for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> BIOLOGY (Total: 3071 journals)
    - BIOCHEMISTRY (242 journals)
    - BIOENGINEERING (113 journals)
    - BIOLOGY (1453 journals)
    - BIOPHYSICS (46 journals)
    - BIOTECHNOLOGY (227 journals)
    - BOTANY (220 journals)
    - CYTOLOGY AND HISTOLOGY (28 journals)
    - ENTOMOLOGY (67 journals)
    - GENETICS (166 journals)
    - MICROBIOLOGY (261 journals)
    - MICROSCOPY (11 journals)
    - ORNITHOLOGY (26 journals)
    - PHYSIOLOGY (73 journals)
    - ZOOLOGY (138 journals)

BIOTECHNOLOGY (227 journals)                  1 2 | Last

Showing 1 - 200 of 227 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 7)
Advances in Bioscience and Biotechnology     Open Access   (Followers: 14)
Advances in Genetic Engineering & Biotechnology     Hybrid Journal   (Followers: 7)
African Journal of Biotechnology     Open Access   (Followers: 6)
Algal Research     Partially Free   (Followers: 9)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 69)
American Journal of Bioinformatics Research     Open Access   (Followers: 8)
American Journal of Polymer Science     Open Access   (Followers: 29)
Animal Biotechnology     Hybrid Journal   (Followers: 9)
Annales des Sciences Agronomiques     Full-text available via subscription  
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 42)
Applied Bioenergy     Open Access  
Applied Biosafety     Hybrid Journal  
Applied Microbiology and Biotechnology     Hybrid Journal   (Followers: 62)
Applied Mycology and Biotechnology     Full-text available via subscription   (Followers: 5)
Arthroplasty Today     Open Access   (Followers: 1)
Artificial Cells, Nanomedicine and Biotechnology     Hybrid Journal   (Followers: 2)
Asia Pacific Biotech News     Hybrid Journal   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 8)
Asian Pacific Journal of Tropical Biomedicine     Open Access   (Followers: 2)
Australasian Biotechnology     Full-text available via subscription   (Followers: 1)
Banat's Journal of Biotechnology     Open Access  
BBR : Biochemistry and Biotechnology Reports     Open Access   (Followers: 4)
Bio-Algorithms and Med-Systems     Hybrid Journal   (Followers: 1)
Bio-Research     Full-text available via subscription   (Followers: 2)
Bioactive Materials     Open Access   (Followers: 1)
Biocatalysis and Agricultural Biotechnology     Hybrid Journal   (Followers: 4)
Biocybernetics and Biological Engineering     Full-text available via subscription   (Followers: 5)
Bioethics UPdate     Hybrid Journal  
Biofuels     Hybrid Journal   (Followers: 11)
Biofuels Engineering     Open Access   (Followers: 1)
Biological & Pharmaceutical Bulletin     Full-text available via subscription   (Followers: 5)
Biological Cybernetics     Hybrid Journal   (Followers: 10)
Biomarkers and Genomic Medicine     Open Access   (Followers: 5)
Biomarkers in Drug Development     Partially Free   (Followers: 1)
Biomaterials Research     Open Access   (Followers: 4)
BioMed Research International     Open Access   (Followers: 6)
Biomédica     Open Access  
Biomedical Engineering Research     Open Access   (Followers: 7)
Biomedical glasses     Open Access  
Biomedical Reports     Full-text available via subscription  
BioMedicine     Open Access  
Bioprinting     Hybrid Journal  
Bioresource Technology Reports     Hybrid Journal  
Bioscience, Biotechnology, and Biochemistry     Hybrid Journal   (Followers: 22)
Biosimilars     Open Access   (Followers: 1)
Biosurface and Biotribology     Open Access  
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 2)
BioTechniques : The International Journal of Life Science Methods     Full-text available via subscription   (Followers: 28)
Biotechnologia Acta     Open Access   (Followers: 1)
Biotechnologie, Agronomie, Société et Environnement     Open Access   (Followers: 2)
Biotechnology     Open Access   (Followers: 6)
Biotechnology & Biotechnological Equipment     Open Access   (Followers: 5)
Biotechnology Advances     Hybrid Journal   (Followers: 33)
Biotechnology and Applied Biochemistry     Hybrid Journal   (Followers: 44)
Biotechnology and Bioengineering     Hybrid Journal   (Followers: 160)
Biotechnology and Bioprocess Engineering     Hybrid Journal   (Followers: 6)
Biotechnology and Genetic Engineering Reviews     Hybrid Journal   (Followers: 14)
Biotechnology and Health Sciences     Open Access   (Followers: 1)
Biotechnology and Molecular Biology Reviews     Open Access   (Followers: 1)
Biotechnology Annual Review     Full-text available via subscription   (Followers: 7)
Biotechnology for Biofuels     Open Access   (Followers: 10)
Biotechnology Frontier     Open Access   (Followers: 2)
Biotechnology Journal     Hybrid Journal   (Followers: 15)
Biotechnology Law Report     Hybrid Journal   (Followers: 4)
Biotechnology Letters     Hybrid Journal   (Followers: 33)
Biotechnology Progress     Hybrid Journal   (Followers: 39)
Biotechnology Reports     Open Access  
Biotechnology Research International     Open Access   (Followers: 2)
Biotechnology Techniques     Hybrid Journal   (Followers: 10)
Biotecnología Aplicada     Open Access  
Biotribology     Hybrid Journal  
BMC Biotechnology     Open Access   (Followers: 15)
Chinese Journal of Agricultural Biotechnology     Full-text available via subscription   (Followers: 3)
Communications in Mathematical Biology and Neuroscience     Open Access  
Computational and Structural Biotechnology Journal     Open Access   (Followers: 2)
Computer Methods and Programs in Biomedicine     Hybrid Journal   (Followers: 8)
Contributions to Tobacco Research     Open Access   (Followers: 3)
Copernican Letters     Open Access   (Followers: 1)
Critical Reviews in Biotechnology     Hybrid Journal   (Followers: 20)
Crop Breeding and Applied Biotechnology     Open Access   (Followers: 4)
Current Bionanotechnology     Hybrid Journal  
Current Biotechnology     Hybrid Journal   (Followers: 3)
Current Opinion in Biomedical Engineering     Hybrid Journal   (Followers: 1)
Current Opinion in Biotechnology     Hybrid Journal   (Followers: 55)
Current Pharmaceutical Biotechnology     Hybrid Journal   (Followers: 9)
Current Research in Bioinformatics     Open Access   (Followers: 14)
Current trends in Biotechnology and Pharmacy     Open Access   (Followers: 9)
EBioMedicine     Open Access  
Electronic Journal of Biotechnology     Open Access   (Followers: 1)
Entomologia Generalis     Full-text available via subscription  
Environmental Science : Processes & Impacts     Full-text available via subscription   (Followers: 4)
Experimental Biology and Medicine     Hybrid Journal   (Followers: 3)
Folia Medica Indonesiana     Open Access  
Food Bioscience     Hybrid Journal  
Food Biotechnology     Hybrid Journal   (Followers: 12)
Food Science and Biotechnology     Hybrid Journal   (Followers: 9)
Frontiers in Bioengineering and Biotechnology     Open Access   (Followers: 6)
Frontiers in Systems Biology     Open Access   (Followers: 2)
Fungal Biology and Biotechnology     Open Access   (Followers: 1)
GM Crops and Food: Biotechnology in Agriculture and the Food Chain     Full-text available via subscription   (Followers: 1)
GSTF Journal of BioSciences     Open Access  
HAYATI Journal of Biosciences     Open Access  
Horticulture, Environment, and Biotechnology     Hybrid Journal   (Followers: 11)
IEEE Transactions on Molecular, Biological and Multi-Scale Communications     Hybrid Journal   (Followers: 1)
IET Nanobiotechnology     Hybrid Journal   (Followers: 2)
IIOAB Letters     Open Access  
IN VIVO     Full-text available via subscription   (Followers: 4)
Indian Journal of Biotechnology (IJBT)     Open Access   (Followers: 2)
Indonesia Journal of Biomedical Science     Open Access   (Followers: 1)
Indonesian Journal of Biotechnology     Open Access   (Followers: 1)
Industrial Biotechnology     Hybrid Journal   (Followers: 18)
International Biomechanics     Open Access  
International Journal of Bioinformatics Research and Applications     Hybrid Journal   (Followers: 15)
International Journal of Biomechatronics and Biomedical Robotics     Hybrid Journal   (Followers: 4)
International Journal of Biomedical Research     Open Access   (Followers: 2)
International Journal of Biotechnology     Hybrid Journal   (Followers: 5)
International Journal of Biotechnology and Molecular Biology Research     Open Access   (Followers: 2)
International Journal of Biotechnology for Wellness Industries     Partially Free   (Followers: 1)
International Journal of Environment, Agriculture and Biotechnology     Open Access   (Followers: 5)
International Journal of Functional Informatics and Personalised Medicine     Hybrid Journal   (Followers: 4)
International Journal of Medicine and Biomedical Research     Open Access   (Followers: 1)
International Journal of Nanotechnology and Molecular Computation     Full-text available via subscription   (Followers: 3)
International Journal of Radiation Biology     Hybrid Journal   (Followers: 4)
Iranian Journal of Biotechnology     Open Access  
ISABB Journal of Biotechnology and Bioinformatics     Open Access  
Italian Journal of Food Science     Open Access   (Followers: 1)
Journal of Biometrics & Biostatistics     Open Access   (Followers: 3)
Journal of Bioterrorism & Biodefense     Open Access   (Followers: 6)
Journal of Petroleum & Environmental Biotechnology     Open Access   (Followers: 2)
Journal of Advanced Therapies and Medical Innovation Sciences     Open Access  
Journal of Advances in Biotechnology     Open Access   (Followers: 5)
Journal Of Agrobiotechnology     Open Access  
Journal of Analytical & Bioanalytical Techniques     Open Access   (Followers: 7)
Journal of Animal Science and Biotechnology     Open Access   (Followers: 6)
Journal of Applied Biomedicine     Open Access   (Followers: 3)
Journal of Applied Biotechnology     Open Access   (Followers: 2)
Journal of Applied Biotechnology Reports     Open Access   (Followers: 2)
Journal of Applied Mathematics & Bioinformatics     Open Access   (Followers: 5)
Journal of Biologically Active Products from Nature     Hybrid Journal   (Followers: 1)
Journal of Biomaterials and Nanobiotechnology     Open Access   (Followers: 6)
Journal of Biomedical Photonics & Engineering     Open Access  
Journal of Biomedical Practitioners     Open Access  
Journal of Bioprocess Engineering and Biorefinery     Full-text available via subscription  
Journal of Bioprocessing & Biotechniques     Open Access  
Journal of Biosecurity, Biosafety and Biodefense Law     Hybrid Journal   (Followers: 3)
Journal of Biotechnology     Hybrid Journal   (Followers: 68)
Journal of Chemical and Biological Interfaces     Full-text available via subscription   (Followers: 1)
Journal of Chemical Technology & Biotechnology     Hybrid Journal   (Followers: 10)
Journal of Chitin and Chitosan Science     Full-text available via subscription  
Journal of Colloid Science and Biotechnology     Full-text available via subscription  
Journal of Commercial Biotechnology     Full-text available via subscription   (Followers: 6)
Journal of Crop Science and Biotechnology     Hybrid Journal   (Followers: 7)
Journal of Essential Oil Research     Hybrid Journal   (Followers: 3)
Journal of Experimental Biology     Full-text available via subscription   (Followers: 25)
Journal of Genetic Engineering and Biotechnology     Open Access   (Followers: 5)
Journal of Ginseng Research     Open Access  
Journal of Industrial Microbiology and Biotechnology     Hybrid Journal   (Followers: 16)
Journal of Integrative Bioinformatics     Open Access  
Journal of International Biotechnology Law     Hybrid Journal   (Followers: 3)
Journal of Medical Imaging and Health Informatics     Full-text available via subscription  
Journal of Molecular Microbiology and Biotechnology     Full-text available via subscription   (Followers: 14)
Journal of Nano Education     Full-text available via subscription  
Journal of Nanobiotechnology     Open Access   (Followers: 4)
Journal of Nanofluids     Full-text available via subscription   (Followers: 2)
Journal of Organic and Biomolecular Simulations     Open Access  
Journal of Plant Biochemistry and Biotechnology     Hybrid Journal   (Followers: 6)
Journal of Science and Applications : Biomedicine     Open Access  
Journal of the Mechanical Behavior of Biomedical Materials     Hybrid Journal   (Followers: 11)
Journal of Trace Elements in Medicine and Biology     Hybrid Journal   (Followers: 1)
Journal of Tropical Microbiology and Biotechnology     Full-text available via subscription  
Journal of Yeast and Fungal Research     Open Access   (Followers: 1)
Marine Biotechnology     Hybrid Journal   (Followers: 5)
Messenger     Full-text available via subscription  
Metabolic Engineering Communications     Open Access   (Followers: 4)
Metalloproteinases In Medicine     Open Access  
Microalgae Biotechnology     Open Access   (Followers: 2)
Microbial Biotechnology     Open Access   (Followers: 9)
MicroMedicine     Open Access   (Followers: 3)
Molecular and Cellular Biomedical Sciences     Open Access  
Molecular Biotechnology     Hybrid Journal   (Followers: 16)
Molecular Genetics and Metabolism Reports     Open Access   (Followers: 3)
Nanobiomedicine     Open Access  
Nanobiotechnology     Hybrid Journal   (Followers: 3)
Nanomaterials and Nanotechnology     Open Access  
Nanomaterials and Tissue Regeneration     Open Access  
Nanomedicine and Nanobiology     Full-text available via subscription  
Nanomedicine Research Journal     Open Access  
Nanotechnology Reviews     Hybrid Journal   (Followers: 5)
Nature Biotechnology     Full-text available via subscription   (Followers: 519)
Network Modeling and Analysis in Health Informatics and Bioinformatics     Hybrid Journal   (Followers: 3)
New Biotechnology     Hybrid Journal   (Followers: 4)
Nigerian Journal of Biotechnology     Open Access  
Nova Biotechnologica et Chimica     Open Access  
NPG Asia Materials     Open Access  
npj Biofilms and Microbiomes     Open Access  
OA Biotechnology     Open Access  
Plant Biotechnology Journal     Open Access   (Followers: 10)
Plant Biotechnology Reports     Hybrid Journal   (Followers: 4)
Preparative Biochemistry and Biotechnology     Hybrid Journal   (Followers: 4)

        1 2 | Last

Journal Cover Applied Microbiology and Biotechnology
  [SJR: 1.262]   [H-I: 161]   [62 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1432-0614 - ISSN (Online) 0175-7598
   Published by Springer-Verlag Homepage  [2351 journals]
  • Biocatalytic production of mandelic acid and analogues: a review and
           comparison with chemical processes
    • Authors: Ludmila Martínková; Vladimír Křen
      Abstract: The aim of this study is to summarize the current progress in the design of biocatalytic processes applicable for the production of optically pure mandelic acids and their analogues. These compounds are used as building blocks for pharmaceutical chemistry and as chiral resolving agents. Their enzymatic syntheses mainly employed nitrile hydrolysis with nitrilases, ester hydrolysis, ammonolysis or esterification with lipases or esterases, and ketone reduction or alcohol oxidation with dehydrogenases. Each of these methods will be characterized in terms of its product concentrations, enantioselectivities, and the types of catalysts used. This review will focus on the dynamic kinetic resolution of mandelonitrile and analogues by nitrilases resulting in the production of high concentrations of (R)-mandelic acid or (R)-2-chloromandelic acid with excellent e.e. Currently, there is no comparable process for (S)-mandelic acids. However, the coupling of the S-selective cyanation of benzaldehyde with the enantioretentive hydrolysis of (S)-mandelonitrile thus obtained is a promising strategy. The major product can be changed from (S)-acid to (S)-amide using nitrilase mutants. The competitiveness of the biocatalytic and chemical processes will be assessed. This review covers the literature published within 2003–2017.
      PubDate: 2018-03-10
      DOI: 10.1007/s00253-018-8894-8
  • Streptomyces clavuligerus shows a strong association between TCA cycle
           intermediate accumulation and clavulanic acid biosynthesis
    • Authors: Howard Ramirez-Malule; Stefan Junne; Mariano Nicolás Cruz-Bournazou; Peter Neubauer; Rigoberto Ríos-Estepa
      Abstract: Clavulanic acid (CA) is produced by Streptomyces clavuligerus (S. clavuligerus) as a secondary metabolite. Knowledge about the carbon flux distribution along the various routes that supply CA precursors would certainly provide insights about metabolic performance. In order to evaluate metabolic patterns and the possible accumulation of tricarboxylic acid (TCA) cycle intermediates during CA biosynthesis, batch and subsequent continuous cultures with steadily declining feed rates were performed with glycerol as the main substrate. The data were used to in silico explore the metabolic capabilities and the accumulation of metabolic intermediates in S. clavuligerus. While clavulanic acid accumulated at glycerol excess, it steadily decreased at declining dilution rates; CA synthesis stopped when glycerol became the limiting substrate. A strong association of succinate, oxaloacetate, malate, and acetate accumulation with CA production in S. clavuligerus was observed, and flux balance analysis (FBA) was used to describe the carbon flux distribution in the network. This combined experimental and numerical approach also identified bottlenecks during the synthesis of CA in a batch and subsequent continuous cultivation and demonstrated the importance of this type of methodologies for a more advanced understanding of metabolism; this potentially derives valuable insights for future successful metabolic engineering studies in S. clavuligerus.
      PubDate: 2018-03-09
      DOI: 10.1007/s00253-018-8841-8
  • Predator-prey interactions of nematode-trapping fungi and nematodes: both
           sides of the coin
    • Authors: Guillermo Vidal-Diez de Ulzurrun; Yen-Ping Hsueh
      Abstract: Nematode-trapping fungi develop complex trapping devices to capture and consume nematodes. The dynamics of these organisms is especially important given the pathogenicity of nematodes and, consequently, the potential application of nematode-trapping fungi as biocontrol agents. Furthermore, both the nematodes and nematode-trapping fungi can be easily grown in laboratories, making them a unique manipulatable predator-prey system to study their coevolution. Several different aspects of these fungi have been studied, such as their genetics and the different factors triggering trap formation. In this review, we use the nematode-trapping fungus Arthrobotrys oligospora (which forms adhesive nets) as a model to describe the trapping process. We divide this process into several stages; namely attraction, recognition, trap formation, adhesion, penetration, and digestion. We summarize the latest findings in the field and current knowledge on the interactions between nematodes and nematode-trapping fungi, representing both sides of the predator-prey interaction.
      PubDate: 2018-03-09
      DOI: 10.1007/s00253-018-8897-5
  • (Bio)electrochemical ammonia recovery: progress and perspectives
    • Authors: P. Kuntke; T. H. J. A. Sleutels; M. Rodríguez Arredondo; S. Georg; S. G. Barbosa; A. ter Heijne; Hubertus V. M. Hamelers; C. J. N. Buisman
      Abstract: In recent years, (bio)electrochemical systems (B)ES have emerged as an energy efficient alternative for the recovery of TAN (total ammonia nitrogen, including ammonia and ammonium) from wastewater. In these systems, TAN is removed or concentrated from the wastewater under the influence of an electrical current and transported to the cathode. Subsequently, it can be removed or recovered through stripping, chemisorption, or forward osmosis. A crucial parameter that determines the energy required to recover TAN is the load ratio: the ratio between TAN loading and applied current. For electrochemical TAN recovery, an energy input is required, while in bioelectrochemical recovery, electric energy can be recovered together with TAN. Bioelectrochemical recovery relies on the microbial oxidation of COD for the production of electrons, which drives TAN transport. Here, the state-of-the-art of (bio)electrochemical TAN recovery is described, the performance of (B)ES for TAN recovery is analyzed, the potential of different wastewaters for BES-based TAN recovery is evaluated, the microorganisms found on bioanodes that treat wastewater high in TAN are reported, and the toxic effect of the typical conditions in such systems (e.g., high pH, TAN, and salt concentrations) are described. For future application, toxicity effects for electrochemically active bacteria need better understanding, and the technologies need to be demonstrated on larger scale.
      PubDate: 2018-03-09
      DOI: 10.1007/s00253-018-8888-6
  • Impacts of environmental conditions on product formation and morphology of
           Yarrowia lipolytica
    • Authors: Asma Timoumi; Stéphane E. Guillouet; Carole Molina-Jouve; Luc Fillaudeau; Nathalie Gorret
      Abstract: The yeast Yarrowia lipolytica is an industrially important microorganism with distinctive physiological and metabolic characteristics. A variety of external factors (e.g., pH, temperature, and nutrient availability) influences the behavior of the yeast and may act as stress conditions which the cells must withstand and adapt. In this mini review, the impacts of environmental factors on the morphology and metabolite production by Y. lipolytica are summarized. In this regard, detailed insights into the effectors involved in the dimorphic transition of Y. lipolytica, the cultivation conditions employed, as well as the methods applied for the morphological characterization are highlighted. Concerning the metabolism products, a special focus is addressed on lipid and citric acid metabolites which have attracted significant attention in recent years. The dependence of lipid and citric acid productivity on key process parameters, such as media composition and physico-chemical variables, is thoroughly discussed. This review attempts to provide a recent update on the topic and will serve as a meaningful resource for researchers working in the field.
      PubDate: 2018-03-09
      DOI: 10.1007/s00253-018-8870-3
  • Elementary processes for the entry of cell-penetrating peptides into lipid
           bilayer vesicles and bacterial cells
    • Authors: Md. Zahidul Islam; Sabrina Sharmin; Md. Moniruzzaman; Masahito Yamazaki
      Abstract: Cell-penetrating peptides (CPPs) can translocate across the plasma membrane of living eukaryotic cells and enter the cytosol without significantly affecting cell viability. Consequently, CPPs have been used for the intracellular delivery of biological cargo such as proteins and oligonucleotides. However, the mechanisms underlying the translocation of CPPs across the plasma membrane remain unclear. In this mini-review, we summarize the experimental results regarding the entry of CPPs into lipid bilayer vesicles obtained using three methods: the large unilamellar vesicle (LUV) suspension method, the giant unilamellar vesicle (GUV) suspension method, and the single GUV method. The advantages and disadvantages of these methods are also discussed. Experimental results to date clearly indicate that CPPs can translocate across lipid bilayers and enter the vesicle lumen. Three models for the mechanisms and pathways by which CPPs translocate across lipid bilayers are described: (A) through pores induced by CPPs, (B) through transient prepores, and (C) via formation of inverted micelles. Both the pathway of translocation and the efficiency of entry of CPPs depend on the lipid composition of the bilayer and the type of CPP. We also describe the interaction of CPPs with bacterial cells. Some CPPs have strong antimicrobial activities. There are two modes of action of CPPs on bacterial cells: CPPs can induce damage to the plasma membrane and thus increase permeability, or CPPs enter the cytosol of bacterial cells without damaging the plasma membrane. The information currently available on the elementary processes by which CPPs enter lipid bilayer vesicles and bacterial cells is valuable for elucidating the mechanisms of entry of CPPs into the cytosol of various eukaryotic cells.
      PubDate: 2018-03-09
      DOI: 10.1007/s00253-018-8889-5
  • A strong promoter of a non- cry gene directs expression of the cry1Ac gene
           in Bacillus thuringiensis
    • Authors: Xin Zhang; Tantan Gao; Qi Peng; Lai Song; Jie Zhang; Yunrong Chai; Dongmei Sun; Fuping Song
      Abstract: Bacillus thuringiensis bacteria show insecticidal activities that rely upon the production of insecticidal crystal proteins, which are encoded by cry or cyt genes and can target a variety of insect pests. It has been shown that cry1Ac is the only cry gene in B. thuringiensis subsp. kurstaki HD73 (B. thuringiensis HD73) and its expression is controlled by both σE and σK. Here, we report a novel σE-dependent strong promoter of a non-cry gene (HD73_5014), which can direct strong cry1Ac gene expression in B. thuringiensis HD73. We constructed an E. coli-B. thuringiensis shuttle vector (pHT315-P 5014 -1Ac) for cry1Ac gene expression, using the HD73_5014 gene promoter. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analysis showed that expression of the cry1Ac gene directed by the HD73_5014 gene promoter was at the same level as that directed by the previously known strongest cry promoter, P cry8E . However, this strain did not form typical bipyramidal crystals in mother cells, as observed by transmission electron microscopy and atomic force microscope. The strain with Cry1Ac protein expression under the control of the HD73_5014 gene promoter (P 5014 -cry1Ac) showed insecticidal activity against Plutella xylostella similar to that under the control of the orf1cry8E gene promoter (P cry8E -cry1Ac). Collectively, these results suggest that the HD73_5014 gene promoter, as a non-cry gene promoter, would be an efficient transcriptional element for cry gene expression. These data also show the possibility for improving Cry production by searching for transcriptional elements in not only cry genes, but also non-cry genes.
      PubDate: 2018-03-08
      DOI: 10.1007/s00253-018-8836-5
  • Biotechnological production of mono- and diamines using bacteria: recent
           progress, applications, and perspectives
    • Authors: Volker F. Wendisch; Melanie Mindt; Fernando Pérez-García
      Abstract: Common plastics such as polyamides are derived typically from petroleum or natural gas. Fossil-based polyamide production often involves toxic precursors or intermediates. By contrast, bio-based polyamides offer a realistic alternative. Bio-based routes to monomeric precursors of polyamides such as diamines, dicarboxylic acids, and omega-amino acids have been developed. Recent advances in the metabolic engineering of the biotechnologically relevant Escherichia coli and Corynebacterium glutamicum for the production of monoalkylamines such as omega-amino acids as well as diamines are presented.
      PubDate: 2018-03-08
      DOI: 10.1007/s00253-018-8890-z
  • Community composition, diversity, and metabolism of intestinal microbiota
           in cultivated European eel ( Anguilla anguilla )
    • Authors: Wei Huang; Zhiqiang Cheng; Shaonan Lei; Lanying Liu; Xin Lv; Lihua Chen; Miaohong Wu; Chao Wang; Baoyu Tian; Yongkang Song
      Abstract: The intestinal tract, which harbours tremendous numbers of bacteria, plays a pivotal role in the digestion and absorption of nutrients. Here, high-throughput sequencing technology was used to determine the community composition and complexity of the intestinal microbiota in cultivated European eels during three stages of their lifecycle, after which the metabolic potentials of their intestinal microbial communities were assessed. The results demonstrated that European eel intestinal microbiota were dominated by bacteria in the phyla Proteobacteria and Fusobacteria. Statistical analyses revealed that the three cultured European eel life stages (elver, yellow eel, and silver eel) shared core microbiota dominated by Aeromonas. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predictions of metagenome function revealed that the European eel intestinal microbiota might play significant roles in host nutrient metabolism. Biolog AN MicroPlate™ analysis and extracellular enzyme assays of culturable intestinal bacteria showed that the intestinal microbiota have a marked advantage in the metabolism of starch, which is the main carbohydrate component in European eel formulated feed. Understanding the ecology and functions of the intestinal microbiota during different developmental stages will help us improve the effects of fish-based bacteria on the composition and metabolic capacity of nutrients in European eels.
      PubDate: 2018-03-08
      DOI: 10.1007/s00253-018-8885-9
  • Biolubricant potential of exopolysaccharides from the cyanobacterium
           Cyanothece epiphytica
    • Authors: Dharitri Borah; Sangeetha Nainamalai; Subramanian Gopalakrishnan; Jayashree Rout; Naiyf S. Alharbi; Sulaiman Ali Alharbi; Thajuddin Nooruddin
      Abstract: Exopolysaccaharides (EPS) are carbohydrate polymers secreted by microbial cells, as a protective layer termed sheath or capsule. Their composition is variable. Optimisation of nutrient factors and the effect of some simple stresses on the ability of Cyanothece epiphytica to produce EPS were tested. Of the tested stresses, exposure to ozone for 50 s at 0.06 mg/L resulted in a relatively high EPS yield, without any damage to cell structure. EPS was characterised physicochemically. Chemically, it was found to be composed of pentoses arabinose and xylose; hexoses glucose, galactose and mannose; and the deoxyhexose fucose sugars which were sulphated and with different functional groups. EPS from C. epiphytica was found to be a good hydrophobic dispersant, an excellent emulsifier as well as a flocculant. Its potential as a biolubricant with characteristics better than the conventional lubricant ‘grease’ was revealed through analysis. This study gave the clue for developing a commercial technology to produce a less expensive and more environment-friendly natural lubricant from the cyanobacterium C. epiphytica for tribological applications.
      PubDate: 2018-03-08
      DOI: 10.1007/s00253-018-8892-x
  • Intestinal bacterial signatures of white feces syndrome in shrimp
    • Authors: Dongwei Hou; Zhijian Huang; Shenzheng Zeng; Jian Liu; Dongdong Wei; Xisha Deng; Shaoping Weng; Qingyun Yan; Jianguo He
      Abstract: Increasing evidence suggests that the intestinal microbiota is closely correlated with the host’s health status. Thus, a serious disturbance that disrupts the stability of the intestinal microecosystem could cause host disease. Shrimps are one of the most important products among fishery trading commodities. However, digestive system diseases, such as white feces syndrome (WFS), frequently occur in shrimp culture and have led to enormous economic losses across the world. The WFS occurrences are unclear. Here, we compared intestinal bacterial communities of WFS shrimp and healthy shrimp. Intestinal bacterial communities of WFS shrimp exhibited less diversity but were more heterogeneous than those of healthy shrimp. The intestinal bacterial communities were significantly different between WFS shrimp and healthy shrimp; compared with healthy shrimp, in WFS shrimp, Candidatus Bacilloplasma and Phascolarctobacterium were overrepresented, whereas Paracoccus and Lactococcus were underrepresented. PICRUSt functional predictions indicated that the relative abundances of genes involved in energy metabolism and genetic information processing were significantly greater in WFS shrimp. Collectively, we found that the composition and predicted functions of the intestinal bacterial community were markedly shifted by WFS. Significant increases in Candidatus Bacilloplasma and Phascolarctobacterium and decreases in Paracoccus and Lactococcus may contribute to WFS in shrimp.
      PubDate: 2018-03-07
      DOI: 10.1007/s00253-018-8855-2
  • Enhanced productivity of gamma-amino butyric acid by cascade modifications
           of a whole-cell biocatalyst
    • Authors: Xinwei Yang; Chongrong Ke; Jiangming Zhu; Yan Wang; Wenchao Zeng; Jianzhong Huang
      Abstract: We previously developed a gamma-amino butyric acid (GABA)-producing strain of Escherichia coli, leading to production of 614.15 g/L GABA at 45 °C from L-glutamic acid (L-Glu) with a productivity of 40.94 g/L/h by three successive whole-cell conversion cycles. However, the increase in pH caused by the accumulation of GABA resulted in inactivation of the biocatalyst and consequently led to relatively lower productivity. In this study, by overcoming the major problem associated with the increase in pH during the production process, a more efficient biocatalyst was obtained through cascade modifications of the previously reported E. coli strain. First, we introduced four amino acid mutations to the codon-optimized GadB protein from Lactococcus lactis to shift its decarboxylation activity toward a neutral pH, resulting in 306.65 g/L of GABA with 99.14 mol% conversion yield and 69.8% increase in GABA productivity. Second, we promoted transportation of L-Glu and GABA by removing the genomic region encoding the C-plug of GadC (a glutamate/GABA antiporter) to allow its transport path to remain open at a neutral pH, which improved the GABA productivity by 16.8% with 99.3 mol% conversion of 3 M L-Glu. Third, we enhanced the expression of soluble GadB by introducing the GroESL molecular chaperones, leading to 20.2% improvement in GABA productivity, with 307.40 g/L of GABA and a 61.48 g/L/h productivity obtained in one cycle. Finally, we inhibited the degradation of GABA by inactivation of gadA and gadB from the E. coli genome, which resulted in almost no GABA degradation after 40 h. After the cascade system modifications, the engineered recombinant E. coli strain achieved a 44.04 g/L/h productivity with a 99.6 mol% conversion of 3 M L-Glu in a 5-L bioreactor, about twofold increase in productivity compared to the starting strain. This increase represents the highest GABA productivity by whole-cell bioconversion using L-Glu as a substrate in one cycle observed to date, even better than the productivity obtained from the three successive conversion cycles.
      PubDate: 2018-03-07
      DOI: 10.1007/s00253-018-8881-0
  • The second conserved motif in bacterial laccase regulates catalysis and
    • Authors: Lanna Jin; Xue Yang; Yongjie Sheng; Hao Cao; Aixin Ni; Yingjiu Zhang
      Abstract: Laccase (EC1.10.3.2), an oxidase that binds multiple copper ions, is heterogeneous in different species, implying diversity in its function. Nevertheless, the four copper-binding motifs are conserved in most laccases, especially bacterial forms. In order to exploit laccase more widely and more effectively in industrial processes, we investigated the regulatory effects, if any, of the second conserved copper-binding motif in the bacterial laccases CAR2 and CAHH1. The data suggested that three critical amino acid residues His155, His157, and Thr/Ala158 in this motif strongly regulated laccase’s catalysis, substrate range, and robustness. Indeed, these residues were essential for laccase’s catalytic activity. The data also suggested that laccase’s catalytic efficiency and activity are not completely consistent with its stability, and that the enzyme might have evolved naturally to its favor stability. This study provides important insights into the second conserved copper-binding motif and defines some of the previously undefined amino acid residues in this conserved motif and their significances.
      PubDate: 2018-03-07
      DOI: 10.1007/s00253-018-8863-2
  • Integrating molecular and ecological approaches to identify potential
           polymicrobial pathogens over a shrimp disease progression
    • Authors: Wenfang Dai; Weina Yu; Lixia Xuan; Zhen Tao; Jinbo Xiong
      Abstract: It is now recognized that some gut diseases attribute to polymicrobial pathogens infections. Thus, traditional isolation of single pathogen from disease subjects could bias the identification of causal agents. To fill this gap, using Illumina sequencing of the bacterial 16S rRNA gene, we explored the dynamics of gut bacterial communities over a shrimp disease progression. The results showed significant differences in the gut bacterial communities between healthy and diseased shrimp. Potential pathogens were inferred by a local pathogens database, of which two OTUs (affiliated with Vibrio tubiashii and Vibrio harveyi) exhibited significantly higher abundances in diseased shrimp as compared to healthy subjects. The two OTUs cumulatively contributed 64.5% dissimilarity in the gut microbiotas between shrimp health status. Notably, the random Forest model depicted that profiles of the two OTUs contributed 78.5% predicted accuracy of shrimp health status. Removal of the two OTUs from co-occurrence networks led to network fragmentation, suggesting their gatekeeper features. For these evidences, the two OTUs were inferred as candidate pathogens. Three virulence genes (bca, tlpA, and fdeC) that were coded by the two candidate pathogens were inferred by a virulence factor database, which were enriched significantly (P < 0.05 in the three cases, as validated by qPCR) in diseased shrimp as compared to healthy ones. The two candidate pathogens were repressed by Flavobacteriaceae, Garvieae, and Photobacrerium species in healthy shrimp, while these interactions shifted into synergy in disease cohorts. Collectively, our findings offer a frame to identify potential polymicrobial pathogen infections from an ecological perspective.
      PubDate: 2018-03-07
      DOI: 10.1007/s00253-018-8891-y
  • Four second-sphere residues of Thermus thermophilus SG0.5JP17-16 laccase
           tune the catalysis by hydrogen-bonding networks
    • Authors: Huiping Liu; Yanyun Zhu; Xiaorong Yang; Ying Lin
      Abstract: The multicopper oxidases catalyze 1-electron oxidation of four substrate molecules and concomitantly 4-electron reduction of dioxygen to water. The substrate loses the electrons at the type 1 copper (T1 Cu) site of the enzyme, while the dioxygen is reduced to water at the trinuclear copper center. A highly conserved Glu residue, which is at the dioxygen-entering channel, shuttles the proton to break the O-O bond of dioxygen. At the water-leaving channel, an Asp residue was found to be important in the protonation mechanism. In this study, laccase from Thermus thermophilus SG0.5JP17-16 (lacTT) was investigated to address how four second-sphere residues E356, E456, D106, and D423 affect the activity of the enzyme. Kinetic data indicate that catalytic activities of the enzyme are altered by site-directed mutagenesis on four second-sphere residues. The structural model of lacTT was generated by homology modeling. Structural and spectral data indicate that the E356 residue is situated at the substrate-binding site, responsible for the binding of the substrate and the geometry of the T1 Cu site by hydrogen-bonding networks; the E456 residue, located at the dioxygen-entering channel, plays a critical role in stabilizing the structure of all active copper centers and shuttling the proton to the trinuclear copper cluster (TNC) for the reductive reaction of dioxygen; the D106 and D423 residues are at the water-leaving channel, and they are important for the essential geometry of the TNC and the release of the water molecules. Altogether, this study contributes to the further understanding of the basic mechanism involving the oxidation of the substrate, electron transfer, and the reduction of dioxygen in lacTT.
      PubDate: 2018-03-07
      DOI: 10.1007/s00253-018-8875-y
  • 4-Hydroxybenzoic acid—a versatile platform intermediate for
           value-added compounds
    • Authors: Songwei Wang; Muhammad Bilal; Hongbo Hu; Wei Wang; Xuehong Zhang
      Abstract: 4-Hydroxybenzoic acid (4-HBA) has recently emerged as a promising intermediate for several value-added bioproducts with potential biotechnological applications in food, cosmetics, pharmacy, fungicides, etc. Over the past years, a variety of biosynthetic techniques have been developed for producing the 4-HBA and 4-HBA-based products. At this juncture, synthetic biology and metabolic engineering approaches enabled the biosynthesis of 4-HBA to address the increasing demand for high-value bioproducts. This review summarizes the biosynthesis of a variety of industrially pertinent compounds such as resveratrol, muconic acid, gastrodin, xiamenmycin, and vanillyl alcohol using 4-HBA as the starting feedstock. Moreover, potential research activities with a close-up look at the future perspectives to produce new compounds using 4-HBA have also been discussed.
      PubDate: 2018-03-07
      DOI: 10.1007/s00253-018-8815-x
  • New oenological practice to promote non- Saccharomyces species of
           interest: saturating grape juice with carbon dioxide
    • Authors: Laura Chasseriaud; Joana Coulon; Philippe Marullo; Warren Albertin; Marina Bely
      Abstract: Non-Saccharomyces yeast species, naturally found in grape must, may impact wine quality positively or negatively. In this study, a mixture of five non-Saccharomyces species (Torulaspora delbrueckii, Metschnikowia spp., Starmerella bacillaris (formerly called Candida zemplinina), Hanseniaspora uvarum, Pichia kluyveri), mimicking the composition of the natural non-Saccharomyces community found in grape must, was used for alcoholic fermentation. The impact of CO2 saturation of the grape juice was studied first on this mixture alone, and then in the presence of Saccharomyces cerevisiae. Two isogenic strains of this species were used: the first with a short and the second a long fermentation lag phase. This study demonstrated that saturating grape juice with CO2 had interesting potential as an oenological technique, inhibiting undesirable species (S. bacillaris and H. uvarum) and stimulating non-Saccharomyces of interest (T. delbrueckii and P. kluyveri). This stimulating effect was particularly marked when CO2 saturation was associated with the presence of S. cerevisiae with long fermentation lag phase. The direct consequence of this association was an enhancement of 3-SH levels in the resulting wine.
      PubDate: 2018-03-07
      DOI: 10.1007/s00253-018-8861-4
  • Microbial degradation of sulfamethoxazole in the environment
    • Authors: Jianlong Wang; Shizong Wang
      Abstract: Sulfamethoxazole (SMX) is one of the most widely applied sulfonamide antibiotics in the world, which is becoming a ubiquitous pollutant in the environment. In this mini-review, the microbial degradation of SMX was briefly reviewed. The performance of the conventional wastewater treatment plants in removing SMX was provided. The microorganisms capable of degrading SMX, including mixed cultures and pure cultures, were presented. The effects of environmental conditions such as temperature, pH, initial SMX concentration, and additional carbon sources on the biodegradation of SMX were discussed. The metabolic pathways of SMX degradation were summarized. Finally, the suggestions were made for further studies.
      PubDate: 2018-03-07
      DOI: 10.1007/s00253-018-8845-4
  • Effect of dilution rate on productivity of continuous bacteriophage
           production in cellstat
    • Authors: Dominik Nabergoj; Nina Kuzmić; Benjamin Drakslar; Aleš Podgornik
      Abstract: Ability to efficiently propagate high quantities of bacteriophages (phages) is of great importance considering higher phage production needs in the future. Continuous production of phages could represent an interesting option. In our study, we tried to elucidate the effect of dilution rate on productivity of continuous production of phages in cellstat. As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host were used. Experiments where physiology of bacteria was changing with dilution rate of cellstat and where bacterial physiology was kept constant were performed. For both setups there exists an optimal dilution rate when maximal productivity is achieved. Experimentally obtained values of phage concentration and corresponding productivity were compared with mathematical model predictions, and good agreement was obtained for both types of experiments. Analysis of mathematical model coefficients revealed that latent period and burst size to dilution rate coefficient mostly affect optimum dilution rate and productivity. Due to high sensitivity, it is important to evaluate phage growth parameters carefully, to run cellstat under optimal productivity.
      PubDate: 2018-03-07
      DOI: 10.1007/s00253-018-8893-9
  • Enriching ruminal polysaccharide-degrading consortia via co-inoculation
           with methanogenic sludge and microbial mechanisms of acidification across
           lignocellulose loading gradients
    • Authors: Yuying Deng; Zhenxing Huang; Wenquan Ruan; Hengfeng Miao; Wansheng Shi; Mingxing Zhao
      Abstract: Using lignocellulosic materials as substrates, ruminal microbiota were co-inoculated with anaerobic sludge at different loading rates (LR) to study the microbial community in the semi-continuous mode. The results indicated that the highest CH4 yield reached 0.22 L/g volatile solid at LR of 4 g/L/day, which obtained 56–58% of the theoretical value. In the steady stage with LR of 2–4 g/L/day and slurry recirculation, copies of total archaea increased. Especially the Methanobacteriales increased significantly (p < 0.05) to 3.30 × 108 copies/mL. The microbial communities were examined by MiSeq 16S rRNA sequencing. Enriched hydrolytic bacteria mainly belonged to Clostridiales, including Ruminococcus, Ruminiclostridium, and Ruminofilibacter settled in the rumen. High-active cellulase and xylanase were excreted in the co-inoculated system. Acid-producing bacteria by fermentation were affiliated with Lachnospiraceae and Bacteroidales. The acidogen members were mainly Spirochaetaceae and Clostridiales. Syntrophic oxidation bacteria mainly consisted of Synergistetes, propionate oxidizers (Syntrophobacter and Pelotomaculum), and butyrate oxidizers (Syntrophus and Syntrophomonas). There had no volatile fatty acid (VFA) accumulation and the pH values varied between 6.94 and 7.35. At LR of 6 g/L/day and a recirculation ratio of 1:1, the hardly degradable components and total VFA concentrations obviously increased. The total archaea and Methanobacteriales then deceased significantly to 8.56 × 105 copies/mL and 4.14 × 103 copies/mL respectively (p < 0.05), which resulted in the inhibition of methanogenic activities. Subsequently, microbial diversity dropped, and the hydrolytic bacteria and syntrophic oxidizers obviously decreased. In contrast, the abundances of Bacteroidales increased significantly (p < 0.05). Acetate, propionate, and butyrate concentrations reached 2.02, 6.54, and 0.53 g/L, respectively, which indicated “acidification” in the anaerobic reactor. Our study illustrated that co-inoculated anaerobic sludge enriched the ruminal function consortia and hydrogenotrophic methanogens played an important role in anaerobic digestion of lignocelluloses.
      PubDate: 2018-03-06
      DOI: 10.1007/s00253-018-8877-9
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-