for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> BIOLOGY (Total: 3126 journals)
    - BIOCHEMISTRY (240 journals)
    - BIOENGINEERING (119 journals)
    - BIOLOGY (1490 journals)
    - BIOPHYSICS (47 journals)
    - BIOTECHNOLOGY (236 journals)
    - BOTANY (228 journals)
    - CYTOLOGY AND HISTOLOGY (30 journals)
    - ENTOMOLOGY (69 journals)
    - GENETICS (163 journals)
    - MICROBIOLOGY (258 journals)
    - MICROSCOPY (10 journals)
    - ORNITHOLOGY (26 journals)
    - PHYSIOLOGY (73 journals)
    - ZOOLOGY (137 journals)

BIOTECHNOLOGY (236 journals)                  1 2 | Last

Showing 1 - 200 of 239 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 8)
Advanced Biomedical Research     Open Access  
Advances in Bioscience and Biotechnology     Open Access   (Followers: 16)
Advances in Genetic Engineering & Biotechnology     Hybrid Journal   (Followers: 7)
Advances in Regenerative Medicine     Open Access   (Followers: 2)
African Journal of Biotechnology     Open Access   (Followers: 6)
Algal Research     Partially Free   (Followers: 11)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 67)
American Journal of Bioinformatics Research     Open Access   (Followers: 7)
American Journal of Polymer Science     Open Access   (Followers: 32)
Anadolu University Journal of Science and Technology : C Life Sciences and Biotechnology     Open Access  
Animal Biotechnology     Hybrid Journal   (Followers: 8)
Annales des Sciences Agronomiques     Full-text available via subscription  
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 43)
Applied Biosafety     Hybrid Journal  
Applied Food Biotechnology     Open Access   (Followers: 3)
Applied Microbiology and Biotechnology     Hybrid Journal   (Followers: 64)
Applied Mycology and Biotechnology     Full-text available via subscription   (Followers: 4)
Arthroplasty Today     Open Access   (Followers: 1)
Artificial Cells, Nanomedicine and Biotechnology     Hybrid Journal   (Followers: 1)
Asia Pacific Biotech News     Hybrid Journal   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 9)
Asian Pacific Journal of Tropical Biomedicine     Open Access   (Followers: 2)
Australasian Biotechnology     Full-text available via subscription   (Followers: 1)
Banat's Journal of Biotechnology     Open Access  
BBR : Biochemistry and Biotechnology Reports     Open Access   (Followers: 5)
Beitr?ge zur Tabakforschung International/Contributions to Tobacco Research     Open Access   (Followers: 2)
Bio-Algorithms and Med-Systems     Hybrid Journal   (Followers: 2)
Bio-Research     Full-text available via subscription   (Followers: 3)
Bioactive Materials     Open Access   (Followers: 1)
Biocatalysis and Agricultural Biotechnology     Hybrid Journal   (Followers: 4)
Biocybernetics and Biological Engineering     Full-text available via subscription   (Followers: 5)
Bioethics UPdate     Hybrid Journal   (Followers: 1)
Biofuels     Hybrid Journal   (Followers: 11)
Biofuels Engineering     Open Access   (Followers: 1)
Biological & Pharmaceutical Bulletin     Full-text available via subscription   (Followers: 4)
Biological Cybernetics     Hybrid Journal   (Followers: 10)
Biomarkers and Genomic Medicine     Open Access   (Followers: 3)
Biomarkers in Drug Development     Partially Free   (Followers: 1)
Biomaterials Research     Open Access   (Followers: 4)
BioMed Research International     Open Access   (Followers: 4)
Biomédica     Open Access  
Biomedical and Biotechnology Research Journal     Open Access  
Biomedical Engineering Research     Open Access   (Followers: 6)
Biomedical Glasses     Open Access  
Biomedical Reports     Full-text available via subscription  
BioMedicine     Open Access  
Biomedika     Open Access  
Bioprinting     Hybrid Journal   (Followers: 1)
Bioresource Technology Reports     Hybrid Journal   (Followers: 1)
Bioscience, Biotechnology, and Biochemistry     Hybrid Journal   (Followers: 21)
Biosensors Journal     Open Access  
Biosimilars     Open Access   (Followers: 1)
Biosurface and Biotribology     Open Access  
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 1)
BioTechniques : The International Journal of Life Science Methods     Full-text available via subscription   (Followers: 28)
Biotechnologia Acta     Open Access   (Followers: 1)
Biotechnologie, Agronomie, Société et Environnement     Open Access   (Followers: 2)
Biotechnology     Open Access   (Followers: 6)
Biotechnology & Biotechnological Equipment     Open Access   (Followers: 4)
Biotechnology Advances     Hybrid Journal   (Followers: 33)
Biotechnology and Applied Biochemistry     Hybrid Journal   (Followers: 44)
Biotechnology and Bioengineering     Hybrid Journal   (Followers: 153)
Biotechnology and Bioprocess Engineering     Hybrid Journal   (Followers: 5)
Biotechnology and Genetic Engineering Reviews     Hybrid Journal   (Followers: 13)
Biotechnology and Health Sciences     Open Access   (Followers: 1)
Biotechnology and Molecular Biology Reviews     Open Access   (Followers: 2)
Biotechnology Annual Review     Full-text available via subscription   (Followers: 5)
Biotechnology for Biofuels     Open Access   (Followers: 10)
Biotechnology Frontier     Open Access   (Followers: 2)
Biotechnology Journal     Hybrid Journal   (Followers: 16)
Biotechnology Law Report     Hybrid Journal   (Followers: 4)
Biotechnology Letters     Hybrid Journal   (Followers: 34)
Biotechnology Progress     Hybrid Journal   (Followers: 40)
Biotechnology Reports     Open Access  
Biotechnology Research International     Open Access   (Followers: 1)
Biotechnology Techniques     Hybrid Journal   (Followers: 10)
Biotecnología Aplicada     Open Access  
Bioteknologi (Biotechnological Studies)     Open Access  
BIOTIK : Jurnal Ilmiah Biologi Teknologi dan Kependidikan     Open Access  
Biotribology     Hybrid Journal   (Followers: 1)
BMC Biotechnology     Open Access   (Followers: 16)
Cell Biology and Development     Open Access  
Chinese Journal of Agricultural Biotechnology     Full-text available via subscription   (Followers: 4)
Communications in Mathematical Biology and Neuroscience     Open Access  
Computational and Structural Biotechnology Journal     Open Access   (Followers: 2)
Computer Methods and Programs in Biomedicine     Hybrid Journal   (Followers: 8)
Copernican Letters     Open Access   (Followers: 1)
Critical Reviews in Biotechnology     Hybrid Journal   (Followers: 20)
Crop Breeding and Applied Biotechnology     Open Access   (Followers: 3)
Current Bionanotechnology     Hybrid Journal  
Current Biotechnology     Hybrid Journal   (Followers: 4)
Current Opinion in Biomedical Engineering     Hybrid Journal   (Followers: 1)
Current Opinion in Biotechnology     Hybrid Journal   (Followers: 56)
Current Pharmaceutical Biotechnology     Hybrid Journal   (Followers: 9)
Current Research in Bioinformatics     Open Access   (Followers: 12)
Current Trends in Biotechnology and Chemical Research     Open Access   (Followers: 3)
Current trends in Biotechnology and Pharmacy     Open Access   (Followers: 8)
EBioMedicine     Open Access  
Electronic Journal of Biotechnology     Open Access  
Entomologia Generalis     Full-text available via subscription  
Environmental Science : Processes & Impacts     Full-text available via subscription   (Followers: 4)
Experimental Biology and Medicine     Hybrid Journal   (Followers: 3)
Folia Medica Indonesiana     Open Access  
Food Bioscience     Hybrid Journal  
Food Biotechnology     Hybrid Journal   (Followers: 9)
Food Science and Biotechnology     Hybrid Journal   (Followers: 8)
Frontiers in Bioengineering and Biotechnology     Open Access   (Followers: 6)
Frontiers in Systems Biology     Open Access   (Followers: 2)
Fungal Biology and Biotechnology     Open Access   (Followers: 2)
GM Crops and Food: Biotechnology in Agriculture and the Food Chain     Full-text available via subscription   (Followers: 1)
GSTF Journal of BioSciences     Open Access  
HAYATI Journal of Biosciences     Open Access  
Horticulture, Environment, and Biotechnology     Hybrid Journal   (Followers: 11)
IEEE Transactions on Molecular, Biological and Multi-Scale Communications     Hybrid Journal   (Followers: 1)
IET Nanobiotechnology     Hybrid Journal   (Followers: 2)
IIOAB Letters     Open Access  
IN VIVO     Full-text available via subscription   (Followers: 4)
Indian Journal of Biotechnology (IJBT)     Open Access   (Followers: 2)
Indonesia Journal of Biomedical Science     Open Access   (Followers: 2)
Indonesian Journal of Biotechnology     Open Access   (Followers: 1)
Indonesian Journal of Medicine     Open Access  
Industrial Biotechnology     Hybrid Journal   (Followers: 17)
International Biomechanics     Open Access  
International Journal of Bioinformatics Research and Applications     Hybrid Journal   (Followers: 13)
International Journal of Biomechatronics and Biomedical Robotics     Hybrid Journal   (Followers: 4)
International Journal of Biomedical Research     Open Access   (Followers: 2)
International Journal of Biotechnology     Hybrid Journal   (Followers: 5)
International Journal of Biotechnology and Molecular Biology Research     Open Access   (Followers: 3)
International Journal of Biotechnology for Wellness Industries     Partially Free   (Followers: 1)
International Journal of Environment, Agriculture and Biotechnology     Open Access   (Followers: 5)
International Journal of Functional Informatics and Personalised Medicine     Hybrid Journal   (Followers: 4)
International Journal of Medicine and Biomedical Research     Open Access   (Followers: 1)
International Journal of Nanotechnology and Molecular Computation     Full-text available via subscription   (Followers: 3)
International Journal of Radiation Biology     Hybrid Journal   (Followers: 4)
Iranian Journal of Biotechnology     Open Access  
ISABB Journal of Biotechnology and Bioinformatics     Open Access  
Italian Journal of Food Science     Open Access   (Followers: 1)
JMIR Biomedical Engineering     Open Access  
Journal of Biometrics & Biostatistics     Open Access   (Followers: 3)
Journal of Bioterrorism & Biodefense     Open Access   (Followers: 6)
Journal of Petroleum & Environmental Biotechnology     Open Access   (Followers: 1)
Journal of Advanced Therapies and Medical Innovation Sciences     Open Access  
Journal of Advances in Biotechnology     Open Access   (Followers: 5)
Journal Of Agrobiotechnology     Open Access  
Journal of Analytical & Bioanalytical Techniques     Open Access   (Followers: 7)
Journal of Animal Science and Biotechnology     Open Access   (Followers: 4)
Journal of Applied Biomedicine     Open Access   (Followers: 2)
Journal of Applied Biotechnology     Open Access   (Followers: 2)
Journal of Applied Biotechnology Reports     Open Access   (Followers: 2)
Journal of Applied Mathematics & Bioinformatics     Open Access   (Followers: 5)
Journal of Biologically Active Products from Nature     Hybrid Journal   (Followers: 1)
Journal of Biomaterials and Nanobiotechnology     Open Access   (Followers: 6)
Journal of Biomedical Photonics & Engineering     Open Access  
Journal of Biomedical Practitioners     Open Access  
Journal of Bioprocess Engineering and Biorefinery     Full-text available via subscription  
Journal of Bioprocessing & Biotechniques     Open Access  
Journal of Biosecurity Biosafety and Biodefense Law     Hybrid Journal   (Followers: 3)
Journal of Biotechnology     Hybrid Journal   (Followers: 64)
Journal of Biotechnology and Strategic Health Research     Open Access  
Journal of Chemical and Biological Interfaces     Full-text available via subscription   (Followers: 1)
Journal of Chemical Technology & Biotechnology     Hybrid Journal   (Followers: 9)
Journal of Chitin and Chitosan Science     Full-text available via subscription   (Followers: 1)
Journal of Colloid Science and Biotechnology     Full-text available via subscription  
Journal of Commercial Biotechnology     Full-text available via subscription   (Followers: 6)
Journal of Crop Science and Biotechnology     Hybrid Journal   (Followers: 3)
Journal of Essential Oil Research     Hybrid Journal   (Followers: 2)
Journal of Experimental Biology     Full-text available via subscription   (Followers: 25)
Journal of Genetic Engineering and Biotechnology     Open Access   (Followers: 5)
Journal of Ginseng Research     Open Access  
Journal of Industrial Microbiology and Biotechnology     Hybrid Journal   (Followers: 17)
Journal of Integrative Bioinformatics     Open Access  
Journal of Medical Imaging and Health Informatics     Full-text available via subscription  
Journal of Molecular Biology and Biotechnology     Open Access  
Journal of Molecular Microbiology and Biotechnology     Full-text available via subscription   (Followers: 11)
Journal of Nano Education     Full-text available via subscription  
Journal of Nanobiotechnology     Open Access   (Followers: 4)
Journal of Nanofluids     Full-text available via subscription   (Followers: 1)
Journal of Organic and Biomolecular Simulations     Open Access  
Journal of Plant Biochemistry and Biotechnology     Hybrid Journal   (Followers: 4)
Journal of Science and Applications : Biomedicine     Open Access  
Journal of the Mechanical Behavior of Biomedical Materials     Hybrid Journal   (Followers: 12)
Journal of Trace Elements in Medicine and Biology     Hybrid Journal   (Followers: 1)
Journal of Tropical Microbiology and Biotechnology     Full-text available via subscription  
Journal of Yeast and Fungal Research     Open Access   (Followers: 1)
Marine Biotechnology     Hybrid Journal   (Followers: 4)
Meat Technology     Open Access  
Messenger     Full-text available via subscription  
Metabolic Engineering Communications     Open Access   (Followers: 4)
Metalloproteinases In Medicine     Open Access  
Microbial Biotechnology     Open Access   (Followers: 9)
MicroMedicine     Open Access   (Followers: 3)
Molecular and Cellular Biomedical Sciences     Open Access   (Followers: 1)
Molecular Biotechnology     Hybrid Journal   (Followers: 13)
Molecular Genetics and Metabolism Reports     Open Access   (Followers: 3)
Nanobiomedicine     Open Access  
Nanobiotechnology     Hybrid Journal   (Followers: 2)
Nanomaterials and Nanotechnology     Open Access  
Nanomedicine and Nanobiology     Full-text available via subscription  
Nanomedicine Research Journal     Open Access  

        1 2 | Last

Journal Cover
Bioactive Materials
Number of Followers: 1  

  This is an Open Access Journal Open Access journal
ISSN (Print) 2452-199X
Published by Ke Ai Homepage  [15 journals]
  • The effect of tensile and fluid shear stress on the in vitro degradation
           of magnesium alloy for stent applications

    • Abstract: Publication date: December 2018Source: Bioactive Materials, Volume 3, Issue 4Author(s): Xue-Nan Gu, Yun Lu, Fan Wang, Wenting Lin, Ping Li, Yubo Fan Magnesium alloys have gained great attention as biodegradable materials for stent applications. Cardiovascular stents are continuously exposed to different types of mechanical loadings simultaneously during service, including tensile, compressive and fluid shear stress. In this study, the in vitro degradation of WE43 wires was investigated under combined effect of tensile loading and fluid shear stress and compared with that experienced an individual loading condition. For the individual mechanical loading treatment, the degradation of magnesium wires was more severely affected by tensile loading than fluid shear stress. Under tensile loading, magnesium wires showed faster increment of corrosion rates, loss of mechanical properties and localized corrosion morphology with the increasing tensile loadings. With the combined stress, smaller variation of the corrosion rates as well as the slower strength degeneration was shown with increasing stress levels, in comparison with the individual treatment of tensile loading. This study could help to understand the effect of complex stress condition on the corrosion of magnesium for the optimization of biodegradable magnesium stents.Graphical abstractImage 1
  • Exploring cutting-edge hydrogel technologies and their biomedical

    • Abstract: Publication date: December 2018Source: Bioactive Materials, Volume 3, Issue 4Author(s): Decheng Wu, Xiaoyang Xu
  • Polymeric biomaterials for biophotonic applications

    • Abstract: Publication date: December 2018Source: Bioactive Materials, Volume 3, Issue 4Author(s): Dingying Shan, Ethan Gerhard, Chenji Zhang, John William Tierney, Daniel Xie, Zhiwen Liu, Jian Yang With the growing importance of optical techniques in medical diagnosis and treatment, there exists a pressing need to develop and optimize materials platform for biophotonic applications. Particularly, the design of biocompatible and biodegradable materials with desired optical, mechanical, chemical, and biological properties is required to enable clinically relevant biophotonic devices for translating in vitro optical techniques into in situ and in vivo use. This technological trend propels the development of natural and synthetic polymeric biomaterials to replace traditional brittle, nondegradable silica glass based optical materials. In this review, we present an overview of the advances in polymeric optical material development, optical device design and fabrication techniques, and the accompanying applications to imaging, sensing and phototherapy.Graphical abstractImage 1
  • The effect of applied voltages on the structure, apatite-inducing ability
           and antibacterial ability of micro arc oxidation coating formed on
           titanium surface

    • Abstract: Publication date: December 2018Source: Bioactive Materials, Volume 3, Issue 4Author(s): Qing Du, Daqing Wei, Yaming Wang, Su Cheng, Shang Liu, Yu Zhou, Dechang Jia The micro arc oxidation (MAO) coatings with different concentrations of Ca, P and Zn elements are successfully formed on the titanium substrate at the different applied voltages. After MAO treatment, the MAO coating exhibits the porous surface structure and composed of anatase and rutile TiO2 phases. Meanwhile, the average size and density of micro-pores on the MAO coatings have been modified via the adjusting the applied voltages. In addition, the contents of the incorporated elements such as Zn, Ca and P elements in the MAO coatings have been optimized. The bonding strength test results reveal that the MAO coating shows higher bonding strength, which is up to 45 ± 5 MPa. Compared to the pure Ti plate, the MAO coating formed at 350 and 400 V show good apatite-inducing ability. Meanwhile, the MAO coating containing Zn, Ca and P elements have better antibacterial ability for E.coli and S.aureus. Thus, the incorporation of Zn, Ca and P elements was an effective method to improve the antibacterial ability. Moreover, the concentrations of Zn, Ca and P elements could be adjusted with the changing of the applied voltages. As a result, the enhancement of the antibacterial ability on the MAO coating surfaces was depended on the comprehensive effect of the incorporated elements and the surface property of MAO coatings.Graphical abstractIn this work, the surface property and surface concentrations of Ca, P and Zn elements on the MAO coatings are modified by varying the applied voltages, which further optimize the antibacterial ability and apatite-inducing ability on the MAO coating surfaces.Image 1
  • Antibiofilm peptides against biofilms on titanium and hydroxyapatite

    • Abstract: Publication date: December 2018Source: Bioactive Materials, Volume 3, Issue 4Author(s): Dan Wang, Markus Haapasalo, Yuan Gao, Jingzhi Ma, Ya Shen Biofilms are the main challenges in the treatment of common oral diseases such as caries, gingival and endodontic infection and periimplantitis. Oral plaque is the origin of microbes colonizing in the form of biofilms on hydroxyapatite (tooth) and titanium (dental implant) surfaces. In this study, hydroxyapatite (HA) and titanium (Ti) disks were introduced, and their surface morphology was both qualitatively and quantitatively analyzed by a scanning electron microscope (SEM) and atomic force microscope (AFM). The average roughness of Ti disks (77.6 ± 18.3 nm) was less than that of HA (146.1 ± 38.5 nm) (p 
  • Bioactive hydrogels for bone regeneration

    • Abstract: Publication date: December 2018Source: Bioactive Materials, Volume 3, Issue 4Author(s): Xin Bai, Mingzhu Gao, Sahla Syed, Jerry Zhuang, Xiaoyang Xu, Xue-Qing Zhang Bone self-healing is limited and generally requires external intervention to augment bone repair and regeneration. While traditional methods for repairing bone defects such as autografts, allografts, and xenografts have been widely used, they all have corresponding disadvantages, thus limiting their clinical use. Despite the development of a variety of biomaterials, including metal implants, calcium phosphate cements (CPC), hydroxyapatite, etc., the desired therapeutic effect is not fully achieved. Currently, polymeric scaffolds, particularly hydrogels, are of interest and their unique configurations and tunable physicochemical properties have been extensively studied. This review will focus on the applications of various cutting-edge bioactive hydrogels systems in bone regeneration, as well as their advantages and limitations. We will examine the composition and defects of the bone, discuss the current biomaterials for bone regeneration, and classify recently developed polymeric materials for hydrogel synthesis. We will also elaborate on the properties of desirable hydrogels as well as the fabrication techniques and different delivery strategies. Finally, the existing challenges, considerations, and the future prospective of hydrogels in bone regeneration will be outlined.Graphical abstractSchematic illustration of hydrogel-assisted bone regeneration.Image 1
  • Therapeutic neovascularization promoted by injectable hydrogels

    • Abstract: Publication date: December 2018Source: Bioactive Materials, Volume 3, Issue 4Author(s): Amrita Pal, Brent L. Vernon, Mehdi Nikkhah The aim of therapeutic neovascularization is to repair ischemic tissues via formation of new blood vessels by delivery of angiogenic growth factors, stem cells or expansion of pre-existing cells. For efficient neovascularization, controlled release of growth factors is particularly necessary since bolus injection of molecules generally lead to a poor outcome due to inadequate retention within the injured site. In this regard, injectable hydrogels, made of natural, synthetic or hybrid biomaterials, have become a promising solution for efficient delivery of angiogenic factors or stem and progenitor cells for in situ tissue repair, regeneration and neovascularization. This review article will broadly discuss the state-of-the-art in the development of injectable hydrogels from natural and synthetic precursors, and their applications in ischemic tissue repair and wound healing. We will cover a wide range of in vitro and in vivo studies in testing the functionalities of the engineered injectable hydrogels in promoting tissue repair and neovascularization. We will also discuss some of the injectable hydrogels that exhibit self-healing properties by promoting neovascularization without the presence of angiogenic factors.Graphical abstractImage 1
  • Thin films of binary amorphous Zn-Zr alloys developed by magnetron
           co-sputtering for the production of degradable coronary stents: A
           preliminary study

    • Abstract: Publication date: December 2018Source: Bioactive Materials, Volume 3, Issue 4Author(s): Nathalie Annonay, Fatiha Challali, Marie-Noëlle Labour, Valérie Bockelée, A. Garcia-Sanchez, Florent Tetard, Marie-Paule Besland, Philippe Djemia, Frédéric ChaubetGraphical abstractImage 1
  • Study of locust bean gum reinforced cyst-chitosan and oxidized dextran
           based semi-IPN cryogel dressing for hemostatic application

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Lalit Kumar Meena, Pavani Raval, Dhaval Kedaria, Rajesh Vasita Severe blood loss due to traumatic injuries remains one of the leading causes of death in emergency settings. Chitosan continues to be the candidate material for hemostatic applications due to its inherent hemostatic properties. However, available chitosan-based dressings have been reported to have an acidic odor at the wound site due to the incorporation of acid based solvents for their fabrication and deformation under compression owing to low mechanical strength limiting its usability. In the present study semi-IPN cryogel was fabricated via Schiff's base cross-linking between the polyaldehyde groups of oxidized dextran and thiolated chitosan in presence of locust bean gum (LBG) known for its hydrophilicity. Polymerization at −12 °C yielded macroporous semi-IPN cryogels with an average pore size of 124.57 ± 20.31 μm and 85.46% porosity. The hydrophobicity index of LBG reinforced semi-IPN cryogel was reduced 2.42 times whereas the swelling ratio was increased by 156.08% compare to control cryogel. The increased hydrophilicity and swelling ratio inflated the compressive modulus from 28.1 kPa to 33.85 for LBG reinforced semi-IPN cryogel. The structural stability and constant degradation medium pH were also recorded over a period of 12 weeks. The cryogels demonstrated lower adsorption affinity towards BSA. The cytotoxicity assays (direct, indirect) with 3T3-L1 fibroblast cells confirmed the cytocompatibility of the cryogels. The hemolysis assay showed
  • Micro and Nanofabrication methods to control cell-substrate interactions
           and cell behavior: A review from the tissue engineering perspective

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Menekse Ermis, Ezgi Antmen, Vasif Hasirci Cell-substrate interactions play a crucial role in the design of better biomaterials and integration of implants with the tissues. Adhesion is the binding process of the cells to the substrate through interactions between the surface molecules of the cell membrane and the substrate. There are several factors that affect cell adhesion including substrate surface chemistry, topography, and stiffness. These factors physically and chemically guide and influence the adhesion strength, spreading, shape and fate of the cell. Recently, technological advances enabled us to precisely engineer the geometry and chemistry of substrate surfaces enabling the control of the interaction cells with the substrate. Some of the most commonly used surface engineering methods for eliciting the desired cellular responses on biomaterials are photolithography, electron beam lithography, microcontact printing, and microfluidics. These methods allow production of nano- and micron level substrate features that can control cell adhesion, migration, differentiation, shape of the cells and the nuclei as well as measurement of the forces involved in such activities. This review aims to summarize the current techniques and associate these techniques with cellular responses in order to emphasize the effect of chemistry, dimensions, density and design of surface patterns on cell-substrate interactions. We conclude with future projections in the field of cell-substrate interactions in the hope of providing an outlook for the future studies.Graphical abstractImage 1
  • Doxorubicin-conjugated pH-responsive gold nanorods for combined
           photothermal therapy and chemotherapy of cancer

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Jin Chen, Xiao Li, Xinlian Zhao, QianQian Wu, Huihui Zhu, Zhengwei Mao, Changyou Gao Cancer chemotherapy can be hindered by drug resistance which leads to lower drug efficiency. Here, we have developed a drug delivery system that tethers doxorubicin to the surface of gold nanorods via a pH-sensitive linkage (AuNRs@DOX), for a combined photothermal and chemical therapy for cancer. First, AuNRs@DOX is ingested by HepG2 liver cancer cells. After endocytosis, the acidic pH triggers the release of doxorubicin, which leads to chemotherapeutic effects. The gold nanorods are not only carriers of DOX, but also photothermal conversion agents. In the presence of an 808 nm near-infrared laser, AuNRs@DOX significantly enhance the cytotoxicity of doxorubicin via the photothermal effect, which induces elevated apoptosis of hepG2 cancer cells, leading to better therapeutic effects in vitro and in vivo.
  • Combination types between graphene oxide and substrate affect the
           antibacterial activity

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Jiajun Qiu, Lu Liu, Hongqin Zhu, Xuanyong Liu Duo to their superior physicochemical properties, graphene and its derivatives (GDs), such as graphene oxide (GO) and reduced graphene oxide (rGO), have attracted extensive research interests around the world. In recent years, antibacterial activities of GDs have aroused wide concern and substantial works have been done. However, the underlying antibacterial mechanisms still remain controversial. Antibacterial activities of GDs vary with various factors, such as size, number of layers, oxygen-containing groups, and experimental surroundings. We assume that combination types between graphene oxide and substrate may affect the antibacterial activity. Therefore, in this work, GO was fixed on the titanium surface with three kinds of combination types including drop with gravitational effects (GO-D), electrostatic interaction (GO-APS) and electrophoretic deposition (GO-EPD), and the antibacterial activities in vitro were systematically investigated. Results showed that combination types affected the ability of GO for preventing Staphylococcus aureus (S. aureus) from gathering, sharpness of wrinkles or edges and reactive oxygen spices (ROS) levels. Once S. aureus are in the form of separation without aggregation, GO can effectively interact with them and kill them with sharp wrinkles or edges and high ROS levels. GO-EPD could effectively prevent S. aureus from gathering, own sharp wrinkles or edges and could generate higher ROS levels. As a result, GO-EPD exhibited optimal antibacterial activity against S. aureus, followed by GO-APS and GO-D.Graphical abstractImage 1
  • Self-stabilized chitosan and its complexes with carboxymethyl starch as
           excipients in drug delivery

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Mihaela Leonida, Pompilia Ispas-Szabo, Mircea Alexandru Mateescu This study focuses on the behavior of chitosan (CHI) and its polyelectrolyte complexes with carboxymethyl starch (CMS) used as monolithic matrices with acetaminophen as drug tracer. Two different chitosan grades were tested alone or associated in various ratios with CMS as excipients for tablets obtained by direct compression. The degree of deacetylation (DDA) of CHI, estimated from 1H NMR and FTIR data, was correlated with X-ray diffraction and scanning electron microscopy (SEM) to evaluate structural organization of the monolithic matrices. In vitro drug dissolution assays showed major differences in CHI kinetic profiles between tablets exposed to acidic medium for 2h (to mimick gastric passage) prior to dissolution in simulated intestinal fluid (SIF), and those administered directly to SIF. Prior exposure to acidic SGF conducted to longer dissolution profiles (release completed after 16 h) and preservation of tablet shape, whereas tablets directly incubated in SIF were rapidly disintegrated. The improved properties of chitosan matrices exposed to SGF may be related to an outer compact coating layer (visible in SEM). The effect of self-stabilization of chitosan in acidic medium was compared to that due to formation of polyelectrolyte complexes (PEC) in co-processed polymeric systems (CHI:CMS). The self-formed membrane following exposure to gastric acidity appears to help maintaining tablet integrity and allows higher drug loading, recommending CHI and its complexes with CMS as excipients for drug delivery.Graphical abstractImage 1
  • Recent progress on biodegradable materials and transient electronics

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Rongfeng Li, Liu Wang, Deying Kong, Lan Yin Transient electronics (or biodegradable electronics) is an emerging technology whose key characteristic is an ability to dissolve, resorb, or physically disappear in physiological environments in a controlled manner. Potential applications include eco-friendly sensors, temporary biomedical implants, and data-secure hardware. Biodegradable electronics built with water-soluble, biocompatible active and passive materials can provide multifunctional operations for diagnostic and therapeutic purposes, such as monitoring intracranial pressure, identifying neural networks, assisting wound healing process, etc. This review summarizes the up-to-date materials strategies, manufacturing schemes, and device layouts for biodegradable electronics, and the outlook is discussed at the end. It is expected that the translation of these materials and technologies into clinical settings could potentially provide vital tools that are beneficial for human healthcare.Graphical abstractImage 1
  • Preparation and characterization of bioactive glass tablets and evaluation
           of bioactivity and cytotoxicity in vitro

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Jianhui Chen, Lei Zeng, Xiaofeng Chen, Tianshun Liao, Jiafu Zheng In this study, the SiO2CaOP2O5 ternary component of bioactive glass particles were successfully synthesized by sol-gel method, then the bioactive glass particles were pressed into tablets with dry pressing molding technology. The physicochemical structure, in-vitro bioactivity and biocompatibility of BG tablets were characterized by various methods, such as XRD、SEM、FTIR, etc. The results showed that the sol-gel bioactive glass particle was distinguished with its amorphous structure and micron-size. After being soaked in Tris-Hcl solution for 15 d, the bioactive glass tablets didn't collapse. Also, the mineralization assay in vitro showed that the bioactive glass tablets had good capability of inducing the formation of hydroxycarbonate apatite (HCA) after being immersed in simulated body fluid (SBF). In addition, the cytotoxicity assay indicated that the osteoblast (MC3T3) grew well on the surface of bioactive glass tablets. According to the above results, the bioactive glass tablets presented good mechanical strength, excellent apatite-forming activity and high biocompatibility, which demonstrated their potential applications in the field of bone defect repairing.Graphical abstractImage 1
  • 3D bioactive composite scaffolds for bone tissue engineering

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Gareth Turnbull, Jon Clarke, Frédéric Picard, Philip Riches, Luanluan Jia, Fengxuan Han, Bin Li, Wenmiao Shu Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed.Graphical abstractImage 1
  • Chitosan based metallic nanocomposite scaffolds as antimicrobial wound

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Annapoorna Mohandas, S. Deepthi, Raja Biswas, R. Jayakumar Chitosan based nanocomposite scaffolds have attracted wider applications in medicine, in the area of drug delivery, tissue engineering and wound healing. Chitosan matrix incorporated with nanometallic components has immense potential in the area of wound dressings due to its antimicrobial properties. This review focuses on the different combinations of Chitosan metal nanocomposites such as Chitosan/nAg, Chitosan/nAu, Chitosan/nCu, Chitosan/nZnO and Chitosan/nTiO2 towards enhancement of healing or infection control with special reference to the antimicrobial mechanism of action and toxicity.Graphical abstractImage 1
  • Starch based nanofibrous scaffolds for wound healing applications

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Vijaya Sadashiv Waghmare, Pallavi Ravindra Wadke, Sathish Dyawanapelly, Aparna Deshpande, Ratnesh Jain, Prajakta Dandekar Starch is an attractive polymer for wound healing applications because of its wide availability, low cost, biocompatibility, biodegradability and wound-healing property. Here, we have fabricated starch-based nanofibrous scaffolds by electrospinning for wound healing applications. The diameter of the optimized nanofibers was determined by field emission scanning electron microscopy (FE-SEM) and was found to be in the range of 110–300 nm. The mechanical strength (0.5–0.8 MPa) of the nanofibrous scaffolds was attuned using polyvinyl alcohol (plasticizer) and glutaraldehyde (crosslinking agent), to impart them with sufficient durability for skin tissue engineering. Absence of negative interactions between the polymers was confirmed by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), differential scanning microscopy (DSC) and thermal gravimetric analysis (TGA). Cellular assays with L929 mouse fibroblast cells indicated the ability of the scaffolds to promote cellular proliferation, without exhibiting any toxic effect to the cells. Thus, the nanofibrous scaffolds demonstrated potential for wound healing applications.Graphical abstractImage 1
  • Unique strengthening mechanisms of ultrahigh pressure Mg alloys

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Bingcheng Ge, Hui Fu, Kunkun Deng, Qingrui Zhang, Qiuming Peng Ultrahigh pressure technique remarkably extends solid solubility limitation of Al alloying element (∼25 at.%) in Mg alloys, resulting in unique solid-solution strengthening and age hardening response. Microhardness, yield strength and ultimate compressive strength are improved simultaneously without degrading plasticity by forming homogeneous and globular-shaped Mg17Al12 precipitates of 10–30 nm. In addition, thermal resistance is enhanced by eliminating the dominant growth of (101) plane and anchoring dense stacking faults in phase interface.Graphical abstractImage 1
  • Corrosion resistance of a novel SnO2-doped dicalcium phosphate coating on
           AZ31 magnesium alloy

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Lan-Yue Cui, Guang-Bin Wei, Rong-Chang Zeng, Shuo-Qi Li, Yu-Hong Zou, En-Hou Han A SnO2-doped dicalcium phosphate coating was prepared on AZ31 alloy by means of hydrothermal deposition. The results showed that the coating possessed a globular morphology with a long lamellar crystalline structure and a thickness of approximately 40 μm. The surface of the coating became smooth with an increase additive amount of the SnO2 nanoparticles. The corrosion current density and hydrogen evolution rate of the coating prepared in presence of SnO2 were reduced compared to the coating without SnO2 and the bare AZ31 substrate, indicating an improvement in the corrosion resistance of the SnO2-doped coating.Graphical abstractImage 1
  • Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan
           nanocomposite: An approach for significant drug release

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Sadia Sharmeen, A.F.M. Mustafizur Rahman, Mostakima M. Lubna, Kh Samaher Salem, Rafiqul Islam, Mubarak A. Khan This research work blooms the new idea of developing a safe and controlled drug releasing matrix using multi-walled carbon nanotubes (MWCNTs). In aqueous solution, uniform and highly stable dispersion of MWCNTs was obtained after secondary functionalization with polyethylene glycol (PEG) which was studied by Fourier transmission infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Solution casting method was used to prepare MWCNTs/gelatin-chitosan nanocomposite films and the effect of MWCNTs on physico-mechanical, thermal and water uptake properties of the nanocomposites were evaluated. Incorporation of MWCNTs into the porous gelatin-chitosan matrix showed interesting stiffness and dampness along with developed microfibrillar structures within the pore walls intended at being used in tissue engineering of bone or cartilage. A common antibiotic drug, ciprofloxacin was incorporated into nanocomposite matrix. The evaluation of the effect of MWCNTs on drug release rate by dissolution test and antimicrobial susceptibility test was performed. Sharp release of the drug was found at early stages (∼1 h), but the rate was reduced afterwards, showing a sustained release. It was observed that for all microorganisms, the antibacterial activities of drug loaded MWCNTs/gelatin-chitosan nanocomposites were higher than that of drug loaded gelatin-chitosan composite films containing no MWCNTs. Comparative statistical studies by ANOVA techniques also showed remarkable difference between the antibacterial activities, exhibited by MWCNTs-incorporated and non-incorporated composite films.Graphical abstractImage 1
  • Fabrication and characterization of biodegradable Mg-Zn-Y-Nd-Ag alloy:
           Microstructure, mechanical properties, corrosion behavior and
           antibacterial activities

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Yashan Feng, Shijie Zhu, Liguo Wang, Lei Chang, Yachen Hou, Shaokang Guan Magnesium (Mg), a potential biodegradable material, has drawn wide attention in the bone reconstruction field. However, Mg alloys, served as the bone graft substitution, remain a clinical challenge, the antibacterial activity of which is required to be enhanced. Here, we prepared biodegradable magnesium Mg-Zn-Y-Nd-Ag and then had it been further densified by extruding. The microstructure evolution of the as-cast and as-extruded Mg- Zn-Y-Nd-Ag was characterized using optical microscope and X-ray diffraction analyses (XRD). The results showed that the microstructure of the as-cast alloys was mainly dendrites, between which, the second phase was mainly distributed; with the increase of Ag additions, grain structure was further refined as well as the increase of amount of the second phase. After the extrusion, the grains were further refined. Microhardness tests indicated that both of the increase of Ag content and the extrusion process improved the microhardness of the alloys, specially the later. A systematic investigation of the in vivo antibacterial capability of Staphylococcus aurous and Escherichia coli was performed, and the results of which indicated that all Mg-Zn-Y-N-xAg (x = 0.2, 0.4, 0.6, 0.8) alloys exhibited certain antibacterial property, which would increased with the increase of Ag content. Taken all together, the antimicrobial property of the as-extruded alloy containing 0.4 wt% Ag exhibited the relatively better antimicrobial properties and mechanical property with the relatively small loss in corrosion resistance, which suggested the potential utility of as-extruded Mg-Zn-Y-N-0.4Ag in treating orthopedic infections.Graphical abstractImage 1
  • Antibacterial forsterite (Mg2SiO4) scaffold: A promising bioceramic for
           load bearing applications

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): Rajan Choudhary, Ankita Chatterjee, Senthil Kumar Venkatraman, Sivasankar Koppala, Jayanthi Abraham, Sasikumar Swamiappan In the current work, forsterite samples with different surface area were investigated for its antibacterial activity. Dissolution studies show that the lower degradation of forsterite compared to other silicate bioceramics, which is a desirable property for repairing bone defects. Forsterite scaffold shows superior compressive strength than the cortical bone after immersion in simulated body fluid. Bactericidal tests indicate that the forsterite had inhibition effect on the growth of clinical bacterial isolates. Forsterite may be a suitable candidate material for load bearing applications with enhanced mechanical properties and lower degradation rate.Graphical abstractImage 1
  • In vitro biodegradation testing of Mg-alloy EZK400 and manufacturing of
           implant prototypes using PM (powder metallurgy) methods

    • Abstract: Publication date: September 2018Source: Bioactive Materials, Volume 3, Issue 3Author(s): M. Wolff, M. Luczak, J.G. Schaper, B. Wiese, M. Dahms, T. Ebel, R. Willumeit-Römer, T. Klassen The study is focussing towards Metal Injection Moulding (MIM) of Mg-alloys for biomedical implant applications. Especially the influence of the sintering processing necessary for the consolidation of the finished part is in focus of this study. In doing so, the chosen high strength EZK400 Mg-alloy powder material was sintered using different sintering support bottom plate materials to evaluate the possibility of iron impurity pick up during sintering. It can be shown that iron pick up took place from the steel bottom plate into the specimen. Despite the fact that a separating boron nitrite (BN) barrier layer was used and the Mg-Fe phase diagram is not predicting any significant solubility to each other. As a result of this study a new bottom plate material not harming the sintering and the biodegradation performance of the as sintered material, namely a carbon plate material, was found.Graphical abstractImage 1
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-