for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> BIOLOGY (Total: 3200 journals)
    - BIOCHEMISTRY (242 journals)
    - BIOENGINEERING (119 journals)
    - BIOLOGY (1529 journals)
    - BIOPHYSICS (49 journals)
    - BIOTECHNOLOGY (245 journals)
    - BOTANY (236 journals)
    - CYTOLOGY AND HISTOLOGY (29 journals)
    - ENTOMOLOGY (71 journals)
    - GENETICS (165 journals)
    - MICROBIOLOGY (263 journals)
    - MICROSCOPY (10 journals)
    - ORNITHOLOGY (27 journals)
    - PHYSIOLOGY (73 journals)
    - ZOOLOGY (142 journals)

BIOTECHNOLOGY (245 journals)                  1 2 | Last

Showing 1 - 200 of 245 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 8)
Advanced Biomedical Research     Open Access  
Advances in Bioscience and Biotechnology     Open Access   (Followers: 17)
Advances in Genetic Engineering & Biotechnology     Hybrid Journal   (Followers: 9)
Advances in Regenerative Medicine     Open Access   (Followers: 3)
African Journal of Biotechnology     Open Access   (Followers: 6)
Algal Research     Partially Free   (Followers: 10)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 68)
American Journal of Bioinformatics Research     Open Access   (Followers: 7)
American Journal of Polymer Science     Open Access   (Followers: 33)
Amylase     Open Access  
Anadolu University Journal of Science and Technology : C Life Sciences and Biotechnology     Open Access  
Animal Biotechnology     Hybrid Journal   (Followers: 9)
Annales des Sciences Agronomiques     Full-text available via subscription  
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 45)
Applied Biosafety     Hybrid Journal  
Applied Food Biotechnology     Open Access   (Followers: 3)
Applied Microbiology and Biotechnology     Hybrid Journal   (Followers: 67)
Applied Mycology and Biotechnology     Full-text available via subscription   (Followers: 4)
Arthroplasty Today     Open Access   (Followers: 1)
Artificial Cells, Nanomedicine and Biotechnology     Hybrid Journal   (Followers: 1)
Asia Pacific Biotech News     Hybrid Journal   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 9)
Asian Pacific Journal of Tropical Biomedicine     Open Access   (Followers: 2)
Australasian Biotechnology     Full-text available via subscription   (Followers: 1)
Banat's Journal of Biotechnology     Open Access  
BBR : Biochemistry and Biotechnology Reports     Open Access   (Followers: 5)
Beitr?ge zur Tabakforschung International/Contributions to Tobacco Research     Open Access   (Followers: 3)
Bio-Algorithms and Med-Systems     Hybrid Journal   (Followers: 2)
Bio-Research     Full-text available via subscription   (Followers: 4)
Bioactive Materials     Open Access   (Followers: 1)
Biocatalysis and Agricultural Biotechnology     Hybrid Journal   (Followers: 4)
Biocybernetics and Biological Engineering     Full-text available via subscription   (Followers: 5)
Bioethics UPdate     Hybrid Journal   (Followers: 1)
Biofuels     Hybrid Journal   (Followers: 11)
Biofuels Engineering     Open Access   (Followers: 1)
Biological & Pharmaceutical Bulletin     Full-text available via subscription   (Followers: 4)
Biological Cybernetics     Hybrid Journal   (Followers: 10)
Biomarkers and Genomic Medicine     Open Access   (Followers: 3)
Biomaterials Research     Open Access   (Followers: 4)
BioMed Research International     Open Access   (Followers: 4)
Biomédica     Open Access  
Biomedical and Biotechnology Research Journal     Open Access  
Biomedical Engineering Research     Open Access   (Followers: 6)
Biomedical Glasses     Open Access  
Biomedical Reports     Full-text available via subscription  
BioMedicine     Open Access  
Biomedika     Open Access  
Bioprinting     Hybrid Journal   (Followers: 1)
Bioresource Technology Reports     Hybrid Journal   (Followers: 1)
Bioscience, Biotechnology, and Biochemistry     Hybrid Journal   (Followers: 20)
Biosensors Journal     Open Access  
Biosimilars     Open Access   (Followers: 1)
Biosurface and Biotribology     Open Access  
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 1)
BioTechniques : The International Journal of Life Science Methods     Full-text available via subscription   (Followers: 27)
Biotechnologia Acta     Open Access   (Followers: 1)
Biotechnologie, Agronomie, Société et Environnement     Open Access   (Followers: 2)
Biotechnology     Open Access   (Followers: 8)
Biotechnology & Biotechnological Equipment     Open Access   (Followers: 4)
Biotechnology Advances     Hybrid Journal   (Followers: 32)
Biotechnology and Applied Biochemistry     Hybrid Journal   (Followers: 44)
Biotechnology and Bioengineering     Hybrid Journal   (Followers: 158)
Biotechnology and Bioprocess Engineering     Hybrid Journal   (Followers: 6)
Biotechnology and Genetic Engineering Reviews     Hybrid Journal   (Followers: 12)
Biotechnology and Health Sciences     Open Access   (Followers: 1)
Biotechnology and Molecular Biology Reviews     Open Access   (Followers: 2)
Biotechnology Annual Review     Full-text available via subscription   (Followers: 5)
Biotechnology for Biofuels     Open Access   (Followers: 9)
Biotechnology Frontier     Open Access   (Followers: 1)
Biotechnology Journal     Hybrid Journal   (Followers: 17)
Biotechnology Law Report     Hybrid Journal   (Followers: 3)
Biotechnology Letters     Hybrid Journal   (Followers: 34)
Biotechnology Progress     Hybrid Journal   (Followers: 40)
Biotechnology Reports     Open Access  
Biotechnology Research International     Open Access   (Followers: 1)
Biotechnology Techniques     Hybrid Journal   (Followers: 9)
Biotecnología Aplicada     Open Access  
Bioteknologi (Biotechnological Studies)     Open Access  
BIOTIK : Jurnal Ilmiah Biologi Teknologi dan Kependidikan     Open Access  
Biotribology     Hybrid Journal   (Followers: 1)
BMC Biotechnology     Open Access   (Followers: 16)
Cell Biology and Development     Open Access  
Chinese Journal of Agricultural Biotechnology     Full-text available via subscription   (Followers: 4)
Communications in Mathematical Biology and Neuroscience     Open Access  
Computational and Structural Biotechnology Journal     Open Access   (Followers: 1)
Computer Methods and Programs in Biomedicine     Hybrid Journal   (Followers: 8)
Copernican Letters     Open Access   (Followers: 1)
Critical Reviews in Biotechnology     Hybrid Journal   (Followers: 18)
Crop Breeding and Applied Biotechnology     Open Access   (Followers: 3)
Current Bionanotechnology     Hybrid Journal  
Current Biotechnology     Hybrid Journal   (Followers: 3)
Current Opinion in Biomedical Engineering     Hybrid Journal   (Followers: 1)
Current Opinion in Biotechnology     Hybrid Journal   (Followers: 53)
Current Pharmaceutical Biotechnology     Hybrid Journal   (Followers: 9)
Current Research in Bioinformatics     Open Access   (Followers: 12)
Current Trends in Biotechnology and Chemical Research     Open Access   (Followers: 2)
Current trends in Biotechnology and Pharmacy     Open Access   (Followers: 7)
DNA and RNA Nanotechnology     Open Access  
EBioMedicine     Open Access  
Electronic Journal of Biotechnology     Open Access  
Entomologia Generalis     Full-text available via subscription   (Followers: 1)
Environmental Science : Processes & Impacts     Full-text available via subscription   (Followers: 4)
Experimental Biology and Medicine     Hybrid Journal   (Followers: 3)
Folia Medica Indonesiana     Open Access  
Food Bioscience     Hybrid Journal  
Food Biotechnology     Hybrid Journal   (Followers: 9)
Food Science and Biotechnology     Hybrid Journal   (Followers: 8)
Frontiers in Bioengineering and Biotechnology     Open Access   (Followers: 5)
Frontiers in Systems Biology     Open Access   (Followers: 1)
Fungal Biology and Biotechnology     Open Access   (Followers: 2)
GM Crops and Food: Biotechnology in Agriculture and the Food Chain     Full-text available via subscription   (Followers: 1)
GSTF Journal of BioSciences     Open Access  
HAYATI Journal of Biosciences     Open Access  
Horticultural Biotechnology Research     Open Access  
Horticulture, Environment, and Biotechnology     Hybrid Journal   (Followers: 11)
IEEE Transactions on Molecular, Biological and Multi-Scale Communications     Hybrid Journal   (Followers: 1)
IET Nanobiotechnology     Hybrid Journal   (Followers: 1)
IN VIVO     Full-text available via subscription   (Followers: 4)
Indian Journal of Biotechnology (IJBT)     Open Access   (Followers: 2)
Indonesia Journal of Biomedical Science     Open Access   (Followers: 2)
Indonesian Journal of Biotechnology     Open Access   (Followers: 1)
Indonesian Journal of Medicine     Open Access  
Industrial Biotechnology     Hybrid Journal   (Followers: 18)
International Biomechanics     Open Access  
International Journal of Bioinformatics Research and Applications     Hybrid Journal   (Followers: 14)
International Journal of Biomechatronics and Biomedical Robotics     Hybrid Journal   (Followers: 4)
International Journal of Biomedical Research     Open Access   (Followers: 2)
International Journal of Biotechnology     Hybrid Journal   (Followers: 5)
International Journal of Biotechnology and Molecular Biology Research     Open Access   (Followers: 4)
International Journal of Biotechnology for Wellness Industries     Partially Free   (Followers: 1)
International Journal of Environment, Agriculture and Biotechnology     Open Access   (Followers: 5)
International Journal of Functional Informatics and Personalised Medicine     Hybrid Journal   (Followers: 4)
International Journal of Life Sciences and Biotechnology     Open Access  
International Journal of Medicine and Biomedical Research     Open Access   (Followers: 1)
International Journal of Nanotechnology and Molecular Computation     Full-text available via subscription   (Followers: 3)
International Journal of Radiation Biology     Hybrid Journal   (Followers: 4)
Iranian Journal of Biotechnology     Open Access  
ISABB Journal of Biotechnology and Bioinformatics     Open Access  
Italian Journal of Food Science     Open Access   (Followers: 1)
JMIR Biomedical Engineering     Open Access  
Journal of Biometrics & Biostatistics     Open Access   (Followers: 3)
Journal of Bioterrorism & Biodefense     Open Access   (Followers: 6)
Journal of Petroleum & Environmental Biotechnology     Open Access   (Followers: 1)
Journal of Advanced Therapies and Medical Innovation Sciences     Open Access  
Journal of Advances in Biotechnology     Open Access   (Followers: 5)
Journal Of Agrobiotechnology     Open Access  
Journal of Analytical & Bioanalytical Techniques     Open Access   (Followers: 7)
Journal of Animal Science and Biotechnology     Open Access   (Followers: 4)
Journal of Applied Biomedicine     Open Access   (Followers: 2)
Journal of Applied Biotechnology     Open Access   (Followers: 2)
Journal of Applied Biotechnology Reports     Open Access   (Followers: 2)
Journal of Applied Mathematics & Bioinformatics     Open Access   (Followers: 5)
Journal of Biologically Active Products from Nature     Hybrid Journal   (Followers: 1)
Journal of Biomaterials and Nanobiotechnology     Open Access   (Followers: 6)
Journal of Biomedical Photonics & Engineering     Open Access  
Journal of Biomedical Practitioners     Open Access  
Journal of Bioprocess Engineering and Biorefinery     Full-text available via subscription  
Journal of Bioprocessing & Biotechniques     Open Access  
Journal of BioScience and Biotechnology     Open Access  
Journal of Biosecurity Biosafety and Biodefense Law     Hybrid Journal   (Followers: 3)
Journal of Biotechnology     Hybrid Journal   (Followers: 62)
Journal of Biotechnology and Strategic Health Research     Open Access   (Followers: 2)
Journal of Chemical and Biological Interfaces     Full-text available via subscription   (Followers: 1)
Journal of Chemical Technology & Biotechnology     Hybrid Journal   (Followers: 9)
Journal of Chitin and Chitosan Science     Full-text available via subscription   (Followers: 1)
Journal of Colloid Science and Biotechnology     Full-text available via subscription  
Journal of Commercial Biotechnology     Full-text available via subscription   (Followers: 6)
Journal of Crop Science and Biotechnology     Hybrid Journal   (Followers: 3)
Journal of Ecobiotechnology     Open Access  
Journal of Essential Oil Research     Hybrid Journal   (Followers: 2)
Journal of Experimental Biology     Full-text available via subscription   (Followers: 26)
Journal of Genetic Engineering and Biotechnology     Open Access   (Followers: 5)
Journal of Ginseng Research     Open Access  
Journal of Industrial Microbiology and Biotechnology     Hybrid Journal   (Followers: 18)
Journal of Integrative Bioinformatics     Open Access  
Journal of Medical Imaging and Health Informatics     Full-text available via subscription  
Journal of Molecular Biology and Biotechnology     Open Access  
Journal of Molecular Microbiology and Biotechnology     Full-text available via subscription   (Followers: 13)
Journal of Nano Education     Full-text available via subscription  
Journal of Nanobiotechnology     Open Access   (Followers: 4)
Journal of Nanofluids     Full-text available via subscription   (Followers: 1)
Journal of Organic and Biomolecular Simulations     Open Access  
Journal of Plant Biochemistry and Biotechnology     Hybrid Journal   (Followers: 4)
Journal of Science and Applications : Biomedicine     Open Access  
Journal of the Mechanical Behavior of Biomedical Materials     Hybrid Journal   (Followers: 13)
Journal of Trace Elements in Medicine and Biology     Hybrid Journal   (Followers: 1)
Journal of Tropical Microbiology and Biotechnology     Full-text available via subscription  
Journal of Yeast and Fungal Research     Open Access   (Followers: 1)
Marine Biotechnology     Hybrid Journal   (Followers: 4)
Meat Technology     Open Access  
Messenger     Full-text available via subscription  
Metabolic Engineering Communications     Open Access   (Followers: 3)
Metalloproteinases In Medicine     Open Access  
Microbial Biotechnology     Open Access   (Followers: 10)
MicroMedicine     Open Access   (Followers: 3)
Molecular and Cellular Biomedical Sciences     Open Access   (Followers: 1)
Molecular Biotechnology     Hybrid Journal   (Followers: 13)
Molecular Genetics and Metabolism Reports     Open Access   (Followers: 3)
Nanobiomedicine     Open Access  

        1 2 | Last

Journal Cover
Biotechnology Reports
Journal Prestige (SJR): 0.754
Citation Impact (citeScore): 3
Number of Followers: 0  

  This is an Open Access Journal Open Access journal
ISSN (Print) 2215-017X
Published by Elsevier Homepage  [3157 journals]
  • Structural characterization of recombinant streptokinase following
           recovery from inclusion bodies using different chemical solubilization

    • Abstract: Publication date: September 2018Source: Biotechnology Reports, Volume 19Author(s): Khadijeh Babaei Sheli, Masoud Ghorbani, Azadeh Hekmat, Bita Soltanian, Alireza Mohammadian, Reza Jalalirad Circular dichroism (CD) in far-UV region was employed to study the extent of changes occurred in the secondary structures of recombinant streptokinase (rSK), solubilized from inclusion bodies (IBs) by different chemicals and refolded/purified by chromatographic techniques. The secondary structure distribution of rSK, obtained following different chemical solubilization systems, was varied and values in the range of 12.4–14.5% α-helices, 40–51% β-sheets and 35.5–48.3% turns plus residual structures were found. With reducing the concentration of chemicals during IB solubilization, the content of turns plus random coils was diminished and simultaneously the amounts of α- and β-sheets were increased. These changes in the secondary structures would lower the hydrophobicity along with the chance of protein aggregation and expose the hydrophilic regions of the protein. Therefore, these alterations in the secondary structures, occurred following efficient IBs solubilization by low concentration of chemicals, could be related to enhancement in rSK biological potency previously observed.
  • Expression of soluble native protein in Escherichia coli using a
           cold-shock SUMO tag-fused expression vector

    • Abstract: Publication date: September 2018Source: Biotechnology Reports, Volume 19Author(s): Jianghui Li, Qinxia Han, Tao Zhang, Jing Du, Qianqian Sun, Yilin Pang At present, approximately 30% of eukaryotic proteins can be expressed in a soluble form in Escherichia coli. In this study, a pCold-SUMOa plasmid was constructed in order to express heterologous proteins fused with SUMO by a cold-shock expression vector. The human cysteine desulfurase NFS1 and a chimeric cysteine desulfurase namely, EH-IscS were successfully expressed in E. coli. The proteins were particularly difficult to be produced functionally, due to their readily sequestered nature. The recombinant cysteine desulfurases that were generated by pCold-SUMOa exhibited higher activity, solubility and stability compared with the well-known plasmid pCold I. In contrast to the pCold TF plasmid, the SUMO tag conferred no biological activity with regard to the conformation of the cysteine desulfurases. Furthermore, the SUMO protease 1 can efficiently recognize the tertiary structure of SUMO and cleave it. The data indicate that the pCold-SUMOa vector is a promising tool for native eukaryotic protein production.
  • Molecular cloning and characteristics analysis of Pmtgfbr1 from Pinctada
           fucata martensii

    • Abstract: Publication date: September 2018Source: Biotechnology Reports, Volume 19Author(s): Ruijuan Hao, Zhe Zheng, Xiaodong Du, Qingheng Wang, Junhui Li, Yuewen Deng, Weiyao Chen Pinctada fucata martensii is cultured for pearl production. Growth improvement has received considerable research interest. Transforming growth factor β type Ⅰ receptor (TβR-I), which is involved in signals transmission of transforming growth factor beta (TGF-β), participates in cell proliferation and growth. In this study, we characterized a Tgfbr1 gene which encoded TβR-I from P. fucata martensii (Pmtgfbr1). Pmtgfbr1 cDNA contains an open reading frame of 1569 bp and encodes a polypeptide of 522 amino acids (aa). Pmtgfbr1 possesses a typical TβR-I structure (extracellular receptor ligand domain, transmembrane domain, and cytoplasmic tyrosine kinase catalytic domain). Pmtgfbr1 is expressed in all the studied tissues and exhibited the highest expression level in the adductor muscle. Moreover, Pmtgfbr1 exhibited the lower expression level in the larger group (L) than that in the smaller group (S) and is negatively correlated with growth traits (P 
  • Immobilization and stabilization of alcohol dehydrogenase on polyvinyl
           alcohol fibre

    • Abstract: Publication date: September 2018Source: Biotechnology Reports, Volume 19Author(s): Priydarshani Shinde, Mustafa Musameh, Yuan Gao, Andrea J. Robinson, Ilias (Louis) Kyratzis A polyvinyl alcohol (PVA) fibrous carrier has been chemically modified for the immobilization of yeast alcohol dehydrogenase (ADH) with an aim to increase its stability over a wide pH range, prolong its activity upon storage, and enhance its reusability. The strategy for immobilization involved functionalization of the fibrous carrier with chloropropinoyl chloride followed by amination with ethylenediamine. Tethering of the ADH enzyme to the PVA scaffold was achieved with glutaraldehyde. The activity profile of the immobilized enzyme was compared to soluble enzyme as a function of pH, temperature and reusability. The immobilization of ADH on PVA fibrous carrier shifted the optimal reaction pH from 7 to 9, and improved the thermostability at 60 °C. Furthermore, the immobilized enzyme retained 60% of its original activity after eight cycles of reuse. These results demonstrate that PVA based textiles can serve as a flexible, reusable carrier for enzyme immobilization.
  • Effect of Salicylic Acid and Methyl Jasmonate in the Production of
           Phenolic Compounds in Plant Cell Suspension Cultures of Thevetia peruviana

    • Abstract: Publication date: Available online 3 July 2018Source: Biotechnology ReportsAuthor(s): Dary Mendoza, Olmedo Cuaspud, Juan Pablo Arias, Orlando Ruiz, Mario Arias The objective was to enhance the production of the phenolic compounds in plant cell suspension cultures of T. peruviana at shake flask scale. The effects of salicylic acid (SA), methyl-jasmonate (MeJA) and the combination of both (SA/MeJA) were studied. Elicitor concentration, elicitation time and harvest time of cells were optimized. Phenolic compound content (PCC), flavonoid content (FC) and antioxidant activity (AA) were determined by the folin-ciocalteu method, flavonoid-aluminum complexation method and the ABTS assay, respectively. Differences between intracellular metabolite profiles due to the mentioned treatments were analyzed by Thin-layer chromatography and High-performance liquid chromatography. Highest PCC, FC and AA were obtained under the following treatments: 3µM MeJA> 3µM MeJA/300µM SA> 300µM SA > control, when elicited on the 4th day and harvested 96-hours post-elicitation. It was demonstrated that exposure to 3µM MeJA increase 1.49-fold of PCC, 1.66-fold of AA and 2.55-fold of FC compared to the control culture.Graphical abstractGraphical abstract for this article
  • Characterization, antioxidant and immunomodulatory potential on
           exopolysaccharide produced by wild type and mutant Weissella confusa

    • Abstract: Publication date: Available online 3 July 2018Source: Biotechnology ReportsAuthor(s): Bukola Adebayo-Tayo, Racheal Ishola, Titiloye Oyewunmi Characterization, antioxidant and immunomodulatory potential of exopolysaccharide (EPS) produced by wild type and mutant Weissella confusa was investigated. The EPS production ranged from 5490.2–5580.7 mg/L. Wild type Weissella confusa (WWCEPS) had the highest EPS production. Eight (8) sugar moieties were present in the EPS. Galactose had the highest EPS composition (34.6 mg/100 g and 33.5 mg/100 g EPS) in Wild type Weissella confusa EPS (WWCEPS) and mutant Weissella confusa EPS (MWCEPS). Wild type Weissella confusa and mutant Weissella confusa EPS had antioxidant capacity. The scavenging assay for the antioxidant increased in a dose dependent (0.5–10 mg/mL) manner. Wild type Weissella confusa EPS had the highest 1,1-Diphemy 1-2-picryl-hydrazyl (DPPH) capacity, total antioxidant activity, hydrogen peroxide and reducing power activity (71%, 1.9%, 86.7% and 1.9%). The mice injected peritorially with mutant Weissella confusa EPS had the highest IgG and IgM (68–87 mg/dL and 64–70 mg/dL). IgA of the mice treated with Wild type Weissella confusa EPS increased from 67–73 mg/dL. Wild type and mutant Weissella confusa EPS had immunomodulatory activity on the treated mice.
  • Single-cell cloning enables the selection of more productive Drosophila
           melanogaster S2 cells for recombinant protein expression

    • Abstract: Publication date: Available online 3 July 2018Source: Biotechnology ReportsAuthor(s): Jan Zitzmann, Christine Schreiber, Joel Eichmann, Roberto Otmar Bilz, Denise Salzig, Tobias Weidner, Peter Czermak The generation of monoclonal cell lines is an important early process development step for recombinant protein production. Although single-cell cloning is an established method in mammalian cell lines, straightforward protocols are not yet available for insect cells. We describe a new method for the generation of monoclonal insect cells without using fetal bovine serum and/or feeder cells pretreated by irradiation or exposure to mitomycin. Highly productive clones of Drosophila melanogaster S2 cells were prepared in a two-step procedure, comprising the establishment of a polyclonal population and subsequent single cell isolation by limiting dilution. Necessary growth factors were provided by co-cultivation of single transformants with untransfected feeder cells, which were later removed by antibiotic selection. Enhanced expression of EGFP and two target peptides was confirmed by flow cytometry and dot/western blotting. Highly productive clones were stable, showed a uniform expression profile and typically a sixfold to tenfold increase in cell-specific productivity.
  • Novel properties of recombinant Sso7d-Taq DNA polymerase purified using
           aqueous two-phase extraction: Utilities of the enzyme in viral diagnosis

    • Abstract: Publication date: Available online 27 June 2018Source: Biotechnology ReportsAuthor(s): Sudarson Sundarrajan, Sreesada Parambath, Swetha Suresh, Sneha Rao, Sriram Padmanabhan Using Sso7d from Sulfolobus solfataricus as the DNA binding protein fused to Taq DNA polymerase at its amino terminus, we report the hyper-expression and a novel purification methodology of Sso7d-Taq polymerase (S-Taq) using aqueous two-phase extraction system followed by Ni-affinity chromatography. The utility of such a fusion enzyme in carrying out PCR of human genes from whole blood directly and in detecting hepatitis B virus from clinical samples is demonstrated in this article. We present data on the enhanced thermo-stability of S-Taq DNA polymerase over Taq DNA polymerase and also provide evidence of its higher stability with detergents in comparison to Taq polymerase. The purified S-Taq protein showed acceptable limits of host genomic DNA levels without the use of DNases and other DNA precipitating agents and shows promising potential for use in PCR based diagnostics, in-situ PCR’s and forensic science.
  • Effects of lipid concentration on thermophilic anaerobic co-digestion of
           food waste and grease waste in a siphon-driven self-agitated anaerobic

    • Abstract: Publication date: Available online 26 June 2018Source: Biotechnology ReportsAuthor(s): Yong Hu, Takuro Kobayashi, Guangyin Zhen, Chen Shi, Kai-Qin Xu To investigate the influence of lipid concentration (of total solids, w/w) on anaerobic treatment of food waste under thermophilic condition, a siphon-driven self-agitated anaerobic reactor was operated for 220 days. The average lipid concentration was changed from 12.8% to 59.3% (w/w) step by step. The gas production rate increased from 1.97 to 2.31 L/L/d with lipid concentration increased from 12.8% to 19.7% (w/w), whereas decreased sharply to 0.78 L/L/d when the concentration further increased to 59.3% (w/w). The COD recovery from output at different lipid concentration was analyzed in this study. With the concentration increased from 12.8% to 59.3% (w/w), the percentage of COD recovered as methane gas decreased from 80.9% to 35.4%, while the percentage of COD remained in the effluent was also decreased significantly from 15.5% to 2.60%. The lipid concentration under 40% (w/w) was recommended in the co-digestion of food waste and grease trap waste.
  • Biosynthesis, characterization, and evaluation of bioactivities of leaf
           extract-mediated biocompatible gold nanoparticles from Alternanthera

    • Abstract: Publication date: Available online 22 June 2018Source: Biotechnology ReportsAuthor(s): M Nagalingam., Kalpana V. N., Devi Rajeswari V., Panneerselvam A. The objective of the study was to synthesize gold nanoparticles (Au NPs) using leaf extract of Alternanthera bettzickiana (A. bettzickiana). The biosynthesized Au NPs were characterized using UV-Vis spectroscopy, X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX), Zeta potential and Transmission electron microscopy (TEM). Morphologically, the Au NPs showed spherical shaped structures. Size distribution of Au NPs calculated using Scherrer’s formula, showed an average size of 80-120 nm. Au NPs were studied for invitro anti-bacterial and cytotoxic activities. Au NPs exhibited significant anti-microbial activity against Bacillu subtilis, Staphylococcus aureus, Salmonella typhi, Pseudomonas aeroginosa, Micrococcus luteus, and Enterobacter aerogenes by agar well diffusion method. The cytotoxic effect of the biogenic synthesized Au NPs against A549 human lung cancer cell lines provided a vigorous evidence of anticancer activity of Au NPs. Further, the toxicity study of the green synthesized Au NPs on Danio rerio (Zebra fish) embryo was evaluated. This study reports that colloidal Au NPs can be synthesized by simple, non-hazardous methods and that bio-synthesized Au NPs have significant therapeutic properties.
  • Evaluation and modification of lanthanum-based flocculation for isolation
           of bacteria from water samples

    • Abstract: Publication date: Available online 19 June 2018Source: Biotechnology ReportsAuthor(s): Linda Jansson, Ronnie Eriksson, Johannes Hedman, Moa Lavander Molecular detection of pathogenic microorganisms in drinking and natural water is often challenged by low concentrations of the sought-after agents. Convenient methods to concentrate bacteria from water samples ranging from 1-10 L are highly warranted. Here we account for the evaluation of a lanthanum-based flocculation method to concentrate bacteria from water samples, applying four different bacterial species in tap water as well as river water. Our results show that the success of lanthanum-based flocculation is determined by both the bacterial species and the nature of the water sample. For tap water, satisfying flocculation efficiencies (above 60 %) were only reached for autoclaved water samples. However, the performance of the lanthanum-based flocculation method for non-autoclaved water was markedly improved by the addition of 20 mM bicarbonate to increase alkalinity. Our modified flocculation protocol may be applied as an alternative concentration method for bacteria in water samples of one liter or more.
  • Leptospira interrogans thermolysin refolded at high pressure and alkaline
           pH displays proteolytic activity against Complement C3

    • Abstract: Publication date: Available online 19 June 2018Source: Biotechnology ReportsAuthor(s): Rosa Maria Chura-Chambi, Tatiana R. Fraga, Ludmila Bezerra da Silva, Bruno Bernardi Yamamoto, Lourdes Isaac, Angela Silva Barbosa, Ligia Morganti Enzymes from the thermolysin family are crucial factors in the pathogenesis of several diseases caused by bacteria and are potential targets for therapeutic interventions. Thermolysin encoded by the gene LIC13322 of the causative agent of leptospirosis, Leptospira interrogans, was shown to cleave proteins from the Complement System. However, the production of this recombinant protein using traditional refolding processes with high levels of denaturing reagents for thermolysin inclusion bodies (TL-IBs) solubilization results in poor recovery and low proteolytic activity probably due to improper refolding of the protein. Based on the assumption that leptospiral proteases play a crucial role during infection, the aim of this work was to obtain a functional recombinant thermolysin for future studies on the role of these metalloproteases on leptospiral infection. The association of high hydrostatic pressure (HHP) and alkaline pH was utilized for thermolysin refolding. Incubation of a suspension of TL-IBs at HHP and a pH of 11.0 is non-denaturing but effective for thermolysin solubilization. Soluble protein does not reaggregate by dialysis to pH 8.0. A volumetric yield of 46 mg thermolysin/L of bacterial culture and a yield of near 100 % in relation to the total thermolysin present in TL-IBs were obtained. SEC-purified thermolysin suffers fragmentation, likely due to autoproteolysis and presents proteolytic activity against complement C3 α-chain, possibly by a generation of a C3b-like molecule. The proteolytic activity of thermolysin against C3 was time and dose-dependent. The experience gained in this study shall help to establish efficient HHP-based processes for refolding of bioactive proteins from IBs.
  • Combined microbiological approach to screening of producers of proteases
           with hemostasis system proteins activity among micromycetes

    • Abstract: Publication date: Available online 18 June 2018Source: Biotechnology ReportsAuthor(s): Alexander A. Osmolovskiy, Anna A. Lukianova, Elena S. Zvonareva, Valeriana G. Kreyer, Nina A. Baranova, Nikolay S. Egorov A scheme for screening of micromycetes - producers of proteases with the activity of hemostasis system proteins, based on their enzymatic indices determination Balami et al. [1] and the activity towards chromogenic peptide substrates for proteins of the hemostasis system Sajevic et al. [2] was developed. Depending on the ability of proteases producers to cleave such substrates, an enzymatic reaction in conditions containing human plasma is suggested, which makes it possible to identify the potentiality of the target plasma hemostasis proenzymes activation.
  • Functional redundancy in Echinocandin B in-cluster transcription factor
           ecdB of Emericella rugulosa NRRL 11440

    • Abstract: Publication date: Available online 9 June 2018Source: Biotechnology ReportsAuthor(s): Arvind Kumar, Varun Jaiswal, Vinay Kumar, Amitava Dey, Antresh Kumar Echinocandin B is a potent antifungal against the majority of fungal pathogens and its biosynthesis occurred by ecd and hty gene clusters in Emericella rugulosa NRRL 11440. We elucidated the functional necessity of in-clustered transcription factor; ecdB in the production of echinocandin B. We deleted the ecdB gene and found that ΔecdB mutant has no significant effect on echinocandin B production. The expression level of most of the ecd and hty cluster genes was not significantly altered except few of them up-regulated in knockout strain. The complete abrogation in ecdB gene expression was observed in ΔecdB strain. However, the interactions of purified EcdB protein with DNA sequence of ecdA, ecdH, ecdK and ecdI promoter was confirmed in-vitro. Our results conclude that EcdB protein in-vitro binds to the ecdA, ecdH, ecdK and ecdI promoter but in-vivo, it could not significantly affect the gene expression and echinocandin B production in Emericella rugulosa.
  • Evaluation of dairy processing wastewater biotreatment in an IASBR system:
           aeration rate impacts on performance and microbial ecology

    • Abstract: Publication date: Available online 5 June 2018Source: Biotechnology ReportsAuthor(s): Beatriz Gil-Pulido, Emma Tarpey, Eduardo L. Almeida, William Finnegan, Xinmin Zhan, Alan D.W. Dobson, Niall O’Leary Dairy processing generates large volumes of wastewater that require extensive nutrient remediation prior to discharge. Significant commercial opportunities exist therefore for cost-effective biotechnologies capable of achieving this requirement. In this study the authors evaluated the use of intermittently aerated sequencing batch reactors, (IASBRs), as a single-tank biotreatment system for co-removal of COD, nitrogen and phosphorus from synthetic dairy processing wastewater. Variation of the IASBR aeration rates, (0.8, 0.6 and 0.4 litres/min), had significant impacts on the respective nutrient removal efficiencies and underlying microbial diversity profiles. Aeration at 0.6 litres/min was most effective and resulted in>90% co-removal of orthophosphate and ammonium. 16S rRNA based pyrosequencing of biomass DNA samples revealed the family Comamonadaceae was notably enriched (>80% relative abundance) under these conditions. In silico predictive metabolic modelling also identified Comamonadaceae as the major contributor of several known genes for nitrogen and phosphorus assimilation (nirK, nosZ, norB, ppK, ppX and phbC).
  • Solubilization and renaturation of biologically active human bone
           morphogenetic protein-4 from inclusion bodies

    • Abstract: Publication date: June 2018Source: Biotechnology Reports, Volume 18Author(s): Gesa-Maria Gieseler, Kimia Ekramzadeh, Volker Nölle, Svitlana Malysheva, Henning Kempf, Sascha Beutel, Robert Zweigerdt, Ulrich Martin, Ursula Rinas, Thomas Scheper, Iliyana Pepelanova Biologically active human bone morphogenetic protein-4 (hBMP-4) was successfully produced in a prokaryotic host. For this aim, hBMP-4 cDNA was cloned in Escherichia coli (E. coli) and the protein was produced in a non-active aggregated form. After washing and solubilization, in vitro refolding of the rhBMP-4 monomer was performed using rapid dilution. In this study, different refolding conditions were tested for the dimerization of rhBMP-4 by one-factor-at-a-time variation. The dimerization process was found to be sensitive to pH, protein concentration and the presence of aggregation suppressors. In contrast, redox conditions and ionic strength did not impact refolding as expected. The dimer was separated from the remaining monomer, aggregates and host cell contaminants in a single step using cation-exchange membrane chromatography. The rhBMP-4 dimer produced in E. coli was biologically active as demonstrated by its capability to induce trophoblast differentiation and primitive streak induction of human pluripotent stem cells (hPSCs).
  • Proteiniphilum saccharofermentans str. M3/6T isolated from a laboratory
           biogas reactor is versatile in polysaccharide and oligopeptide utilization
           as deduced from genome-based metabolic reconstructions

    • Abstract: Publication date: June 2018Source: Biotechnology Reports, Volume 18Author(s): Geizecler Tomazetto, Sarah Hahnke, Daniel Wibberg, Alfred Pühler, Michael Klocke, Andreas Schlüter Proteiniphilum saccharofermentans str. M3/6T is a recently described species within the family Porphyromonadaceae (phylum Bacteroidetes), which was isolated from a mesophilic laboratory-scale biogas reactor. The genome of the strain was completely sequenced and manually annotated to reconstruct its metabolic potential regarding biomass degradation and fermentation pathways. The P. saccharofermentans str. M3/6T genome consists of a 4,414,963 bp chromosome featuring an average GC-content of 43.63%. Genome analyses revealed that the strain possesses 3396 protein-coding sequences. Among them are 158 genes assigned to the carbohydrate-active-enzyme families as defined by the CAZy database, including 116 genes encoding glycosyl hydrolases (GHs) involved in pectin, arabinogalactan, hemicellulose (arabinan, xylan, mannan, β-glucans), starch, fructan and chitin degradation. The strain also features several transporter genes, some of which are located in polysaccharide utilization loci (PUL). PUL gene products are involved in glycan binding, transport and utilization at the cell surface. In the genome of strain M3/6T, 64 PUL are present and most of them in association with genes encoding carbohydrate-active enzymes. Accordingly, the strain was predicted to metabolize several sugars yielding carbon dioxide, hydrogen, acetate, formate, propionate and isovalerate as end-products of the fermentation process. Moreover, P. saccharofermentans str. M3/6T encodes extracellular and intracellular proteases and transporters predicted to be involved in protein and oligopeptide degradation. Comparative analyses between P. saccharofermentans str. M3/6T and its closest described relative P. acetatigenes str. DSM 18083T indicate that both strains share a similar metabolism regarding decomposition of complex carbohydrates and fermentation of sugars.
  • Immobilization of catalase onto chitosan and chitosan–bentonite
           complex: A comparative study

    • Abstract: Publication date: June 2018Source: Biotechnology Reports, Volume 18Author(s): Jyoti Kaushal, Seema, Gursharan Singh, Shailendra Kumar Arya The immobilization of catalase onto chitosan and chitosan–bentonite was investigated and immobilization yield of 95.91 and 95.26 was obtained respectively. The optimum pH and temperature were found as 7.5 and 8.0 at 40 °C for free and immobilized enzyme. The value of Vmax decreased by 33,000–26,300, 24,500 μmol (min mg protein)−1 and Km increased by 12.5–25 and 20 mM for free and immobilized on chitosan and chitosan–bentonite respectively. The thermal stability, half life, FTIR analyses of the beads was also performed in order to characterise the structural differences. The remaining immobilized catalase onto chitosan and chitosan–bentonite activity was 50% and 70% after 20 cycles respectively. The storage stability were found as 22%, 60%, and 70% from its original activity in case of free enzyme and immobilization of chitosan, chitosan–bentonite beads respectively after 60 days.
  • MMISH: Multicolor microRNA in situ hybridization for paraffin
           embedded samples

    • Abstract: Publication date: June 2018Source: Biotechnology Reports, Volume 18Author(s): Zhiyong Lei, Alain van Mil, Junjie Xiao, Corina H.G. Metz, Esther C.M. van Eeuwijk, Pieter A. Doevendans, Joost. P.G. Sluijter To understand and assess the roles of miRNAs, visualization of the expression patterns of specific miRNAs is needed at the cellular level in a wide variety of different tissue types. Although miRNA in situ hybridization techniques have been greatly improved in recent years, they remain difficult to routinely perform due to the complexity of the procedure. In addition, as it is crucial to define which tissues or cells are expressing a particular miRNA in order to elucidate the biological function of the miRNA, incorporation of additional stainings for different cellular markers is necessary. Here, we describe a robust and flexible multicolor miRNA in situ hybridization (MMISH) technique for paraffin embedded sections. We show that the miRNA in situ protocol is sensitive and highly specific and can successfully be combined with both immunohistochemical and immunofluorescent stainings.
  • Proseek single-plex protein assay kit system to detect sAxl and Gas6 in
           serological material of brain tumor patients

    • Abstract: Publication date: June 2018Source: Biotechnology Reports, Volume 18Author(s): Heidi Jaksch-Bogensperger, Anna Hammerschmid, Ludwig Aigner, Eugen Trinka, Renate Gehwolf, Yvonne Ebner, Markus Hutterer, Sebastien Couillard-Despres •The receptor tyrosine kinase (RTK) Axl and its ligand Gas6 are critically involved in the pathogenesis of high-grade glioma (HGG). Both proteins were found to be overexpressed e.g. in tumor cells, mediating cell proliferation and migration as well as tumor angiogenesis and neuroinflammation. The extracellular domain of Axl (sAxl) and Gas6 were found in the peri-tumoral edema and blood of animals as well as in human glioma tissue. Therefore, we monitored the level of sAxl and Gas6 in human blood samples. To increase the sensitivity of protein detection beyond commonly used standard methods we preliminary tested the innovative Proseek Single-Plex Protein Assay Kit System from Olink Bioscience together with new antibodies against the soluble RTK sAxl and its ligand Gas6. We conclude that the Proseek method is a highly sensitive and fast procedure that can be used as a possible powerful tool compared to routinely used ELISA-methods.
  • Isolation, characterization and antibacterial effect of biosurfactant from
           Candida parapsilosis

    • Abstract: Publication date: June 2018Source: Biotechnology Reports, Volume 18Author(s): Mayank Garg, Priyanka, Mary Chatterjee In the present study, a biosurfactant producing Candida parapsilosis strain was isolated and identified by our laboratory. Different biosurfactant screening tests such as drop collapse, oil spreading, emulsification index and hemolytic activity confirmed the production of biosurfactant by the isolated Candida parapsilosis strain. The biosurfactant showed significant emulsifying index, drop collapse and oil-spread activity. The partially purified biosurfactant was characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectroscopy (GC-MS). The FT-IR results indicated phenol (OH), amide (NH) and carbon functional group peaks like CO and CC at their identified places. GC-MS analysis revealed the presence of 13-docosenamide type of compound with a molecular weight of 337.5 g mol-1. The isolated biosurfactant showed significant antibacterial activity against pathogenic Escherichia coli and Staphylococcus aureus strains at the concentrations of 10 and 5 mg ml-1 respectively. Growth inhibition of both Gram positive and Gram negative pathogenic strains designated the future prospect of exploring the isolated biosurfactant as broad spectrum antibacterial agent.
  • Expression and characterization of a 9-cis-epoxycarotenoid dioxygenase
           from Serratia sp. ATCC 39006 capable of biotransforming isoeugenol and
           4-vinylguaiacol to vanillin

    • Abstract: Publication date: June 2018Source: Biotechnology Reports, Volume 18Author(s): Jiao Tang, Lei Shi, Lulu Li, Liangkun Long, Shaojun Ding A 9-cis-epoxycarotenoid dioxygenase gene from Serratia sp. ATCC 39,006 (SeNCED) was overexpressed in soluble form in E.coli. SeNCED showed the maximum activity at 30 °C and pH 8.0, and it was stable relatively at range of pH 5–10 and temperature of 20 °C to 30 °C. SeNCED effectively catalyzes the side chain double bond cleavage of isoeugenol and 4-vinylguaiacol to vanillin. The kinetic constant Km values toward isoeugenol and 4-vinylguaiacol were 18.92 mM and 6.31 mM and Vmax values were 50.73 IU/g and 4.77 IU/g, respectively. Moreover, the SeNCED exhibited an excellent organic solvent tolerance and the enzyme activity was substantially improved at presence of 10% of trichloromethane. The produced vanillin was achieved at an around 0.53 g/L (3.47 mM) and 0.33 g/L (2.17 mM) after 8 h reaction at 4 mM of isoeugenol and 4-vinylguaiacol, respectively, using transformed Escherichia coli cells harboring SeNCED in the presence of trichloromethane.
  • NAP enzyme recruitment in simultaneous bioremediation and nanoparticles

    • Abstract: Publication date: June 2018Source: Biotechnology Reports, Volume 18Author(s): Marwa Eltarahony, Sahar Zaki, Zeinab Kheiralla, Desouky Abd-El-haleem The periplasmic nitrate reductase enzyme (NAP) has become attractive catalyst, whose exploitation has emerged as one of the indispensable strategies toward environmentally benign applications. To achieve them efficiently and overcome the sensitivity of NAP in harsh environmental circumstances, the immobilization for denitrifying bacteria and NAP enzyme for simultaneous bioremediation and bionanoparticles synthesis was studied. NAP catalyzed NO3− reduction at Vmax of 0.811 μM/min and Km of 14.02 mM. Concurrently, the immobilized MMT cells completely removed NO3- upon 192 h with AgNPs synthesis ranging from 23.26 to 58.14 nm as indicated by SEM. Wherase, immobilized NAP exhibited lower efficiency with 28.6% of NO3− elimination within 288 h and large aggregated AgNPs ranging from 94.44 nm to 172.22 nm. To the best of author knowledge, the immobilization for denitrifying bacteria and NAP enzyme for simultaneous bioremediation and bionanoparticles synthesis was not studied before.Graphical abstractOur study aims to exploit the denitrifying bacteria MMT and its NAP enzyme in dual missions, nitrate removal from wastewater and nanoparticles synthesis. Therefore, the crud NAP enzyme was characterized and immobilized by entrapment technique for aforementioned application. To the best of author knowledge, the immobilization for denitrifying bacteria and NAP enzyme for simultaneous bioremediation and bionanoparticles synthesis was not studied previously.Graphical abstract for this article
  • In vitro synthesis of phospholipids with yeast phospholipase B, a
           phospholipid deacylating enzyme

    • Abstract: Publication date: June 2018Source: Biotechnology Reports, Volume 18Author(s): Yasuo Watanabe, Itsuki Kobayashi, Takanori Ohnaka, Seiya Watanabe The gene encoding the Saccharomyces cerevisiae phospholipid deacylation enzyme, phospholipase B (ScPLB1), was successfully expressed in E. coli. The enzyme (Scplb1p) was engineered to have a histidine-tag at the C-terminal end and was purified by metal (Ni) affinity chromatography. Enzymatic properties, optimal pH, and substrate specificity were similar to those reported previously. For example, deacylation activity was observed in acidic pH in the absence of Ca2+ and was additive in neutral pH in the presence of Ca2+, and the enzyme had the same substrate priority as reported previously, with the exception of PE, suggesting that yeast phospholipase B could be produced in its native structure in bacterial cells. Scplb1p retained transacylation activity in aqueous medium, and esterified lysophosphatidylcholine with free fatty acid to form phosphatidylcholine in a non-aqueous, glycerin medium. We propose that phospholipase B could serve as an additional tool for in vitro enzyme-mediated phospholipid synthesis.
  • Synthesis of designer triglycerides by enzymatic acidolysis

    • Abstract: Publication date: June 2018Source: Biotechnology Reports, Volume 18Author(s): Monali R. Kavadia, Manish G. Yadav, Annamma A. Odaneth, Arvind M. Lali Enzymatic acidolysis process was developed for modification of fully hydrogenated soybean oil (FHSO) by incorporation of caprylic acid, a medium chain fatty acid. Immobilized sn-1,3 specific lipase PyLip was used to modify FHSO to produce a new fat with improved physico-chemical and functional properties. PyLip mediated acidolysis resulted in 88% reduction of substrate triglycerides and 45.16% incorporation of caprylic acid in FHSO at molar ratio of 1:3 of FHSO and caprylic acid in 60 min reaction time. HPLC analysis revealed formation of mono-substituted and di-substituted TAGs post enzymatic acidolysis. Physical properties of synthesized lipid were studied using DSC and XRD and considerable change was observed in the final product compared to the starting material. The present study reports a faster acidolysis process in the presence of solvent enhancing the modification of FHSO with caprylic acid and having no side products formation (monoglycerides and diglycerides) making the entire process highly efficient and commercially attaractive.
  • Investigation of the co-metabolic transformation of 4-chlorostyrene into
           4-chlorophenylacetic acid in Pseudomonas fluorescens ST

    • Abstract: Publication date: June 2018Source: Biotechnology Reports, Volume 18Author(s): Anna Stuhr, Sarah Hofmann, Michael Schlömann, Michel Oelschlägel The side-chain oxygenation of styrene is able to yield substituted phenylacetic acids from corresponding styrenes by co-metabolic transformation. This co-metabolization was investigated in Pseudomonas fluorescens ST using 4-chlorostyrene as co-substrate. It was shown that non-substituted styrene is necessary to ensure the co-metabolic process. Furthermore, aspects affecting the co-transformation were studied, e.g. cell density, amount of inducer, pH, effects of co-substrate/co-product. It was demonstrated that 4-chlorophenylacetic acid and 4-chlorostyrene are able to inhibit the reaction. But, these inhibitions are influenced by salt and trace elements. Finally, a protocol was established which considers all findings. Therewith, about 6.7 g L−1 co-product were obtained after 451 h. Compared to previous studies, the co-product concentration was improved by the factor 1.4 while the reaction time was decreased by the factor 18.5. The study offers also aspects for prospective improvements in order to establish an efficient way to gain substituted acids without genetic manipulation.
  • Synthesis and investigations on tellurium myconanoparticles

    • Abstract: Publication date: June 2018Source: Biotechnology Reports, Volume 18Author(s): Mostafa M. Abo Elsoud, Ola E.A. Al-Hagar, Eman S. Abdelkhalek, N.M. Sidkey Tellurium has attracted the attention of many researchers and manufacturers due to its unique properties. Through the current work, six fungal isolates have been screened for their ability to reduce potassium tellurite (K2TeO3) into elemental tellurium nanoparticles (TeNPs). The most promising fungal isolate was identified as Aspergillus welwitschiae and given the accession number (KY766958) based on molecular basis and has been used for biogenic (enzymatic) production of TeNPs. The produced TeNPs have been characterized using DLS, TEM and FTIR. Data showed that, the particle size is 60.80 d.nm with oval to spherical shape. The produced TeNPs have been evaluated for antimicrobial activity at 25 mg/ml. Data revealed antibacterial activity against E. coli and Staphylococcus aureus (MRSA). Evaluation of the effect of γ-irradiation on TeNPs production showed that, the productivity was improved at 1 kGy and suppressed gradually at higher doses.Graphical abstractSize distribution of tellurium nanoparticles produced by Aspergillus welwitschiae F5k.Graphical abstract for this article
  • Co-fermentation of the main sugar types from a beechwood organosolv
           hydrolysate by several strains of Bacillus coagulans results in effective
           lactic acid production

    • Abstract: Publication date: June 2018Source: Biotechnology Reports, Volume 18Author(s): Robert Glaser, Joachim Venus Bacillus coagulans is an interesting facultative anaerobic microorganism for biotechnological production of lactic acid that arouses interest. To determine the efficiency of biotechnological production of lactic acid from lignocellulosic feedstock hydrolysates, five Bacillus coagulans strains were grown in lignocellulose organosolv hydrolysate from ethanol/water-pulped beechwood. Parameter estimation based on a Monod-type model was used to derive the basic key parameters for a performance evaluation of the batch process. Three of the Bacillus coagulans strains, including DSM No. 2314, were able to produce lactate, primarily via uptake of glucose and xylose. Two other strains were identified as having the ability of utilizing cellobiose to a high degree, but they also had a lower affinity to xylose. The lactate yield concentration varied from 79.4 ± 2.1 g/L to 93.7 ± 1.4 g/L (85.4 ± 4.7 % of consumed carbohydrates) from the diluted organosolv hydrolysate.
  • Biotechnological aspects of plants metabolites in the treatment of ulcer:
           A new prospective

    • Abstract: Publication date: June 2018Source: Biotechnology Reports, Volume 18Author(s): Amit Kishore Singh, Sandeep Kumar Singh, Prem Pratap Singh, Akhileshwar Kumar Srivastava, Kapil D. Pandey, Ajay Kumar, Himanshu Yadav Ulcer is one of the most common diseases affecting throughout the world population. The allopathic treatment of ulcer adversely affects the health by causing harmful side effects. Currently, many herbal plants and secondary metabolites have been used for the ulcer treatment. In the present review, many herbal plants and their parts (root, rhizome, bark, leaves and fruits) have been listed in the table are currently being used for ulcer treatment. These metabolites are responsible for ulcer-neutralization or anti-inflammatory properties. In silico study, plant metabolites showed interaction between protodioscin (secondary metabolites of Asparagus racemosus) and interferon-γ (virulent factor of gastric ulcer) during molecular docking. All the residues of interferon-γ exhibited hydrophobic interactions with plant metabolites. These interactions helps in understanding the plant secondary metabolites vis a vis will open a new door in the research field of new drug discovery and designing for the ulcer treatment.Graphical abstractGraphical abstract for this article
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-