for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> ENGINEERING (Total: 1955 journals)
    - CHEMICAL ENGINEERING (153 journals)
    - CIVIL ENGINEERING (148 journals)
    - ELECTRICAL ENGINEERING (82 journals)
    - ENGINEERING (1111 journals)
    - HYDRAULIC ENGINEERING (45 journals)
    - INDUSTRIAL ENGINEERING (52 journals)
    - MECHANICAL ENGINEERING (74 journals)

CIVIL ENGINEERING (148 journals)                  1 2     

ACI Structural Journal     Full-text available via subscription   (Followers: 5)
Acta Polytechnica : Journal of Advanced Engineering     Open Access  
Acta Structilia : Journal for the Physical and Development Sciences     Open Access   (Followers: 2)
Advances in Civil Engineering     Open Access   (Followers: 23)
Advances in Structural Engineering     Full-text available via subscription   (Followers: 18)
Ambiente Construído     Open Access   (Followers: 2)
American Journal of Civil Engineering and Architecture     Open Access   (Followers: 15)
Architectural Engineering     Open Access   (Followers: 3)
Archives of Civil Engineering     Open Access   (Followers: 6)
Archives of Hydro-Engineering and Environmental Mechanics     Open Access   (Followers: 2)
ATBU Journal of Environmental Technology     Open Access  
Australian Journal of Structural Engineering     Full-text available via subscription   (Followers: 3)
Baltic Journal of Road and Bridge Engineering     Full-text available via subscription  
BER : Building and Construction : Full Survey     Full-text available via subscription   (Followers: 8)
BER : Building Contractors' Survey     Full-text available via subscription   (Followers: 3)
BER : Building Sub-Contractors' Survey     Full-text available via subscription   (Followers: 2)
BER : Survey of Business Conditions in Building and Construction : An Executive Summary     Full-text available via subscription   (Followers: 4)
Berkeley Planning Journal     Open Access   (Followers: 5)
Bridge Structures : Assessment, Design and Construction     Hybrid Journal   (Followers: 12)
Building and Environment     Hybrid Journal   (Followers: 11)
Building Women     Full-text available via subscription  
Built Environment Project and Asset Management     Hybrid Journal   (Followers: 12)
Canadian Journal of Civil Engineering     Full-text available via subscription   (Followers: 11)
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 3)
Cement and Concrete Composites     Hybrid Journal   (Followers: 7)
Change Over Time     Full-text available via subscription   (Followers: 3)
Civil and Environmental Research     Open Access   (Followers: 12)
Civil Engineering     Hybrid Journal   (Followers: 10)
Civil Engineering = Siviele Ingenieurswese     Full-text available via subscription   (Followers: 4)
Civil Engineering and Environmental Systems     Hybrid Journal   (Followers: 4)
Civil Engineering and Technology     Open Access   (Followers: 1)
Civil Engineering Dimension     Open Access   (Followers: 3)
Cohesion and Structure     Full-text available via subscription   (Followers: 2)
Composite Structures     Hybrid Journal   (Followers: 35)
Computer-aided Civil and Infrastructure Engineering     Hybrid Journal   (Followers: 7)
Computers & Structures     Hybrid Journal   (Followers: 16)
Concrete Research Letters     Open Access   (Followers: 1)
Constructii : Journal of Civil Engineering Research     Open Access   (Followers: 4)
Construction Engineering     Open Access   (Followers: 3)
Construction Management and Economics     Hybrid Journal   (Followers: 25)
Construction Science     Open Access   (Followers: 1)
Constructive Approximation     Hybrid Journal  
Earthquake Engineering and Structural Dynamics     Hybrid Journal   (Followers: 11)
Enfoque UTE     Open Access   (Followers: 2)
Engineering Project Organization Journal     Hybrid Journal   (Followers: 4)
Engineering Structures     Hybrid Journal   (Followers: 11)
Engineering Structures and Technologies     Hybrid Journal   (Followers: 2)
Engineering, Construction and Architectural Management     Hybrid Journal   (Followers: 16)
Environmental Geotechnics     Open Access  
European Journal of Environmental and Civil Engineering     Hybrid Journal   (Followers: 2)
Fatigue & Fracture of Engineering Materials and Structures     Hybrid Journal   (Followers: 12)
Frattura ed Integrità Strutturale : Fracture and Structural Integrity     Open Access   (Followers: 1)
Frontiers of Structural and Civil Engineering     Hybrid Journal   (Followers: 4)
Geomaterials     Open Access   (Followers: 2)
Geosystem Engineering     Hybrid Journal   (Followers: 3)
Geotechnik     Hybrid Journal  
Géotechnique Letters     Hybrid Journal   (Followers: 3)
HBRC Journal     Open Access   (Followers: 1)
HVAC&R Research     Hybrid Journal   (Followers: 1)
Indoor and Built Environment     Hybrid Journal   (Followers: 1)
Ingenio Magno     Open Access  
Insight - Non-Destructive Testing and Condition Monitoring     Full-text available via subscription   (Followers: 4)
International Journal for Service Learning in Engineering     Open Access  
International Journal of 3-D Information Modeling     Full-text available via subscription   (Followers: 2)
International Journal of Advanced Structural Engineering     Open Access   (Followers: 7)
International Journal of Concrete Structures and Materials     Open Access   (Followers: 5)
International Journal of Construction Engineering and Management     Open Access   (Followers: 3)
International Journal of Protective Structures     Full-text available via subscription   (Followers: 5)
International Journal of Steel Structures     Hybrid Journal   (Followers: 4)
International Journal of Structural Engineering     Hybrid Journal   (Followers: 7)
International Journal of Structural Integrity     Hybrid Journal  
International Journal of Structural Stability and Dynamics     Hybrid Journal   (Followers: 5)
International Journal of Sustainable Built Environment     Open Access   (Followers: 2)
International Journal of Sustainable Construction Engineering and Technology     Open Access   (Followers: 7)
ISRN Civil Engineering     Open Access   (Followers: 4)
ISRN Power Engineering     Open Access   (Followers: 1)
Journal of Accessibility and Design for All     Open Access   (Followers: 3)
Journal of Applied Fire Science     Full-text available via subscription  
Journal of Bridge Engineering     Full-text available via subscription   (Followers: 14)
Journal of Building Performance Simulation     Hybrid Journal   (Followers: 3)
Journal of Civil Engineering and Construction Technology     Open Access   (Followers: 2)
Journal of Civil Engineering and Management     Hybrid Journal   (Followers: 5)
Journal of Civil Engineering and Science     Open Access   (Followers: 9)
Journal of Civil Engineering Research     Open Access   (Followers: 9)
Journal of Civil Society     Hybrid Journal   (Followers: 2)
Journal of Civil Structural Health Monitoring     Hybrid Journal   (Followers: 1)
Journal of Composites     Open Access   (Followers: 7)
Journal of Composites for Construction     Full-text available via subscription   (Followers: 8)
Journal of Computing in Civil Engineering     Full-text available via subscription   (Followers: 17)
Journal of Construction Engineering     Open Access   (Followers: 3)
Journal of Construction Engineering and Management     Full-text available via subscription   (Followers: 20)
Journal of Construction Engineering, Technology & Management     Full-text available via subscription   (Followers: 3)
Journal of Constructional Steel Research     Hybrid Journal   (Followers: 6)
Journal of Earth Sciences and Geotechnical Engineering     Open Access   (Followers: 1)
Journal of Fluids and Structures     Hybrid Journal   (Followers: 2)
Journal of Frontiers in Construction Engineering     Open Access   (Followers: 1)
Journal of Green Building     Full-text available via subscription   (Followers: 7)
Journal of Highway and Transportation Research and Development (English Edition)     Full-text available via subscription   (Followers: 5)
Journal of Infrastructure Systems     Full-text available via subscription   (Followers: 13)
Journal of Legal Affairs and Dispute Resolution in Engineering and Construction     Full-text available via subscription   (Followers: 5)

        1 2     

Journal Cover Structural and Multidisciplinary Optimization
   Journal TOC RSS feeds Export to Zotero [6 followers]  Follow    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
     ISSN (Print) 1615-1488 - ISSN (Online) 1615-147X
     Published by Springer-Verlag Homepage  [2210 journals]   [SJR: 1.273]   [H-I: 54]
  • Multidisciplinary multifidelity optimisation of a flexible wing aerofoil
           with reference to a small UAV
    • Abstract: The preliminary Multidisciplinary Design and Optimisation of a flexible wing aerofoil apropos a small Unmanned Air Vehicle is performed using a multifidelity model-based strategy. Both the passively adaptive structure and the shape of the flexible wing aerofoil are optimised for best aerodynamic performance under aero-structural constraints, within a coupled aeroelastic formulation. A typical flight mission for surveillance purposes is considered and includes the potential occurrence of wind gusts. A metamodel for the high-fidelity objective function and each of the constraints is built, based on a tuned low-fidelity one, in order to improve the efficiency of the optimisation process. Both metamodels are based on solutions of the aeroelastic equations for a flexible aerofoil but employ different levels of complexity and computational cost for modelling aerodynamics and structural dynamics within a modal approach. The high-fidelity model employs nonlinear Computational Fluid Dynamics coupled with a full set of structural modes, whereas the low-fidelity one employs linear thin aerofoil theory coupled with a reduced set of structural modes. The low-fidelity responses are then corrected according to few high-fidelity responses, as prescribed by an appropriate Design of Experiment, by means of a suitable tuning technique. A standard Genetic Algorithm is hence utilised to find the global optimum, showing that a flexible aerofoil is characterised by higher aerodynamic efficiency than its rigid counterpart. Wing weight reduction is also accomplished when a Multiobjective Genetic Algorithm is adopted.
      PubDate: 2014-10-01
  • Bilevel multiobjective packaging optimization for automotive design
    • Abstract: The successful application of multiobjective optimization to engineering problems has motivated studies of more complex systems involving multiple subsystems and design disciplines, each with multiple design criteria. Complex system design requires participation of different teams that are highly specialized within each discipline and subsystem. Such a high differentiation results in limited sharing of information among the design teams. The mathematical modeling and the solution algorithm proposed in this paper address the issue of coordinating multiple design problems that negotiate according to conflicting criteria. The design of the layout of hybrid vehicles is formulated as a bilevel decomposed problem including a vehicle level and a battery level in concert with the specialization of the respective design teams required at each level. An iterative algorithm, the Multiobjective Decomposition Algorithm (MODA) is proposed, whose generated sequences are shown to converge to efficient designs for the overall design problem under certain conditions examined in the context of the block coordinate descent method and the method of multipliers. MODA applied to the hybrid electric design problem captures the bilevel tradeoffs originating by the conflicting objectives at the vehicle and battery levels.
      PubDate: 2014-10-01
  • Seismic optimum design of triple friction pendulum bearing subjected to
           near-fault pulse-like ground motions
    • Abstract: Triple Friction Pendulum Bearing (TFPB) as a novel seismic isolator, provides different combinations of stiffness and damping during its course of motion. The adaptive behavior of TFPBs is one of the practical solutions for unsuitable performance of seismic isolation systems under near-fault ground motions. Selecting the TFPB’s design variables (curvature radii, friction coefficients and displacement capacity of sliding surfaces) is complicated process while finding the optimized combination of these variables depends on input ground motion characteristics and seismic performance objectives of the superstructure. Here first, comprehensive nonlinear dynamic analyses are performed to identify influence of the design variables on superstructure response (roof acceleration and displacement of isolated level). Next, a specific numerical optimization method based on Genetic Algorithms (GA) is applied to determine the optimum values of the design variables that minimize superstructure demands. In this process, near-fault ground motions are employed with ranges of pulse periods and hazard levels as input excitations. According to GA results, the derived optimum design variables of TFPB have significantly distinct intervals for different target responses such as story drift and TFPB displacement. Therefore response targets (single objective functions) are combined to make a new fitness function. The proposed optimization method for determining design variables and design intervals can be used for investigating many other types of superstructures with similar behaviors.
      PubDate: 2014-10-01
  • Material interface effects on the topology optimizationof multi-phase
           structures using a level set method
    • Abstract: A level set method is used as a framework to study the effects of including material interface properties in the optimization of multi-phase elastic and thermoelastic structures. In contrast to previous approaches, the material properties do not have a discontinuous change across the interface that is often represented by a sharp geometric boundary between material regions. Instead, finite material interfaces with monotonic and non-monotonic property variations over a physically motivated interface zone are investigated. Numerical results are provided for several 2D problems including compliance and displacement minimization of structures composed of two and three materials. The results highlight the design performance changes attributed to the presence of the continuously graded material interface properties.
      PubDate: 2014-10-01
  • Eigenvalue topology optimization of structures using a parameterized level
           set method
    • Abstract: Preventing a structure from resonance is important in many real-world applications. Because an external excitation frequency can be lower than the fundamental eigenfrequency or between the eigenfrequencies of a structure, there is a strong need for eigenfrequency optimization technology to optimize the fundamental eigenfrequency and, in addition, the k-th eigenfrequency and to maximize the gap between eigenfrequencies. However, previous optimization studies on vibrating elastic structures that used the level set method have been devoted to the optimization of the fundamental eigenfrequency, whereas the higher-order eigenfrequencies optimization problem has seldom been considered. This paper presents an eigenfrequency optimization technology that is based on the compactly supported radial basis functions (CS-RBFs) parameterized level-set method, using the fundamental eigenfrequency, the eigenfrequency of a given higher-order, and the gap between two consecutive eigenfrequencies as the optimization objectives. Furthermore, to address the oscillation problem of the objective function, we adopt an exponential weighted optimization model of a number of the lower eigenfrequencies for multiple eigenvalue optimizations, and we utilize mode-tracking technology for the single eigenvalue optimization.In addition, we further extend the CS-RBFs parameterized level-set method to an optimization that is performed with geometric constraints, which means that the size and position of the regular holes in the structure can be optimized with the shape and topology. This approach is useful in real-world applications. The effectiveness of this method is demonstrated by several widely investigated examples that have various objectives.
      PubDate: 2014-10-01
  • The gradient projection method for structural topology optimization
           including density-dependent force
    • Abstract: This paper proposes a modified gradient projection method (GPM) that can solve the structural topology optimization problem including density-dependent force efficiently. The particular difficulty of the considered problem is the non-monotonicity of the objective function and consequently the optimization problem is not definitely constrained. Transformation of variables technique is used to eliminate the constraints of the design variables, and thus the volume is the only possible constraint. The negative gradient of the objective function is adopted as the most promising search direction when the point is inside the feasible domain, while the projected negative gradient is used instead on condition that the point is on the hypersurface of the constraint. A rational step size is given via a self-adjustment mechanism that ensures the step size is a good compromising between efficiency and reliability. Furthermore, some image processing techniques are employed to improve the layouts. Numerical examples with different prescribed volume fractions and different load ratios are tested respectively to illustrate the characteristics of the topology optimization with density-dependent load.
      PubDate: 2014-10-01
  • Optimal SVM parameter selection for non-separable and unbalanced datasets
    • Abstract: This article presents a study of three validation metrics used for the selection of optimal parameters of a support vector machine (SVM) classifier in the case of non-separable and unbalanced datasets. This situation is often encountered when the data is obtained experimentally or clinically. The three metrics selected in this work are the area under the ROC curve (AUC), accuracy, and balanced accuracy. These validation metrics are tested using computational data only, which enables the creation of fully separable sets of data. This way, non-separable datasets, representative of a real-world problem, can be created by projection onto a lower dimensional sub-space. The knowledge of the separable dataset, unknown in real-world problems, provides a reference to compare the three validation metrics using a quantity referred to as the “weighted likelihood”. As an application example, the study investigates a classification model for hip fracture prediction. The data is obtained from a parameterized finite element model of a femur. The performance of the various validation metrics is studied for several levels of separability, ratios of unbalance, and training set sizes.
      PubDate: 2014-10-01
  • Topological optimization of two-dimensional phononic crystals based on the
           finite element method and genetic algorithm
    • Abstract: By using the finite element method and a “coarse to fine” two-stage genetic algorithm as the forward calculation method and the inverse search scheme, respectively, we perform both the unconstrained and constrained optimal design of the unit cell topology of the two-dimensional square-latticed solid phononic crystals (PnCs), to maximize the relative widths of the gaps between the adjacent energy bands of the PnCs. In the constrained optimizations, the maximization is subjected to the constraint of a predefined average density. In the numerical results, the variation patterns of the optimized structures with the order of the bandgap for both the out-plane shear and the in-plane mixed elastic wave modes are presented, and the effects of both the material contrast and the predefined average density on the obtained optimal structures are discussed.
      PubDate: 2014-10-01
  • Sensitivity analysis of structural response to position of external
           applied load: in plane stress condition
    • Abstract: Procedures for sensitivity analysis of the structural responses, i.e., nodal displacement, mean compliance and local stresses within an element, with respect to the location of an external applied load are developed. This is mainly because the external loads are often of some freedom to change their application positions in the structural preliminary design. Apart from the structural response evaluation, the finite element method is employed in this work for the sensitivity analysis implementation of a plane stress continuum structure. First, an external load is transformed into the equivalent nodal forces such that the influence of an external load shift is represented completely by the magnitude variation of the associated nodal forces, upon which the first- and second-order derivatives of an external load to its location change are performed respectively in a closed form by the aid of the features of the element shape functions. Then, the relevant sensitivities of the structural responses aforementioned are formulated readily with the discrete method. Finally, two typical examples are provided to demonstrate the validity of the sensitivity formulations presented, and the numerical results show a perfect accuracy of calculation of the response sensitivity.
      PubDate: 2014-10-01
  • A confirmation of a conjecture on the existence of symmetric optimal
           solution under multiple loads
    • Abstract: In this note, a conjecture on the existence of symmetric optimal solution under multiple loads made in Rozvany (Struct Multidisc Optim 43:297–317, 2011, Conjecture 4) has been confirmed.
      PubDate: 2014-10-01
  • Structural topology optimization with constraints on multi-fastener joint
    • Abstract: This paper addresses an important problem of design constraints on fastener joint loads that are well recognized in the design of assembled aircraft structures. To avoid the failure of fastener joints, standard topology optimization is extended not only to minimize the structural compliance but also to control shear loads intensities over fasteners. It is shown that the underlying design scheme is to ameliorate the stiffness distribution over the structure in accordance with the control of load distributions over fastener joints. Typical examples are studied by means of topology optimization with joint load constraints and the standard compliance design. The effects of joint load constraints are highlighted by comparing numerical optimization results obtained by both methods. Meanwhile, resin models of optimized designs are fabricated by rapid prototyping process for loading test experiments to make sure the effectiveness of the proposed method.
      PubDate: 2014-10-01
  • Element deformation scaling for robust geometrically nonlinear analyses in
           topology optimization
    • Abstract: Geometrically nonlinear structural analyses in conventional density-based Topology Optimization (TO) may fail due to excessive deformation, concerning in particular compression in low stiffness parts (void) of the domain. This limits the application of TO in the field of realistic large deflection mechanisms, actuators and multi-stable structures. This paper investigates the source of the instabilities that may be encountered using the conventional strategy to scale the stiffness of finite elements using the density (e.g. SIMP). Based on the findings, we propose a new design interpolation, called Element Deformation Scaling (EDS), to obtain more robust structural analyses for geometrically nonlinear TO. Instead of scaling the stiffness, EDS scales the local internal displacements, and therefore, the deformation, in a low-density finite element. This ensures that, even for extremely deformed finite elements, the internal displacements remain in the range of applicability of the material model and finite element description. The effectiveness of the proposed method is compared with the conventional approach (e.g. SIMP) and the Element Connectivity Parameterization (ECP) method using several numerical experiments using path-following techniques. The proposed method, EDS, is demonstrated to lead to more robust structural analyses than the other approaches. However, EDS still has limitations. These limitations are discussed in detail.
      PubDate: 2014-10-01
  • Analysis and design of acoustic transition sections for impedance matching
           and mode conversion
    • Abstract: This work considers the problem of designing passive transition sections to provide impedance matching and mode conversion for acoustic wave propagation. The base configuration consists of two waveguides connected by a transition section. The objective is to find a placement of material inside this section to make it function as an impedance matcher or a mode converter with minimal losses. A finite element approximation of the Helmholtz equation in a truncated domain together with Dirichlet-to-Neumann type non-reflecting boundary conditions models the wave propagation. Material distribution techniques solve the resulting topology optimization problem and the resulting interfacial devices show good transmission properties.
      PubDate: 2014-09-01
  • Conceptual and basic designs of the Mobile Harbor crane based on topology
           and shape optimization
    • Abstract: The Mobile Harbor (MH) has been recently proposed as a novel maritime cargo transfer system that can move to a container ship anchored in the deep sea and handle containers directly at sea with the aid of a stabilized MH crane. Because this system operates under at-sea conditions, the MH crane must be designed to support an inertia load and wind force, as well as its self-weight. The wave-induced motions of the MH, e.g. rolling, pitching, and heaving, generate a significant amount of inertia load, which has not been considered in the design of conventional quayside cranes installed on stable ground. Wind force is also a critical design factor due to the higher wind velocity in the open sea. In addition to the aforementioned structural rigidity, mass minimization is also important in the structural design of MH cranes because it reduces the overturning moment and therefore enhances ship stability. In this paper, the sensitivities of the design-dependent loads (i.e. self-weight, inertia load, and wind force) are derived with respect to the design variables, and then a topology optimization is conducted with the derived sensitivities in order to obtain a conceptual design. Then, the conceptual design is elaborated into a three-dimensional basic design through shape optimization with design regulations for offshore cranes. Through the integrated design process with the topology and shape optimizations, a conceptual and basic design is successfully obtained for the MH crane.
      PubDate: 2014-09-01
  • Pointwise ensemble of meta-models using        class="a-plus-plus">v nearest points
    • Abstract: As the use of meta-models to replace computationally-intensive simulations for estimating real system behaviors increases, there is an increasing need to select appropriate meta-models that well represent real system behaviors. Since in most cases designers do not know the behavior of the real system a priori, however, they often have trouble selecting a suitable meta-model. In order to provide robust prediction performance, ensembles of meta-models have been developed which linearly combines stand-alone meta-models. In this study, we propose a new pointwise ensemble of meta-models whose weights vary according to the prediction point of interest. The suggested method can include all kinds of stand-alone meta-models for ensemble construction, and can interpolate real system response values at training points, even if regression models are included as stand-alone meta-models. To evaluate the effectiveness of the proposed method, its prediction performance is compared with those of existing ensembles of meta-models using well-known mathematical functions. The results show that our pointwise ensemble of meta-models provides more robust and accurate predictions than existing models for a majority of test problems.
      PubDate: 2014-09-01
  • Piezoresistive device optimization using topological derivative concepts
    • Abstract: A piezoresistive sensor is composed of a piezoresistive membrane attached to a flexible plate. The piezoresistive material is anisotropic, and its electrical properties change when subjected to mechanical stresses. In this work, the topology design of a piezoresistive pressure sensor is addressed. More specifically, an optimization technique based on topological sensitivity analysis is proposed in order to obtain the optimized distribution of piezoresistive material over the plate. In most of the works regarding topological sensitivity analysis, isotropic materials are considered. However, the problem of conductivity in an anisotropic non-homogeneous domain has been recently addressed, and a closed form for the topological derivative associated to the energy shape functional has been presented. In this work, on the other hand, a closed form for the topological derivative associated with a multi-objective shape functional related to the steady-state anisotropic current density diffusion problem is presented. To illustrate the applicability of the closed formula and the proposed optimization procedure, numerical examples regarding the conceptual design of piezoresistive sensors, considering distinct optimization parameters and boundary conditions in the conductivity problem, are presented.
      PubDate: 2014-09-01
  • A non-parametric free-form optimization method for shell structures
    • Abstract: This paper presents a numerical shape optimization method for the optimum free-form design of shell structures. It is assumed that the shell is varied in the out-of-plane direction to the surface to determine the optimal free-form. A compliance minimization problem subject to a volume constraint is treated here as an example of free-form design problem of shell structures. This problem is formulated as a distributed-parameter, or non-parametric, shape optimization problem. The shape gradient function and the optimality conditions are theoretically derived using the material derivative formulae, the Lagrange multiplier method and the adjoint variable method. The negative shape gradient function is applied to the shell surface as a fictitious distributed traction force to vary the shell. Mathematically, this method is a gradient method with a Laplacian smoother in the Hilbert space. Therefore, this shape variation makes it possible both to reduce the objective functional and to maintain the mesh regularity simultaneously. With this method, the optimal smooth curvature distribution of a shell structure can be determined without shape parameterization. The calculated results show the effectiveness of the proposed method for the optimum free-form design of shell structures.
      PubDate: 2014-09-01
  • Structural static reanalysis for modification of supports
    • Abstract: This paper is focused on structural static reanalysis problem with modification of supports. An efficient reanalysis method is proposed. The method is based on the introduction of the modified master stiffness matrices, the rank-one decomposition of the corresponding incremental stiffness matrix, and the sparse Cholesky rank-one update/downdate algorithm. Adding and deleting of supports with arbitrary orientations can be dealt with. Numerical examples show that exact results can be obtained by the proposed method, and the computational times can be significantly reduced in comparison with the direct analysis method.
      PubDate: 2014-09-01
  • A level set-based topology optimization incorporating arbitrary Lagrangian
           Eulerian method for wavelength filter using extraordinary optical
    • Abstract: This paper deals with structural optimization for designing periodic structures in a hole array wavelength filter. The hole array wavelength filter that consists of metallic thin film and dielectric enables to transmit narrow bandwidth light. It is known that transmission spectrum can be changed not only by the periodicity of hole array but also by the shape of holes. For optimizing the hole shape, the level set method is used in this study. In the ordinary level set method, the boundaries are implicitly expressed by the zero level set of a scalar function, called the level set function, within a fixed mesh. Therefore, the material interpolation becomes numerically awkward within the elements across the implicit zero level set because those elements inevitably take on intermediate material properties even if the boundary of zero level set are mathematically clear. As the result, the optimization is likely to yield wrong solution. Here, a new level set optimization method incorporating Arbitrary Lagrangian Eulerian method is proposed to eliminate intermediate values on the interfaces perfectly. As a result, the proposed method can successfully perform the structural optimization of hole shape without intermediate values.
      PubDate: 2014-09-01
  • Robust structural topology optimization under random field loading
    • Abstract: A new approach to solving the robust topology optimization problem considering random field loading uncertainty was developed. The Karhunen-Loeve expansion was employed to characterize the random field as a reduced set of random variables. Efficient method of sensitivity analysis was developed and integrated into the density based topology optimization approach. The numerical example demonstrated the efficiency of the proposed approach and the effect of loading uncertainty on the robust design results.
      PubDate: 2014-09-01
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2014