for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> BIOLOGY (Total: 2951 journals)
    - BIOCHEMISTRY (222 journals)
    - BIOENGINEERING (102 journals)
    - BIOLOGY (1419 journals)
    - BIOPHYSICS (46 journals)
    - BIOTECHNOLOGY (207 journals)
    - BOTANY (218 journals)
    - CYTOLOGY AND HISTOLOGY (25 journals)
    - ENTOMOLOGY (64 journals)
    - GENETICS (154 journals)
    - MICROBIOLOGY (252 journals)
    - MICROSCOPY (11 journals)
    - ORNITHOLOGY (28 journals)
    - PHYSIOLOGY (67 journals)
    - ZOOLOGY (136 journals)

MICROBIOLOGY (252 journals)                  1 2     

Showing 1 - 0 of 0 Journals sorted alphabetically
Acta Microbiologica et Immunologica Hungarica     Full-text available via subscription   (Followers: 5)
Addiction Genetics     Open Access   (Followers: 5)
Advances in Applied Microbiology     Full-text available via subscription   (Followers: 14)
Advances in Microbiology     Open Access   (Followers: 15)
Advances in Molecular Imaging     Open Access   (Followers: 1)
African Journal of Clinical and Experimental Microbiology     Open Access  
African Journal of Microbiology Research     Open Access   (Followers: 1)
Algorithms for Molecular Biology     Open Access   (Followers: 4)
American Journal of Infectious Diseases and Microbiology     Open Access   (Followers: 15)
American Journal of Microbiological Research     Open Access   (Followers: 1)
American Journal of Microbiology     Open Access   (Followers: 12)
American Journal of Molecular Biology     Open Access   (Followers: 2)
American Journal of Stem Cell Research     Open Access   (Followers: 2)
Annals of Clinical Microbiology and Antimicrobials     Open Access   (Followers: 6)
Annals of Microbiology     Hybrid Journal   (Followers: 7)
Annual Review of Microbiology     Full-text available via subscription   (Followers: 30)
Antimicrobial Agents and Chemotherapy     Hybrid Journal   (Followers: 17)
Applied and Environmental Microbiology     Hybrid Journal   (Followers: 37)
Applied Biochemistry and Microbiology     Hybrid Journal   (Followers: 15)
Applied Microbiology and Biotechnology     Hybrid Journal   (Followers: 53)
Aquatic Microbial Ecology     Hybrid Journal   (Followers: 2)
Archives of Microbiology     Hybrid Journal   (Followers: 7)
Avicenna Journal of Clinical Microbiology and Infection     Open Access   (Followers: 1)
Bangladesh Journal of Medical Microbiology     Open Access  
Beneficial Microbes     Full-text available via subscription   (Followers: 1)
Bio-Research     Full-text available via subscription  
BioArchitecture     Full-text available via subscription  
Biocell     Open Access  
Bioethanol     Open Access  
Biomaterials Science     Full-text available via subscription   (Followers: 6)
BioMolecular Concepts     Hybrid Journal   (Followers: 2)
Biomolecular Detection and Quantification     Open Access  
Biomolecules     Open Access   (Followers: 1)
Biotechnology and Molecular Biology Reviews     Open Access  
BMC Microbiology     Open Access   (Followers: 8)
Brazilian Journal of Microbiology     Open Access   (Followers: 2)
Canadian Journal of Infectious Diseases and Medical Microbiology     Open Access   (Followers: 1)
Canadian Journal of Microbiology     Full-text available via subscription   (Followers: 3)
Cell Biology : Research & Therapy     Hybrid Journal   (Followers: 2)
Cell Host & Microbe     Full-text available via subscription   (Followers: 11)
Cell Medicine     Open Access   (Followers: 3)
Cell Regeneration     Open Access   (Followers: 1)
Cell Stem Cell     Full-text available via subscription   (Followers: 27)
CellBio     Open Access  
Cells     Open Access   (Followers: 1)
Cellular & Molecular Immunology     Hybrid Journal   (Followers: 10)
Cellular and Molecular Biology Letters     Open Access   (Followers: 1)
Cellular and Molecular Life Sciences (CMLS)     Hybrid Journal   (Followers: 6)
Cellular Microbiology     Hybrid Journal   (Followers: 7)
Cheese: Chemistry, Physics and Microbiology     Full-text available via subscription   (Followers: 2)
Chimerism     Full-text available via subscription  
Clinical Microbiology and Infection     Hybrid Journal   (Followers: 15)
Clinical Microbiology Newsletter     Hybrid Journal   (Followers: 4)
Clinical Microbiology Reviews     Hybrid Journal   (Followers: 13)
Comparative Immunology, Microbiology and Infectious Diseases     Hybrid Journal   (Followers: 10)
Computational Molecular Bioscience     Open Access   (Followers: 1)
Critical Reviews in Microbiology     Hybrid Journal   (Followers: 11)
Current Clinical Microbiology Reports     Hybrid Journal   (Followers: 1)
Current Issues in Molecular Biology     Open Access   (Followers: 2)
Current Microbiology     Hybrid Journal   (Followers: 9)
Current Molecular Biology Reports     Hybrid Journal   (Followers: 1)
Current Molecular Imaging     Hybrid Journal  
Current Opinion in Microbiology     Hybrid Journal   (Followers: 26)
Current Tissue Engineering     Hybrid Journal   (Followers: 1)
Current Topics in Microbiology and Immunology     Hybrid Journal   (Followers: 5)
Diagnostic Microbiology and Infectious Disease     Hybrid Journal   (Followers: 8)
Disease and Molecular Medicine     Open Access   (Followers: 1)
DNA Barcodes     Open Access  
Egyptian Journal of Biochemistry and Molecular Biology     Full-text available via subscription  
Emerging Microbes & Infections     Open Access   (Followers: 2)
Environmental Microbiology     Hybrid Journal   (Followers: 13)
Environmental Microbiology Reports     Hybrid Journal   (Followers: 3)
Enzyme and Microbial Technology     Hybrid Journal   (Followers: 12)
Epigenetics of Degenerative Diseases     Open Access   (Followers: 4)
European Journal of Clinical Microbiology & Infectious Diseases     Hybrid Journal   (Followers: 16)
European Journal of Microbiology and Immunology     Open Access   (Followers: 8)
Experimental and Molecular Pathology     Hybrid Journal   (Followers: 5)
Experimental Cell Research     Hybrid Journal   (Followers: 5)
Fems Microbiology Ecology     Hybrid Journal   (Followers: 7)
Fems Microbiology Letters     Hybrid Journal   (Followers: 17)
Fems Microbiology Reviews     Hybrid Journal   (Followers: 21)
Fermentation     Open Access  
Folia Histochemica et Cytobiologica     Open Access  
Folia Microbiologica     Hybrid Journal   (Followers: 1)
Food Microbiology     Hybrid Journal   (Followers: 14)
Frontiers in Cell and Developmental Biology     Open Access   (Followers: 2)
Frontiers in Cellular and Infection Microbiology     Open Access   (Followers: 3)
Frontiers in Cellular Neuroscience     Open Access   (Followers: 4)
Frontiers in Microbiology     Open Access   (Followers: 8)
Frontiers in Molecular Neuroscience     Open Access   (Followers: 1)
Future Microbiology     Full-text available via subscription   (Followers: 3)
Future Virology     Full-text available via subscription   (Followers: 7)
Gene Expression     Full-text available via subscription  
Genetica si Biologie Moleculara     Open Access  
Genetics and Molecular Research     Open Access   (Followers: 3)
Geomicrobiology Journal     Hybrid Journal   (Followers: 2)
Gut Microbes     Full-text available via subscription   (Followers: 7)
IAWA Journal     Hybrid Journal  
Indian Journal of Microbiology     Hybrid Journal   (Followers: 2)
Indian Journal of Pathology and Microbiology     Open Access   (Followers: 1)
Infection Ecology & Epidemiology     Open Access   (Followers: 3)
Inside the Cell     Open Access  
International Journal of Antimicrobial Agents     Hybrid Journal   (Followers: 5)
International Journal of Bacteriology     Open Access  
International Journal of Bioassays     Open Access   (Followers: 2)
International Journal of Biotechnology and Molecular Biology Research     Open Access   (Followers: 2)
International Journal of Food Microbiology     Hybrid Journal   (Followers: 12)
International Journal of Genetics and Molecular Biology     Open Access  
International Journal of Infection and Microbiology     Open Access   (Followers: 1)
International Journal of Medical Microbiology     Hybrid Journal   (Followers: 7)
International Journal of Molecular Medicine     Full-text available via subscription   (Followers: 5)
International Journal of Mycobacteriology     Open Access  
International Journal of Systematic and Evolutionary Microbiology     Full-text available via subscription   (Followers: 3)
International Journal of Virology and Molecular Biology     Open Access  
International Microbiology     Open Access   (Followers: 3)
Invertebrate Immunity     Open Access   (Followers: 1)
JMM Case Reports     Open Access  
Journal of Cell Science & Therapy     Open Access   (Followers: 2)
Journal of Microbial & Biochemical Technology     Open Access   (Followers: 1)
Journal of Applied Biology & Biotechnology     Open Access   (Followers: 1)
Journal of Applied Microbiology     Hybrid Journal   (Followers: 10)
Journal of Bacteriology     Hybrid Journal   (Followers: 23)
Journal of Basic Microbiology     Hybrid Journal   (Followers: 3)
Journal of Biomolecular Structure and Dynamics     Hybrid Journal   (Followers: 2)
Journal of Bionanoscience     Full-text available via subscription  
Journal of Brewing and Distilling     Open Access   (Followers: 1)
Journal of Cell and Animal Biology     Open Access  
Journal of Cell Biology and Genetics     Open Access   (Followers: 1)
Journal of Clinical Microbiology     Hybrid Journal   (Followers: 25)
Journal of Clinical Pathology     Full-text available via subscription   (Followers: 12)
Journal of Extracellular Vesicles     Open Access   (Followers: 3)
Journal of Food Microbiology     Open Access   (Followers: 3)
Journal of General and Molecular Virology     Open Access  
Journal of Genes and Cells     Open Access  
Journal of Global Antimicrobial Resistance     Hybrid Journal   (Followers: 1)
Journal of Histology     Open Access  
Journal of Industrial Microbiology and Biotechnology     Hybrid Journal   (Followers: 10)
Journal of Medical Microbiology     Full-text available via subscription   (Followers: 3)
Journal of Metabonomics & Metabolites     Partially Free   (Followers: 1)
Journal of Microbiological Methods     Hybrid Journal   (Followers: 1)
Journal of Microbiology     Hybrid Journal   (Followers: 7)
Journal of Microbiology and Antimicrobials     Open Access   (Followers: 2)
Journal of Microbiology Research     Open Access   (Followers: 2)
Journal of Micropalaeontology     Hybrid Journal   (Followers: 6)
Journal of Molecular Biochemistry     Open Access   (Followers: 2)
Journal of Molecular Biology Research     Open Access   (Followers: 2)
Journal of Molecular Microbiology and Biotechnology     Full-text available via subscription   (Followers: 12)
Journal of Molecular Pathophysiology     Open Access   (Followers: 1)
Journal of Molecular Psychiatry     Open Access   (Followers: 8)
Journal of Pharmacy & Bioresources     Full-text available via subscription   (Followers: 3)
Journal of Plant Molecular Biology and Biotechnology     Open Access   (Followers: 7)
Journal of Plant Pathology & Microbiology     Open Access  
Journal of Proteome Science and Computational Biology     Open Access  
Journal of Regenerative Medicine and Tissue Engineering     Open Access   (Followers: 1)
Journal of The Academy of Clinical Microbiologists     Open Access  
Journal of the American Society of Brewing Chemists     Full-text available via subscription   (Followers: 2)
Journal of the Institute of Brewing     Free   (Followers: 1)
Journal of Tropical Microbiology and Biotechnology     Full-text available via subscription  
Jundishapur Journal of Microbiology     Open Access  
Letters In Applied Microbiology     Hybrid Journal   (Followers: 5)
Macrophage     Open Access  
MAP Kinase     Open Access  
Medical Mycology     Open Access   (Followers: 3)
Methods in Molecular Biology     Hybrid Journal   (Followers: 16)
Microbes and Health     Open Access   (Followers: 1)
Microbes and Infection     Full-text available via subscription   (Followers: 4)
Microbial Biotechnology     Open Access   (Followers: 4)
Microbial Cell Factories     Open Access   (Followers: 7)
Microbial Drug Resistance     Hybrid Journal   (Followers: 4)
Microbial Ecology     Hybrid Journal   (Followers: 6)
Microbial Ecology in Health and Disease     Open Access  
Microbial Informatics and Experimentation     Open Access   (Followers: 1)
Microbial Pathogenesis     Hybrid Journal   (Followers: 6)
Microbiologia Medica     Open Access   (Followers: 1)
Microbiological Research     Hybrid Journal   (Followers: 6)
Microbiology     Hybrid Journal   (Followers: 12)
Microbiology (SGM)     Full-text available via subscription   (Followers: 16)
Microbiology and Immunology     Hybrid Journal   (Followers: 10)
Microbiology and Molecular Biology Reviews     Hybrid Journal   (Followers: 21)
Microbiology Australia     Hybrid Journal  
Microbiology Discovery     Open Access  
Microbiology Indonesia     Open Access  
Microbiology Research     Open Access   (Followers: 7)
MicrobiologyOpen     Open Access   (Followers: 2)
Microbiome     Hybrid Journal   (Followers: 2)
Microbiome Science and Medicine     Open Access  
Microorganisms     Open Access   (Followers: 2)
MicroRNA     Hybrid Journal   (Followers: 1)
Molecular and Cellular Therapies     Open Access  
Molecular Biology and Genetic Engineering     Open Access  
Molecular Biology Research Communications     Open Access   (Followers: 1)
Molecular Genetics and Metabolism Reports     Open Access   (Followers: 1)
Molecular Genetics, Microbiology and Virology     Hybrid Journal   (Followers: 5)
Molecular Imaging     Open Access  
Molecular Imaging and Biology     Hybrid Journal   (Followers: 2)
Molecular Medicine     Open Access   (Followers: 1)
Molecular Medicine Reports     Full-text available via subscription   (Followers: 5)
Molecular Microbiology     Hybrid Journal   (Followers: 25)
Molecular Oral Microbiology     Partially Free   (Followers: 3)
Molecular Systems Biology     Open Access   (Followers: 8)

        1 2     

Journal Cover International Journal of Food Microbiology
  [SJR: 1.614]   [H-I: 121]   [12 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 0168-1605
   Published by Elsevier Homepage  [2969 journals]
  • Aptitude of Saccharomyces yeasts to ferment unripe grapes harvested during
           cluster thinning for reducing alcohol content of wine
    • Abstract: Publication date: 7 November 2016
      Source:International Journal of Food Microbiology, Volume 236
      Author(s): Barbara Bovo, Chiara Nadai, Chiara Vendramini, Wilson Josè Fernandes Lemos Junior, Milena Carlot, Andrea Skelin, Alessio Giacomini, Viviana Corich
      Among the viticultural techniques developed to obtain wine with reduced alcohol content, the use of unripe grapes with low sugar and high malic acid concentration, harvested at cluster thinning, was recently explored. So far, no studies have evaluated the fermentation performances of Saccharomyces in unripe grape musts, in terms of fermentation ability and reducing malic acid contents, to improve the quality of this low-alcohol beverage. In this work, we evaluated 24 S. cerevisiae strains isolated from Italian and Croatian vineyards with different fermentation aptitudes. Moreover, four S. paradoxus were considered, as previous works demonstrated that strains belonging to this species were able to degrade high malic acid amounts in standard musts. The industrial strain S. cerevisiae 71B was added as reference. Sugar and malic acid contents were modified in synthetic musts in order to understand the effect of their concentrations on alcoholic fermentation and malic acid degradation. S. cerevisiae fermentation performances improved when glucose concentration decreased and malic acid level increased. The conditions that simulate unripe grape must, i.e. low glucose and high malic acid content were found to enhance S. cerevisiae ability to degrade malic acid. On the contrary, S. paradoxus strains were able to degrade high amounts of malic acid only in conditions that resemble ripe grape must, i.e. high glucose and low malic acid concentration. In fermentation trials when low glucose concentrations were used, at high malic acid levels S. cerevisiae strains produced higher glycerol than at low malic acid condition. Malic acid degradation ability, tested on the best performing S. cerevisiae strains, was enhanced in fermentation trials when unripe grape must was used.

      PubDate: 2016-07-24T13:29:52Z
  • Effect of 1-methylcyclopropene on the development of black mold disease
           and its potential effect on alternariol and alternariol monomethyl ether
           biosynthesis on tomatoes infected with Alternaria alternata
    • Abstract: Publication date: 7 November 2016
      Source:International Journal of Food Microbiology, Volume 236
      Author(s): N. Estiarte, A. Crespo-Sempere, S. Marín, V. Sanchis, A.J. Ramos
      Ethylene is a naturally produced plant regulator involved in several plant functions, such as regulation of fruit ripening. Inhibition of ethylene perception by using 1-methylcyclopropene (1-MCP) slows down the ripening of the fruit maintaining its quality and freshness. The use of 1-MCP is a commercial strategy commonly used in the food industry to extend the postharvest life of several fruits, including tomatoes. To assess how 1-MCP affected infection by Alternaria alternata on tomatoes, three different cultivars were artificially inoculated with 5μL of an A. alternata conidial suspension (105 conidia/mL). Tomatoes were treated with 0.6μL/L of 1-MCP for 24h. Spiked but untreated tomatoes were considered controls. Then, fruit were stored 6days at 10°C and one more week at 20°C to simulate shelf-life. Fungal growth development and mycotoxin production (alternariol, AOH and alternariol monomethyl ether, AME) were assessed both on the first and on the second week. After the first 6days at 10°C, in just one variety the black mold disease was higher in the 1-MCP treated samples. However, after two weeks of storage, in all cases, tomatoes treated with 1-MCP showed more significant fungal growth disease. Regarding mycotoxin production, no large differences were observed among different treatments, which was corroborated with gene expression analysis of pksJ, a gene related to AOH and AME biosynthesis.

      PubDate: 2016-07-24T13:29:52Z
  • Occurrence of ascaridoid nematodes in selected edible fish from the
           Persian Gulf and description of Hysterothylacium larval type XV and
           Hysterothylacium persicum n. sp. (Nematoda: Raphidascarididae)
    • Abstract: Publication date: 7 November 2016
      Source:International Journal of Food Microbiology, Volume 236
      Author(s): Shokoofeh Shamsi, Masoumeh Ghadam, Jaydipbhai Suthar, Hoseinali Ebrahimzadeh Mousavi, Mehdi Soltani, Saeed Mirzargar
      Despite several reports on the presence of the potentially zoonotic nematodes among edible fishes in the Persian Gulf, there is still no study on the specific identification of these parasites or their genetic characterisation. In the present study, a total of 600 fish belonging to five popular species of fish in the region, including Otolithes ruber, Psettodes erumei, Saurida tumbil, Scomberomorus commerson and Sphyraena jello were examined for infection with nematode parasites. Detailed microscopy of nematodes found in the present study followed by characterisation of the first and second internal transcribed spacers (ITS-1 and ITS-2, respectively) showed that they belong to five distinct taxa that could be potentially zoonotic. Anisakis type I was found in four species of fish, had identical ITS sequences as Anisakis typica previously reported in Australian waters and was different from those reported in the Nearctic. Hysterothylacium type VI in the present study was morphologically similar to those previously described from Australasian waters and ITS sequences were identical among Australian specimens and those found in the present study. Another Hysterothylacium larval type was also found in the present study which had identical ITS sequences and similar morphology to those previously reported and identified as H. amoyense in China Sea. Since no ITS sequence data from a well identified adult H. amoyense with an identifiable museum voucher number is yet available and due to some other issues discussed in the article we suggest assignment of this larval type from the China Sea and the Persian Gulf to H. amoyense is doubtful until future studies on a well identified male specimen of H. amoyense or other species reveals the specific identity of this larval type. We propose to refer to this larval type as Hysterothylacium larval type XV. In the present study we also describe a new species, Hysterothylacium persicum and discuss how to differentiate it from closely related species. We also found some adult females with distinct morphology and ITS sequence but due to lack of male specimens they have been referred as Hysterothylacium sp. in this paper. They had the same ITS sequence data as Hysterothylacium larval type VI. This study shows the presence of a relatively broad diversity of potentially zoonotic nematodes in edible fish of the Persian Gulf. Therefore educational campaigns for public and local health practitioners are suggested to protect consumers from becoming infected with these parasites.

      PubDate: 2016-07-24T13:29:52Z
  • Antifungal effect of kefir fermented milk and shelf life improvement of
           corn arepas
    • Abstract: Publication date: 17 October 2016
      Source:International Journal of Food Microbiology, Volume 235
      Author(s): Raúl Ricardo Gamba, Carlos Andrés Caro, Olga Lucía Martínez, Ana Florencia Moretti, Leda Giannuzzi, Graciela Liliana De Antoni, Angela León Peláez

      PubDate: 2016-07-24T13:29:52Z
  • Putrescine biosynthesis in Lactococcus lactis is transcriptionally
           activated at acidic pH and counteracts acidification of the cytosol
    • Abstract: Publication date: 7 November 2016
      Source:International Journal of Food Microbiology, Volume 236
      Author(s): Beatriz del Rio, Daniel Linares, Victor Ladero, Begoña Redruello, Maria Fernandez, Maria Cruz Martin, Miguel A. Alvarez
      Lactococcus lactis subsp. cremoris CECT 8666 is a lactic acid bacterium that synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The AGDI genes cluster includes aguR. This encodes a transmembrane protein that functions as a one-component signal transduction system, the job of which is to sense the agmatine concentration of the medium and accordingly regulate the transcription of the catabolic operon aguBDAC. The latter encodes the proteins necessary for agmatine uptake and its conversion into putrescine. This work reports the effect of extracellular pH on putrescine biosynthesis and on the genetic regulation of the AGDI pathway. Increased putrescine biosynthesis was detected at acidic pH (pH5) compared to neutral pH. Acidic pH induced the transcription of the catabolic operon via the activation of the aguBDAC promoter P aguB . However, the external pH had no significant effect on the activity of the aguR promoter P aguR , or on the transcription of the aguR gene. The transcriptional activation of the AGDI pathway was also found to require a lower agmatine concentration at pH5 than at neutral pH. Finally, the following of the AGDI pathway counteracted the acidification of the cytoplasm under acidic external conditions, suggesting it to provide protection against acid stress.

      PubDate: 2016-07-24T13:29:52Z
  • Editorial Board
    • Abstract: Publication date: 2 September 2016
      Source:International Journal of Food Microbiology, Volume 232

      PubDate: 2016-07-20T13:27:39Z
  • Inactivation of Salmonella enterica and Listeria monocytogenes in
           cantaloupe puree by high hydrostatic pressure with/without added ascorbic
    • Abstract: Publication date: 17 October 2016
      Source:International Journal of Food Microbiology, Volume 235
      Author(s): Sudarsan Mukhopadhyay, Kimberly Sokorai, Dike Ukuku, Xuetong Fan, Vijay Juneja, Joseph Sites, Jennifer Cassidy
      The objective of this research was to evaluate and develop a method for inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree (CP) by high hydrostatic pressure (HHP). Cantaloupe being the most netted varieties of melons presents a greater risk of pathogen transmission. Freshly prepared CP with or without 0.1% ascorbic acid (AA) was inoculated with a bacterial cocktail composed of a three serotype mixture of S. enterica (S. Poona, S. Newport H1275 and S. Stanley H0558) and a mixture of three strains of L. monocytogenes (Scott A, 43256 and 51742) to a population of ca. 108 CFU/g. Double sealed and double bagged inoculated CP (ca. 5g) were pressure treated at 300, 400 and 500MPa at 8°C and 15°C for 5min. Data indicated increased inactivation of both Salmonella and Listeria spp. with higher pressure. Log reduction for CP at 300MPa, 8°C for 5min was 2.4±0.2 and 1.6±0.5logCFU/g for Salmonella and Listeria, respectively. Survivability of the pathogens was significantly compromised at 400MPa and 8°C, inactivating 4.5±0.3logCFU/g of Salmonella and 3.0±0.4logCFU/g of Listeria spp. Complete inactivation of the pathogens in the puree (log reduction >6.7logCFU/g), with or without AA, was achieved when the pressure was further increased to 500MPa, except that for Listeria containing no AA at 8°C. Listeria presented higher resistance to pressure treatment compared to Salmonella spp. Initial temperatures (8 and 15°C) had no significant influence on Salmonella log reductions. Log reduction of pathogens increased but not significantly with increase of temperature. AA did not show any significant antimicrobial activity. Viable counts were about 0.2–0.4logCFU/g less in presence of 0.1% AA. These data validate that HHP can be used as an effective method for decontamination of cantaloupe puree.

      PubDate: 2016-07-20T13:27:39Z
  • Effects of innovative and conventional sanitizing treatments on the
           reduction of Saccharomycopsis fibuligera defects on industrial durum wheat
    • Abstract: Publication date: 17 October 2016
      Source:International Journal of Food Microbiology, Volume 235
      Author(s): Virgilio Giannone, Iole Pitino, Biagio Pecorino, Aldo Todaro, Alfio Spina, Maria Rosaria Lauro, Filippo Tomaselli, Cristina Restuccia
      Wickerhamomyces anomalus, Hyphopichia burtonii and Saccharomycopsis fibuligera are spoilage yeasts causing chalk mold defects on sliced bread packaged under modified atmosphere. The first objective of this study, carried out in a bread-making company for two consecutive years, was to genetically identify yeasts isolated from spoiled sliced bread in Modified Atmosphere Packaging (MAP) and to determine the dominant species among identified strains. The second objective was to evaluate the effects of hydrogen peroxide and silver solution 12% (HPS) treatment in the leavening cells and cooling chambers, in comparison with the conventional Ortho-Phenylphenol (OPP) fumigating treatment, on the incidence of chalk defects of the commercialized products. One-hundred percent of the isolated yeasts were identified as S. fibuligera, while H. burtonii and W. anomalus were not detected. Concerning mean water activity (aw) and moisture content values, packaged bread samples were, respectively, included in the range 0.922–0.940 and 33.40–35.39%. S. fibuligera was able to grow in a wide range of temperature (11.5 to 28.5°C) and relative humidity (70.00 to 80.17%) in the processing environments, and product aw <0.94. Compared to OPP, the combined treatment with hydrogen peroxide and silver solution, in association with MAP, reduced to a negligible level yeast contamination of industrial sliced bread. The identification of the spoilage organisms and a comprehensive understanding of the combined effects of aw, pO2/pCO2 inside the packages, environmental conditions and sanitizing treatment on the growth behaviour is essential for future development of adequate preventive process strategies against chalk mold defects.

      PubDate: 2016-07-20T13:27:39Z
  • Growth differences and competition between Listeria monocytogenes strains
           determine their predominance on ham slices and lead to bias during
           selective enrichment with the ISO protocol
    • Abstract: Publication date: 17 October 2016
      Source:International Journal of Food Microbiology, Volume 235
      Author(s): Evangelia Zilelidou, Evanthia Manthou, Panagiotis Skandamis
      Listeria monocytogenes strains are widespread in the environment where they live well mixed, often resulting in multiple strains contaminating a single food sample. The occurrence of different strains in the same food might trigger strain competition, contributing to uneven growth of strains in food and to bias during selective procedures. We tested the growth of seven L. monocytogenes strains (C5, 6179, ScottA, PL24, PL25, PL26, PL27) on ham slices and on nutrient-rich agar at 10°C, singly and in combinations. Strains were made resistant to different antibiotics for their selective enumeration. In addition, growth of single strains (axenic culture) and competition between strains in xenic cultures of two strains was evaluated in enrichment broth and on selective agar. According to ISO 11290-1:1996/Amd 1:2004 standard protocol for detection of L. monocytogenes, two enrichment steps both followed by streaking on ALOA were performed. Strain cultures were directly added in the enrichment broth or used to inoculate minced beef and sliced hams which were then mixed with enrichment broth. 180–360 colonies were used to determine the relative percentage of each strain recovered on plates per enrichment step. The data showed a significant impact of co-cultivation on the growth of six out of seven strains on ham and a bias towards certain strains during selective enrichment. Competition was manifested by: (i) cessation of growth for the outcompeted strain when the dominant strain reached stationary phase, (ii) reduction of growth rates or (iii) total suppression of growth (both on ham and in enrichment broth or ALOA). Outgrowth of strains by their competitors on ALOA resulted in limited to no recovery, with the outcompeting strain accounting for up to 100% of the total recovered colonies. The observed bias was associated with the enrichment conditions (i.e. food type added to the enrichment broth) and the strain-combination. The outcome of growth competition on food or nonselective agar surface did not necessarily coincide with the results of competition during enrichment. The results show that certain strains present in foods may be missed during classical detection due to strain competition and such likelihood should be taken into consideration when resolving a listeriosis outbreak.

      PubDate: 2016-07-20T13:27:39Z
  • Genome-wide identification of genes involved in growth and fermentation
           activity at low temperature in Saccharomyces cerevisiae
    • Abstract: Publication date: 7 November 2016
      Source:International Journal of Food Microbiology, Volume 236
      Author(s): Zoel Salvadó, Lucía Ramos-Alonso, Jordi Tronchoni, Vanessa Penacho, Estéfani García-Ríos, Pilar Morales, Ramon Gonzalez, José Manuel Guillamón
      Fermentation at low temperatures is one of the most popular current winemaking practices because of its reported positive impact on the aromatic profile of wines. However, low temperature is an additional hurdle to develop Saccharomyces cerevisiae wine yeasts, which are already stressed by high osmotic pressure, low pH and poor availability of nitrogen sources in grape must. Understanding the mechanisms of adaptation of S. cerevisiae to fermentation at low temperature would help to design strategies for process management, and to select and improve wine yeast strains specifically adapted to this winemaking practice. The problem has been addressed by several approaches in recent years, including transcriptomic and other high-throughput strategies. In this work we used a genome-wide screening of S. cerevisiae diploid mutant strain collections to identify genes that potentially contribute to adaptation to low temperature fermentation conditions. Candidate genes, impaired for growth at low temperatures (12°C and 18°C), but not at a permissive temperature (28°C), were deleted in an industrial homozygous genetic background, wine yeast strain FX10, in both heterozygosis and homozygosis. Some candidate genes were required for growth at low temperatures only in the laboratory yeast genetic background, but not in FX10 (namely the genes involved in aromatic amino acid biosynthesis). Other genes related to ribosome biosynthesis (SNU66 and PAP2) were required for low-temperature fermentation of synthetic must (SM) in the industrial genetic background. This result coincides with our previous findings about translation efficiency with the fitness of different wine yeast strains at low temperature.

      PubDate: 2016-07-20T13:27:39Z
  • Assessment of the bacterial community in directly brined Aloreña de
           Málaga table olive fermentations by metagenetic analysis
    • Abstract: Publication date: 7 November 2016
      Source:International Journal of Food Microbiology, Volume 236
      Author(s): E. Medina, M.A. Ruiz-Bellido, V. Romero-Gil, F. Rodríguez-Gómez, M. Montes-Borrego, B.B. Landa, F.N. Arroyo-López
      This study uses an “omics” approach to evaluate the bacterial biodiversity changes during fermentation process of natural green cracked Aloreña de Málaga table olives, from raw material to fermented fruit. For this purpose, two industries separated by almost 20km in Guadalhorce Valley (Málaga, Spain) were analysed for obtaining both brines and fruit samples at different moments of fermentation (0, 7, 30 and 120days). Physicochemical and microbial counts during fermentation showed the typical evolution of this type of processes, apparently dominated by yeasts. However, high-throughput barcoded pyrosequencing analysis of V2–V3 hypervariable region of the bacterial 16S rRNA gene showed at 97% identity the presence of 131 bacterial genera included in 357 operational taxonomic units, not detected by the conventional approach. The bacterial biodiversity was clearly higher in the olives at the moment of reception in the industry and during the first days of fermentation, while decreased considerably as elapse the fermentation process. The presence of Enterobacteriaceae and Lactobacillaceae species was scarce during the four months of study. On the contrary, the most important genus at the end of fermentation was Celerinatantimonas in both brine (95.3% of frequency) and fruit (89.4%) samples, while the presence of well-known spoilage microorganisms (Pseudomonas and Propionibacterium) and halophilic bacteria (Modestobacter, Rhodovibrio, Salinibacter) was also common during the course of fermentation. Among the most important bacterial pathogens related to food, only Staphylococcus genus was found at low frequencies (<0.02% of total sequences). Results show the need of this type of studies to enhance our knowledge of the microbiology of table olive fermentations. It is also necessary to determine the role played by these species not previously detected in table olives on the quality and safety of this fermented vegetable.

      PubDate: 2016-07-20T13:27:39Z
  • Occurrence of emerging food-borne pathogenic Arcobacter spp. isolated from
           pre-cut (ready-to-eat) vegetables
    • Abstract: Publication date: 7 November 2016
      Source:International Journal of Food Microbiology, Volume 236
      Author(s): Anna Mottola, Elisabetta Bonerba, Giancarlo Bozzo, Patrizia Marchetti, Gaetano Vitale Celano, Valeriana Colao, Valentina Terio, Giuseppina Tantillo, Maria José Figueras, Angela Di Pinto
      Given that changes in consumer food behaviours have led to an increase in the demand for pre-cut ready-to-eat (RTE) vegetables, and that few data are currently available on the occurrence of Arcobacter spp. in such foods, the aim of the present study was to assess the occurrence of Arcobacter spp. that carry virulence-associated genes on pre-cut RTE vegetables, using cultural and molecular methods. Arcobacter was detected using biomolecular identification methods in 44/160 (27.5%) of the samples, of which 40/44 (90.9%) isolates corresponded to A. butzleri and 4/44 (9.1%) to A. cryaerophilus. Studying the incidence of 9 virulence-associated genes revealed the widespread distribution of these genes among the Arcobacter isolates tested. The results obtained in our research provided plenty of information on the health risks associated with the direct consumption of raw vegetables, and highlight the need to implement further studies at each level of the production chain, in order to obtain further information to help protect human health.

      PubDate: 2016-07-20T13:27:39Z
  • Supplementation with fruit and okara soybean by-products and amaranth
           flour increases the folate production by starter and probiotic cultures
    • Abstract: Publication date: 7 November 2016
      Source:International Journal of Food Microbiology, Volume 236
      Author(s): Marcela Albuquerque Cavalcanti de Albuquerque, Raquel Bedani, Antônio Diogo Silva Vieira, Jean Guy LeBlanc, Susana Marta Isay Saad
      The ability of two starter cultures (Streptococcus (S.) thermophilus ST-M6 and St. thermophilus TA-40) and eleven probiotic cultures (St. thermophilus TH-4, Lactobacillus (Lb.) acidophilus LA-5, Lb. fermentum PCC, Lb. reuteri RC-14, Lb. paracasei subsp. paracasei, Lb. casei 431, Lb. paracasei subsp. paracasei F19, Lb. rhamnosus GR-1, and Lb. rhamnosus LGG, Bifidobacterium (B.) animalis subsp. lactis BB-12, B. longum subsp. longum BB-46, and B. longum subsp. infantis BB-02) to produce folate in a modified MRS broth (mMRS) supplemented with different fruit (passion fruit, acerola, orange, and mango) and okara soybean by-products and amaranth flour was investigated. Initially, the folate content of each vegetable substrate was determined: passion fruit by-product showed the lowest folate content (8±2ng/mL) and okara the highest (457±22ng/mL). When the orange by-product and amaranth flour were added to mMRS, all strains were able to increase folate production after 24h of fermentation. B. longum subsp infantis BB-02 produced the highest concentrations (1223±116ng/mL) in amaranth flour. Okara was the substrate that had the lowest impact on the folate production by all strains evaluated. Lb. acidophilus LA-5 (297±36ng/mL) and B. animalis subsp. lactis BB-12 (237±23ng/mL) were also able to produce folate after growth in mMRS containing acerola and orange by-products, respectively. The results of this study demonstrate that folate production is not only strain-dependent but also influenced by the addition of different substrates in the growth media.

      PubDate: 2016-07-20T13:27:39Z
  • Safety and technological characterization of coagulase-negative
           staphylococci isolates from traditional Korean fermented soybean foods for
           starter development
    • Abstract: Publication date: 7 November 2016
      Source:International Journal of Food Microbiology, Volume 236
      Author(s): Do-Won Jeong, Bitnara Lee, Jae-Young Her, Kwang-Geun Lee, Jong-Hoon Lee
      To select starters for the production of meju and doenjang, traditional Korean fermented soybean foods, we assessed the safety and technological properties of their predominant isolates, Staphylococcus saprophyticus, Staphylococcus succinus and Staphylococcus xylosus. Phenotypic antibiotic resistance, hemolysis and biofilm formation were strain-specific. None of the S. succinus isolates exhibited antibiotic resistance or hemolytic activities. Thirty-three selected strains, identified through safety assessments of 81 coagulase-negative staphylococci (CNS) isolates, produced cadaverine, putrescine, and tyramine, but not histamine in the laboratory setting. The production of these three biogenic amines may, however, be insignificant considering the high levels of tyramine produced by the control, Enterococcus faecalis. The 33 CNS strains could grow on tryptic soy agar containing 21% NaCl (w/v), exhibited acid producing activity at 15% NaCl, and expressed strain-specific protease and lipase activities. S. succinus 14BME1, the selected starter candidate, produced significant amounts of benzeneacetic acid, 2,3-butanediol, trimethylpyrazine, and tetramethylpyrazine through soybean fermentation.

      PubDate: 2016-07-20T13:27:39Z
  • Microbial ecology involved in the ripening of naturally fermented llama
           meat sausages. A focus on lactobacilli diversity
    • Abstract: Publication date: 7 November 2016
      Source:International Journal of Food Microbiology, Volume 236
      Author(s): Cecilia Fontana, Daniela Bassi, Constanza López, Vincenza Pisacane, Maria Claudia Otero, Edoardo Puglisi, Annalisa Rebecchi, Pier Sandro Cocconcelli, Graciela Vignolo
      Llama represents for the Andean regions a valid alternative to bovine and pork meat and thanks to the high proteins and low fat content; it can constitute a good product for the novel food market. In this study, culture-dependent and independent methods were applied to investigate the microbial ecology of naturally fermented llama sausages produced in Northwest Argentina. Two different production technologies of llama sausage were investigated: a pilot-plant scale (P) and an artisanal one (A). Results obtained by High-Throughput Sequencing (HTS) of 16S rRNA amplicons showed that the production technologies influenced the development of microbial communities with a different composition throughout the entire fermentation process. Both sequencing and microbiological counts demonstrated that Lactic Acid Bacteria (LAB) contributed largely to the dominant microbiota. When a total of 230 isolates were approached by RAPD-PCR, presumptive LAB strains from P production exhibited an initial variability in RAPD fingerprints switching to a single profile at the final of ripening, while A production revealed a more heterogeneous RAPD pattern during the whole fermentation process. The constant presence of Lactobacillus sakei along the fermentation in both productions was revealed by HTS and confirmed by species-specific PCR from isolated strains. The technological characterization of Lb. sakei isolates evidenced their ability to grow at 15°C, pH4.5 and 5% NaCl (95%). Most strains hydrolyzed myofibrillar and sarcoplasmic proteins. Bacteriocins encoding genes and antimicrobial resistance were found in 35% and 42.5% of the strains, respectively. An appropriate choice of a combination of autochthonous strains in a starter formulation is fundamental to improve and standardize llama sausages safety and quality.

      PubDate: 2016-07-20T13:27:39Z
  • Development of a predictive model for Salmonella spp. reduction in meat
           jerky product with temperature, potassium sorbate, pH, and water activity
           as controlling factors
    • Abstract: Publication date: 7 November 2016
      Source:International Journal of Food Microbiology, Volume 236
      Author(s): Vijay K. Juneja, Martin Valenzuela-Melendres, Dilek Heperkan, Derrick Bautista, David Anderson, Cheng-An Hwang, Aida Peña-Ramos, Juan Pedro Camou, Noemi Torrentera-Olivera
      The objective of this study was to develop a predictive model for the inactivation of Salmonella spp. in ground beef jerky as a function of temperature (T), pH, potassium sorbate (PS), and final water activity (aw). Following a central composite design, ground beef was combined with PS (0 to 0.3%, w/w), pH adjusted from 5 to 7, inoculated with a cocktail of 6 serotypes of Salmonella spp. and heat processed at temperatures between 65 and 85°C until the final aw ranging from 0.65 to 0.85 was achieved. Surviving Salmonella cells were enumerated on tryptic soy agar overlaid with xylose lysine deoxycholate agar (pre-tempered to 47°C) after incubation for 48h at 30°C. Bacterial inactivation was quantified in terms of logarithmic reductions of Salmonella counts (log10 CFU/g) and inactivation rate (log10 (CFU/g)/h). The results indicated that pH, PS and T significantly (p<0.05) interacted to inactivate Salmonella in beef jerky. Decreasing meat pH significantly (p<0.05) increased the efficacy of PS and T to reduce the levels of Salmonella spp. Beef jerky processed at 82°C, pH5.5, with 0.25% PS to a final aw of 0.7 resulted in a maximum Salmonella logarithmic reduction of 5.0log10 CFU/g and an inactivation rate of 1.3log10 (CFU/g)/h. The predictive model developed can be used to effectively design drying processes for beef jerky under low humidity conditions and thereby, ensuring an adequate degree of protection against risks associated with Salmonella spp.

      PubDate: 2016-07-20T13:27:39Z
  • Transcriptome analysis of beer-spoiling Lactobacillus brevis BSO 464
           during growth in degassed and gassed beer
    • Abstract: Publication date: 17 October 2016
      Source:International Journal of Food Microbiology, Volume 235
      Author(s): Jordyn Bergsveinson, Vanessa Friesen, Barry Ziola
      Lactobacillus brevis BSO 464 (Lb464) is a beer-spoilage-related (BSR) isolate of interest given its unique physiological attributes; specifically, it is highly hop-tolerant and exhibits very rapid growth in pressurized/gassed beer. RNA sequencing was performed on Lb464 grown in pressurized and non-pressurized beer to determine important genetic mechanisms for growth in these environments. The data generated were compared against data in a previous transcriptional study of another lactic acid bacterium (LAB) during growth in beer, namely, Pediococcus claussenii ATCC BAA-344T (Pc344). Results revealed that the most important genetic elements for Lb464 growth in beer are related to biogenic amine metabolism, membrane transport and fortification, nutrient scavenging, and efficient transcriptional regulation. Comparison with the previous transcriptional study of Pc344 indicated that the total coding capacity (plasmid profile and genome size) of a LAB isolate allows for beer-spoilage virulence and adaptation to different beer environments, i.e., the ability to grow in degassed beer (during production) or gassed beer (packaged product). Further, differences in gene expression of Lb464 and Pc344 during mid-exponential growth in beer may dictate how rapidly each isolate exhausts particular carbon sources during. The presence of headspace pressure/dissolved CO2 was found to drive Lb464 transcription during mid-exponential growth in beer towards increasing cell wall and membrane modification, transport, osmoregulation, and DNA metabolism and transposition events. This transcriptional activity resembles transcriptional patterns or signatures observed in a viable, but non-culturable state established by non-related organisms, suggesting that Lb464 overall uses complex cellular regulation to maintain cell division and growth in the stressful beer environment. Additionally, increased expression of several hypothetical proteins, the hop-tolerance gene horC, and DNA repair and recombination genes from plasmids pLb464-2, −4, and −8 were observed in the gassed beer environment. Thus, plasmids can harbor genes with specific (gassed) beer growth advantages, and confirm that plasmid transfer and acquisition as important activities for adaptation to the beer environment.

      PubDate: 2016-07-12T12:08:52Z
  • Lactic acid bacteria as protective cultures in fermented pork meat to
           prevent Clostridium spp. growth
    • Abstract: Publication date: 17 October 2016
      Source:International Journal of Food Microbiology, Volume 235
      Author(s): Diana Di Gioia, Giuseppe Mazzola, Ivana Nikodinoska, Irene Aloisio, Tomaz Langerholc, Maddalena Rossi, Stefano Raimondi, Beatriz Melero, Jordi Rovira
      In meat fermented foods, Clostridium spp. growth is kept under control by the addition of nitrite. The growing request of consumers for safer products has led to consider alternative bio-based approaches, the use of protective cultures being one of them. This work is aimed at checking the possibility of using two Lactobacillus spp. strains as protective cultures against Clostridium spp. in pork ground meat for fermented salami preparation. Both Lactobacillus strains displayed anti-clostridia activity in vitro using the spot agar test and after co-culturing them in liquid medium with each Clostridium strain. Only one of them, however, namely L. plantarum PCS20, was capable of effectively surviving in ground meat and of performing anti-microbial activity in carnis in a challenge test where meat was inoculated with the Clostridium strain. Therefore, this work pointed out that protective cultures can be a feasible approach for nitrite reduction in fermented meat products.

      PubDate: 2016-07-12T12:08:52Z
  • Arginine acts as an inhibitor of the biosynthesis of several mycotoxins
    • Abstract: Publication date: 17 October 2016
      Source:International Journal of Food Microbiology, Volume 235
      Author(s): Najim Touhami, Katharina Buhl, Markus Schmidt-Heydt, Rolf Geisen
      It is well known that the type and the availability of nitrogen have a great influence on the biosynthesis of certain mycotoxins. Here it is shown that some amino acids have no influence, some others strongly support and a third group inhibits the biosynthesis of ochratoxin (OTA) by Penicillium nordicum even in a complex medium, such as PDA. Arginine (Arg) is one of the strong OTA inhibiting amino acids. It was shown that Arg not only inhibits OTA in Penicillium but also citrinin (CIT) biosynthesis in Penicillium verrucosum, Penicillium expansum and Penicillium citrinum and alternariol (AOH), alternariol monomethylether (AME) and tenuazonic acid (TeA) biosynthesis in Alternaria alternata. The minimal inhibitory concentration of Arg differs depending on the mycotoxin and the species analysed. However, the OTA biosynthesis by P. verrucosum and P. nordicum was most sensitive. Growth, on the other hand, was much less affected by Arg. Urea, a metabolite of Arg catabolism, shows a similar inhibitory activity. In wheat medium containing 50mM Arg almost no OTA was produced by Penicillium, in contrast to plain wheat medium.

      PubDate: 2016-07-12T12:08:52Z
  • Production of staphylococcal enterotoxins in microbial broth and milk by
           Staphylococcus aureus strains harboring seh gene
    • Abstract: Publication date: 17 October 2016
      Source:International Journal of Food Microbiology, Volume 235
      Author(s): Justyna Schubert, Magdalena Podkowik, Jarosław Bystroń, Jacek Bania
      Twenty Staphylococcus aureus strains harboring seh gene, including one carrying also sec gene and 11 sea gene, were grown in BHI+YE broth and milk and were tested for SEA, SEC and SEH production. All strains decreased pH of BHI+YE broth at 24h and increased them at 48h. Seventeen S. aureus strains grown in milk changed pH for no >0.3 unit until 48h. Three other S. aureus strains significantly decreased pH during growth in milk. All S. aureus produced SEH in BHI+YE broth in amounts ranging from 95 to 1292ng/ml, and from 170 to 4158ng/ml at 24 and 48h, respectively. SEH production in milk by 17 strains did not exceed 23ng/ml at 24h and 36ng/ml at 48h. Three S. aureus strains able to decrease milk pH produced 107–3029ng/ml and 320–4246ng/ml of SEH in milk at 24 and 48h, respectively. These strains were grown in milk and BHI+YE broth with pH stabilized at values near neutral leading to a significant decrease of SEH production. Representative weak SEH producers were grown in milk at reduced pH resulting in moderate increase in SEH production. SEA was produced in milk by 10 S. aureus strains at 24–151ng/ml at 24h, and 31–303ng/ml at 48h. SEA production in milk was higher or comparable as in BHI+YE broth in 3 strains and lower for remaining strains. Production of SEC by sec-positive S. aureus strains was lower in milk than in BHI+YE broth, ranging from 131 to 2319ng/ml at 24 and 48h in milk and 296–30,087ng/ml in BHI+YE at 24 and 48h. Both lacE and lacG transcripts involved in lactose metabolism were significantly up-regulated in milk in strong SEH producers. In these strains hld, rot and sarA transcripts were up-regulated in milk as compared to weak SEH producers. Stabilization of milk pH at a value of raw milk significantly down-regulated hld, rot and sarA RNA in strong SEH producers. Milk was generally found unfavorable for enterotoxin production. However, certain S. aureus strains were not restricted in SEH and SEA expression in milk, unlike SEC which remained down-regulated in this environment. Therefore, low safety risk related to S. aureus producing SEC in milk, as suggested previously, may not pertain to certain SEA and SEH-producing strains.

      PubDate: 2016-07-12T12:08:52Z
  • Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica
    • Abstract: Publication date: 17 October 2016
      Source:International Journal of Food Microbiology, Volume 235
      Author(s): Weng Chan VONG, Kai Ling Corrine AU YANG, Shao-Quan LIU
      Okara, or soybean residue, is a soy food processing by-product from the manufacture of soymilk and soybean curd (tofu). In this study, solid-state fermentation of okara was conducted over 5days using yeast Yarrowia lipolytica, and the changes in proximate composition, antioxidant capacity, non-volatiles and volatiles were investigated. Yeast metabolism of okara significantly increased the amounts of lipid, succinate and free amino acids and enhanced the antioxidant capacity. In particular, there was a marked increase in important umami tastants after fermentation, with 3-fold increase in succinate and a 20-fold increase in glutamate. The final fermented okara contained 3.37g succinate and 335mg glutamate/100g dry matter. Aldehydes and their derived acids in the fresh okara were catabolised by Y. lipolytica mainly to methyl ketones, leading to a reduced grassy off-odour and a slightly pungent, musty and cheese-like odour in the fermented okara. Amino acid-derived volatiles, such as 3-methylbutanal and 2-phenylethanol, were also produced. Overall, the okara fermented by Y. lipolytica had a greater amount of umami-tasting substances, a cheese-like odour, improved digestibility and enhanced antioxidant capacity. These changes highlight the potential of Yarrowia-fermented okara as a more nutritious, savoury food product or ingredient. Y. lipolytica was thus demonstrated to be suitable for the biovalorisation of this soy food processing by-product.

      PubDate: 2016-07-08T03:46:25Z
  • Comparative performance of isolation methods using Preston broth, Bolton
           broth and their modifications for the detection of Campylobacter spp. from
           naturally contaminated fresh and frozen raw poultry meat
    • Abstract: Publication date: 3 October 2016
      Source:International Journal of Food Microbiology, Volume 234
      Author(s): T. Seliwiorstow, L. De Zutter, K. Houf, N. Botteldoorn, J. Baré, I. Van Damme
      The performance of different isolation methods was evaluated for the detection of Campylobacter from naturally contaminated raw poultry meat. Therefore, fresh and frozen poultry meat samples were analysed using the standard procedure (ISO 10272-1:2006), enrichment in Preston broth, and enrichment in modified Bolton broth (supplemented with (i) potassium clavulanate (C-BB), (ii) triclosan (T-BB), (iii) polymyxin B (P-BB)). The enrichment cultures were streaked onto both modified charcoal cefoperazone deoxycholate agar (mCCDA) and RAPID'Campylobacter agar (RCA). Moreover, direct plating on mCCDA and RCA was performed to quantify Campylobacter. In total, 33 out of 59 fresh retail meat samples (55.9%) were Campylobacter positive. For both fresh and frozen poultry meat samples, enrichment in Bolton broth (ISO 10272-1:2006) resulted in a higher number of positive samples than enrichment in Preston broth. Supplementation of Bolton broth with potassium clavulanate (C-BB) and triclosan (T-BB) enhanced the Campylobacter recovery from fresh poultry meat compared to non-supplemented Bolton broth, although the use of C-BB was less applicable than T-BB for Campylobacter recovery from frozen samples. Additionally, the use of RCA resulted in a higher isolation rate compared to mCCDA. The present study demonstrates the impact of culture medium on the recovery of Campylobacter from fresh and frozen naturally contaminated poultry meat samples and can support laboratories in choosing the most appropriate culturing method to detect Campylobacter.

      PubDate: 2016-07-08T03:46:25Z
  • In vitro gastrointestinal resistance of Lactobacillus acidophilus La-5 and
           Bifidobacterium animalis Bb-12 in soy and/or milk-based synbiotic apple
           ice creams
    • Abstract: Publication date: 3 October 2016
      Source:International Journal of Food Microbiology, Volume 234
      Author(s): Natalia Silva Matias, Marina Padilha, Raquel Bedani, Susana Marta Isay Saad
      The viability and resistance to simulated gastrointestinal (GI) conditions of Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 in synbiotic ice creams, in which milk was replaced by soy extract and/or whey protein isolate (WPI) with inulin, were investigated. The ice creams were showed to be satisfactory vehicles for La-5 and Bb-12 (populations around 7.5logCFU/g), even after the whole storage period (84days/−18°C). In all formulations, the propidium monoazide qPCR (PMA-qPCR) analysis demonstrated that probiotics could resist the in vitro GI assay, with significant survival levels, achieving survival rates exceeding 50%. Additionally, scanning electron microscopy images evidenced cells with morphological differences, suggesting physiological changes in response to the induced stress during the in vitro assay. Although all formulations provided resistance to the probiotic strains under GI stress, the variation found in probiotic survival suggests that GI tolerance is indeed affected by the choice of the food matrix.

      PubDate: 2016-07-08T03:46:25Z
  • Quantitative transfer of Salmonella Typhimurium LT2 during mechanical
           slicing of tomatoes as impacted by multiple processing variables
    • Abstract: Publication date: 3 October 2016
      Source:International Journal of Food Microbiology, Volume 234
      Author(s): Haiqiang Wang, Elliot T. Ryser
      Slicing of fresh produce can readily lead to pathogen cross-contamination with pre-sliced tomatoes having been linked to multistate outbreaks of salmonellosis in the United States. This study aimed to assess the impact of multiple processing variables on quantitative transfer of Salmonella during simulated commercial slicing of tomatoes. One red round tomato was inoculated with Salmonella Typhimurium LT2 at ~5logCFU/g and sliced using a manual or electric slicer, followed by 20 uninoculated tomatoes. Thereafter, the distribution of Salmonella on inoculated and uninoculated tomato slices was evaluated along with the transfer of Salmonella from different parts of the slicer. The impact of multiple processing variables including post-contamination hold time (0 and 30min), tomato wetness (dry and wet), processing room temperature (23, 10 and 4°C), slice thickness (0.48, 0.64, and 0.95cm), tomato variety (Torero, Rebelski, and Bigdena) and pre-wash treatment (no wash, tap water, and chlorine) was also investigated. The data were fitted to a two-parameter exponential decay model (Y=A⋅exp(BX)) with the percentage of Salmonella transferred to 20 uninoculated tomatoes then calculated. Salmonella populations on nine inoculated tomato slices ranged from 4.6±0.2 to 5.5±0.3logCFU/g, with higher populations on slices from the blossom and stem scar ends. However, Salmonella transfer to the previously uninoculated slices was similar (P >0.05), ranging from 2.1±0.2 to 3.4±0.2logCFU/g. Significantly fewer salmonellae transferred from the blade (3.4±0.4 log CFU, P ≤0.05) than from the back and bottom plates (4.7±0.3 log CFU) or the whole manual slicer (5.2±0.2 log CFU) to the 20 uninoculated tomatoes. However, the blade was the primary contributor to Salmonella transfer for the electric slicer. Post-contamination hold time, processing temperature and tomato slice thickness did not significantly impact (P >0.05) the Salmonella transfer rate (parameter B) or the overall percentage of cells transferred. A significantly lower (P ≤0.05) transfer rate (−0.028±0.002) was observed for wet as compared to dry tomatoes (−0.051±0.002), with a significantly higher (P ≤0.05) percentage (12.2±2.4%) of Salmonella transferred to wet as opposed to dry tomatoes (1.1±0.5%). Tomato variety also impacted Salmonella transfer with significantly lower (P ≤0.05) transfer rates and Salmonella transfer percentages seen for Rebelski and Bigdena than Torero. These findings will provide practical guidelines for the fresh-cut tomato industry and will also be useful in developing science-based transfer models for risk assessments.

      PubDate: 2016-07-08T03:46:25Z
  • Sensory quality of Camembert-type cheese: Relationship between starter
           cultures and ripening molds
    • Abstract: Publication date: 3 October 2016
      Source:International Journal of Food Microbiology, Volume 234
      Author(s): Bruno Domingues Galli, José Guilherme Prado Martin, Paula Porrelli Moreira da Silva, Ernani Porto, Marta Helena Fillet Spoto
      Starter cultures and ripening molds used in the manufacture of moldy cheese aimed at obtaining characteristic flavors and textures considerably differ among dairy industries. Thus, the study of variables inherent to the process and their influence on sensory patterns in cheese can improve the standardization and control of the production process. The aim of this work was to study the influence of three different variables on the sensory quality of Camembert-type cheese: type of lactic bacteria, type of ripener molds and inoculation method. Batches of Camembert-type cheese were produced using O or DL-type mesophilic starter culture, ripened with Penicillium camemberti or Penicillium candidum and mold inoculation was made directly into the milk or by spraying. All batches were sensorially evaluated using Quantitative Descriptive Analysis (QDA) with panelists trained for various attributes. Among the combinations analyzed, those resulting in more typical Camembert-type cheese were those using O-type mesophilic starter culture and P. candidum maturation mold directly applied into the milk or sprayed and those using DL-type mesophilic starter and P. camemberti ripener mold applied by surface spraying. These results demonstrate, therefore, that the combination of different ripener molds, inoculation methods and starter cultures directly influences the sensory quality of Camembert-type cheese, modifying significantly its texture, appearance, aroma and taste.

      PubDate: 2016-07-08T03:46:25Z
  • Influence of food intrinsic complexity on Listeria monocytogenes growth
           in/on vacuum-packed model systems at suboptimal temperatures
    • Abstract: Publication date: 17 October 2016
      Source:International Journal of Food Microbiology, Volume 235
      Author(s): Maria Baka, Estefanía Noriega, Kristof Van Langendonck, Jan F. Van Impe
      Food intrinsic factors e.g., food (micro)structure, compositional and physicochemical aspects, which are mutually dependent, influence microbial growth. While the effect of composition and physicochemical properties on microbial growth has been thoroughly assessed and characterised, the role of food (micro)structure still remains unravelled. Most studies on food (micro)structure focus on comparing planktonic growth in liquid (microbiological) media with colonial growth in/on solid-like systems or on real food surfaces. However, foods are not only liquids or solids; they can also be emulsions or gelled emulsions and have complex compositions. In this study, Listeria monocytogenes growth was studied on the whole spectrum of (micro)structure, in terms of food (model) systems. The model systems varied not only in (micro)structure, which was the target of the study, but also in compositional and physicochemical characteristics, which was an inevitable consequence of the (micro)structural variability. The compositional and physicochemical differences were mainly due to the presence or absence of fat and gelling agents. The targeted (micro)structures were: i) liquids, ii) aqueous gels, iii) emulsions and iv) gelled emulsions. Furthermore, the microbial dynamics were studied and compared in/on all these model systems, as well as on a compositionally predefined canned meat, developed in order to have equal compositional level to the gelled emulsion model system and represent a real food system. Frankfurter sausages were the targeted real foods, selected as a case study, to which the canned meat had similar compositional characteristics. All systems were vacuum packed and incubated at 4, 8 and 12°C. The most appropriate protocol for the preparation of the model systems was developed. The pH, water activity and resistance to penetration of the model systems were characterised. Results indicated that low temperature contributes to growth variations among the model systems. Additionally, the firmer the solid system, the faster L. monocytogenes grew on it. Finally, it was found that L. monocytogenes grows faster on canned meat and real Frankfurters, as found in a previous study, followed by liquids, aqueous gels, emulsions and gelled emulsions. This observation indicates that all model systems, developed in this study, underestimated L. monocytogenes growth. Despite some limitations, model systems are overall advantageous and therefore, their validation is always recommended prior to further use.

      PubDate: 2016-07-08T03:46:25Z
  • Incidence and growth of Salmonella enterica on the peel and pulp of
           avocado (Persea americana) and custard apple (Annona squamosa)
    • Abstract: Publication date: 17 October 2016
      Source:International Journal of Food Microbiology, Volume 235
      Author(s): Ana Carolina B. Rezende, Juliana Crucello, Rafael C. Moreira, Beatriz S. Silva, Anderson S. Sant'Ana
      The aim of this study was to assess the incidence and to estimate the growth kinetic parameters (maximum growth rate, μ; lag time, λ; and maximum population, κ) of Salmonella on the peel and pulp of avocado (Persea americana var. americana) and custard apple (Annona squamosa L.) as affected by temperature (10–30°C). The incidence of Salmonella was assessed on the peel and pulp of the fruits (n =200 of each fruit), separately, totalizing 800 analyses. Only three samples of custard apple pulp were positive for Salmonella enterica and the three isolates recovered belonged to serotype S. Typhimurium. Salmonella was not recovered from avocado and custard apple peels and from avocado pulp. Generally, the substrate (pulp or peel) of growth did not affect μ values of S. enterica (p >0.05). Very similar μ values were found for S. enterica inoculated in custard apple and avocado. S. enterica presented the highest λ in the peel of the fruits. The growth of S. enterica resulted in larger λ in custard apple in comparison to avocado. For example, the λ of S. enterica in the pulp of custard apple and avocado were 47.0±0.78h and 10.0±3.78h, respectively. The lowest values of κ were obtained at the lower storage temperature conditions (10°C). For instance, κ values of 3.7±0.06log CFU/g and 2.9±0.03log CFU/g were obtained from the growth of S. enterica in avocado and custard apple pulps at 10°C (p <0.05), respectively. On the other hand, at 30°C, κ values were 6.5±0.25log CFU/g and 6.5±0.05log CFU/g, respectively. Significantly higher κ were obtained from the growth of S. enterica in the pulp than in the peel of the fruits (p <0.05). For instance, the growth of S. enterica in the pulp of avocado led to a κ value of 6.5±0.25log CFU/g, while in the peel led to a κ value of 4.6±0.23log CFU/g (p <0.05). In general, growth kinetic parameters indicated that avocado comprises a better substrate than custard apple for the growth of S. enterica. The square root model fitted to the data obtained in this study and to the growth data available in the literature for other tropical low acid fruits indicated high variability in μ and λ of Salmonella. The results obtained in this study show that whole low acid tropical fruits can harbor Salmonella, and that this foodborne pathogen can not only survive but also grow both on the peel and pulp of low acid tropical fruits, such as avocado and custard apple.

      PubDate: 2016-07-08T03:46:25Z
  • The use of propidium monoazide in conjunction with qPCR and Illumina
           sequencing to identify and quantify live yeasts and bacteria
    • Abstract: Publication date: 3 October 2016
      Source:International Journal of Food Microbiology, Volume 234
      Author(s): Mansak Tantikachornkiat, Stacey Sakakibara, Marissa Neuner, Daniel M. Durall
      Culture-independent methods of microbial identification have been developed, which allow for DNA extraction directly from environmental samples without subjecting microbes to growth on nutrient media. These methods often involve next generation DNA sequencing (NGS) for identifying microbes and qPCR for quantifying them. Despite the benefits of extracting all DNA from the sample, results may be compromised by amplifying DNA from dead cells. To address this short-coming, the use of propidium monoazide (PMA) has been used to deactivate DNA in non-viable cells. Nevertheless, its optimization has not been fully explored under a variety of conditions. In this study, we optimized the PMA method for both yeasts and bacteria. Specifically, we explored the effect different PMA concentrations and different cell densities had on DNA amplification (as part of next generation DNA sequencing) from both dead and viable bacterial and yeast cells. We found PMA was effective in eliminating DNA that was associated with dead yeast and bacterial cells for all cell concentrations. Nevertheless, DNA (extracted from viable yeast and bacterial cells) amplified most abundantly when PMA concentration was at 6μM and when yeast densities ranged between 106 to 107 CFU/mL and bacterial densities were approximately 108 CFU/mL.

      PubDate: 2016-07-03T03:35:58Z
  • An event-specific method for the detection and quantification of ML01, a
           genetically modified Saccharomyces cerevisiae wine strain, using
           quantitative PCR
    • Abstract: Publication date: 3 October 2016
      Source:International Journal of Food Microbiology, Volume 234
      Author(s): Enrico Vaudano, Antonella Costantini, Emilia Garcia-Moruno
      The availability of genetically modified (GM) yeasts for winemaking and, in particular, transgenic strains based on the integration of genetic constructs deriving from other organisms into the genome of Saccharomyces cerevisiae, has been a reality for several years. Despite this, their use is only authorized in a few countries and limited to two strains: ML01, able to convert malic acid into lactic acid during alcoholic fermentation, and ECMo01 suitable for reducing the risk of carbamate production. In this work we propose a quali-quantitative culture-independent method for the detection of GM yeast ML01 in commercial preparations of ADY (Active Dry Yeast) consisting of efficient extraction of DNA and qPCR (quantitative PCR) analysis based on event-specific assay targeting MLC (malolactic cassette), and a taxon-specific S. cerevisiae assay detecting the MRP2 gene. The ADY DNA extraction methodology has been shown to provide good purity DNA suitable for subsequent qPCR. The MLC and MRP2 qPCR assay showed characteristics of specificity, dynamic range, limit of quantification (LOQ) limit of detection (LOD), precision and trueness, which were fully compliant with international reference guidelines. The method has been shown to reliably detect 0.005% (mass/mass) of GM ML01 S. cerevisiae in commercial preparations of ADY.

      PubDate: 2016-07-03T03:35:58Z
  • Survival and growth of Listeria monocytogenes on whole cantaloupes is
           dependent on site of contamination and storage temperature
    • Abstract: Publication date: 3 October 2016
      Source:International Journal of Food Microbiology, Volume 234
      Author(s): Esmond Nyarko, Kalmia E. Kniel, Patricia D. Millner, Yaguang Luo, Eric T. Handy, Russell Reynnells, Cheryl East, Manan Sharma
      Whole cantaloupes (Cucumis melo L.), marketed as ‘Rocky Ford’, were implicated in a large multi-state outbreak of listeriosis in the United States in 2011; however, survival and growth of Listeria monocytogenes on whole cantaloupes remains relatively unexplored. The research presented here evaluated three different storage temperatures, two sites of contamination of cantaloupes, and two cantaloupe varieties to determine their effect on the survival of L. monocytogenes. ‘Athena’ and ‘Rocky Ford’ cantaloupe cultivars were grown in soil and harvested, and individual melons subsequently received a multi-strain inoculum of L. monocytogenes (6 log CFU/melon), which were then stored at 4°C, 10°C, and 25°C. Changes in L. monocytogenes populations on the rinds and stem scars of cantaloupes stored at each temperature were determined at selected times for up to 15days. An analysis of variance revealed that inoculation site and storage temperature significantly affected survival of L. monocytogenes on cantaloupes during storage (p <0.05), but cultivar did not influence L. monocytogenes (p >0.05). Populations of L. monocytogenes on stem scars of cantaloupes stored at 25°C increased by 1–2 log CFU/melon on day 1, and were significantly greater than those on cantaloupes stored at 4°C or 10°C (p <0.05), which remained constant or increased by approximately 0.3 log CFU/melon, respectively, over the same time period. A decrease of 2–5 log CFU/melon of L. monocytogenes occurred on the rinds of cantaloupes during storage by day 7, and were not significantly different at the three different storage temperatures (p >0.05). In trials performed in rind juice extracts, populations of L. monocytogenes decreased by 3 log CFU/mL when stored at 25°C by day 3, but grew by 3–4 log CFU/mL when stored at 4°C over 7days. Overall, site of contamination and storage temperature influenced the survival of L. monocytogenes on cantaloupes more than cantaloupe cultivar type.

      PubDate: 2016-07-03T03:35:58Z
  • Analysis of microbiota on abalone (Haliotis discus hannai) in South Korea
           for improved product management
    • Abstract: Publication date: 3 October 2016
      Source:International Journal of Food Microbiology, Volume 234
      Author(s): Min-Jung Lee, Jin-Jae Lee, Young Chung Han, Ho Choi Sang, Bong-Soo Kim
      Abalone is a popular seafood in South Korea; however, because it contains various microorganisms, its ingestion can cause food poisoning. Therefore, analysis of the microbiota on abalone can improve understanding of outbreaks and causes of food poisoning and help to better manage seafood products. In this study, we collected a total of 40 abalones from four different regions in March and July, which are known as the maximum abalone production areas in Korea. The microbiota were analyzed using high-throughput sequencing, and bacterial loads on abalone were quantified by real-time PCR. Over 2700 species were detected in the samples, and Alpha- and Gammaproteobacteria were the predominant classes. The differences in microbiota among regions and at each sampling time were also investigated. Although Psychrobacter was the dominant genus detected on abalone in both March and July, the species compositions were different between the two sampling times. Five potential pathogens (Lactococcus garvieae, Yersinia kristensenii, Staphylococcus saprophyticus, Staphylococcus warneri, and Staphylococcus epidermidis) were detected among the abalone microbiota. In addition, we analyzed the influence of Vibrio parahaemolyticus infection on shifts in abalone microbiota during storage at different temperatures. Although the proportion of Vibrio increased over time in infected and non-infected abalone, the shifts of microbiota were more dynamic in infected abalone. These results can be used to better understand the potential of food poisoning caused by abalone consumption and manage abalone products according to the microbiota composition.

      PubDate: 2016-07-03T03:35:58Z
  • Controlled mixed fermentation at winery scale using Zygotorulaspora
           florentina and Saccharomyces cerevisiae
    • Abstract: Publication date: 3 October 2016
      Source:International Journal of Food Microbiology, Volume 234
      Author(s): Livio Lencioni, Cristina Romani, Mirko Gobbi, Francesca Comitini, Maurizio Ciani, Paola Domizio
      Over the last few years the use of multi-starter inocula has become an attractive biotechnological practice in the search for wine with high flavour complexity or distinctive characters. This has been possible through exploiting the particular oenological features of some non-Saccharomyces yeast strains, and the effects that derive from their specific interactions with Saccharomyces. In the present study, we evaluated the selected strain Zygotorulaspora florentina (formerly Zygosaccharomyces florentinus) in mixed culture fermentations with Saccharomyces cerevisiae, from the laboratory scale to the winery scale. The scale-up fermentation and substrate composition (i.e., white or red musts) influenced the analytical composition of the mixed fermentation. At the laboratory scale, mixed fermentation with Z. florentina exhibited an enhancement of polysaccharides and 2-phenylethanol content and a reduction of volatile acidity. At the winery scale, different fermentation characteristics of Z. florentina were observed. Using Sangiovese red grape juice, sequential fermentation trials showed a significantly higher concentration of glycerol and esters while the sensorial analysis of the resulting wines showed higher floral notes and lower perception of astringency. To our knowledge, this is the first time that this yeasts association has been evaluated at the winery scale indicating the potential use of this mixed culture in red grape varieties.

      PubDate: 2016-07-03T03:35:58Z
  • A polyphasic approach for characterization of a collection of cereal
           isolates of the Fusarium incarnatum-equiseti species complex
    • Abstract: Publication date: 3 October 2016
      Source:International Journal of Food Microbiology, Volume 234
      Author(s): Alessandra Villani, Antonio Moretti, Sarah De Saeger, Zheng Han, Jose Diana Di Mavungu, Célia M.G. Soares, Robert H. Proctor, Armando Venâncio, Nelson Lima, Gaetano Stea, Costantino Paciolla, Antonio F. Logrieco, Antonia Susca
      DNA-based phylogenetic analyses have resolved the fungal genus Fusarium into multiple species complexes. The F. incarnatum-equiseti species complex (FIESC) includes fusaria associated with several diseases of agriculturally important crops, including cereals. Although members of FIESC are considered to be only moderately aggressive, they are able to produce a diversity of mycotoxins, including trichothecenes, which can accumulate to harmful levels in cereals. High levels of cryptic speciation have been detected within the FIESC. As a result, it is often necessary to use approaches other than morphological characterization to distinguish species. In the current study, we used a polyphasic approach to characterize a collection of 69 FIESC isolates recovered from cereals in Europe, Turkey, and North America. In a species phylogeny inferred from nucleotide sequences from four housekeeping genes, 65 of the isolates were resolved within the Equiseti clade of the FIESC, and four isolates were resolved within the Incarnatum clade. Seven isolates were resolved as a genealogically exclusive lineage, designated here as FIESC 31. Phylogenies based on nucleotide sequences of trichothecene biosynthetic genes and MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry) were largely concordant with phylogeny inferred from the housekeeping gene. Finally, Liquid Chromatography (Time-Of-Flight) Mass Spectrometry [LC-(TOF-)MS(/MS)] revealed variability in mycotoxin production profiles among the different phylogenetic species investigated in this study.

      PubDate: 2016-07-03T03:35:58Z
  • Microbiological characterization of traditional dough fermentation starter
           (Jiaozi) for steamed bread making by culture-dependent and
           culture-independent methods
    • Abstract: Publication date: 3 October 2016
      Source:International Journal of Food Microbiology, Volume 234
      Author(s): Zhijian Li, Haifeng Li, Ke Bian
      In this study, the microbial composition of two types of Jiaozi (a dough fermentation starter in making steamed bread) was investigated using both culture-dependent and culture-independent (PCR-DGGE) methods. The numbers of the cultivable bacteria on MRS at 30°C and yeast on YPD at 28°C in the maize flour Jiaozi (MFJ) were 9.21±0.16 Log CFU/g and 9.18±0.05 Log CFU/g, respectively, which were higher than that in the rice flour Jiaozi (RFJ) (P <0.05). A total of 140 bacteria and 124 yeasts were isolated and identified on the basis of the sequences of their 16S rRNA gene and ITS region. The culture-dependent method showed that Acetobacter tropicalis and Enterococcus durans were the predominant bacteria strains in MFJ, and accounted for 45.7% and 25.7% of the bacteria, and Lactobacillus plantarum and Pediococcus pentosaceus represented 12.8% and 8.6%. In the RFJ sample, the most prominent isolate was P. pentosaceus (38.6%), followed by L. plantarum (24.3%), A. tropicalis (22.8%), and E. durans (5.7%). P. pentosaceus and L. plantarum were also detected in both starters by PCR-DGGE, while some bacteria species such as A. tropicalis and E. durans, recovered as pure cultures, were not detected by direct PCR-DGGE. On the other hand, Lactobacillus brevis, Weissella sp. and Lactobacillus alimentarius detected by PCR-DGGE were not recovered in any of the media and conditions used. In the MFJ sample, the isolated main yeast species were identified as Wickerhamomyces anomalus (67.2%), Saccharomyces cerevisiae (27.9%) and Torulaspora delbrueckii (4.9%). In addition to S. cerevisiae (42.9%), W. anomalus (27.0%) and T. delbrueckii (7.9%), Saccharomycopsis fibuligera was also identified as the predominant isolate in RFJ samples and accounted for 22.2%. PCR-DGGE also indicated the presence of W. anomalus and S. cerevisiae in both MFJ and RFJ starters and S. fibuligera was also detected in RFJ, but T. delbrueckii was not detected in both samples.

      PubDate: 2016-06-28T03:21:16Z
  • Impact of inhibitory peptides released by Saccharomyces cerevisiae BDX on
           the malolactic fermentation performed by Oenococcus oeni Vitilactic F
    • Abstract: Publication date: 16 September 2016
      Source:International Journal of Food Microbiology, Volume 233
      Author(s): Ziad Rizk, Youssef El Rayess, Chantal Ghanem, Florence Mathieu, Patricia Taillandier, Nancy Nehme
      A previous study has shown that the malolactic fermentation (MLF) was inhibited during sequential fermentations performed with the pair Saccharomyces cerevisiae BDX/Oenococcus oeni Vitilactic F in synthetic grape juices. A yeast peptidic fraction with an apparent MW of 5–10kDa was involved in the inhibition. In the present study, the MLF was also inhibited in Cabernet Sauvignon and Syrah wines. The inhibition due to the peptidic fraction was maintained despite high phenolic contents. Kinetic studies showed that the peptidic fraction was gradually released during the alcoholic fermentation (AF). Its highest anti-MLF effect was reached when isolated from late stages of the AF stationary phase. The peptidic fraction was tested in vitro on cell-free bacterial cytosolic extracts containing the malolactic enzyme in a pH range between 3.5 and 6.7. Results showed that it was able to directly inhibit the malolactic enzyme activity with an increasing inhibitory kinetic correlated to the AF time at which it was collected.

      PubDate: 2016-06-28T03:21:16Z
  • Inhibitory effect of gamma irradiation and its application for control of
           postharvest green mold decay of Satsuma mandarins
    • Abstract: Publication date: 3 October 2016
      Source:International Journal of Food Microbiology, Volume 234
      Author(s): Rae-Dong Jeong, Eun-Hee Chu, Gun Woong Lee, Chuloh Cho, Hae-Jun Park
      Gamma irradiation has been shown to be effective for the control of postharvest fungi in vitro, but little is known regarding antifungal action, responses to gamma irradiation, and its application to fresh produce. Gamma irradiation was evaluated for its in vitro and in vivo antifungal activity against Penicillium digitatum on Satsuma mandarin fruits. Green mold was inhibited in a dose-dependent manner. Gamma irradiation showed a complete inhibition of spore germination, germ tube elongation, and mycelial growth of P. digitatum, particularly at 1.0kGy. To further investigate the mechanisms by which gamma irradiation inhibits fungal growth, the membrane integrity and cellular leakage of conidia were tested, indicating that gamma irradiation results in the loss of plasma membrane integrity, causing the release of intracellular contents such as soluble proteins. In vivo assays demonstrated that established doses can completely inhibit the growth of fungal pathogens, but such high doses cause severe fruit damage. Thus, to eliminate the negative impact on fruit quality, gamma irradiation at lower doses was evaluated for inhibition of P. digitatum, in combination with a chlorine donor, sodium dichloro-s-triazinetrione (NaDCC). Interestingly, only a combined treatment with 0.4kGy of gamma irradiation and 10ppm of NaDCC exhibited significant synergistic antifungal activity against green mold decay. The mechanisms by which the combined treatment decreased the green mold decay of mandarin fruits can be directly associated with the disruption of cell membrane of the fungal pathogen, which resulted in a loss of cytoplasmic material from the hyphae. These findings suggest that a synergistic effect of combining treatment with gamma irradiation with NaDCC has potential as an antifungal approach to reduce the severity of green mold in mandarin fruits.

      PubDate: 2016-06-28T03:21:16Z
  • Multi-criteria framework as an innovative tradeoff approach to determine
           the shelf-life of high pressure-treated poultry
    • Abstract: Publication date: 16 September 2016
      Source:International Journal of Food Microbiology, Volume 233
      Author(s): S. Guillou, M. Lerasle, H. Simonin, V. Anthoine, R. Chéret, M. Federighi, J.-M. Membré
      A multi-criteria framework combining safety, hygiene and sensorial quality was developed to investigate the possibility of extending the shelf-life and/or removing lactate by applying High Hydrostatic Pressure (HHP) in a ready-to-cook (RTC) poultry product. For this purpose, Salmonella and Listeria monocytogenes were considered as safety indicators and Escherichia coli as hygienic indicator. Predictive modeling was used to determine the influence of HHP and lactate concentration on microbial growth and survival of these indicators. To that end, probabilistic assessment exposure models developed in a previous study (Lerasle, M., Guillou, S., Simonin, H., Anthoine, V., Chéret, R., Federighi, M., Membré, J.M. 2014. Assessment of Salmonella and L. monocytogenes level in ready-to-cook poultry meat: Effect of various high pressure treatments and potassium lactate concentrations. International Journal of Food Microbiology 186, 74–83) were used for L. monocytogenes and Salmonella. Besides, for E. coli, an exposure assessment model was built by modeling data from challenge-test experiments. Finally, sensory tests and color measurements were performed to evaluate the effect of HHP on the organoleptic quality of an RTC product. Quantitative rules of decision based on safety, hygienic and organoleptic criteria were set. Hygienic and safety criteria were associated with probability to exceed maximum contamination levels of L. monocytogenes, Salmonella and E. coli at the end of the shelf-life whereas organoleptic criteria corresponded to absence of statistical difference between pressurized and unpressurized products. A tradeoff between safety and hygienic risk, color and taste, was then applied to define process and formulation enabling shelf-life extension. In the resulting operating window, one condition was experimentally assayed on naturally contaminated RTC products to validate the multi-criteria approach. As a conclusion, the framework was validated; it was possible to extend the shelf-life of an RTC poultry product containing 1.8% (w/w) lactate by one week, despite slight color alteration. This approach could be profitably implemented by food processors as a decision support tool for shelf-life determination.

      PubDate: 2016-06-24T07:35:18Z
  • Culture-independent bacterial community profiling of carbon dioxide
           treated raw milk
    • Abstract: Publication date: 16 September 2016
      Source:International Journal of Food Microbiology, Volume 233
      Author(s): Raquel Lo, Mark S. Turner, Mike Weeks, Nidhi Bansal
      Due to technical simplicity and strong inhibition against the growth of psychrotrophic bacteria in milk, CO2 treatment has emerged as an attractive processing aid to increase the storage time of raw milk before downstream processing. However, it is yet to be adopted by the industry. In order to further explore the suitability of CO2 treatment for raw milk processing, the bacterial populations of carbonated raw milk collected locally from five different sources in Australia were analysed with next-generation sequencing. Growth inhibition by CO2 was confirmed, with spoilage delayed by at least 7days compared with non-carbonated controls. All non-carbonated controls were spoiled by Gammaproteobacteria, namely Pseudomonas fluorescens group bacteria, Serratia and Erwinia. Two out of the five carbonated samples shared the same spoilage bacteria as their corresponding controls. The rest of the three carbonated samples were spoiled by the lactic acid bacterium (LAB) Leuconostoc. This is consistent with higher tolerance of LAB towards CO2 and selection of LAB in meat products stored in CO2-enriched modified atmosphere packaging. No harmful bacteria were found to be selected by CO2. LAB are generally regarded as safe (GRAS), thus the selection for Leuconostoc by CO2 in some of the samples poses no safety concern. In addition, we have confirmed previous findings that 454 pyrosequencing and Illumina sequencing of 16S rRNA gene amplicons from the same sample yield highly similar results. This supports comparison of results obtained with the two different sequencing platforms, which may be necessary considering the imminent discontinuation of 454 pyrosequencing.

      PubDate: 2016-06-24T07:35:18Z
  • Critical analysis of the maximum non inhibitory concentration (MNIC)
           method in quantifying sub-lethal injury in Saccharomyces cerevisiae cells
           exposed to either thermal or pulsed electric field treatments
    • Abstract: Publication date: 16 September 2016
      Source:International Journal of Food Microbiology, Volume 233
      Author(s): V. Kethireddy, I. Oey, Tim Jowett, P. Bremer
      Sub-lethal injury within a microbial population, due to processing treatments or environmental stress, is often assessed as the difference in the number of cells recovered on non-selective media compared to numbers recovered on a “selective media” containing a predetermined maximum non-inhibitory concentration (MNIC) of a selective agent. However, as knowledge of cell metabolic response to injury, population diversity and dynamics increased, the rationale behind the conventional approach of quantifying sub-lethal injury must be scrutinized further. This study reassessed the methodology used to quantify sub-lethal injury for Saccharomyces cerevisiae cells (≈ 4.75 Log CFU/mL) exposed to either a mild thermal (45°C for 0, 10 and 20min) or a mild pulsed electric field treatment (field strengths of 8.0–9.0kV/cm and energy levels of 8, 14 and 21kJ/kg). Treated cells were plated onto either Yeast Malt agar (YM) or YM containing NaCl, as a selective agent at 5–15% in 1% increments. The impact of sub-lethal stress due to initial processing, the stress due to selective agents in the plating media, and the subsequent variation of inhibition following the treatments was assessed based on the CFU count (cell numbers). ANOVA and a generalised least squares model indicated significant effects of media, treatments, and their interaction effects (P <0.05) on cell numbers. It was shown that the concentration of the selective agent used dictated the extent of sub-lethal injury recorded owing to the interaction effects of the selective component (NaCl) in the recovery media. Our findings highlight a potential common misunderstanding on how culture conditions impact on sub-lethal injury. Interestingly for S. cerevisiae cells the number of cells recovered at different NaCl concentrations in the media appears to provide valuable information about the mode of injury, the comparative efficacy of different processing regimes and the inherent degree of resistance within a population. This approach may provide similar information for other micro-organisms.

      PubDate: 2016-06-24T07:35:18Z
  • Protein abundance changes of Zygosaccharomyces rouxii in different sugar
    • Abstract: Publication date: 16 September 2016
      Source:International Journal of Food Microbiology, Volume 233
      Author(s): Hong Guo, Chen Niu, Bin Liu, JianPing Wei, HuXuan Wang, YaHong Yuan, TianLi Yue
      Zygosaccharomyces rouxii is a yeast which can cause spoilage in the concentrated juice industries. It exhibits resistance to high sugar concentrations but genome- and proteome-wide studies on Z. rouxii in response to high sugar concentrations have been poorly investigated. Herein, by using a 2-D electrophoresis based workflow, the proteome of a wild strain of Z. rouxii under different sugar concentrations has been analyzed. Proteins were extracted, quantified, and subjected to 2-DE analysis in the pH range 4–7. Differences in growth (lag phase), protein content (13.97–19.23mg/g cell dry weight) and number of resolved spots (196–296) were found between sugar concentrations. ANOVA test showed that 168 spots were different, and 47 spots, corresponding to 40 unique gene products have been identified. These protein species are involved in carbohydrate and energy metabolism, amino acid metabolism, response to stimulus, protein transport and vesicle organization, cell morphogenesis regulation, transcription and translation, nucleotide metabolism, amino-sugar nucleotide-sugar pathways, oxidoreductases balancing, and ribosome biogenesis. The present study provides important information about how Z. rouxii acts to cope with high sugar concentration at molecular levels, which might enhance our global understanding of Z. rouxii's high sugar-tolerance trait.

      PubDate: 2016-06-20T07:33:00Z
  • Physical and antimicrobial properties of cinnamon bark oil
           co-nanoemulsified by lauric arginate and Tween 80
    • Abstract: Publication date: 16 September 2016
      Source:International Journal of Food Microbiology, Volume 233
      Author(s): Jonas Hilbig, Qiumin Ma, P. Michael Davidson, Jochen Weiss, Qixin Zhong
      Lauric arginate (LAE) is a water-soluble cationic surfactant which has antimicrobial activity against a broad spectrum of foodborne pathogens. Some spice essential oils are effective lipophilic antimicrobials. Combining both antimicrobials may reduce their usage levels and possible negative sensory impacts when applied in complex food matrices. The objective of this study was to combine a nonionic surfactant (Tween 80) with LAE to form stable nanoemulsions with cinnamon bark essential oil (CBO) and to characterize the antimicrobial activity of these nanoemulsions. CBO was homogenized at 1% w/w in the aqueous phase with 3% w/w Tween 80 and 0.05–0.375% w/w LAE, followed by heating at 90°C for 30min to obtain final emulsions. With 0.125% and higher LAE, transparent emulsions with ~100nm in hydrodynamic diameter were observed to be stable during 30-day storage at 21°C. Antimicrobial activities of the nanoemulsion prepared with Tween 80 and 0.375% w/w LAE were studied. The respective minimum inhibitory concentrations (MICs) of the nanoemulsion in tryptic soy broth (TSB) were 12, 7, and 8ppm LAE for Salmonella enteritidis, Escherichia coli O157:H7, and Listeria monocytogenes, while those of free LAE were 11, 6, and 6ppm, respectively. MICs of CBO were 400ppm for the tested bacteria and Tween 80 at 6% w/w did not show inhibitory effect. Growth kinetics of the bacteria in TSB treated with the nanoemulsion or individual components at concentrations corresponding to the MICs of free LAE showed that binding among the LAE and Tween 80 and CBO components resulted in the antibacterial activity of nanoemulsion being lower than same concentrations of free LAE and CBO. Conversely, little difference was observed for the individual antimicrobials and the nanoemulsion in 2% reduced fat milk, and 750ppm LAE and 2000ppm CBO were observed to be the dominant antimicrobial against Gram-positive and Gram-negative bacteria, respectively. The growth of L. monocytogenes in 2% reduced fat milk at 4°C was not observed when treated by the nanoemulsion corresponding to 187.5ppm LAE and 500ppm CBO. Therefore, stable and transparent nanoemulsions of EOs can be prepared with the combination of LAE and Tween 80 without compromising antimicrobial activities.

      PubDate: 2016-06-20T07:33:00Z
  • The environmental and intrinsic yeast diversity of Cuban cocoa bean heap
    • Abstract: Publication date: 16 September 2016
      Source:International Journal of Food Microbiology, Volume 233
      Author(s): Yurelkys Fernández Maura, Tom Balzarini, Pablo Clapé Borges, Pierre Evrard, Luc De Vuyst, H.-M. Daniel
      The environmental yeast diversity of spontaneous cocoa bean fermentations in east Cuba was investigated. Seven fermentations, 25 equipment- and handling-related samples, and 115 environmental samples, such as flowers, leaf and cocoa pod surfaces, as well as drosophilid insects, were analysed. The basic fermentation parameters temperature and pH were recorded during five fermentations for at least six days. A total of 435 yeast isolates were identified by a combination of PCR-fingerprinting of genomic DNA with the M13 primer and sequence analysis of DNA from representative isolates, using the internal transcribed spacer region, the D1/D2 region of the large subunit rRNA gene, and an actin gene-encoding fragment, as required. Among 65 yeast species detected, Pichia manshurica and Hanseniaspora opuntiae were the most frequently isolated species, obtained from five and four fermentations, followed in frequency by Pichia kudriavzevii from two fermentations. Saccharomyces cerevisiae was isolated only occasionally. Cocoa fermentation yeast species were also present on processing equipment. The repeated isolation of a preliminarily as Yamadazyma sp. classified species, a group of strains similar to Saccharomycopsis crataegensis from fermentations and equipment, and the isolation of fifteen other potentially novel yeast species in low numbers provides material for further studies. Environmental samples showed higher yeast diversity compared to the fermentations, included the most frequent fermentation species, whereas the most frequently isolated environmental species were Candida carpophila, Candida conglobata, and Candida quercitrusa. Potential selective advantages of the most frequently isolated species were only partly explained by the physiological traits tested. For instance, tolerance to higher ethanol concentrations was more frequent in strains of Pichia spp. and S. cerevisiae compared to Hanseniaspora spp.; the ability to also assimilate ethanol might have conferred a selective advantage to Pichia spp. In contrast, high glucose tolerance was common among strains of Hanseniaspora spp., Torulaspora delbrueckii, and Candida tropicalis, among which only Hanseniaspora spp. were frequently isolated.

      PubDate: 2016-06-20T07:33:00Z
  • Viability of murine norovirus in salads and dressings and its inactivation
           using heat-denatured lysozyme
    • Abstract: Publication date: 16 September 2016
      Source:International Journal of Food Microbiology, Volume 233
      Author(s): Hajime Takahashi, Tomoki Tsuchiya, Michiko Takahashi, Moemi Nakazawa, Tomoka Watanabe, Akira Takeuchi, Takashi Kuda, Bon Kimura
      In recent years, a number of food poisoning outbreaks due to the contamination of norovirus in ready-to-eat (RTE) foods such as salads have been reported, and this issue is regarded as a global problem. The risk of contamination of fresh vegetables with norovirus has been previously reported, but the survivability of norovirus that contaminates salads remains unknown. In addition, there have been limited reports on the control of norovirus in food products by using inactivating agents. In this study, the viability of norovirus in various types of salads and dressings was examined using murine norovirus strain 1 (MNV-1) as a surrogate for the closely related human norovirus. In addition, the inactivation of MNV-1 in salads was examined using heat-denatured lysozyme, which had been reported to inactivate norovirus. MNV-1 was inoculated in 4 types of salads (coleslaw, thousand island salad, vinaigrette salad, egg salad) and 3 types of dressings (mayonnaise, thousand island dressing, vinaigrette dressing), stored at 4°C for 5days. The results revealed that in the vinaigrette dressing, the infectivity of MNV-1 decreased by 2.6logPFU/mL in 5days, whereas in the other dressings and salads, the infectivity of MNV-1 did not show any significant decrease. Next, 1% heat-denatured lysozyme was added to the 4 types of salads, and subsequently it was found that in 2 types of salads (thousand island salad, vinaigrette salad), the infectivity of MNV-1 decreased by >4.0logPFU/g, whereas in coleslaw salad, a decrease of 3.0logPFU/g was shown. However, in egg salads, the infectivity of MNV-1 did not show such decrease. These results suggest that norovirus can survive for 5days in contaminated salads. Further, these findings also indicated that heat-denatured lysozyme had an inactivating effect on norovirus, even in salads. In the future, heat-denatured lysozyme can be used as a novel norovirus-inactivating agent, although it is essential to investigate the mechanism of inactivating effect of heat-denatured lysozyme against norovirus.

      PubDate: 2016-06-16T03:57:05Z
  • Can the development and autolysis of lactic acid bacteria influence the
           cheese volatile fraction' The case of Grana Padano
    • Abstract: Publication date: 16 September 2016
      Source:International Journal of Food Microbiology, Volume 233
      Author(s): Camilla Lazzi, Milena Povolo, Francesco Locci, Valentina Bernini, Erasmo Neviani, Monica Gatti
      In this study, the relationship between the dynamics of the growth and lysis of lactic acid bacteria in Grana Padano cheese and the formation of the volatile flavor compounds during cheese ripening was investigated. The microbial dynamics of Grana Padano cheeses that were produced in two different dairies were followed during ripening. The total and cultivable lactic microflora, community composition as determined by length heterogeneity-PCR (LH-PCR), and extent of bacterial lysis using an intracellular enzymatic activity assay were compared among cheeses after 2, 6 and 13months of ripening in two dairies. The evolution of whole and lysed microbiota was different between the two dairies. In dairy 2, the number of total cells was higher than that in dairy 1 in all samples, and the number of cells that lysed during ripening was lower. In addition, at the beginning of ripening (2months), the community structure of the cheese from dairy 2 was more complex and was composed of starter lactic acid bacteria (Lactobacillus helveticus and Lactobacillus delbrueckii) and NSLAB, possibly arising from raw milk, including Lactobacillus rhamnosus/Lactobacillus casei and Pediococcus acidilactici. On the other hand, the cheese from dairy 1 that ripened for 2months was mainly composed of the SLAB L. helveticus and L. delbrueckii. An evaluation of the free-DNA fraction through LH-PCR identified those species that had a high degree of lysis. Data on the dynamics of bacterial growth and lysis were evaluated with respect to the volatile profile and the organic acid content of the two cheeses after 13months of ripening, producing very different results. Cheese from dairy 1 showed a higher content of free fatty acids, particularly those deriving from milk fat lipolysis, benzaldehyde and organic acids, such as pGlu and citric. In contrast, cheese from dairy 2 had a greater amount of ketones, alcohols, hydrocarbons, acetic acid and propionic acid. Based on these results, we can conclude that in the first cheese, the intracellular enzymes that were released from lysis were mainly involved in aroma formation, whereas in the second cheese, the greater complexity of volatile compounds may be associated with its more complex microbial composition caused from SLAB lysis and NSLAB (mainly L. rhamnosus/L. casei) growth during ripening.

      PubDate: 2016-06-16T03:57:05Z
  • Aflatoxin B1 degradation by liquid cultures and lysates of three bacterial
    • Abstract: Publication date: 16 September 2016
      Source:International Journal of Food Microbiology, Volume 233
      Author(s): Oluwafemi Ayodeji Adebo, Patrick Berka Njobeh, Sibusiso Sidu, Matsobane Godfrey Tlou, Vuyo Mavumengwana
      Aflatoxin contamination remains a daunting issue to address in food safety. In spite of the efforts geared towards prevention and elimination of this toxin, it still persists in agricultural commodities. This has necessitated the search for other measures such as microbial degradation to combat this hazard. In this study, we investigated the biodegradation of aflatoxin B1 (AFB1), using lysates of three bacterial strains (Pseudomonas anguilliseptica VGF1, Pseudomonas fluorescens and Staphylococcus sp. VGF2) isolated from a gold mine aquifer. The bacterial cells were intermittently lysed in the presence and absence of protease inhibitors to obtain protease free lysates, subsequently incubated with AFB1 for 3, 6, 12, 24, and 48h to investigate whether any possible AFB1 degradation occurred using high performance liquid chromatography (HPLC) for detection. Results obtained revealed that after 6h of incubation, protease inhibited lysates of Staphylococcus sp. VGF2 demonstrated the highest degradation capacity of 100%, whereas P. anguilliseptica VGF1 and P. fluorescens lysates degraded AFB1 by 66.5 and 63%, respectively. After further incubation to 12h, no residual AFB1 was detected for all the lysates. Lower degrading ability was however observed for liquid cultures and uninhibited lysates. Data on cytotoxicity studies against human lymphocytes showed that the degraded products were less toxic than the parent AFB1. From this study, it can thus be deduced that the mechanism of degradation by these bacterial lysates is enzymatic. This study shows the efficacy of crude bacterial lysates for detoxifying AFB1 indicating potential for application in the food and feed industry.

      PubDate: 2016-06-16T03:57:05Z
  • Multilocus analysis reveals large genetic diversity in Kluyveromyces
           marxianus strains isolated from Parmigiano Reggiano and Pecorino di
           Farindola cheeses
    • Abstract: Publication date: 16 September 2016
      Source:International Journal of Food Microbiology, Volume 233
      Author(s): Giuseppe Fasoli, Eladio Barrio, Rosanna Tofalo, Giovanna Suzzi, Carmela Belloch
      In the present study, we have analysed the genetic diversity in Kluyveromyces marxianus isolated from Parmigiano Reggiano and Pecorino di Farindola cheesemaking environment. Molecular typing methods inter-RTL fingerprint and mtDNA RFLPs, as well as, sequence diversity and heterozygosity in the intergenic region between KmSSB1 and KmRIO2 genes and analysis of the mating locus were applied to 54 K. marxianus strains. Inter-RTL fingerprint revealed a large degree of genetic heterogeneity and clustering allowed differentiation of K. marxianus strains from different geographical origins. In general, inter-LTR profiles were more discriminating than RFLPs of mtDNA; however our results also indicate that both techniques could be complementary unveiling different degrees of genetic diversity. Sequence analysis of the intergenic region between KmSSB1 and KmRIO2 genes revealed 26 variable positions in which a double peak could be observed in the sequence chromatogram. Further analysis revealed the presence of heterozygous strains in the K. marxianus population isolated from Parmigiano Reggiano. On the other hand, all strains isolated from Pecorino di Farindola were homozygous. Two very different groups of haplotypes could be observed as well as mixtures between them. Phylogenetic reconstruction divided K. marxianus dairy strains into two separate populations. A few heterozygous strains in an intermediate position between them could also be observed. Mating type locus analysis revealed a large population of diploid strains containing both MATa and MATα alleles and few haploid strains, most of them presenting the MATα allele. Different scenarios explaining the presence and maintaining of homozygous and heterozygous diploids as well as hybrids between them in the Parmigiano Reggiano K. marxianus population are proposed. A principal component analysis supported the large differences between K. marxianus isolated from Parmigiano Reggiano and Pecorino di Farindola.

      PubDate: 2016-06-16T03:57:05Z
  • Impact of the sampling method and chilling on the Salmonella recovery from
           pig carcasses
    • Abstract: Publication date: 2 September 2016
      Source:International Journal of Food Microbiology, Volume 232
      Author(s): Gerty Vanantwerpen, Lieven De Zutter, Dirk Berkvens, Kurt Houf
      Differences in recovery of Salmonella on pig carcasses using non-destructive and destructive sampling methods is not well understood in respect to the chilling processes applied in slaughterhouses. Therefore, in two slaughterhouses, four strains at two different concentrations were inoculated onto pork skin. Inoculated skin samples were sampled before and after chilling with two sampling methods: swabbing and destruction. Both slaughterhouses were visited three times and all tests were performed in triplicate. All samples were analysed using the ISO-method and recovered isolates were confirmed by PFGE. The chilling system (fast or conventional cooling) nor the sampling step (before and after chilling) did not significantly influence the recovery of Salmonella. However, swabbing after chilling leads to an underestimation of the real number of contaminated carcasses. Therefore, destructive sampling is the more designated sampling method after chilling.

      PubDate: 2016-05-31T08:09:37Z
  • New insight into microbial diversity and functions in traditional
           Vietnamese alcoholic fermentation
    • Abstract: Publication date: 2 September 2016
      Source:International Journal of Food Microbiology, Volume 232
      Author(s): Vu Nguyen Thanh, Nguyen Thanh Thuy, Nguyen Thuy Chi, Dinh Duc Hien, Bui Thi Viet Ha, Dao Thi Luong, Pham Duc Ngoc, Pham Van Ty
      The roles of microorganisms in traditional alcoholic fermentation are often assumed based on abundance in the starter and activity in pure culture. There is a serious lack of hard evidence on the behavior and activity of individual microbial species during the actual fermentation process. In this study, microbial succession and metabolite changes during 7days of traditional Vietnamese alcoholic fermentation were monitored. Special attention was devoted to starch degradation. In total, 22 microbial species, including 6 species of filamentous fungi (Rhizopus microsporus, Rhizopus arrhizus, Mucor indicus, Mucor circinelloides, Cunninghamella elegans, Aspergillus niger), 1 yeast-like fungus (Saccharomycopsis fibuligera), 7 yeasts (Saccharomyces cerevisiae, Clavispora lusitaniae, Wickerhamomyces anomalus, Lindnera fabianii, Pichia kudriavzevii, Candida rugosa, Candida tropicalis), and 8 bacteria (Stenotrophomonas maltophilia, Lactobacillus brevis, Lactobacillus helveticus, Acinetobacter baumannii, Staphylococcus hominis, Bacillus megaterium, Enterobacter asburiae, Pediococcus pentosaceus) were identified. Despite the presence of a complex microbiota in the starter, the fermentation process is consistent and involves a limited number of functional species. Rapid change in microbial composition of fermentation mash was observed and it was correlated with ethanol content. Microbial biomass reached maximum during first 2days of solid state fermentation. Acidification of the medium took place in day 1, starch degradation in days 2, 3, 4, and alcohol accumulation from day 3. Although Sm. fibuligera dominated by cell count amongst potential starch degraders, zymography indicated that it did not produce amylase in the fermentation mash. In mixed culture with Rhizopus, amylase production by Sm. fibuligera is regulated by the moisture content of the substrate. Rhizopus was identified as the main starch degrader and S. cerevisiae as the main ethanol producer. Bacterial load was high but unstable in species composition and dominated by acid producers. M. indicus, Sm. fibuligera, W. anomalus and bacteria were regarded as satellite microorganisms. Their possible influence on organoleptic quality of fermentation product was discussed.

      PubDate: 2016-05-31T08:09:37Z
  • Putrescine production by Lactococcus lactis subsp. cremoris CECT 8666 is
           reduced by NaCl via a decrease in bacterial growth and the repression of
           the genes involved in putrescine production
    • Abstract: Publication date: 2 September 2016
      Source:International Journal of Food Microbiology, Volume 232
      Author(s): Beatriz del Rio, Begoña Redruello, Victor Ladero, Maria Fernandez, Maria Cruz Martin, Miguel A. Alvarez
      The reduction of NaCl in food is a public health priority; high NaCl intakes have been associated with serious health problems. However, it is reported that reducing the NaCl content of cheeses may lead to an increase in the content of biogenic amines (BAs). The present work examines the effect of NaCl on the accumulation of putrescine (one of the BAs often detected at high concentration in cheese) in experimental Cabrales-like cheeses containing Lactococcus lactis subsp. cremoris CECT 8666, a dairy strain that catabolises agmatine to putrescine via the agmatine deiminase (AGDI) pathway. The genes responsible for this pathway are grouped in the AGDI cluster. This comprises a regulatory gene (aguR) (transcribed independently), followed by the catabolic genes that together form an operon (aguBDAC). Reducing the NaCl concentration of the cheese led to increased putrescine accumulation. In contrast, increasing the NaCl concentration of both pH-uncontrolled and pH-controlled (pH 6) cultures of L. lactis subsp. cremoris CECT 8666 significantly inhibited its growth and the production of putrescine. Such production appeared to be inhibited via a reduction in the transcription of the aguBDAC operon; no effect on the transcription of aguR was recorded. The present results suggest that low-sodium cheeses are at risk of accumulating higher concentrations of putrescine.

      PubDate: 2016-05-25T18:26:36Z
  • Prevalence and characteristics of verotoxigenic Escherichia coli strains
           isolated from pigs and pork products in Umbria and Marche regions of Italy
    • Abstract: Publication date: 2 September 2016
      Source:International Journal of Food Microbiology, Volume 232
      Author(s): Laura Ercoli, Silvana Farneti, Alessia Zicavo, Guerriero Mencaroni, Giuliana Blasi, Gianluca Striano, Stefania Scuota
      In total 1095 samples from 675 pork products, 210 swine colon contents, and 210 swine carcass sponge swabs were collected in Umbria and Marche regions of Italy and examined for the presence of Shiga toxin-producing Escherichia coli (STEC), also known as Verotoxin-producing E. coli (VTEC). After an enrichment step, each sample was analysed by real-time PCR to detect the stx1, stx2, and eae genes. stx-Positive samples were further tested for the “top five” serogroup markers (O157, O26, O103, O111, O145) and cultured onto selective media. The isolates were assigned to stx subtypes and tested for the presence of aaiC and aggR genes. Out of 420 swine samples, 38.6% faecal samples and 13.8% carcass sponge swabs were stx-positive. In total, 33 E. coli STEC isolates were obtained from 30 samples (4 carcasses and 26 colon contents) indicating a culture-positive rate of 7.1%. A higher culture-positive rate was observed in faecal samples (12.4%) than in carcass sponge swabs (1.9%). Out of 675 pork samples, 19 (2.8%) were stx-positive. No STEC strains were isolated from stx-positive pork products. We concluded that STEC isolation from foodstuffs remains difficult, despite the application of ISO/TS 13136:2012. Furthermore, in accordance with the results of studies conducted in other countries, we observed that most of swine STEC strains carried stx 2e gene and lacked of virulence genes, such as eae, aaiC and aggR, indicative of potential pathogenic characteristics for humans. Although the majority of STEC isolates did not express virulence factors correlating with severe human diseases, the association between swine STEC strains and human illness requires further investigations.

      PubDate: 2016-05-25T18:26:36Z
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016