to reduce the dosage of the superplasticizer admixture to obtain the same workability of fresh mortar; it does not affect significantly the mechanical performances, the water vapour permeability and the capillary water absorption but it reduces significantly the drying shrinkage deformation. The used recycled glass is classified as no reactive in terms of alkali–silica reaction neither in water nor in NaOH solution following the parameters of the current normative, even in the absence of the hydrophobic admixture. The hydrophobic admixture further delays the expansion trigger but not the speed of its propagation.
      PubDate: 2018-09-24
  • Effect of Loading and Beam Sizes on the Structural Behaviors of Reinforced
           Concrete Beams Under and After Fire

    • Abstract: Performance-based fire resistance design needs consideration of various influencing parameters of structures such as load levels and cross-sectional size. Therefore, the studies of fire damaged reinforced concrete (RC) structures are performed experimentally and analytically. Twelve RC beams with different load levels and cross sections are exposed to high temperatures following the ISO 834 standard time temperature. After the fire test, the fire-damaged beams are loaded using four-point loading to obtain its residual strength. In addition, ABAQUS 6.10-3 is used to preform structural analyses of the ductility of the fire-damaged beams. The results indicate that the temperature, stiffness and ductility of the fire-damaged beams are significantly influenced by the load level, cross-sectional size and time exposed to fire. Also, the ductility of the fire-damaged beam can be predicted using an analytical method, which is not easy to otherwise determine experimentally.
      PubDate: 2018-08-02
  • Horizontal Shear Behaviors of Normal Weight and Lightweight Concrete
           Composite T-Beams

    • Abstract: This paper presents the results of recent research on the interface shear behavior of normal weight and lightweight concrete composite T-beams. In the experimental program 12 beams and necessary control cylinders were tested to provide experimental cases with the variables of interface preparation, clamping stress and lightweight slab concrete strength. Compared with 7 equations developed previously, it has been found that those formulas, especially the ones from current AASHTO and ACI design codes, give a conservative theoretical prediction of horizontal shear capacity of composite T-beams. Based on the experimental results, a more accurate equation was developed to predict the interface shear transfer strength of composite concrete T-beam. By comparing the experimental results of previous beam tests and shear-friction push-off tests for different types of concrete with both rough and smooth interface published in literature, it has been found that the proposed formula is reliable in predicting the horizontal shear strength of concrete composite T-beams.
      PubDate: 2018-08-02
  • Flexural Responses of Prestressed Hybrid Wide Flange Composite Girders

    • Abstract: In this study, prestressed hybrid wide flange (PHWF) composite girders were proposed, and full-scale flexural tests were conducted to evaluate their structural performances. This new proposed girder system was developed and designed to effectively resist external loads considering the actual construction sequences. Two specimens with and without shear connectors were fabricated and tested to examine the effect of the shear connectors for achieving the fully-composite behaviors between a cast-in-place (CIP) concrete and the prefabricated prestressed steel–concrete composite girder. The test results showed that sufficient flexural strengths and deformation capacities can be obtained in both types of PHWF composite girders with and without shear connectors. To reflect the actual construction stages of the proposed PHWF composite girder, nonlinear flexural analyses were proposed considering the prestress effect and segmental effect before and after composite with the CIP concrete, respectively. The observed and analysis results of strain behaviors of the PHWF girder specimens were also compared and discussed in detail.
      PubDate: 2018-08-02
  • Concentrically Loaded Circular RC Columns Partially Confined with FRP

    • Abstract: Wrapping reinforced concrete (RC) columns with fiber reinforced polymer (FRP) composites is effective in increasing their capacity. The current state of the art concentrates primarily on fully wrapped columns and few studies dealt with partially wrapped ones. The objective herein is to evaluate the effectiveness of partial wraps (or strips) and to develop a confined concrete compressive stress–strain (fc − εc) model that accounts for partial wrapping. Three-dimensional finite element (FE) models are generated to evaluate the influence of different parameters on the behavior of concentrically loaded RC circular columns that are partially and fully wrapped with FRP. The results indicated an increase in ductility as the number of FRP strips is increased, and revealed that longitudinal steel had little influence on the confined fc − εc relationship. The proposed fc − εc model, derived from the parametric study, accounts for the effect of partial and full confinement, the unconfined concrete strength \( f^{\prime}_{c} \) , and yielding of transverse steel. Comparison of the results generated using the proposed model with FE and experimental results are in good agreement.
      PubDate: 2018-07-30
  • Analysis of Active Ion-Leaching Behavior and the Reaction Mechanism During
           Alkali Activation of Low-Calcium Fly Ash

    • Abstract: The dissolution and release of active ions, such as Si4+, Al3+ and Ca2+, from fly ash directly affect the rate and extent of reaction product formation, which in turn affect the physical and mechanical properties of fly ash filling materials. In this study, low-calcium fly ash was soaked and activated in NaOH solutions with different concentrations (approximating the optimum dose range) for different lengths of time. The amounts of active ions leached and the changes in the mineral composition, chemical functional groups and surface morphology were tested and analyzed via ICP-OES, XRD, FTIR and SEM/EDS techniques. Based on these analyses, the reaction mechanism of alkali activation of low-calcium fly ash was further investigated. The results showed that the NaOH activation effect can significantly increase the amount of active ions leached from low-calcium fly ash. Notably, the amount of Si4+ and Al3+ leached clearly increased with increases in both NaOH concentration and soaking time. The plausible reaction mechanism is discussed in detail, which is that the alkali activator principally affected the surface of the vitreous particles of low-calcium fly ash and induced differing surface modifications in the dissolution stage, depolymerization stage, polycondensation and polymer gel stage and diffusion stage. It was observed that the progress of the reaction is controlled by dissolution in the early stages, whereas activation is governed by diffusion when the surfaces of the fly ash particles are covered by precipitates.
      PubDate: 2018-07-26
  • Effect of Preliminary Selection of RC Shear Walls’ Ductility Level
           on Material Quantities

    • Abstract: According to the National Building Code of Canada, the seismic force resisting systems (SFRS) of reinforced concrete (RC) buildings are classified based on their ductility level as being ductile, moderately ductile and conventional construction systems. The selection of the ductility level of an SFRS at the conceptual design phase is primarily governed by the seismicity at the building location, the building dynamic characteristics, and the height limitations specified by the design code. The selected ductility level affects the design loads, the cross-sections and reinforcement of the SFRS components, and hence the overall construction cost. This paper aims to evaluate the effect of the wall’s selected ductility level on the quantities of its constituent materials as well as the rebar detailing. Four multi-storey RC shear wall buildings with different heights located in three different cities in Canada; Toronto, Montreal, and Vancouver, were selected to represent three different seismic hazard zones (low, medium, and high). For each building height and location, the walls were designed using the dynamic analysis procedure of the National Building Code of Canada to reach different ductility levels. The construction material quantity estimates were evaluated and compared to a reference case for each building height, seismic hazard and ductility level. The effect of ductility level on the bars detailing is also investigated. This paper helps the structural engineers to select the cost-effective and constructible RC shear wall system at the conceptual design phase before reaching the detailed design phase.
      PubDate: 2018-07-26
  • Modelling of Stirrup Confinement Effects in RC Layered Beam Finite
           Elements Using a 3D Yield Criterion and Transversal Equilibrium

    • Abstract: Apart from its recognized strengthening effect for shear loading, the presence of stirrups in reinforced concrete results in an increase of the ductility of structural members and in the capacity of reaching higher longitudinal compressive stress levels provided by transversal confinement. These effects are usually represented phenomenologically in fibre beam models by artificially increasing the compressive strength and the ultimate compressive strain of concrete. Two numerical formulations for layered beam descriptions accounting explicitly for transversal confinement are implemented and assessed in this contribution. The influence of stirrups is incorporated by means of a multi-dimensional yield surface for concrete, combined with equilibrium constraints for the transversal direction involving concrete and steel stirrups, and with a concrete ultimate strain dependent on the hydrostatic stress. This contribution focuses on the numerical formulations of both frameworks, and on their assessment against experimental results available in the literature.
      PubDate: 2018-07-26
  • Experimental Research on the Shear Connectors in Foam Concrete with
           C-Channel Embedment

    • Abstract: In order to improve the longitudinal shear resistance between foam concrete and C-Channels, an investigation is carried out on the shear connectors in foam concrete with cold-formed steel double C-Channels embedment. Twenty-four tests have been carried out in two groups. Two types of connectors: flange connectors and web connectors are installed using self-drilling screws for a rapid construction. The experimental results show that they can effectively improve the longitudinal shear-resist capacity of the concrete. After the experiment, the specimens are dismantled for an interior observation. Based on the observation, the form of damage, the failure mechanism was discovered, and the equation of longitudinal shear capacity was developed. It is concluded that the failure involves independent slippage between two C-Channels and the shear connection fractures. Since the composite structure requires sufficient slip between the two materials, these types of shear connectors will have good enhancement for this type of composite structures subjected to dynamic loads.
      PubDate: 2018-07-26
  • Effects of Variation of Axial Load on Seismic Performance of Shear
           Deficient RC Exterior BCJs

    • Abstract: The focus of this paper is to investigate the effect of column axial load levels on the performance of shear deficient reinforced concrete beam column joints (BCJs) under monotonic and cyclic loading. The problem of interaction between shear stress in BCJ and axial load on column has been addressed in this work by initially postulating a mechanistic model and substantiated by an experimental test program. This was achieved by conducting appropriate tests on seven BCJ sub-assemblies subjected to monotonic and reversed cyclic loading, with varying levels of the column axial load. Experimental results were further validated using a finite element model in an ABAQUS environment. The effect of variation of compressive strength of concrete was considered in a subsequent parametric study, in order to obtain sufficient data, and utilized to develop a new shear strength model for BCJs which includes influences of all the important parameters required to predict the shear strength of BCJs. The results showed that column axial load affects the seismic performance of BCJs significantly. Experimental results demonstrated that at initial stages of loading, increase in axial load enhances the shear capacity of the joint and reduces its ductility. However, when the column axial load/axial strength ratio increases to about 0.6–0.7, shear strength starts to decrease rapidly, leading to pure axial failure of the joint. The magnitude of axial load/axial capacity ratio also dictates the failure mode and development of crack patterns in BCJs. Results of reverse cyclic tests on BCJs showed that high value of axial load/axial capacity ratio increases the initial stiffness of BCJ but rate of stiffness degradation is accelerated after peak strength attenuation.
      PubDate: 2018-07-26
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-