for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> BIOLOGY (Total: 3134 journals)
    - BIOCHEMISTRY (247 journals)
    - BIOENGINEERING (116 journals)
    - BIOLOGY (1487 journals)
    - BIOPHYSICS (47 journals)
    - BIOTECHNOLOGY (236 journals)
    - BOTANY (229 journals)
    - CYTOLOGY AND HISTOLOGY (29 journals)
    - ENTOMOLOGY (67 journals)
    - GENETICS (166 journals)
    - MICROBIOLOGY (264 journals)
    - MICROSCOPY (11 journals)
    - ORNITHOLOGY (26 journals)
    - PHYSIOLOGY (73 journals)
    - ZOOLOGY (136 journals)

BIOTECHNOLOGY (236 journals)                  1 2 | Last

Showing 1 - 200 of 237 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 8)
Advanced Biomedical Research     Open Access  
Advances in Bioscience and Biotechnology     Open Access   (Followers: 14)
Advances in Genetic Engineering & Biotechnology     Hybrid Journal   (Followers: 8)
African Journal of Biotechnology     Open Access   (Followers: 6)
Algal Research     Partially Free   (Followers: 10)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 64)
American Journal of Bioinformatics Research     Open Access   (Followers: 7)
American Journal of Polymer Science     Open Access   (Followers: 31)
Anadolu University Journal of Science and Technology : C Life Sciences and Biotechnology     Open Access  
Animal Biotechnology     Hybrid Journal   (Followers: 8)
Annales des Sciences Agronomiques     Full-text available via subscription  
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 43)
Applied Bioenergy     Open Access  
Applied Biosafety     Hybrid Journal  
Applied Food Biotechnology     Open Access   (Followers: 3)
Applied Microbiology and Biotechnology     Hybrid Journal   (Followers: 63)
Applied Mycology and Biotechnology     Full-text available via subscription   (Followers: 4)
Arthroplasty Today     Open Access   (Followers: 1)
Artificial Cells, Nanomedicine and Biotechnology     Hybrid Journal   (Followers: 1)
Asia Pacific Biotech News     Hybrid Journal   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 8)
Asian Pacific Journal of Tropical Biomedicine     Open Access   (Followers: 2)
Australasian Biotechnology     Full-text available via subscription   (Followers: 1)
Banat's Journal of Biotechnology     Open Access  
BBR : Biochemistry and Biotechnology Reports     Open Access   (Followers: 5)
Bio-Algorithms and Med-Systems     Hybrid Journal   (Followers: 2)
Bio-Research     Full-text available via subscription   (Followers: 2)
Bioactive Materials     Open Access   (Followers: 1)
Biocatalysis and Agricultural Biotechnology     Hybrid Journal   (Followers: 4)
Biocybernetics and Biological Engineering     Full-text available via subscription   (Followers: 5)
Bioethics UPdate     Hybrid Journal  
Biofuels     Hybrid Journal   (Followers: 11)
Biofuels Engineering     Open Access   (Followers: 1)
Biological & Pharmaceutical Bulletin     Full-text available via subscription   (Followers: 4)
Biological Cybernetics     Hybrid Journal   (Followers: 10)
Biomarkers and Genomic Medicine     Open Access   (Followers: 3)
Biomarkers in Drug Development     Partially Free   (Followers: 1)
Biomaterials Research     Open Access   (Followers: 4)
BioMed Research International     Open Access   (Followers: 4)
Biomédica     Open Access  
Biomedical and Biotechnology Research Journal     Open Access  
Biomedical Engineering Research     Open Access   (Followers: 6)
Biomedical glasses     Open Access  
Biomedical Reports     Full-text available via subscription  
BioMedicine     Open Access  
Biomedika     Open Access  
Bioprinting     Hybrid Journal   (Followers: 1)
Bioresource Technology Reports     Hybrid Journal   (Followers: 1)
Bioscience, Biotechnology, and Biochemistry     Hybrid Journal   (Followers: 21)
Biosimilars     Open Access   (Followers: 1)
Biosurface and Biotribology     Open Access  
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 2)
BioTechniques : The International Journal of Life Science Methods     Full-text available via subscription   (Followers: 28)
Biotechnologia Acta     Open Access   (Followers: 1)
Biotechnologie, Agronomie, Société et Environnement     Open Access   (Followers: 2)
Biotechnology     Open Access   (Followers: 5)
Biotechnology & Biotechnological Equipment     Open Access   (Followers: 4)
Biotechnology Advances     Hybrid Journal   (Followers: 33)
Biotechnology and Applied Biochemistry     Hybrid Journal   (Followers: 44)
Biotechnology and Bioengineering     Hybrid Journal   (Followers: 155)
Biotechnology and Bioprocess Engineering     Hybrid Journal   (Followers: 5)
Biotechnology and Genetic Engineering Reviews     Hybrid Journal   (Followers: 13)
Biotechnology and Health Sciences     Open Access   (Followers: 1)
Biotechnology and Molecular Biology Reviews     Open Access   (Followers: 1)
Biotechnology Annual Review     Full-text available via subscription   (Followers: 5)
Biotechnology for Biofuels     Open Access   (Followers: 10)
Biotechnology Frontier     Open Access   (Followers: 2)
Biotechnology Journal     Hybrid Journal   (Followers: 16)
Biotechnology Law Report     Hybrid Journal   (Followers: 4)
Biotechnology Letters     Hybrid Journal   (Followers: 34)
Biotechnology Progress     Hybrid Journal   (Followers: 39)
Biotechnology Reports     Open Access  
Biotechnology Research International     Open Access   (Followers: 1)
Biotechnology Techniques     Hybrid Journal   (Followers: 10)
Biotecnología Aplicada     Open Access  
Bioteknologi (Biotechnological Studies)     Open Access  
Biotribology     Hybrid Journal   (Followers: 1)
BMC Biotechnology     Open Access   (Followers: 16)
Cell Biology and Development     Open Access  
Chinese Journal of Agricultural Biotechnology     Full-text available via subscription   (Followers: 4)
Communications in Mathematical Biology and Neuroscience     Open Access  
Computational and Structural Biotechnology Journal     Open Access   (Followers: 2)
Computer Methods and Programs in Biomedicine     Hybrid Journal   (Followers: 8)
Contributions to Tobacco Research     Open Access   (Followers: 2)
Copernican Letters     Open Access   (Followers: 1)
Critical Reviews in Biotechnology     Hybrid Journal   (Followers: 20)
Crop Breeding and Applied Biotechnology     Open Access   (Followers: 3)
Current Bionanotechnology     Hybrid Journal  
Current Biotechnology     Hybrid Journal   (Followers: 4)
Current Opinion in Biomedical Engineering     Hybrid Journal   (Followers: 1)
Current Opinion in Biotechnology     Hybrid Journal   (Followers: 56)
Current Pharmaceutical Biotechnology     Hybrid Journal   (Followers: 9)
Current Research in Bioinformatics     Open Access   (Followers: 12)
Current Trends in Biotechnology and Chemical Research     Open Access   (Followers: 3)
Current trends in Biotechnology and Pharmacy     Open Access   (Followers: 8)
EBioMedicine     Open Access  
Electronic Journal of Biotechnology     Open Access  
Entomologia Generalis     Full-text available via subscription  
Environmental Science : Processes & Impacts     Full-text available via subscription   (Followers: 4)
Experimental Biology and Medicine     Hybrid Journal   (Followers: 3)
Folia Medica Indonesiana     Open Access  
Food Bioscience     Hybrid Journal  
Food Biotechnology     Hybrid Journal   (Followers: 9)
Food Science and Biotechnology     Hybrid Journal   (Followers: 8)
Frontiers in Bioengineering and Biotechnology     Open Access   (Followers: 6)
Frontiers in Systems Biology     Open Access   (Followers: 2)
Fungal Biology and Biotechnology     Open Access   (Followers: 2)
GM Crops and Food: Biotechnology in Agriculture and the Food Chain     Full-text available via subscription   (Followers: 1)
GSTF Journal of BioSciences     Open Access  
HAYATI Journal of Biosciences     Open Access  
Horticulture, Environment, and Biotechnology     Hybrid Journal   (Followers: 11)
IEEE Transactions on Molecular, Biological and Multi-Scale Communications     Hybrid Journal   (Followers: 1)
IET Nanobiotechnology     Hybrid Journal   (Followers: 2)
IIOAB Letters     Open Access  
IN VIVO     Full-text available via subscription   (Followers: 4)
Indian Journal of Biotechnology (IJBT)     Open Access   (Followers: 2)
Indonesia Journal of Biomedical Science     Open Access   (Followers: 2)
Indonesian Journal of Biotechnology     Open Access   (Followers: 1)
Industrial Biotechnology     Hybrid Journal   (Followers: 18)
International Biomechanics     Open Access  
International Journal of Bioinformatics Research and Applications     Hybrid Journal   (Followers: 13)
International Journal of Biomechatronics and Biomedical Robotics     Hybrid Journal   (Followers: 4)
International Journal of Biomedical Research     Open Access   (Followers: 2)
International Journal of Biotechnology     Hybrid Journal   (Followers: 5)
International Journal of Biotechnology and Molecular Biology Research     Open Access   (Followers: 2)
International Journal of Biotechnology for Wellness Industries     Partially Free   (Followers: 1)
International Journal of Environment, Agriculture and Biotechnology     Open Access   (Followers: 5)
International Journal of Functional Informatics and Personalised Medicine     Hybrid Journal   (Followers: 4)
International Journal of Medicine and Biomedical Research     Open Access   (Followers: 1)
International Journal of Nanotechnology and Molecular Computation     Full-text available via subscription   (Followers: 3)
International Journal of Radiation Biology     Hybrid Journal   (Followers: 4)
Iranian Journal of Biotechnology     Open Access  
ISABB Journal of Biotechnology and Bioinformatics     Open Access  
Italian Journal of Food Science     Open Access   (Followers: 1)
Journal of Biometrics & Biostatistics     Open Access   (Followers: 3)
Journal of Bioterrorism & Biodefense     Open Access   (Followers: 6)
Journal of Petroleum & Environmental Biotechnology     Open Access   (Followers: 1)
Journal of Advanced Therapies and Medical Innovation Sciences     Open Access  
Journal of Advances in Biotechnology     Open Access   (Followers: 5)
Journal Of Agrobiotechnology     Open Access  
Journal of Analytical & Bioanalytical Techniques     Open Access   (Followers: 7)
Journal of Animal Science and Biotechnology     Open Access   (Followers: 4)
Journal of Applied Biomedicine     Open Access   (Followers: 2)
Journal of Applied Biotechnology     Open Access   (Followers: 2)
Journal of Applied Biotechnology Reports     Open Access   (Followers: 2)
Journal of Applied Mathematics & Bioinformatics     Open Access   (Followers: 5)
Journal of Biologically Active Products from Nature     Hybrid Journal   (Followers: 1)
Journal of Biomaterials and Nanobiotechnology     Open Access   (Followers: 6)
Journal of Biomedical Photonics & Engineering     Open Access  
Journal of Biomedical Practitioners     Open Access  
Journal of Bioprocess Engineering and Biorefinery     Full-text available via subscription  
Journal of Bioprocessing & Biotechniques     Open Access  
Journal of Biosecurity, Biosafety and Biodefense Law     Hybrid Journal   (Followers: 3)
Journal of Biotechnology     Hybrid Journal   (Followers: 68)
Journal of Biotechnology and Strategic Health Research     Open Access  
Journal of Chemical and Biological Interfaces     Full-text available via subscription   (Followers: 1)
Journal of Chemical Technology & Biotechnology     Hybrid Journal   (Followers: 9)
Journal of Chitin and Chitosan Science     Full-text available via subscription  
Journal of Colloid Science and Biotechnology     Full-text available via subscription  
Journal of Commercial Biotechnology     Full-text available via subscription   (Followers: 6)
Journal of Crop Science and Biotechnology     Hybrid Journal   (Followers: 3)
Journal of Essential Oil Research     Hybrid Journal   (Followers: 2)
Journal of Experimental Biology     Full-text available via subscription   (Followers: 24)
Journal of Genetic Engineering and Biotechnology     Open Access   (Followers: 5)
Journal of Ginseng Research     Open Access  
Journal of Industrial Microbiology and Biotechnology     Hybrid Journal   (Followers: 16)
Journal of Integrative Bioinformatics     Open Access  
Journal of International Biotechnology Law     Hybrid Journal   (Followers: 3)
Journal of Medical Imaging and Health Informatics     Full-text available via subscription  
Journal of Molecular Biology and Biotechnology     Open Access  
Journal of Molecular Microbiology and Biotechnology     Full-text available via subscription   (Followers: 11)
Journal of Nano Education     Full-text available via subscription  
Journal of Nanobiotechnology     Open Access   (Followers: 4)
Journal of Nanofluids     Full-text available via subscription   (Followers: 1)
Journal of Organic and Biomolecular Simulations     Open Access  
Journal of Plant Biochemistry and Biotechnology     Hybrid Journal   (Followers: 4)
Journal of Science and Applications : Biomedicine     Open Access  
Journal of the Mechanical Behavior of Biomedical Materials     Hybrid Journal   (Followers: 11)
Journal of Trace Elements in Medicine and Biology     Hybrid Journal   (Followers: 1)
Journal of Tropical Microbiology and Biotechnology     Full-text available via subscription  
Journal of Yeast and Fungal Research     Open Access   (Followers: 1)
Marine Biotechnology     Hybrid Journal   (Followers: 4)
Messenger     Full-text available via subscription  
Metabolic Engineering Communications     Open Access   (Followers: 4)
Metalloproteinases In Medicine     Open Access  
Microalgae Biotechnology     Open Access   (Followers: 2)
Microbial Biotechnology     Open Access   (Followers: 9)
MicroMedicine     Open Access   (Followers: 3)
Molecular and Cellular Biomedical Sciences     Open Access  
Molecular Biotechnology     Hybrid Journal   (Followers: 13)
Molecular Genetics and Metabolism Reports     Open Access   (Followers: 3)
Nanobiomedicine     Open Access  
Nanobiotechnology     Hybrid Journal   (Followers: 2)
Nanomaterials and Nanotechnology     Open Access  
Nanomaterials and Tissue Regeneration     Open Access  
Nanomedicine and Nanobiology     Full-text available via subscription  
Nanomedicine Research Journal     Open Access  
Nanotechnology Reviews     Hybrid Journal   (Followers: 5)
Nature Biotechnology     Full-text available via subscription   (Followers: 535)

        1 2 | Last

Journal Cover Bioactive Materials
  [1 followers]  Follow
  This is an Open Access Journal Open Access journal
   ISSN (Print) 2452-199X
   Published by Ke Ai Homepage  [15 journals]
  • Thin films of binary amorphous Zn-Zr alloys developed by magnetron
           co-sputtering for the production of degradable coronary stents: A
           preliminary study

    • Abstract: Publication date: December 2018
      Source:Bioactive Materials, Volume 3, Issue 4
      Author(s): Nathalie Annonay, Fatiha Challali, Marie-Noëlle Labour, Valérie Bockelée, A. Garcia-Sanchez, Florent Tetard, Marie-Paule Besland, Philippe Djemia, Frédéric Chaubet
      Graphical abstract image

      PubDate: 2018-05-30T00:43:20Z
  • Bioactive hydrogels for bone regeneration

    • Abstract: Publication date: December 2018
      Source:Bioactive Materials, Volume 3, Issue 4
      Author(s): Xin Bai, Mingzhu Gao, Sahla Syed, Jerry Zhuang, Xiaoyang Xu, Xue-Qing Zhang
      Bone self-healing is limited and generally requires external intervention to augment bone repair and regeneration. While traditional methods for repairing bone defects such as autografts, allografts, and xenografts have been widely used, they all have corresponding disadvantages, thus limiting their clinical use. Despite the development of a variety of biomaterials, including metal implants, calcium phosphate cements (CPC), hydroxyapatite, etc., the desired therapeutic effect is not fully achieved. Currently, polymeric scaffolds, particularly hydrogels, are of interest and their unique configurations and tunable physicochemical properties have been extensively studied. This review will focus on the applications of various cutting-edge bioactive hydrogels systems in bone regeneration, as well as their advantages and limitations. We will examine the composition and defects of the bone, discuss the current biomaterials for bone regeneration, and classify recently developed polymeric materials for hydrogel synthesis. We will also elaborate on the properties of desirable hydrogels as well as the fabrication techniques and different delivery strategies. Finally, the existing challenges, considerations, and the future prospective of hydrogels in bone regeneration will be outlined.
      Graphical abstract image

      PubDate: 2018-05-30T00:43:20Z
  • Therapeutic neovascularization promoted by injectable hydrogels

    • Abstract: Publication date: December 2018
      Source:Bioactive Materials, Volume 3, Issue 4
      Author(s): Amrita Pal, Brent L. Vernon, Mehdi Nikkhah
      The aim of therapeutic neovascularization is to repair ischemic tissues via formation of new blood vessels by delivery of angiogenic growth factors, stem cells or expansion of pre-existing cells. For efficient neovascularization, controlled release of growth factors is particularly necessary since bolus injection of molecules generally lead to a poor outcome due to inadequate retention within the injured site. In this regard, injectable hydrogels, made of natural, synthetic or hybrid biomaterials, have become a promising solution for efficient delivery of angiogenic factors or stem and progenitor cells for in situ tissue repair, regeneration and neovascularization. This review article will broadly discuss the state-of-the-art in the development of injectable hydrogels from natural and synthetic precursors, and their applications in ischemic tissue repair and wound healing. We will cover a wide range of in vitro and in vivo studies in testing the functionalities of the engineered injectable hydrogels in promoting tissue repair and neovascularization. We will also discuss some of the injectable hydrogels that exhibit self-healing properties by promoting neovascularization without the presence of angiogenic factors.
      Graphical abstract image

      PubDate: 2018-05-30T00:43:20Z
  • Self-stabilized chitosan and its complexes with carboxymethyl starch as
           excipients in drug delivery

    • Abstract: Publication date: September 2018
      Source:Bioactive Materials, Volume 3, Issue 3
      Author(s): Mihaela Leonida, Pompilia Ispas-Szabo, Mircea Alexandru Mateescu
      This study focuses on the behavior of chitosan (CHI) and its polyelectrolyte complexes with carboxymethyl starch (CMS) used as monolithic matrices with acetaminophen as drug tracer. Two different chitosan grades were tested alone or associated in various ratios with CMS as excipients for tablets obtained by direct compression. The degree of deacetylation (DDA) of CHI, estimated from 1H NMR and FTIR data, was correlated with X-ray diffraction and scanning electron microscopy (SEM) to evaluate structural organization of the monolithic matrices. In vitro drug dissolution assays showed major differences in CHI kinetic profiles between tablets exposed to acidic medium for 2h (to mimick gastric passage) prior to dissolution in simulated intestinal fluid (SIF), and those administered directly to SIF. Prior exposure to acidic SGF conducted to longer dissolution profiles (release completed after 16 h) and preservation of tablet shape, whereas tablets directly incubated in SIF were rapidly disintegrated. The improved properties of chitosan matrices exposed to SGF may be related to an outer compact coating layer (visible in SEM). The effect of self-stabilization of chitosan in acidic medium was compared to that due to formation of polyelectrolyte complexes (PEC) in co-processed polymeric systems (CHI:CMS). The self-formed membrane following exposure to gastric acidity appears to help maintaining tablet integrity and allows higher drug loading, recommending CHI and its complexes with CMS as excipients for drug delivery.
      Graphical abstract image

      PubDate: 2018-05-30T00:43:20Z
  • Combination types between graphene oxide and substrate affect the
           antibacterial activity

    • Abstract: Publication date: September 2018
      Source:Bioactive Materials, Volume 3, Issue 3
      Author(s): Jiajun Qiu, Lu Liu, Hongqin Zhu, Xuanyong Liu
      Duo to their superior physicochemical properties, graphene and its derivatives (GDs), such as graphene oxide (GO) and reduced graphene oxide (rGO), have attracted extensive research interests around the world. In recent years, antibacterial activities of GDs have aroused wide concern and substantial works have been done. However, the underlying antibacterial mechanisms still remain controversial. Antibacterial activities of GDs vary with various factors, such as size, number of layers, oxygen-containing groups, and experimental surroundings. We assume that combination types between graphene oxide and substrate may affect the antibacterial activity. Therefore, in this work, GO was fixed on the titanium surface with three kinds of combination types including drop with gravitational effects (GO-D), electrostatic interaction (GO-APS) and electrophoretic deposition (GO-EPD), and the antibacterial activities in vitro were systematically investigated. Results showed that combination types affected the ability of GO for preventing Staphylococcus aureus (S. aureus) from gathering, sharpness of wrinkles or edges and reactive oxygen spices (ROS) levels. Once S. aureus are in the form of separation without aggregation, GO can effectively interact with them and kill them with sharp wrinkles or edges and high ROS levels. GO-EPD could effectively prevent S. aureus from gathering, own sharp wrinkles or edges and could generate higher ROS levels. As a result, GO-EPD exhibited optimal antibacterial activity against S. aureus, followed by GO-APS and GO-D.
      Graphical abstract image

      PubDate: 2018-05-30T00:43:20Z
  • Doxorubicin-conjugated pH-responsive gold nanorods for combined
           photothermal therapy and chemotherapy of cancer

    • Abstract: Publication date: September 2018
      Source:Bioactive Materials, Volume 3, Issue 3
      Author(s): Jin Chen, Xiao Li, Xinlian Zhao, QianQian Wu, Huihui Zhu, Zhengwei Mao, Changyou Gao
      Cancer chemotherapy can be hindered by drug resistance which leads to lower drug efficiency. Here, we have developed a drug delivery system that tethers doxorubicin to the surface of gold nanorods via a pH-sensitive linkage (AuNRs@DOX), for a combined photothermal and chemical therapy for cancer. First, AuNRs@DOX is ingested by HepG2 liver cancer cells. After endocytosis, the acidic pH triggers the release of doxorubicin, which leads to chemotherapeutic effects. The gold nanorods are not only carriers of DOX, but also photothermal conversion agents. In the presence of an 808 nm near-infrared laser, AuNRs@DOX significantly enhance the cytotoxicity of doxorubicin via the photothermal effect, which induces elevated apoptosis of hepG2 cancer cells, leading to better therapeutic effects in vitro and in vivo.

      PubDate: 2018-05-30T00:43:20Z
  • Micro and Nanofabrication methods to control cell-substrate interactions
           and cell behavior: A review from the tissue engineering perspective

    • Abstract: Publication date: September 2018
      Source:Bioactive Materials, Volume 3, Issue 3
      Author(s): Menekse Ermis, Ezgi Antmen, Vasif Hasirci
      Cell-substrate interactions play a crucial role in the design of better biomaterials and integration of implants with the tissues. Adhesion is the binding process of the cells to the substrate through interactions between the surface molecules of the cell membrane and the substrate. There are several factors that affect cell adhesion including substrate surface chemistry, topography, and stiffness. These factors physically and chemically guide and influence the adhesion strength, spreading, shape and fate of the cell. Recently, technological advances enabled us to precisely engineer the geometry and chemistry of substrate surfaces enabling the control of the interaction cells with the substrate. Some of the most commonly used surface engineering methods for eliciting the desired cellular responses on biomaterials are photolithography, electron beam lithography, microcontact printing, and microfluidics. These methods allow production of nano- and micron level substrate features that can control cell adhesion, migration, differentiation, shape of the cells and the nuclei as well as measurement of the forces involved in such activities. This review aims to summarize the current techniques and associate these techniques with cellular responses in order to emphasize the effect of chemistry, dimensions, density and design of surface patterns on cell-substrate interactions. We conclude with future projections in the field of cell-substrate interactions in the hope of providing an outlook for the future studies.
      Graphical abstract image

      PubDate: 2018-05-30T00:43:20Z
  • In vitro biodegradation testing of Mg-alloy EZK400 and manufacturing of
           implant prototypes using PM (powder metallurgy) methods

    • Abstract: Publication date: September 2018
      Source:Bioactive Materials, Volume 3, Issue 3
      Author(s): M. Wolff, M. Luczak, J.G. Schaper, B. Wiese, M. Dahms, T. Ebel, R. Willumeit-Römer, T. Klassen
      The study is focussing towards Metal Injection Moulding (MIM) of Mg-alloys for biomedical implant applications. Especially the influence of the sintering processing necessary for the consolidation of the finished part is in focus of this study. In doing so, the chosen high strength EZK400 Mg-alloy powder material was sintered using different sintering support bottom plate materials to evaluate the possibility of iron impurity pick up during sintering. It can be shown that iron pick up took place from the steel bottom plate into the specimen. Despite the fact that a separating boron nitrite (BN) barrier layer was used and the Mg-Fe phase diagram is not predicting any significant solubility to each other. As a result of this study a new bottom plate material not harming the sintering and the biodegradation performance of the as sintered material, namely a carbon plate material, was found.
      Graphical abstract image

      PubDate: 2018-04-13T04:10:34Z
  • Antibacterial forsterite (Mg2SiO4) scaffold: A promising bioceramic for
           load bearing applications

    • Abstract: Publication date: September 2018
      Source:Bioactive Materials, Volume 3, Issue 3
      Author(s): Rajan Choudhary, Ankita Chatterjee, Senthil Kumar Venkatraman, Sivasankar Koppala, Jayanthi Abraham, Sasikumar Swamiappan
      In the current work, forsterite samples with different surface area were investigated for its antibacterial activity. Dissolution studies show that the lower degradation of forsterite compared to other silicate bioceramics, which is a desirable property for repairing bone defects. Forsterite scaffold shows superior compressive strength than the cortical bone after immersion in simulated body fluid. Bactericidal tests indicate that the forsterite had inhibition effect on the growth of clinical bacterial isolates. Forsterite may be a suitable candidate material for load bearing applications with enhanced mechanical properties and lower degradation rate.
      Graphical abstract image

      PubDate: 2018-04-13T04:10:34Z
  • Fabrication and characterization of biodegradable Mg-Zn-Y-Nd-Ag alloy:
           Microstructure, mechanical properties, corrosion behavior and
           antibacterial activities

    • Abstract: Publication date: September 2018
      Source:Bioactive Materials, Volume 3, Issue 3
      Author(s): Yashan Feng, Shijie Zhu, Liguo Wang, Lei Chang, Yachen Hou, Shaokang Guan
      Magnesium (Mg), a potential biodegradable material, has drawn wide attention in the bone reconstruction field. However, Mg alloys, served as the bone graft substitution, remain a clinical challenge, the antibacterial activity of which is required to be enhanced. Here, we prepared biodegradable magnesium Mg-Zn-Y-Nd-Ag and then had it been further densified by extruding. The microstructure evolution of the as-cast and as-extruded Mg- Zn-Y-Nd-Ag was characterized using optical microscope and X-ray diffraction analyses (XRD). The results showed that the microstructure of the as-cast alloys was mainly dendrites, between which, the second phase was mainly distributed; with the increase of Ag additions, grain structure was further refined as well as the increase of amount of the second phase. After the extrusion, the grains were further refined. Microhardness tests indicated that both of the increase of Ag content and the extrusion process improved the microhardness of the alloys, specially the later. A systematic investigation of the in vivo antibacterial capability of Staphylococcus aurous and Escherichia coli was performed, and the results of which indicated that all Mg-Zn-Y-N-xAg (x = 0.2, 0.4, 0.6, 0.8) alloys exhibited certain antibacterial property, which would increased with the increase of Ag content. Taken all together, the antimicrobial property of the as-extruded alloy containing 0.4 wt% Ag exhibited the relatively better antimicrobial properties and mechanical property with the relatively small loss in corrosion resistance, which suggested the potential utility of as-extruded Mg-Zn-Y-N-0.4Ag in treating orthopedic infections.
      Graphical abstract image

      PubDate: 2018-04-13T04:10:34Z
  • Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan
           nanocomposite: An approach for significant drug release

    • Abstract: Publication date: September 2018
      Source:Bioactive Materials, Volume 3, Issue 3
      Author(s): Sadia Sharmeen, A.F.M. Mustafizur Rahman, Mostakima M. Lubna, Kh Samaher Salem, Rafiqul Islam, Mubarak A. Khan
      This research work blooms the new idea of developing a safe and controlled drug releasing matrix using multi-walled carbon nanotubes (MWCNTs). In aqueous solution, uniform and highly stable dispersion of MWCNTs was obtained after secondary functionalization with polyethylene glycol (PEG) which was studied by Fourier transmission infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Solution casting method was used to prepare MWCNTs/gelatin-chitosan nanocomposite films and the effect of MWCNTs on physico-mechanical, thermal and water uptake properties of the nanocomposites were evaluated. Incorporation of MWCNTs into the porous gelatin-chitosan matrix showed interesting stiffness and dampness along with developed microfibrillar structures within the pore walls intended at being used in tissue engineering of bone or cartilage. A common antibiotic drug, ciprofloxacin was incorporated into nanocomposite matrix. The evaluation of the effect of MWCNTs on drug release rate by dissolution test and antimicrobial susceptibility test was performed. Sharp release of the drug was found at early stages (∼1 h), but the rate was reduced afterwards, showing a sustained release. It was observed that for all microorganisms, the antibacterial activities of drug loaded MWCNTs/gelatin-chitosan nanocomposites were higher than that of drug loaded gelatin-chitosan composite films containing no MWCNTs. Comparative statistical studies by ANOVA techniques also showed remarkable difference between the antibacterial activities, exhibited by MWCNTs-incorporated and non-incorporated composite films.
      Graphical abstract image

      PubDate: 2018-04-13T04:10:34Z
  • Facially amphiphilic polyionene biocidal polymers derived from lithocholic

    • Abstract: Publication date: June 2018
      Source:Bioactive Materials, Volume 3, Issue 2
      Author(s): Mitra S. Ganewatta, Md Anisur Rahman, Louis Mercado, Tinom Shokfai, Alan W. Decho, Theresa M. Reineke, Chuanbing Tang
      Bacterial infections have become a global issue that requires urgent attention, particularly regarding to emergence of multidrug resistant bacteria. We developed quaternary amine-containing antimicrobial poly(bile acid)s that contain a hydrophobic core of lithocholic acid in the main-chain. Interestingly, by choosing appropriate monomers, these cationic polymers can form core-shell micelles. These polymers exhibited biocidal activity against both Gram-positive and Gram-negative bacterial species. It is demonstrated that the micelles can deliver hydrophobic antibiotics that functionally have dual antimicrobial activities. Cytotoxicity assays against HeLa cells showed dosage-dependent toxicity for polymers with longer linkers.
      Graphical abstract image

      PubDate: 2018-02-28T23:43:16Z
  • Biofunctional Mg coating on PEEK for improving bioactivity

    • Abstract: Publication date: June 2018
      Source:Bioactive Materials, Volume 3, Issue 2
      Author(s): Xiaoming Yu, Muhammad Ibrahim, Zongyuan Liu, Huazhe Yang, Lili Tan, Ke Yang
      High purity Mg was successfully coated on polyetheretherketone (PEEK) by vapor deposition method in order to improve the bioactivity including antibacterial property of PEEK implant. The morphology and elemental composition of the coating were characterized by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), showing that the coating was mainly composed of Mg at deposition temperature of 175 °C, 185 °C, 200 °C and 230 °C. The higher the substrate temperature was, the larger the Mg particle size was. The coating degraded and gradually peeled off from the surface of PEEK after up to 21 days' immersion. It was found that the degradation of Mg coating could strongly kill Staphylococcus aureus with antibacterial rate reaching to 99%. Mg can be expected to be coated on those bio-inert biomaterials to offer specific bioactivities.

      PubDate: 2018-02-20T20:49:00Z
  • Studies on the cytocompatibility, mechanical and antimicrobial properties
           of 3D printed poly(methyl methacrylate) beads

    • Abstract: Publication date: June 2018
      Source:Bioactive Materials, Volume 3, Issue 2
      Author(s): David K. Mills, Uday Jammalamadaka, Karthik Tappa, Jeffery Weisman
      Osteomyelitis is typically a bacterial infection (usually from Staphylococcus) or, more rarely, a fungal infection of the bone. It can occur in any bone in the body, but it most often affects the long bones (leg and arm), vertebral (spine), and bones of the foot. Microbial success in osteomyelitis is due to their ability to form biofilms which inhibit the wound healing process and increases resistance to anti-infective agents. Also, biofilms do not allow easy penetration of antibiotics into their matrix making clinical treatment a challenge. The development of local antibiotic delivery systems that deliver high concentrations of antibiotics to the affected site is an emerging area of research with great potential. Standard treatment includes antibiotic therapy, either locally or systemically and refractory cases of osteomyelitis may lead to surgical intervention and a prolonged course of antibiotic treatment involving placement of antibiotic-doped beads or spacers within the wound site. There are disadvantages with this treatment modality including insufficient mixing of the antibiotic, lack of uniform bead size, resulting in lower antibiotic availability, and limitations on the antibiotics employed. Thus, a method is needed to address biofilm formations in the wound and on the surface of the surgical implants to prevent osteomyelitis. In this study, we show that all antibiotics studied were successfully doped into PMMA and antibiotic-doped 3D printed beads, disks, and filaments were easily printed. The growth inhibition capacity of the antibiotic-loaded PMMA 3D printed constructs was also demonstrated.
      Graphical abstract image

      PubDate: 2018-02-20T20:49:00Z
  • 3D bioprinting for biomedical devices and tissue engineering: A review of
           recent trends and advances

    • Abstract: Publication date: June 2018
      Source:Bioactive Materials, Volume 3, Issue 2
      Author(s): Soroosh Derakhshanfar, Rene Mbeleck, Kaige Xu, Xingying Zhang, Wen Zhong, Malcolm Xing
      3D printing, an additive manufacturing based technology for precise 3D construction, is currently widely employed to enhance applicability and function of cell laden scaffolds. Research on novel compatible biomaterials for bioprinting exhibiting fast crosslinking properties is an essential prerequisite toward advancing 3D printing applications in tissue engineering. Printability to improve fabrication process and cell encapsulation are two of the main factors to be considered in development of 3D bioprinting. Other important factors include but are not limited to printing fidelity, stability, crosslinking time, biocompatibility, cell encapsulation and proliferation, shear-thinning properties, and mechanical properties such as mechanical strength and elasticity. In this review, we recite recent promising advances in bioink development as well as bioprinting methods. Also, an effort has been made to include studies with diverse types of crosslinking methods such as photo, chemical and ultraviolet (UV). We also propose the challenges and future outlook of 3D bioprinting application in medical sciences and discuss the high performance bioinks.
      Graphical abstract image

      PubDate: 2018-02-20T20:49:00Z
  • Bioactive polydimethylsiloxane surface for optimal human mesenchymal stem
           cell sheet culture

    • Abstract: Publication date: June 2018
      Source:Bioactive Materials, Volume 3, Issue 2
      Author(s): Zichen Qian, David Ross, Wenkai Jia, Qi Xing, Feng Zhao
      Human mesenchymal stem cell (hMSC) sheets hold great potential in engineering three-dimensional (3D) completely biological tissues for diverse applications. Conventional cell sheet culturing methods employing thermoresponsive surfaces are cost ineffective, and rely heavily on available facilities. In this study, a cost-effective method of layer-by-layer grafting was utilized for covalently binding a homogenous collagen I layer on a commonly used polydimethylsiloxane (PDMS) substrate surface in order to improve its cell adhesion as well as the uniformity of the resulting hMSC cell sheet. Results showed that a homogenous collagen I layer was obtained via this grafting method, which improved hMSC adhesion and attachment through reliable collagen I binding sites. By utilizing this low-cost method, a uniform hMSC sheet was generated. This technology potentially allows for mass production of hMSC sheets to fulfill the demand of thick hMSC constructs for tissue engineering and biomanufacturing applications.
      Graphical abstract image

      PubDate: 2018-02-20T20:49:00Z
  • Magnesium degradation under physiological conditions – Best practice

    • Abstract: Publication date: June 2018
      Source:Bioactive Materials, Volume 3, Issue 2
      Author(s): Jorge Gonzalez, Rui Qing Hou, Eshwara P.S. Nidadavolu, Regine Willumeit-Römer, Frank Feyerabend
      This review focusses on the application of physiological conditions for the mechanistic understanding of magnesium degradation. Despite the undisputed relevance of simplified laboratory setups for alloy screening purposes, realistic and predictive in vitro setups are needed. Due to the complexity of these systems, the review gives an overview about technical measures, defines some caveats and can be used as a guideline for the establishment of harmonized laboratory approaches.
      Graphical abstract image

      PubDate: 2018-02-20T20:49:00Z
  • Highly photostable nanogels for fluorescence-based theranostics

    • Abstract: Publication date: March 2018
      Source:Bioactive Materials, Volume 3, Issue 1
      Author(s): Dipendra Gyawali, Jimin P. Kim, Jian Yang
      A novel photo-crosslinkable nanogel is prepared from a biodegradable polymer template with intrinsic photoluminescence and high photostability. The fluorescent nanogels display excellent biodegradability and cytocompatibility owed to the facile synthesis scheme involving a solvent- and surfactant-free one-pot reaction, derived entirely from biocompatible monomers citric acid, maleic acid, L-cysteine, and poly(ethylene glycol). The resultant nanogels are less than 200 nm in diameter with a narrow size distribution and monodispersity, and demonstrate long-term structural stability in biological buffer for two weeks. To gauge potential in theranostic applications, the fluorescent nanogels were surface functionalized with biologically active RGD peptides and encapsulated with active anti-cancer drug Doxorubicin, resulting in a pH-responsive controlled drug release in acidic pH resembling tumor environments. The strong fluorescence of the nanogels enabled tracking of targeted drug delivery, showing that drug-loaded nanogels homed into the cytoplasmic regions of prostate cancer cells to significantly induce cell death. These photo-crosslinkable and biodegradable nanogels pose as a strong candidate for theranostic medicine, demonstrating versatile functionalization, high stability in biological buffers, and capacity for real-time fluorescence-based monitoring of targeted drug delivery.
      Graphical abstract image

      PubDate: 2018-02-20T20:49:00Z
  • Inhibition of HeLa cell growth by doxorubicin-loaded and
           tuftsin-conjugated arginate-PEG microparticles

    • Abstract: Publication date: March 2018
      Source:Bioactive Materials, Volume 3, Issue 1
      Author(s): Tianmu Hu, Anwar Saeed Ahmed Qahtan, Lei Lei, Zhixin Lei, Dapeng Zhao, Hemin Nie
      In order to improve the release pattern of chemotherapy drug and reduce the possibility of drug resistance, poly(ethylene glycol amine) (PEG)-modified alginate microparticles (ALG-PEG MPs) were developed then two different mechanisms were employed to load doxorubicin (Dox): 1) forming Dox/ALG-PEG complex by electrostatic attractions between unsaturated functional groups in Dox and ALG-PEG; 2) forming Dox-ALG-PEG complex through EDC-reaction between the amino and carboxyl groups in Dox and ALG, respectively. Additionally, tuftsin (TFT), a natural immunomodulation peptide, was conjugated to MPs in order to enhance the efficiency of cellular uptake. It was found that the Dox-ALG-PEG-TFT MPs exhibited a significantly slower release of Dox than Dox/ALG-PEG-TFT MPs in neutral medium, suggesting the role of covalent bonding in prolonging Dox retention. Besides, the release of Dox from these MPs was pH-sensitive, and the release rate was observably increased at pH 6.5 compared to the case at pH 7.4. Compared with Dox/ALG-PEG MPs and Dox-ALG-PEG MPs, their counterparts further conjugated with TFT more efficiently inhibited the growth of HeLa cells over a period of 48 h, implying the effectiveness of TFT in enhancing cellular uptake of MPs. Over a period of 48 h, Dox-ALG-PEG-TFT MPs inhibited the growth of HeLa cells less efficiently than Dox/ALG-PEG-TFT MPs but the difference was not significant (p > 0.05). In consideration of the prolonged and sustained release of Dox, Dox-ALG-PEG-TFT MPs possess the advantages for long-term treatment.
      Graphical abstract image

      PubDate: 2018-02-20T20:49:00Z
  • An overview of graphene-based hydroxyapatite composites for orthopedic

    • Abstract: Publication date: March 2018
      Source:Bioactive Materials, Volume 3, Issue 1
      Author(s): Ming Li, Pan Xiong, Feng Yan, Sijie Li, Changhong Ren, Zhichen Yin, Ang Li, Huafang Li, Xunming Ji, Yufeng Zheng, Yan Cheng
      Hydroxyapatite (HA) is an attractive bioceramic for hard tissue repair and regeneration due to its physicochemical similarities to natural apatite. However, its low fracture toughness, poor tensile strength and weak wear resistance become major obstacles for potential clinical applications. One promising method to tackle with these problems is exploiting graphene and its derivatives (graphene oxide and reduced graphene oxide) as nanoscale reinforcement fillers to fabricate graphene-based hydroxyapatite composites in the form of powders, coatings and scaffolds. The last few years witnessed increasing numbers of studies on the preparation, mechanical and biological evaluations of these novel materials. Herein, various preparation techniques, mechanical behaviors and toughen mechanism, the in vitro/in vivo biocompatible analysis, antibacterial properties of the graphene-based HA composites are presented in this review.
      Graphical abstract image

      PubDate: 2018-02-09T17:10:26Z
  • In vitro cytocompatibility evaluation of poly(octamethylene citrate)
           monomers toward their use in orthopedic regenerative engineering

    • Abstract: Publication date: March 2018
      Source:Bioactive Materials, Volume 3, Issue 1
      Author(s): Chuying Ma, Ethan Gerhard, Qiaoling Lin, Silun Xia, April Dawn Armstrong, Jian Yang
      Citrate based polymer poly(octamethylene citrate) (POC) has shown promise when formulated into composite material containing up to 65 wt% hydroxylapatite (HA) for orthopedic applications. Despite significant research into POC, insufficient information about the biocompatibility of the monomers 1,8-Octanediol and Citrate used in its synthesis is available. Herein, we investigated the acute cytotoxicity, immune response, and long-term functionality of both monomers. Our results showed a cell-type dependent cytotoxicity of the two monomers: 1,8-Octanediol induced less acute toxicity to 3T3 fibroblasts than Citrate while presenting comparable cytotoxicity to MG63 osteoblast-like cells; however, Citrate demonstrated enhanced compatibility with hMSCs compared to 1,8-Octanediol. The critical cytotoxic concentration values EC30 and EC50, standard for comparing cytotoxicity of chemicals, were also provided. Additionally, Citrate showed slower and less inhibitory effects on long-term hMSC cell proliferation compared with 1,8-Octanediol. Furthermore, osteogenic differentiation of hMSCs exposure to Citrate resulted in less inhibitory effect on alkaline phosphatase (ALP) production. Neither monomer triggered undesired pro-inflammatory responses. In combination with diffusion model analysis of monomer release from cylindrical implants, based on which the maximum concentration of monomers in contact with bone tissue was estimated to be 2.2 × 10−4 mmol/L, far lower than the critical cytotoxic concentrations as well as the 1,8-Octanediol concentration (0.4 mg/mL or 2.7 mmol/L) affecting hMSCs differentiation, we provide strong evidence for the cytocompatibility of the two monomers degraded from citrate-based composites in the orthopedic setting.
      Graphical abstract image

      PubDate: 2018-02-09T17:10:26Z
  • Optimization of mechanical properties, biocorrosion properties and
           antibacterial properties of wrought Ti-3Cu alloy by heat treatment

    • Abstract: Publication date: March 2018
      Source:Bioactive Materials, Volume 3, Issue 1
      Author(s): Mianmian Bao, Ying Liu, Xiaoyan Wang, Lei Yang, Shengyi Li, Jing Ren, Gaowu Qin, Erlin Zhang
      Previous study has shown that Ti-3Cu alloy shows good antibacterial properties (>90% antibacterial rate), but the mechanical properties still need to be improved. In this paper, a series of heat-treatment processes were selected to adjust the microstructure in order to optimize the properties of Ti-3Cu alloy. Microstructure, mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy at different conditions was systematically investigated by X-ray diffraction, optical microscope, scanning electron microscope, transmission electron microscopy, electrochemical measurements, tensile test, fatigue test and antibacterial test. Heat treatment could significantly improve the mechanical properties, corrosion resistance and antibacterial rate due to the redistribution of copper elements and precipitation of Ti2Cu phase. Solid solution treatment increased the yield strength from 400 to 740 MPa and improved the antibacterial rate from 33% to 65.2% while aging treatment enhanced the yield strength to 800–850 MPa and antibacterial rate (>91.32%). It was demonstrated that homogeneous distribution and fine Ti2Cu phase plays a very important role in mechanical properties, corrosion resistance and antibacterial properties.
      Graphical abstract image

      PubDate: 2018-02-09T17:10:26Z
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-