for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> ENGINEERING (Total: 2515 journals)
    - CHEMICAL ENGINEERING (210 journals)
    - CIVIL ENGINEERING (219 journals)
    - ELECTRICAL ENGINEERING (120 journals)
    - ENGINEERING (1320 journals)
    - HYDRAULIC ENGINEERING (57 journals)
    - INDUSTRIAL ENGINEERING (84 journals)
    - MECHANICAL ENGINEERING (102 journals)

CIVIL ENGINEERING (219 journals)                  1 2 | Last

Showing 1 - 200 of 219 Journals sorted alphabetically
ACI Structural Journal     Full-text available via subscription   (Followers: 20)
Acta Polytechnica : Journal of Advanced Engineering     Open Access   (Followers: 3)
Acta Structilia : Journal for the Physical and Development Sciences     Open Access   (Followers: 3)
Advances in Civil Engineering     Open Access   (Followers: 43)
Advances in Structural Engineering     Full-text available via subscription   (Followers: 34)
Agregat     Open Access   (Followers: 1)
Ambiente Construído     Open Access   (Followers: 1)
American Journal of Civil Engineering and Architecture     Open Access   (Followers: 36)
Architectural Engineering     Open Access   (Followers: 5)
Architecture and Engineering     Open Access  
Architecture, Civil Engineering, Environment     Open Access   (Followers: 1)
Archives of Civil and Mechanical Engineering     Full-text available via subscription   (Followers: 3)
Archives of Civil Engineering     Open Access   (Followers: 13)
Archives of Hydro-Engineering and Environmental Mechanics     Open Access   (Followers: 2)
ATBU Journal of Environmental Technology     Open Access   (Followers: 4)
Australian Journal of Structural Engineering     Full-text available via subscription   (Followers: 7)
Baltic Journal of Road and Bridge Engineering     Open Access   (Followers: 1)
BER : Building and Construction : Full Survey     Full-text available via subscription   (Followers: 10)
BER : Building Contractors' Survey     Full-text available via subscription   (Followers: 2)
BER : Building Sub-Contractors' Survey     Full-text available via subscription   (Followers: 2)
BER : Survey of Business Conditions in Building and Construction : An Executive Summary     Full-text available via subscription   (Followers: 3)
Berkeley Planning Journal     Open Access   (Followers: 6)
Bioinspired Materials     Open Access   (Followers: 5)
Bridge Structures : Assessment, Design and Construction     Hybrid Journal   (Followers: 14)
Building & Management     Open Access   (Followers: 2)
Building and Environment     Hybrid Journal   (Followers: 16)
Building Women     Full-text available via subscription  
Built Environment Project and Asset Management     Hybrid Journal   (Followers: 15)
Bulletin of Pridniprovsk State Academy of Civil Engineering and Architecture     Open Access   (Followers: 6)
Canadian Journal of Civil Engineering     Hybrid Journal   (Followers: 14)
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 6)
Case Studies in Nondestructive Testing and Evaluation     Open Access   (Followers: 11)
Case Studies in Structural Engineering     Open Access   (Followers: 10)
Cement and Concrete Composites     Hybrid Journal   (Followers: 20)
Challenge Journal of Concrete Research Letters     Open Access   (Followers: 3)
Challenge Journal of Structural Mechanics     Open Access   (Followers: 5)
Change Over Time     Full-text available via subscription   (Followers: 2)
Civil and Environmental Engineering     Open Access   (Followers: 8)
Civil and Environmental Engineering Reports     Open Access   (Followers: 8)
Civil and Environmental Research     Open Access   (Followers: 19)
Civil Engineering = Siviele Ingenieurswese     Full-text available via subscription   (Followers: 4)
Civil Engineering and Architecture     Open Access   (Followers: 24)
Civil Engineering and Environmental Systems     Hybrid Journal   (Followers: 3)
Civil Engineering and Technology     Open Access   (Followers: 13)
Civil Engineering Dimension     Open Access   (Followers: 12)
Civil Engineering Infrastructures Journal     Open Access   (Followers: 1)
Cohesion and Structure     Full-text available via subscription   (Followers: 2)
Composite Structures     Hybrid Journal   (Followers: 291)
Computer-aided Civil and Infrastructure Engineering     Hybrid Journal   (Followers: 11)
Computers & Structures     Hybrid Journal   (Followers: 37)
Concrete Research Letters     Open Access   (Followers: 7)
Construction Economics and Building     Open Access   (Followers: 4)
Construction Engineering     Open Access   (Followers: 11)
Construction Management and Economics     Hybrid Journal   (Followers: 21)
Constructive Approximation     Hybrid Journal  
Construindo     Open Access  
Curved and Layered Structures     Open Access   (Followers: 3)
DFI Journal : The Journal of the Deep Foundations Institute     Hybrid Journal   (Followers: 1)
Earthquake Engineering and Structural Dynamics     Hybrid Journal   (Followers: 17)
Enfoque UTE     Open Access   (Followers: 4)
Engineering Project Organization Journal     Hybrid Journal   (Followers: 7)
Engineering Structures     Hybrid Journal   (Followers: 13)
Engineering Structures and Technologies     Open Access   (Followers: 3)
Engineering, Construction and Architectural Management     Hybrid Journal   (Followers: 10)
Environmental Geotechnics     Hybrid Journal   (Followers: 5)
European Journal of Environmental and Civil Engineering     Hybrid Journal   (Followers: 10)
Fatigue & Fracture of Engineering Materials and Structures     Hybrid Journal   (Followers: 19)
Frontiers in Built Environment     Open Access   (Followers: 1)
Frontiers of Structural and Civil Engineering     Hybrid Journal   (Followers: 6)
Gaceta Técnica     Open Access  
Geomaterials     Open Access   (Followers: 3)
Geosystem Engineering     Hybrid Journal   (Followers: 2)
Geotechnik     Hybrid Journal   (Followers: 4)
Géotechnique Letters     Hybrid Journal   (Followers: 8)
GISAP : Technical Sciences, Construction and Architecture     Open Access  
HBRC Journal     Open Access   (Followers: 2)
Hormigón y Acero     Full-text available via subscription  
HVAC&R Research     Hybrid Journal  
Indonesian Journal of Urban and Environmental Technology     Open Access  
Indoor and Built Environment     Hybrid Journal   (Followers: 3)
Infrastructure Asset Management     Hybrid Journal   (Followers: 3)
Infrastructures     Open Access  
Ingenio Magno     Open Access   (Followers: 1)
Insight - Non-Destructive Testing and Condition Monitoring     Full-text available via subscription   (Followers: 36)
International Journal for Service Learning in Engineering     Open Access  
International Journal of 3-D Information Modeling     Full-text available via subscription   (Followers: 3)
International Journal of Advanced Structural Engineering     Open Access   (Followers: 17)
International Journal of Civil, Mechanical and Energy Science     Open Access   (Followers: 2)
International Journal of Concrete Structures and Materials     Open Access   (Followers: 15)
International Journal of Condition Monitoring     Full-text available via subscription   (Followers: 2)
International Journal of Construction Engineering and Management     Open Access   (Followers: 10)
International Journal of Engineering and Geosciences     Open Access  
International Journal of Geo-Engineering     Open Access   (Followers: 3)
International Journal of Geosynthetics and Ground Engineering     Full-text available via subscription   (Followers: 4)
International Journal of Masonry Research and Innovation     Hybrid Journal   (Followers: 1)
International Journal of Pavement Research and Technology     Open Access   (Followers: 6)
International Journal of Protective Structures     Hybrid Journal   (Followers: 6)
International Journal of Steel Structures     Hybrid Journal   (Followers: 2)
International Journal of Structural Engineering     Hybrid Journal   (Followers: 9)
International Journal of Structural Integrity     Hybrid Journal   (Followers: 2)
International Journal of Structural Stability and Dynamics     Hybrid Journal   (Followers: 7)
International Journal of Sustainable Built Environment     Open Access   (Followers: 5)
International Journal of Sustainable Construction Engineering and Technology     Open Access   (Followers: 8)
International Journal on Pavement Engineering & Asphalt Technology     Open Access   (Followers: 7)
International Journal Sustainable Construction & Design     Open Access   (Followers: 2)
Journal of Applied Research in Water and Wastewater     Open Access   (Followers: 1)
Journal of Bridge Engineering     Full-text available via subscription   (Followers: 13)
Journal of Building Engineering     Hybrid Journal   (Followers: 2)
Journal of Building Materials and Structures     Open Access   (Followers: 2)
Journal of Building Performance Simulation     Hybrid Journal   (Followers: 6)
Journal of Civil Engineering     Open Access   (Followers: 1)
Journal of Civil Engineering and Construction Technology     Open Access   (Followers: 16)
Journal of Civil Engineering and Management     Open Access   (Followers: 7)
Journal of Civil Engineering and Science     Open Access   (Followers: 10)
Journal of Civil Engineering Research     Open Access   (Followers: 8)
Journal of Civil Engineering, Science and Technology     Open Access   (Followers: 1)
Journal of Civil Society     Hybrid Journal   (Followers: 5)
Journal of Civil Structural Health Monitoring     Hybrid Journal   (Followers: 4)
Journal of Composites     Open Access   (Followers: 79)
Journal of Composites for Construction     Full-text available via subscription   (Followers: 13)
Journal of Computing in Civil Engineering     Full-text available via subscription   (Followers: 23)
Journal of Construction Engineering     Open Access   (Followers: 9)
Journal of Construction Engineering and Management     Full-text available via subscription   (Followers: 18)
Journal of Construction Engineering, Technology & Management     Full-text available via subscription   (Followers: 4)
Journal of Constructional Steel Research     Hybrid Journal   (Followers: 6)
Journal of Earth Sciences and Geotechnical Engineering     Open Access   (Followers: 4)
Journal of Fluids and Structures     Hybrid Journal   (Followers: 6)
Journal of Frontiers in Construction Engineering     Open Access   (Followers: 2)
Journal of Green Building     Full-text available via subscription   (Followers: 10)
Journal of Highway and Transportation Research and Development (English Edition)     Full-text available via subscription   (Followers: 14)
Journal of Infrastructure Systems     Full-text available via subscription   (Followers: 19)
Journal of Legal Affairs and Dispute Resolution in Engineering and Construction     Full-text available via subscription   (Followers: 5)
Journal of Marine Science and Engineering     Open Access   (Followers: 1)
Journal of Materials and Engineering Structures     Open Access   (Followers: 6)
Journal of Materials in Civil Engineering     Full-text available via subscription   (Followers: 8)
Journal of Nondestructive Evaluation     Hybrid Journal   (Followers: 9)
Journal of Offshore Structure and Technology     Full-text available via subscription  
Journal of Performance of Constructed Facilities     Full-text available via subscription   (Followers: 3)
Journal of Pipeline Systems Engineering and Practice     Full-text available via subscription   (Followers: 6)
Journal of Rehabilitation in Civil Engineering     Open Access   (Followers: 4)
Journal of Road and Traffic Engineering     Open Access  
Journal of Solid Waste Technology and Management     Full-text available via subscription   (Followers: 1)
Journal of Structural Engineering     Full-text available via subscription   (Followers: 36)
Journal of Structural Fire Engineering     Full-text available via subscription   (Followers: 6)
Journal of Structural Mechanics     Open Access   (Followers: 1)
Journal of Structures     Open Access   (Followers: 4)
Journal of Sustainable Architecture and Civil Engineering     Open Access   (Followers: 4)
Journal of Sustainable Design and Applied Research in Innovative Engineering of the Built Environment     Open Access   (Followers: 1)
Journal of the Civil Engineering Forum     Open Access   (Followers: 2)
Journal of the South African Institution of Civil Engineering     Open Access   (Followers: 2)
Journal of Water and Environmental Nanotechnology     Open Access  
Journal of Water and Wastewater / Ab va Fazilab     Open Access  
Jurnal Spektran     Open Access   (Followers: 1)
Jurnal Teknik Sipil     Open Access  
Jurnal Teknik Sipil dan Perencanaan     Open Access   (Followers: 1)
Konstruksia     Open Access  
KSCE Journal of Civil Engineering     Hybrid Journal   (Followers: 2)
Latin American Journal of Solids and Structures     Open Access   (Followers: 4)
Lithosphere     Open Access  
Materiales de Construcción     Open Access   (Followers: 1)
Mathematical Modelling in Civil Engineering     Open Access   (Followers: 5)
Media Komunikasi Teknik Sipil     Open Access  
Media Teknik Sipil     Open Access  
Mokslas – Lietuvos ateitis / Science – Future of Lithuania     Open Access  
Nondestructive Testing And Evaluation     Hybrid Journal   (Followers: 15)
npj Materials Degradation     Open Access  
Obras y Proyectos     Open Access   (Followers: 1)
Open Journal of Civil Engineering     Open Access   (Followers: 9)
Periodica Polytechnica Civil Engineering     Open Access  
Photonics and Nanostructures - Fundamentals and Applications     Hybrid Journal   (Followers: 4)
Practice Periodical on Structural Design and Construction     Full-text available via subscription   (Followers: 3)
Proceedings of the Institution of Civil Engineers - Bridge Engineering     Hybrid Journal   (Followers: 8)
Proceedings of the Institution of Civil Engineers - Civil Engineering     Hybrid Journal   (Followers: 14)
Proceedings of the Institution of Civil Engineers - Management, Procurement and Law     Hybrid Journal   (Followers: 10)
Proceedings of the Institution of Civil Engineers - Municipal Engineer     Hybrid Journal   (Followers: 2)
Proceedings of the Institution of Civil Engineers - Structures and Buildings     Hybrid Journal   (Followers: 4)
Promet : Traffic &Transportation     Open Access  
Random Structures and Algorithms     Hybrid Journal   (Followers: 5)
Recent Trends In Civil Engineering & Technology     Full-text available via subscription   (Followers: 5)
REDER : Revista de Estudios Latinoamericanos sobre Reducción del Riesgo de Desastres     Open Access  
Research in Nondestructive Evaluation     Hybrid Journal   (Followers: 6)
Resilience     Open Access   (Followers: 1)
Revista de Investigación     Open Access  
Revista IBRACON de Estruturas e Materiais     Open Access   (Followers: 1)
Revista Sul-Americana de Engenharia Estrutural     Open Access  
Road Materials and Pavement Design     Hybrid Journal   (Followers: 11)
Russian Journal of Nondestructive Testing     Hybrid Journal   (Followers: 5)
Science and Engineering of Composite Materials     Hybrid Journal   (Followers: 61)
Selected Scientific Papers - Journal of Civil Engineering     Open Access   (Followers: 3)
Slovak Journal of Civil Engineering     Open Access   (Followers: 2)
Soils and foundations     Full-text available via subscription   (Followers: 5)
Steel Construction - Design and Research     Hybrid Journal   (Followers: 3)
Structural and Multidisciplinary Optimization     Hybrid Journal   (Followers: 11)
Structural Concrete     Hybrid Journal   (Followers: 11)
Structural Control and Health Monitoring     Hybrid Journal   (Followers: 8)
Structural Engineering International     Full-text available via subscription   (Followers: 11)
Structural Mechanics of Engineering Constructions and Buildings     Open Access   (Followers: 1)
Structural Safety     Hybrid Journal   (Followers: 6)
Structural Survey     Hybrid Journal  
Structure     Full-text available via subscription   (Followers: 24)

        1 2 | Last

Journal Cover
Advances in Civil Engineering
Journal Prestige (SJR): 0.539
Citation Impact (citeScore): 1
Number of Followers: 43  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1687-8086 - ISSN (Online) 1687-8094
Published by Hindawi Homepage  [339 journals]
  • Development of a Web Application for Historical Building Management
           through BIM Technology

    • Abstract: Nowadays the built heritage has been recognized as one of the main sectors that can support the economic and sustainable development of countries. In the last years, the built heritage has been subject to several levels of interventions, being now clear its need for a proper maintenance and conservation management. However, in several cases, the maintenance faces lack of building records, which makes the maintenance a harsh, long, and expensive process. Therefore, there is an opportunity and need to apply new technologies, like Building Information Modelling (BIM), as supporting tool to the management of historical heritage. By so, the aim of this work was the development of a management system to be used as a supporting tool to the maintenance and conservation of the existent buildings, in historical context, facilitating to the interested parties the automated and digitized information needed to carry out the most varied tasks, with the particularity to be directly connected to the 3D-BIM model of the building. But in order to test the developed system (its applicability and functionality), it was in an early phase, applied to a pilot project with the significant heritage value. This work follows a development methodology applied to the case study and had different phases: (1) the case study was modelled in Autodesk Revit software, in whose model was inserted all the parametric information and associated metadata; (2) then, a support database of the management system was developed in Microsoft SQL Server, which will support all the information exported from the BIM model; (3) a web application was developed in C# through Visual Studio 2015, which works through and application programming interface (API) allowing the communication between the web application and the BIM model, allowing not only the interaction with the parametric information of this one, but also, a persistent access to a data management system (drawings, inspection reports, specifications, etc.) that has been created. The development of the management system and its application to the case study allows us to show its potential as a tool for the historical heritage management, contributing to its permanent and constantly updated management and cross off the fragmentation and loss of information therefore reducing the consequent investment in data collection.
      PubDate: Thu, 17 Jan 2019 14:15:02 +000
  • Energy Consumption Analysis of Frozen Sandy Soil and an Improved Double
           Yield Surface Elastoplastic Model considering the Particle Breakage

    • Abstract: The stress-strain relationship of frozen soil is a hot research topic in the field of frozen soil mechanics. In order to study the effect of particle crushing on the stress-strain relationship, a series of triaxial compression tests for frozen sandy soil are performed under confining pressures from 1 to 8 MPa at the temperatures of −3 and −5°C, and the energy consumption caused by particle breakage is analyzed during the triaxial shear process based on the energy principle. It is found that the energy consumption caused by the particle breakage presents a hyperbolic trend with axial strain. In view of the obvious advantages of the double yield surface elastoplastic model in describing soil dilatancy, stress path effect, and stress history influence, a modified double yield surface elastoplastic model for frozen sandy soil is proposed based on the energy principle. The validity of the model is verified by comparing its modeling results with test results. As a result, it is found that the stress-strain curves predicted by this model agree well with the corresponding experimental results under different confining pressures and temperatures.
      PubDate: Thu, 17 Jan 2019 10:05:09 +000
  • Study on Multiparameter Precursory Information Identification of the
           Fracture of Yellow Sandstone

    • Abstract: In order to explore the disaster caused by uncontrollable instability of coal and rock mass, a multiparameter fusion system is constructed to predict and predict disasters more accurately by identifying the mechanical and acoustic precursors of coal and rock fracture. In order to explore the precursor information of yellow sandstone rupture, the damage evolution process of yellow sandstone is analyzed from the four aspects of rock mechanics, acoustic emission time domain, frequency domain, and characteristic parameters, and the body strain, dissipated energy and acoustic emission counting, acoustic emission energy, average frequency, peak frequency, b value, and entropy value precursor information identification points are obtained, and 8 parameters are analyzed by time series fusion. The specific conclusions are as follows: body strain in the violent stage of damage evolution, the slope is zero, the zero end point is the precursor information identification point, the dissipative energy curve overall shows the “s” type, the early growth rate is faster—the medium-term stability—the later period is slowed down, and the upper slope boundary point of the “s” type curve is used as the precursor information identification point. In the violent stage of damage evolution, the layered features of the acoustic emission count are obvious, the specific gravity shift is more obvious, and the high count appears as the precursor information identification point; the acoustic emission energy accumulates the high-energy signal and is accompanied by the steady and rapid growth of energy as the precursor information identification point. The effects of shearing main cracks, shear microcracks, tensile cracks, and composite cracks on the acoustic emission count and energy in the damage evolution process are analyzed. The increase of medium- and high-frequency signals and the reduction of high-frequency signals predict the rupture. The average frequency signal change law is continuous high frequency-blank-continuous high frequency, with the blank period end point as the damage precursor identification point; the b value damage evolution stage shows a continuously steady increase to a rapid increase, with the continuous stable growth starting point as the crack identification point. In the process of damage evolution, the sample entropy presents an orderly, chaotic, disordered, and orderly process. The end of chaos and the beginning of disorder are used as the prejudging demarcation points. Based on the time sequence, an eight-parameter comprehensive early warning system is constructed. The indicators are classified into five levels for early warning in the stage of severe damage evolution. The identification of multiparameter precursory information of yellow sandstone provides a new research idea and analysis angle and method for the failure of other coal and rock masses.
      PubDate: Thu, 17 Jan 2019 10:05:08 +000
  • Semiquantitative Fire Risk Grade Model and Response Plans on a National
           Highway Bridge

    • Abstract: For the last ten years, the number of cases of large-scale fires which occur on bridges, tunnels, and underpasses has increased. Such fires cause primary and secondary damage, including loss of human life, traffic congestion, and extensive financial damage. Therefore, a risk grade model and effective response plan need to be established for such cases in order to minimize the social and economic costs of bridge fires. In this study, the hazard factors contributing to bridge fires were selected to apply a risk grade model. A total of 144 bridge fire simulations were performed to calculate a surface temperature based on time by using Fire Dynamics Simulation (FDS). A risk grade in accordance with the degree of surface damage state caused by temperature of bridges was presented, and the mobilization time criteria for fire suppression were proposed. The surface temperatures based on time can be classified according to the vertical clearance and mobilization time criteria for fire suppression. Through the classified maximum surface temperatures based on time for bridges, the risk grade can be estimated according to the degree of surface damage state caused by temperature. In order to evaluate the applicability of the established risk grade model to the actual bridge, the arrival time taken from the bridge to the fire station was calculated through a Geographic Information System (GIS) network analysis, and the grades for actual bridge cases were assessed. The purpose of this bridge fire risk grade model is to establish a disaster prevention strategy based on risk grades and to minimize the subsequent social damage by determining a priori the disaster scale.
      PubDate: Thu, 17 Jan 2019 10:05:06 +000
  • Torsional Behavior of High-Strength Concrete Beams with Minimum
           Reinforcement Ratio

    • Abstract: Although there is a growing trend to use higher strength for concrete and steel in reinforced concrete structures due to the lightness and slenderness of these members together with the simplified arrangement of their reinforcement, there is still the necessity to inspect the reduction of ductility resulting from the gain in strength. Taking into account that this also concerns the design for torsion, this study intends to investigate the regulations related to the torsional minimum reinforcement ratio in view of the minimum ductility requirement with focus on Eurocode 2. To that goal, the relation between the torsional cracking moment and the ductile behavior is discussed for the beam reinforced with the minimum torsional reinforcement ratio to examine the eventual properness of the minimum torsional reinforcement ratio recommended by Eurocode 2. Moreover, a pure torsion test is performed on 18 beams made of 80 MPa concrete reinforced by high-strength bars with rectangular section and various test variables involving the minimum torsional reinforcement ratio, the transverse-to-longitudinal reinforcement ratio, and the total reinforcement ratio. As a result, for the high-strength concrete beams, the minimum torsional reinforcement ratio recommended by Eurocode 2 was insufficient to prevent the sudden loss of strength after the initiation of the torsional cracking. But with regard to the compatibility torsion of statically indeterminate structure, the adoption of the minimum torsional reinforcement ratio recommended by Eurocode 2 might secure enough deformability under displacement-controlled mode to allow the redistribution of the torsional moment.
      PubDate: Thu, 17 Jan 2019 10:05:04 +000
  • Analysis of the Thermal Characteristics of Surrounding Rock in Deep
           Underground Space

    • Abstract: With the development of society, the economy, and national security, the exploitation of deep underground space has become an inevitable trend in human society. However, high-temperature-related problems occur in deep underground spaces. The high temperature of deep underground space is essentially influenced by the thermal characteristics of the surrounding rock. According to the mathematical model of heat transfer of the surrounding rock in deep underground space, similar criteria numbers are established. Experiments were carried out to investigate the thermal characteristics of the surrounding rock. The distribution characteristics of temperature were determined by the Fourier number (Fo) and Biot number (Bi), and the effects of heat transfer time, airflow velocities, and air temperature and radial displacement on the distribution characteristics of temperature were studied. The results indicate that the surrounding rock temperature decreases with long heat transfer times, high airflow velocities, and low air temperatures.
      PubDate: Wed, 16 Jan 2019 13:05:08 +000
  • Prestress Design of Tensegrity Structures Using Semidefinite Programming

    • Abstract: Finding appropriate prestresses which can stabilize the system is a key step in the design of tensegrity structures. A semidefinite programming- (SDP-) based approach is developed in this paper to determine appropriate prestresses for tensegrity structures. Three different stability criteria of tensegrity structures are considered in the proposed approach. Besides, the unilateral property of members and the evenness of internal forces are taken into account. The stiffness of the whole system can also be optimized by maximizing the minimum eigenvalue of the tangent stiffness matrix. Deterministic algorithms are used to solve the semidefinite programming problem in polynomial time. The applicability of the proposed approach is verified by three typical examples. Compared to previous stochastic-based approaches, the global optimality of the solution of the proposed approach is theoretically guaranteed and the solution is exactly reproducible.
      PubDate: Wed, 16 Jan 2019 12:05:10 +000
  • Experimental Study of the Pore Structure Deterioration of Sandstones under
           Freeze-Thaw Cycles and Chemical Erosion

    • Abstract: The issue of rock deterioration in chemical environments has drawn much attention in recent years in the rock engineering community. In this study, a series of 30 freeze-thaw cycling tests are conducted on sandstone samples soaked in H2SO4 solution and in pure water, prior to the application of nuclear magnetic resonance (NMR) on the rock specimens. The porosity of the sandstone, the distribution of transverse relaxation time T2, and the NMR images are acquired after each freeze-thaw cycle. The pore size distribution curves of the sandstone after freeze-thaw cycles, four categories of pore scale, and the features of freeze-thaw deterioration for pores of different sizes in H2SO4 solution and pure water are established. The result shows that, with the influence of the acid environment and the freeze-thaw cycles, the mass of the samples largely deteriorates. As the freeze-thaw cycles increase, the porosity of rocks increases approximately linearly. The distribution of the NMR T2 develops gradually from 4 peaks to 5 or even to 6. Magnetic resonance imaging (MRI) dynamically displays the process of the freeze-thaw deterioration of the microstructure inside the sandstones under acid conditions. The results also show pore expansion in rocks under the coupling effects of chemistry and the freeze-thaw cycles, which differ largely from the freeze-thaw deterioration of the rock specimens placed in pure water.
      PubDate: Wed, 16 Jan 2019 09:05:06 +000
  • Experimental Investigation on the Effect of Steel Fibers on the Flexural
           Behavior and Ductility of High-Strength Concrete Hollow Beams

    • Abstract: In this study, an experimental work was directed toward comparing the flexural behavior of solid and hollow steel fiber-reinforced concrete beams. For this purpose, eight square cross-sectional beam specimens, four solid and four hollow, were prepared. One concrete mixture with four different steel fiber contents of 0, 0.5, 1.0, and 1.5% were used. The side length of the central square hole was 80 mm, whereas the cross-sectional side length was 150 mm. All beams were tested under four-point monotonic loading until failure. In addition to the solid and hollow beams, cylinders were cast to evaluate the compressive strength, splitting tensile strength, and modulus of elasticity, whereas prisms were used to conduct the fracture test. The test results showed that all fibrous beams failed in flexure, whereas those without fiber exhibited flexural-shear failure. In general, the flexural behavior of fibrous-beams was superior to that of beams without fiber. The hollow beams with fiber contents of 0, 0.5, and 1.0% were observed to withstand lower loads at cracking, yielding, and peak stages compared with their corresponding solid beams; this was not the case for the 1.5% fiber hollow beam, which exhibited a higher peak load than its corresponding solid beam. Although all eight beams exhibited ductility indices higher than 3.7, hollow beams exhibited better ductility than solid beams, showing higher ductility index values.
      PubDate: Tue, 15 Jan 2019 14:05:05 +000
  • Buckling Analysis and Section Optimum for Square Thin-Wall CFST Columns
           Sealed by Self-Tapping Screws

    • Abstract: Two columns of thin-walled concrete-filled steel tubes (CFSTs), in which tube seams are connected by self-tapping screws, are axial compression tested and FEM simulated; the influence of local buckling on the column compression bearing capacity is discussed. Failure modes of square thin-wall CFST columns are, first, steel tube plate buckling and then the collapse of steel and concrete in some corner edge areas. Interaction between concrete and steel makes the column continue to withstand higher forces after buckling appears. A large deflection analysis for tube elastic buckling reflects that equivalent uniform stress of the steel plate in the buckling area can reach yield stress and that steel can supply enough designing stress. Aiming at failure modes of square thin-walled CFST columns, a B-type section is proposed as an improvement scheme. Comparing the analysis results, the B-type section can address both the problems of corner collapse and steel plate buckling. This new type section can better make full use of the stress of the concrete material and the steel material; this type section can also increase the compression bearing capacity of the column.
      PubDate: Tue, 15 Jan 2019 10:05:06 +000
  • Frost Heave of Irrigation Canals in Seasonal Frozen Regions

    • Abstract: Soil frost heave acts as a driver of the emerged fracture in the concrete lining of irrigation canals and subsequent water leakage in seasonal frozen ground. A model test was carried out on the frost heave of a U-shaped canal with concrete lining. The heat and water migration during freezing, and frost heave-induced deformation, and force in normal direction were live monitored by high-precision transducers. The results prove that the freezing front descends downward over time at a specified thermal boundary, with considerable migration of water within the scope of 0–40 cm. The maximum deformation occurred at the bottom of the lining and decreased upward with the rate of frost heave lowering over time while the normal force showing little change in the monitoring points, implying that stress concentration does not show up during freezing. Besides, the layered settlement observation reveals that frost heave dominates the total deformation while creep, the universal source of deformation, accounts for a negligible proportion. A practical model was proposed based on a simple theoretical model for heat-water coupled transfer in a partially saturated medium and was numerically implemented in COMSOL. The computed results were compared with the monitored data including frozen depth, water content, normal displacement, and frost heave force. Finally, the rational thickness of the insulation board was determined based on the partial insulation method.
      PubDate: Mon, 14 Jan 2019 14:05:09 +000
  • Experiment Study of Lateral Unloading Stress Path and Excess Pore Water
           Pressure on Creep Behavior of Soft Soil

    • Abstract: The unloading creep behavior of soft soil under lateral unloading stress path and excess pore water pressure is the core problem of time-dependent analysis of surrounding rock deformation under excavation of soft soil. The soft soil in Shenzhen, China, was selected in this study. The triaxial unloading creep tests of soft soil under different initial excess pore water pressures (0, 20, 40, and 60 kPa) were conducted with the K0 consolidation and lateral unloading stress paths. The results show that the unloading creep of soft soil was divided into three stages: attenuation creep, constant velocity creep, and accelerated creep. The duration of creep failure is approximately 5 to 30 mins. The unloading creep behavior of soft soil is significantly affected by the deviatoric stress and time. The nonlinearity of unloading creep of soft soil is gradually enhanced with the increase of the deviatoric stress and time. The initial excess pore water pressure has an obvious weakening effect on the unloading creep of soft soil. Under the same deviatoric stress, the unloading creep of soft soil is more significant with the increase of initial excess pore water pressure. Under undrained conditions, the excess pore water pressure generally decreases during the lateral unloading process and drops sharply at the moment of unloading creep damage. The pore water pressure coefficients during the unloading process were 0.73–1.16, 0.26–1.08, and 0.35–0.96, respectively, corresponding to the initial excess pore water pressures of 20, 40, and 60 kPa.
      PubDate: Mon, 14 Jan 2019 10:05:06 +000
  • Influence of Different Advancing Directions on Mining Effect Caused by a

    • Abstract: To study the correlation among advancing direction, strata behaviors, and rock burst induction, two physical models utilizing similar materials are established. Subsequently, the influence of advancing direction on the mining effect, caused by a fault, is studied. Moreover, the rock bursts affected by faults with different mining directions are compared and analyzed. The results show that the overlying structure varies notably, affected by fault cutting and fault dip, and the fault-affected zone and the cause of induced rock burst differ with different mining directions. However, regardless of mining directions, the overlying structure of the hanging wall is stable and fault activation is not obvious, while that of the footwall is relatively active and fault activation is violent; the risk of rock burst on the footwall is larger than that of mining on the hanging wall. Finally, an engineering case regarding two rock bursts in panel 6303 is used to verify some physical simulation results to a certain extent. Study results can serve as a reference for face layout and prevention of rock bursts under similar conditions.
      PubDate: Sun, 13 Jan 2019 13:30:04 +000
  • Static Experiment and Finite Element Analysis of a Multitower Cable-Stayed
           Bridge with a New Stiffening System

    • Abstract: Based on the stiffness limitations of the midtower in multitower cable-stayed bridges, a new stiffening system (tie-down cables) is proposed in this paper. The sag effects and wind-induced responses can be reduced with the proposed system because tie-down cables are short and aesthetic compared with traditional stiffening cables. The results show that the stiffening effect of tie-down cables is better than that of traditional stiffening cables in controlling the displacement and internal force of the bridge based on a static experiment and finite element analysis. Therefore, the proposed system can greatly improve the overall stiffness of a bridge, and its stiffening effect is better than that of traditional stiffening cables in controlling the displacement and internal force. The results provide a reference for the application of such systems in practical engineering.
      PubDate: Sun, 13 Jan 2019 13:30:03 +000
  • The Stability of Gob-Side Entry Retaining in a High-Gas-Risk Mine

    • Abstract: There are series of problems faced by most of the coal mines in China, ranging from low-coal recovery rate and strained replacement of working faces to gas accumulation in the upper corner of coalfaces. Based on the gob-side entry retaining at the No. 18205 working face in a coal mine in Shanxi Province, theoretical analysis, numerical simulation, and engineering practice were comprehensively used to study the mechanical characteristics of the influence of the width of the filling body beside the roadway and the stability of surrounding rock in a high-gas-risk mine. The rational width of the filling body beside the roadway was determined, and a concrete roadway-side support with a headed reinforcement-integrated strengthening technique was proposed, which have been applied in engineering practice. The stability of the filling body beside the roadway is mainly influenced by the movement of the overlying rock strata, and the stability of the surrounding rock can be improved effectively by rationally determining the width of the filling body beside the roadway. When the width of the roadway-side filling body is 2.5 m, the surrounding rock convergence of the gob-side entry retaining is relatively small at only 5% of the convergence ratio. It has been shown that the figure for roof separation is relatively low, and strata behaviors are relatively alleviated and gas density do not exceed the limit, which are the best results of gob-side entry retaining. The results of this research can provide theoretical guidance for excavation of coal mines with similar geological conditions and have some referential significance to safety and efficient production in coal mines.
      PubDate: Sun, 13 Jan 2019 10:05:13 +000
  • Repeatability and High-Speed Validation of Supplemental Lead-Extrusion
           Energy Dissipation Devices

    • Abstract: Recent research on supplemental damping enabling low to no damage structures has led to new devices, such as lead-extrusion-based high force-to-volume (HF2V) devices. They provide significant energy dissipation and force capacity in a small volume, enabling a range of novel low to no damage connections and systems. However, despite several research study tests and a limited range of velocity testing, they have never been tested across a realistic velocity range or for robustness to manufacture and design across several devices. These issues are hurdles that limit professional design uptake and add uncertainty and risk to their use in design. To address them, a serious damage-free dissipation device characterise its force capacity and variability due to manufacture (repeatable quasistatic force) and velocity input (peak force to connections). These outcomes are critical to size all the connections and foundations for the resultant demands and ensure robust, effective design. This manuscript presents the quasistatic testing of 96 devices designed for the same quasistatic force capacity, as well as high-speed prototype testing at velocities up to 200 mm/sec. Quasistatic tests show device forces vary with standard deviation, σ < 6.2% of design and average force. Peak input velocities of ∼200 mm/s produced peak resistive forces of ∼350 kN and increasingly weak velocity dependence as device input velocity increased, which is an advantage as it limits large demand forces to connecting elements and surrounding structure if larger than expected response velocities occur. Overall, the devices show stable hysteretic performance, with slight force reduction during high-speed testing due to heat build-up and softening of the lead working material. This testing quantified important HF2V device dynamics and robustness for designers and is an important step towards design uptake.
      PubDate: Sun, 13 Jan 2019 10:05:11 +000
  • Mechanical and Durability Characteristics of Latex-Modified
           Fiber-Reinforced Segment Concrete as a Function of Microsilica Content

    • Abstract: This study evaluated the performance of latex-modified fiber-reinforced concrete (RC) segments as a function of the substitution level of microsilica and type of reinforced fiber, to address the problem of corrosion of steel segments and steel-reinforced fiber segments, which are commonly used to shield tunnel-boring machine (TBM) tunnels in urban spaces. Our study compared macro synthetic, steel, and hybrid (macro synthetic fiber + polypropylene fiber) reinforcing fibers. The substitution levels of microsilica used were 0, 2, 4, and 6%. The target strengths were set at 40 and 60 MPa to test compressive strength, flexural strength, chloride ion penetration resistance, and impact resistance. Testing of latex-modified and fiber-reinforced segment concrete showed that the compressive strength, flexural strength, and chloride ion penetration resistance increased with an increasing substitution level of microsilica. These improvements were attributed to the densification of the concrete due to filling micropores with microsilica. Micro synthetic fiber was more effective in terms of improved compressive strength, flexural strength, and chloride ion penetration resistance than steel fiber. These results were due to the higher number of micro synthetic fibers per unit volume compared with steel fiber, which reduced the void volume and suppressed the development of internal cracks. The optimal microsilica content and fiber volume fraction of micro synthetic fiber were 6% and 1%, respectively. To evaluate the effects of the selected mixtures and hybrid fibers simultaneously, other mixing variables were fixed and a hybrid fiber mixture (combination of macro synthetic fibers and polypropylene fibers) was used. The hybrid fiber mixture produced better compressive strength, flexural strength, chloride ion penetration resistance, and impact resistance than the micro synthetic fibers.
      PubDate: Sun, 13 Jan 2019 10:05:09 +000
  • Effects of High Temperature and Cooling Pattern on the Chloride
           Permeability of Concrete

    • Abstract: Concrete structure is frequently subjected to the fire attack, whereas the permeability of concrete with fire-damage has received little consideration. This paper aims to investigate the chloride permeability of plain concrete and recycled aggregate concrete (RAC) with fire-damage, and the effects of various cooling patterns and recuring treatment on the chloride permeability are also studied. The results manifest that the elevated temperatures result in an increase in the fire-damage and chloride permeability of concrete, and that the increase becomes more obvious with the temperature above 400°C. Attributing to the water-cooling which provides a recuring environment, the chloride permeability after water-cooling is lower than that after air-cooling when the temperature is 200°C. Whereas when the temperature is above 400°C, the chloride permeability after water-cooling becomes higher than that after air-cooling, due to an extra damage that the water-cooling produces. The recuring treatment can reduce the chloride permeability of concrete with fire-damage, and the reduction becomes more significant when the concrete suffers a serious fire-damage. Exposing to the same condition of high temperature, the addition of recycled aggregate (RA) further boosts the fire-damage and chloride permeability of concrete. Particularly, the chloride permeability increases with the increasing of RA replacement ratios, linearly, and the increased temperatures further lead to an increase in the slope of the fitting straight line.
      PubDate: Sun, 13 Jan 2019 10:05:08 +000
  • Floor Failure Evolution Mechanism for a Fully Mechanized Longwall Mining
           Face above a Confined Aquifer

    • Abstract: In longwall mining, the risk of water inrushes from the floors of deeply buried coal seams is closely related to the degree and depth of the destruction for the mining floor. To analyze the main factors affecting floor failure and the evolution of such failures, this study considered the LW2703 working face of the Chengjiao Coal Mine in China, which is characterized by a large buried depth, complex fault structure, and high pressure from a confined aquifer. The characteristics affecting floor crack development depth were analyzed by considering friction angle, cohesion force, floor pressure, stress increase coefficient, and peak position. A FLAC3D simulation was performed to compare the degrees of floor damage that occurred for caving and backfilling methods during the mining process. High-density electrical detection was performed on-site and used to (1) determine the maximum depth range of the floor damage, (2) reveal the laws governing the evolution of damage in a mining floor, and (3) provide a reasonable basis for evaluating and preventing floor water inrush accidents.
      PubDate: Sun, 13 Jan 2019 10:05:07 +000
  • Selection of Optimal Threshold of Generalised Rock Quality Designation
           Based on Modified Blockiness Index

    • Abstract: Rock quality designation (RQD) is a critical index for quantifying the degree of rock mass jointing; it is widely used for evaluating the qualities and stabilities of engineering rock masses. However, the use of traditional RQD may yield inaccurate assessments because only core pieces longer than 100 mm are counted. To enhance the utility of RQD, generalised RQD was introduced. Based on the modified blockiness index (MBi), the determination of the optimal threshold of generalised RQD was performed. In this work, 35 types of hypothetical three-dimensional joint network models were constructed, and their generalised RQD values (with different thresholds) and MBi values were measured. The correlation between the standard ratings of MBi and RQD was assessed; based on this correlation, the theoretical RQD values of the 35 models were derived. The reasonable thresholds of the generalised RQD were determined according to the theoretical RQD values, and the optimal threshold of generalised RQD was obtained using the variation coefficient and anisotropy index of the jointing degree. The discrepancy between the results produced using traditional and generalised RQDs was discussed. Finally, an actual case study was conducted, and the results indicate that the generalised RQD associated with the optimal threshold determined in this study can properly quantify the degree of jointing of a given rock mass.
      PubDate: Thu, 10 Jan 2019 14:15:01 +000
  • Efficient Techniques for Solution of Complex Computational Tasks in
           Building Physics

    • Abstract: Various simplification or optimization techniques are sought that reduce demands of computational modeling on time or computing power while keeping a sufficient level of accuracy. In this paper, determination of hygrothermal performance of a brick block is presented using two homogenization techniques based on different principles. While the computational homogenization technique uses a multiscale method realized on the master/slave computer system, the materials homogenization comes out from the effective media theory (EMT), and after the determination of effective material properties, the whole isotropic problem can be transformed to one dimension. Contrary to most applications of EMT, free parameters of mixing formulas are not determined based on an experimental measurement of a single material property but on a complex hygrothermal performance of the element where the distribution of moisture and temperature over a reference year is taken into account. The calculated results from both techniques are compared with results obtained by high-performance computing without any computational simplifications. For materials homogenization, the best results are achieved when k = 0.9 in Lichtenecker’s mixing rule is assumed, which corresponds to a nearly parallel arrangement of the block. The root mean square error (RMSE) of relative humidity (RH) and temperature distribution is only 0.992% and 0.566°C, respectively. This is even better than the results of computational homogenization (RMSE: 1.502% of RH and 0.629°C). Besides obtaining sufficiently precise results, a significant time-saving is achieved, accounting for more than 99%, while being solved on a single-processor computer.
      PubDate: Thu, 10 Jan 2019 13:05:06 +000
  • Numerical Simulation of Parameters Optimization for Goaf Gas Boreholes

    • Abstract: In view of the ground drilling of the N2206 working face in Shanxi Wangzhuang Coal Mine, the gas concentration is low and the extraction effect is not good. Fluent computational fluid dynamics software was used to simulate the ground extraction drilling position of the N2206 working face in the goaf (the distance from the top of the coal seam and the distance from the return to the wind). The numerical simulation results show that when the final hole of the ground extraction hole in the goaf is 16 m from the roof of the coal seam and the distance from the return air is 45 m, the extraction effect is optimal. The average extraction gas volume is 9.78 m3/min, and the average extraction gas concentration is 43.95%, the best extraction effect is obtained. After optimizing the ground drilling position in the goaf and combining with the site implementation, the maximum gas scouring amount of the extraction is 12.59 m3/min, which is 3.42 m3/min higher than the original. The maximum gas concentration of extraction was 63.54%, which was 28.82% higher than the original. After optimization, the gas concentration of the extraction is more than 30%, and the extraction effect is very good. Field application results further validate the reliability of theoretical analysis and numerical simulation results.
      PubDate: Thu, 10 Jan 2019 07:05:09 +000
  • Evaluation of 3D Nonlinear Earthquake Behaviour of the Ilısu CFR Dam
           under Far-Fault Ground Motions

    • Abstract: In the recent times, many huge concrete face rockfill dams (CFRDs) have been modelled and constructed in the world, and many of these dams are located on the strong earthquake zones. Examination of the seismic behaviour of a CFR dam built on the seismic zone is very important to assess the safety and future of the dam. For this reason, the nonlinear earthquake behaviour of these dams should be constantly observed taking into account the seismicity of the zone. In this study, three-dimensional (3D) seismic behaviour of the Ilısu dam built on the East Anatolian Fault (EAF) line is examined considering the effect of the important various far-fault earthquakes. The 3D finite difference model of the Ilısu dam is created using the FLAC3D software based on the finite difference method. The dam body, foundation, and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body, concrete slab, and foundation to represent the interaction condition. The Mohr–Coulomb nonlinear material model is used for the rockfill materials and foundation. Moreover, the concrete slab is modelled considering the Drucker–Prager nonlinear material model to represent the nonlinearity of the concrete. Very special seismic boundary conditions rarely used for CFR dams in the past are used in this work. These boundary conditions are free-field and quiet boundary conditions. The free-field boundary condition that is a very important boundary condition for the nonlinear seismic analyses is considered for the lateral boundaries of the 3D model. In addition, the quiet artificial boundary condition is used for the bottom of the foundation. While defining these boundary conditions, the special fish functions are created and defined to the software. Moreover, the hysteric damping coefficients are separately calculated for all of the materials. These special damping values are defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. In the numerical analyses, a total of 7 various strong far-fault earthquakes are used for the 3D nonlinear earthquake analyses, and 7 different numerical analyses are performed for the full-reservoir condition of the Ilısu CFR dam. According to the seismic results, the principal stresses for the three critical nodal points on the dam body surface are examined and evaluated in detail. It is clearly understood that the nonlinear seismic behaviour of the Ilısu dam changes depending on the magnitudes and periods of the far-fault earthquakes. Each far-fault earthquake has different seismic effects on the nonlinear principal stress behaviour of the Ilısu CFR dam.
      PubDate: Tue, 08 Jan 2019 14:05:01 +000
  • Shield Equipment Optimization and Construction Control Technology in
           Water-Rich and Sandy Cobble Stratum: A Case Study of the First Yellow
           River Metro Tunnel Undercrossing

    • Abstract: The Lanzhou Yellow River Tunnel is the first metro shield tunnel that undercrosses the Yellow River in China. It was completed after successfully overcoming several construction challenges, including strata with a high proportion of large-sized sandy cobble stratum being saturated, large-scale sand pits along the bank of the Yellow River, and a combination of boulders and erratic blocks of rock. Given the difficulties in constructing the tunnel, this paper summarizes the scheme employed to transform the cutter and cutter head design to be applicable to sandy cobble stratum and the key technology used to form the slurry film to facilitate crossing the sand pits in a systematic way. The transformation scheme primarily involved the addition of an adjusting device to control the aperture ratio of the shield on the cutter head, a protective device for the hob hub, and a protective device for the piston rod in the oil cylinder of the crusher. The implementation of measures mentioned above guarantees the safe completion of the tunnel, which can provide a reference for similar projects.
      PubDate: Tue, 08 Jan 2019 12:05:03 +000
  • A Fractal Model to Interpret Porosity-Dependent Hydraulic Properties for
           Unsaturated Soils

    • Abstract: This paper presents a simple fractal model to quantify the effects of initial porosity on the soil-water retention curve and hydraulic conductivity of unsaturated soils. In the proposed conceptual model, the change of maximum pore radius, which largely determines the change of the air-entry value, is directly related to the fractal dimension of pore volume (D) and porosity change. The hydraulic properties of unsaturated soils are then governed by the maximum pore radius, the fractal dimension of pore volume (D), and the fractal dimension of drainable pore volume (Dd ≤ D). The new fractal model removes the empirical fitting parameters that have no physical meaning from existing models for porosity-dependent water retention and hydraulic behaviour and employs parameters of fractal dimensions that are intrinsic to the nature of the fractal porous materials. The proposed model is then validated against experimental data from the literature on soil-water retention behaviour and unsaturated conductivity.
      PubDate: Tue, 08 Jan 2019 07:05:25 +000
  • Advances in Seismic Performance Assessment and Improvement of Structures

    • PubDate: Tue, 08 Jan 2019 07:05:23 +000
  • Energy Evolution and Mechanical Features of Granite Subjected to Triaxial
           Loading-Unloading Cycles

    • Abstract: Energy evolution varies during the whole process of rock deformation, and mechanical parameters are markedly altered under cyclic loading and unloading. In order to investigate the effects of confining pressure on energy evolution and mechanical parameters, cyclic loading and unloading experiments were performed for granite under six different confining pressures. The experiment revealed the confining pressure effect on variation and allocation pattern of energy and mechanical characteristics. Four characteristic energy parameters, namely, storage energy rock, storage energy limit, energy storage ratio, and energy dissipation ratio, were proposed to describe energy storage and dissipation properties of rock. Elastic modulus and dissipation ratio presented a downward “U” and “U”-shaped trends, respectively, with loading and unloading cycles, while Poisson’s ratio increased linearly at the same time. Elastic energy was accumulated mainly before peak stress, while the energy dissipation and release were dominant after the peak strength. As the confining pressure increased, efficiency of energy accumulation and storage limit improved. An exponential function was proposed to express the relationship between the energy storage limit and confining pressure. Dissipation energy increased nonlinearly with the strain, and the volume dilatancy point defined the turning point from a relatively slow growth to an accelerated growth of dissipation energy. The dilatancy point can be used as an important indication for the rapid development of dissipation energy.
      PubDate: Sun, 06 Jan 2019 08:05:20 +000
  • Study on Modal Dynamic Response and Hydrodynamic Added Mass of
           Water-Surrounded Hollow Bridge Pier with Pile Foundation

    • Abstract: This article presents an experiment program conducted to study the modal dynamic response of hollow bridge pier with pile foundation submerged in water. The forced vibration method was applied on a specimen designated with four levels of tip mass; and the dynamic characteristics of the first four lateral vibration modes of the specimen, including the first two modes along the x-axis and the first two modes along the y-axis, were tested for three different cases where the specimen contacts with only outer water, only inner water, and both outer and inner water, respectively. Finite element models were established using potential-based fluid elements in accordance with the three different cases. The effects of fluid-structure interaction on the dynamic characteristics of the first four lateral modes of the specimen were then investigated through numerical simulations, and the finite element models were verified by validating numerical results against the experimental data. Based on the verified models, hydrodynamic added mass (HAM) and modal hydrodynamic added mass (MHAM) along the x-axis and y-axis of the specimen, induced by fluid-structure interaction, were studied with respect to the three cases. According to the distribution of modal acceleration and hydrodynamic pressure along the pier body, hydrodynamic added mass (HAM) distribution along the pier body was analyzed, and a simplified analytical model which equals the original fluid-structure numerical model was proposed to determine the dynamic characteristics of hollow bridge piers submerged in water. The research provides a better understanding of the effect of fluid-structure interaction on the modal dynamic response of deep-water bridges with hollow piers.
      PubDate: Sun, 06 Jan 2019 08:05:17 +000
  • Research on Failure Mechanism and Parameter Sensitivity of Zonal
           Disintegration in Deep Tunnel

    • Abstract: With the increase of excavation depth, the zonal disintegration phenomenon appears in the deep rock mass, which is quite different from the failure mode of shallow tunnel. In order to analyse the failure mechanism of this phenomenon, an elastoplastic softening damage model was put forward based on the softening damage characteristics of deep rock mass. The constitutive equations, the equilibrium equations, and the failure criterion were deduced. The theoretical solutions of radial displacement and radial stresses and tangential stresses of deep surrounding rock mass were calculated. The distribution law of zonal disintegration in deep tunnel was obtained. The theoretical solutions presented an oscillating mode. The theoretical calculated widths of fracture zones were in good agreement with the in situ test data. Besides, the sensitivity of different parameters to fracture morphology was calculated and analysed. The results show that the relative loading strength has a controlling role in the zonal disintegration morphology, followed by the cohesion force and deformation modulus, and the internal friction angle is the least. This study reveals the morphological characteristics and influencing factors of zonal disintegration, which provides a basis for the prediction and support control of fracture modes.
      PubDate: Thu, 03 Jan 2019 10:05:19 +000
  • Nondestructive Evaluation of FRP-Concrete Interface Bond due to Surface

    • Abstract: Carbon fiber-reinforced polymer (CFRP) laminates have been successfully used as externally bonded reinforcements for retrofitting, strengthening, and confinement of concrete structures. The adequacy of the CFRP-concrete bonding largely depends on the bond quality and integrity. The bond quality may be compromised during the CFRP installation process due to various factors. In this study, the effect of four such construction-related factors was assessed through nondestructive evaluation (NDE) methods, and quantification of the levels of CFRP debonding was achieved. The factors were surface cleanliness, surface wetness, upward vs. downward application, and surface voids. A common unidirectional CFRP was applied to small-scale concrete samples with factorial combinations. Ground-penetrating radar and thermography NDE methods were applied to detect possible disbonds at CFRP-concrete interfaces. Thermography was found to clearly detect all four factors, while the GPR was only effective for detecting the surface voids only. The thermal images overpredicted the amount of debonded CFRP areas by about 25%, possibly due to scaling errors between the thermograph and the sample surface. The maximum debonded CFRP area in any sample was about two percent of the total CFRP area. This is a negligible amount of debonding, showing that the factors considered are unlikely to significantly affect the laminate performance or any CFRP contribution to the concrete member strength or confinement.
      PubDate: Thu, 03 Jan 2019 10:05:17 +000
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-