for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> BIOLOGY (Total: 3071 journals)
    - BIOCHEMISTRY (242 journals)
    - BIOENGINEERING (113 journals)
    - BIOLOGY (1453 journals)
    - BIOPHYSICS (46 journals)
    - BIOTECHNOLOGY (227 journals)
    - BOTANY (220 journals)
    - CYTOLOGY AND HISTOLOGY (28 journals)
    - ENTOMOLOGY (67 journals)
    - GENETICS (166 journals)
    - MICROBIOLOGY (261 journals)
    - MICROSCOPY (11 journals)
    - ORNITHOLOGY (26 journals)
    - PHYSIOLOGY (73 journals)
    - ZOOLOGY (138 journals)

BIOTECHNOLOGY (227 journals)                  1 2 | Last

Showing 1 - 200 of 227 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 7)
Advances in Bioscience and Biotechnology     Open Access   (Followers: 15)
Advances in Genetic Engineering & Biotechnology     Hybrid Journal   (Followers: 8)
African Journal of Biotechnology     Open Access   (Followers: 6)
Algal Research     Partially Free   (Followers: 9)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 69)
American Journal of Bioinformatics Research     Open Access   (Followers: 8)
American Journal of Polymer Science     Open Access   (Followers: 30)
Animal Biotechnology     Hybrid Journal   (Followers: 10)
Annales des Sciences Agronomiques     Full-text available via subscription  
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 42)
Applied Bioenergy     Open Access  
Applied Biosafety     Hybrid Journal  
Applied Microbiology and Biotechnology     Hybrid Journal   (Followers: 62)
Applied Mycology and Biotechnology     Full-text available via subscription   (Followers: 5)
Arthroplasty Today     Open Access   (Followers: 1)
Artificial Cells, Nanomedicine and Biotechnology     Hybrid Journal   (Followers: 2)
Asia Pacific Biotech News     Hybrid Journal   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 9)
Asian Pacific Journal of Tropical Biomedicine     Open Access   (Followers: 2)
Australasian Biotechnology     Full-text available via subscription   (Followers: 1)
Banat's Journal of Biotechnology     Open Access  
BBR : Biochemistry and Biotechnology Reports     Open Access   (Followers: 4)
Bio-Algorithms and Med-Systems     Hybrid Journal   (Followers: 1)
Bio-Research     Full-text available via subscription   (Followers: 2)
Bioactive Materials     Open Access   (Followers: 1)
Biocatalysis and Agricultural Biotechnology     Hybrid Journal   (Followers: 4)
Biocybernetics and Biological Engineering     Full-text available via subscription   (Followers: 5)
Bioethics UPdate     Hybrid Journal  
Biofuels     Hybrid Journal   (Followers: 11)
Biofuels Engineering     Open Access   (Followers: 1)
Biological & Pharmaceutical Bulletin     Full-text available via subscription   (Followers: 5)
Biological Cybernetics     Hybrid Journal   (Followers: 10)
Biomarkers and Genomic Medicine     Open Access   (Followers: 5)
Biomarkers in Drug Development     Partially Free   (Followers: 1)
Biomaterials Research     Open Access   (Followers: 4)
BioMed Research International     Open Access   (Followers: 6)
Biomédica     Open Access  
Biomedical Engineering Research     Open Access   (Followers: 7)
Biomedical glasses     Open Access  
Biomedical Reports     Full-text available via subscription  
BioMedicine     Open Access  
Bioprinting     Hybrid Journal  
Bioresource Technology Reports     Hybrid Journal  
Bioscience, Biotechnology, and Biochemistry     Hybrid Journal   (Followers: 22)
Biosimilars     Open Access   (Followers: 1)
Biosurface and Biotribology     Open Access  
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 2)
BioTechniques : The International Journal of Life Science Methods     Full-text available via subscription   (Followers: 28)
Biotechnologia Acta     Open Access   (Followers: 1)
Biotechnologie, Agronomie, Société et Environnement     Open Access   (Followers: 2)
Biotechnology     Open Access   (Followers: 7)
Biotechnology & Biotechnological Equipment     Open Access   (Followers: 5)
Biotechnology Advances     Hybrid Journal   (Followers: 33)
Biotechnology and Applied Biochemistry     Hybrid Journal   (Followers: 44)
Biotechnology and Bioengineering     Hybrid Journal   (Followers: 160)
Biotechnology and Bioprocess Engineering     Hybrid Journal   (Followers: 6)
Biotechnology and Genetic Engineering Reviews     Hybrid Journal   (Followers: 14)
Biotechnology and Health Sciences     Open Access   (Followers: 1)
Biotechnology and Molecular Biology Reviews     Open Access   (Followers: 1)
Biotechnology Annual Review     Full-text available via subscription   (Followers: 7)
Biotechnology for Biofuels     Open Access   (Followers: 11)
Biotechnology Frontier     Open Access   (Followers: 2)
Biotechnology Journal     Hybrid Journal   (Followers: 16)
Biotechnology Law Report     Hybrid Journal   (Followers: 4)
Biotechnology Letters     Hybrid Journal   (Followers: 34)
Biotechnology Progress     Hybrid Journal   (Followers: 39)
Biotechnology Reports     Open Access  
Biotechnology Research International     Open Access   (Followers: 2)
Biotechnology Techniques     Hybrid Journal   (Followers: 10)
Biotecnología Aplicada     Open Access  
Biotribology     Hybrid Journal  
BMC Biotechnology     Open Access   (Followers: 16)
Chinese Journal of Agricultural Biotechnology     Full-text available via subscription   (Followers: 4)
Communications in Mathematical Biology and Neuroscience     Open Access  
Computational and Structural Biotechnology Journal     Open Access   (Followers: 2)
Computer Methods and Programs in Biomedicine     Hybrid Journal   (Followers: 8)
Contributions to Tobacco Research     Open Access   (Followers: 3)
Copernican Letters     Open Access   (Followers: 1)
Critical Reviews in Biotechnology     Hybrid Journal   (Followers: 20)
Crop Breeding and Applied Biotechnology     Open Access   (Followers: 4)
Current Bionanotechnology     Hybrid Journal  
Current Biotechnology     Hybrid Journal   (Followers: 4)
Current Opinion in Biomedical Engineering     Hybrid Journal   (Followers: 1)
Current Opinion in Biotechnology     Hybrid Journal   (Followers: 55)
Current Pharmaceutical Biotechnology     Hybrid Journal   (Followers: 9)
Current Research in Bioinformatics     Open Access   (Followers: 14)
Current trends in Biotechnology and Pharmacy     Open Access   (Followers: 9)
EBioMedicine     Open Access  
Electronic Journal of Biotechnology     Open Access   (Followers: 1)
Entomologia Generalis     Full-text available via subscription  
Environmental Science : Processes & Impacts     Full-text available via subscription   (Followers: 4)
Experimental Biology and Medicine     Hybrid Journal   (Followers: 3)
Folia Medica Indonesiana     Open Access  
Food Bioscience     Hybrid Journal  
Food Biotechnology     Hybrid Journal   (Followers: 13)
Food Science and Biotechnology     Hybrid Journal   (Followers: 9)
Frontiers in Bioengineering and Biotechnology     Open Access   (Followers: 6)
Frontiers in Systems Biology     Open Access   (Followers: 2)
Fungal Biology and Biotechnology     Open Access   (Followers: 1)
GM Crops and Food: Biotechnology in Agriculture and the Food Chain     Full-text available via subscription   (Followers: 1)
GSTF Journal of BioSciences     Open Access  
HAYATI Journal of Biosciences     Open Access  
Horticulture, Environment, and Biotechnology     Hybrid Journal   (Followers: 11)
IEEE Transactions on Molecular, Biological and Multi-Scale Communications     Hybrid Journal   (Followers: 1)
IET Nanobiotechnology     Hybrid Journal   (Followers: 2)
IIOAB Letters     Open Access  
IN VIVO     Full-text available via subscription   (Followers: 4)
Indian Journal of Biotechnology (IJBT)     Open Access   (Followers: 2)
Indonesia Journal of Biomedical Science     Open Access   (Followers: 1)
Indonesian Journal of Biotechnology     Open Access   (Followers: 1)
Industrial Biotechnology     Hybrid Journal   (Followers: 18)
International Biomechanics     Open Access  
International Journal of Bioinformatics Research and Applications     Hybrid Journal   (Followers: 15)
International Journal of Biomechatronics and Biomedical Robotics     Hybrid Journal   (Followers: 4)
International Journal of Biomedical Research     Open Access   (Followers: 2)
International Journal of Biotechnology     Hybrid Journal   (Followers: 5)
International Journal of Biotechnology and Molecular Biology Research     Open Access   (Followers: 2)
International Journal of Biotechnology for Wellness Industries     Partially Free   (Followers: 1)
International Journal of Environment, Agriculture and Biotechnology     Open Access   (Followers: 5)
International Journal of Functional Informatics and Personalised Medicine     Hybrid Journal   (Followers: 4)
International Journal of Medicine and Biomedical Research     Open Access   (Followers: 1)
International Journal of Nanotechnology and Molecular Computation     Full-text available via subscription   (Followers: 3)
International Journal of Radiation Biology     Hybrid Journal   (Followers: 4)
Iranian Journal of Biotechnology     Open Access  
ISABB Journal of Biotechnology and Bioinformatics     Open Access  
Italian Journal of Food Science     Open Access   (Followers: 1)
Journal of Biometrics & Biostatistics     Open Access   (Followers: 3)
Journal of Bioterrorism & Biodefense     Open Access   (Followers: 6)
Journal of Petroleum & Environmental Biotechnology     Open Access   (Followers: 2)
Journal of Advanced Therapies and Medical Innovation Sciences     Open Access  
Journal of Advances in Biotechnology     Open Access   (Followers: 5)
Journal Of Agrobiotechnology     Open Access  
Journal of Analytical & Bioanalytical Techniques     Open Access   (Followers: 7)
Journal of Animal Science and Biotechnology     Open Access   (Followers: 6)
Journal of Applied Biomedicine     Open Access   (Followers: 3)
Journal of Applied Biotechnology     Open Access   (Followers: 2)
Journal of Applied Biotechnology Reports     Open Access   (Followers: 2)
Journal of Applied Mathematics & Bioinformatics     Open Access   (Followers: 5)
Journal of Biologically Active Products from Nature     Hybrid Journal   (Followers: 1)
Journal of Biomaterials and Nanobiotechnology     Open Access   (Followers: 6)
Journal of Biomedical Photonics & Engineering     Open Access  
Journal of Biomedical Practitioners     Open Access  
Journal of Bioprocess Engineering and Biorefinery     Full-text available via subscription  
Journal of Bioprocessing & Biotechniques     Open Access  
Journal of Biosecurity, Biosafety and Biodefense Law     Hybrid Journal   (Followers: 3)
Journal of Biotechnology     Hybrid Journal   (Followers: 68)
Journal of Chemical and Biological Interfaces     Full-text available via subscription   (Followers: 1)
Journal of Chemical Technology & Biotechnology     Hybrid Journal   (Followers: 10)
Journal of Chitin and Chitosan Science     Full-text available via subscription  
Journal of Colloid Science and Biotechnology     Full-text available via subscription  
Journal of Commercial Biotechnology     Full-text available via subscription   (Followers: 6)
Journal of Crop Science and Biotechnology     Hybrid Journal   (Followers: 7)
Journal of Essential Oil Research     Hybrid Journal   (Followers: 3)
Journal of Experimental Biology     Full-text available via subscription   (Followers: 25)
Journal of Genetic Engineering and Biotechnology     Open Access   (Followers: 5)
Journal of Ginseng Research     Open Access  
Journal of Industrial Microbiology and Biotechnology     Hybrid Journal   (Followers: 16)
Journal of Integrative Bioinformatics     Open Access  
Journal of International Biotechnology Law     Hybrid Journal   (Followers: 3)
Journal of Medical Imaging and Health Informatics     Full-text available via subscription  
Journal of Molecular Microbiology and Biotechnology     Full-text available via subscription   (Followers: 14)
Journal of Nano Education     Full-text available via subscription  
Journal of Nanobiotechnology     Open Access   (Followers: 4)
Journal of Nanofluids     Full-text available via subscription   (Followers: 2)
Journal of Organic and Biomolecular Simulations     Open Access  
Journal of Plant Biochemistry and Biotechnology     Hybrid Journal   (Followers: 6)
Journal of Science and Applications : Biomedicine     Open Access  
Journal of the Mechanical Behavior of Biomedical Materials     Hybrid Journal   (Followers: 11)
Journal of Trace Elements in Medicine and Biology     Hybrid Journal   (Followers: 1)
Journal of Tropical Microbiology and Biotechnology     Full-text available via subscription  
Journal of Yeast and Fungal Research     Open Access   (Followers: 1)
Marine Biotechnology     Hybrid Journal   (Followers: 5)
Messenger     Full-text available via subscription  
Metabolic Engineering Communications     Open Access   (Followers: 4)
Metalloproteinases In Medicine     Open Access  
Microalgae Biotechnology     Open Access   (Followers: 2)
Microbial Biotechnology     Open Access   (Followers: 9)
MicroMedicine     Open Access   (Followers: 3)
Molecular and Cellular Biomedical Sciences     Open Access  
Molecular Biotechnology     Hybrid Journal   (Followers: 16)
Molecular Genetics and Metabolism Reports     Open Access   (Followers: 3)
Nanobiomedicine     Open Access  
Nanobiotechnology     Hybrid Journal   (Followers: 3)
Nanomaterials and Nanotechnology     Open Access  
Nanomaterials and Tissue Regeneration     Open Access  
Nanomedicine and Nanobiology     Full-text available via subscription  
Nanomedicine Research Journal     Open Access  
Nanotechnology Reviews     Hybrid Journal   (Followers: 5)
Nature Biotechnology     Full-text available via subscription   (Followers: 521)
Network Modeling and Analysis in Health Informatics and Bioinformatics     Hybrid Journal   (Followers: 3)
New Biotechnology     Hybrid Journal   (Followers: 4)
Nigerian Journal of Biotechnology     Open Access  
Nova Biotechnologica et Chimica     Open Access  
NPG Asia Materials     Open Access  
npj Biofilms and Microbiomes     Open Access  
OA Biotechnology     Open Access  
Plant Biotechnology Journal     Open Access   (Followers: 10)
Plant Biotechnology Reports     Hybrid Journal   (Followers: 4)
Preparative Biochemistry and Biotechnology     Hybrid Journal   (Followers: 4)

        1 2 | Last

Journal Cover Fungal Biology and Biotechnology
  [1 followers]  Follow
  This is an Open Access Journal Open Access journal
   ISSN (Online) 2054-3085
   Published by Springer-Verlag Homepage  [2351 journals]
  • CoIN: co-inducible nitrate expression system for secondary metabolites in
           Aspergillus nidulans

    • Authors: Philipp Wiemann; Alexandra A. Soukup; Jacob S. Folz; Pin-Mei Wang; Andreas Noack; Nancy P. Keller
      Abstract: Background Sequencing of fungal species has demonstrated the existence of thousands of putative secondary metabolite gene clusters, the majority of them harboring a unique set of genes thought to participate in production of distinct small molecules. Despite the ready identification of key enzymes and potential cluster genes by bioinformatics techniques in sequenced genomes, the expression and identification of fungal secondary metabolites in the native host is often hampered as the genes might not be expressed under laboratory conditions and the species might not be amenable to genetic manipulation. To overcome these restrictions, we developed an inducible expression system in the genetic model Aspergillus nidulans. Results We genetically engineered a strain of A. nidulans devoid of producing eight of the most abundant endogenous secondary metabolites to express the sterigmatocystin Zn(II)2Cys6 transcription factor-encoding gene aflR and its cofactor aflS under control of the nitrate inducible niiA/niaD promoter. Furthermore, we identified a subset of promoters from the sterigmatocystin gene cluster that are under nitrate-inducible AflR/S control in our production strain in order to yield coordinated expression without the risks from reusing a single inducible promoter. As proof of concept, we used this system to produce β-carotene from the carotenoid gene cluster of Fusarium fujikuroi. Conclusion Utilizing one-step yeast recombinational cloning, we developed an inducible expression system in the genetic model A. nidulans and show that it can be successfully used to produce commercially valuable metabolites.
      PubDate: 2018-03-13
      DOI: 10.1186/s40694-018-0049-2
      Issue No: Vol. 5, No. 1 (2018)
  • Aspergillus niger is a superior expression host for the production of
           bioactive fungal cyclodepsipeptides

    • Authors: Simon Boecker; Stefan Grätz; Dennis Kerwat; Lutz Adam; David Schirmer; Lennart Richter; Tabea Schütze; Daniel Petras; Roderich D. Süssmuth; Vera Meyer
      Abstract: Background Fungal cyclodepsipeptides (CDPs) are non-ribosomally synthesized peptides produced by a variety of filamentous fungi and are of interest to the pharmaceutical industry due to their anticancer, antimicrobial and anthelmintic bioactivities. However, both chemical synthesis and isolation of CDPs from their natural producers are limited due to high costs and comparatively low yields. These challenges might be overcome by heterologous expression of the respective CDP-synthesizing genes in a suitable fungal host. The well-established industrial fungus Aspergillus niger was recently genetically reprogrammed to overproduce the cyclodepsipeptide enniatin B in g/L scale, suggesting that it can generally serve as a high production strain for natural products such as CDPs. In this study, we thus aimed to determine whether other CDPs such as beauvericin and bassianolide can be produced with high titres in A. niger, and whether the generated expression strains can be used to synthesize new-to-nature CDP derivatives. Results The beauvericin and bassianolide synthetases were expressed under control of the tuneable Tet-on promoter, and titres of about 350–600 mg/L for bassianolide and beauvericin were achieved when using optimized feeding conditions, respectively. These are the highest concentrations ever reported for both compounds, whether isolated from natural or heterologous expression systems. We also show that the newly established Tet-on based expression strains can be used to produce new-to-nature beauvericin derivatives by precursor directed biosynthesis, including the compounds 12-hydroxyvalerate-beauvericin and bromo-beauvericin. By feeding deuterated variants of one of the necessary precursors (d-hydroxyisovalerate), we were able to purify deuterated analogues of beauvericin and bassianolide from the respective A. niger expression strains. These deuterated compounds could potentially be used as internal standards in stable isotope dilution analyses to evaluate and quantify fungal spoilage of food and feed products. Conclusion In this study, we show that the product portfolio of A. niger can be expanded from enniatin to other CDPs such as beauvericin and bassianolide, as well as derivatives thereof. This illustrates the capability of A. niger to produce a range of different peptide natural products in titres high enough to become industrially relevant.
      PubDate: 2018-03-02
      DOI: 10.1186/s40694-018-0048-3
      Issue No: Vol. 5, No. 1 (2018)
  • Cinnamomum zeylanicum bark essential oil induces cell wall remodelling and
           spindle defects in Candida albicans

    • Authors: Zinnat Shahina; Amira M. El-Ganiny; Jessica Minion; Malcolm Whiteway; Taranum Sultana; Tanya E. S. Dahms
      Abstract: Background Cinnamon (Cinnamomum zeylanicum) bark extract exhibits potent inhibitory activity against Candida albicans but the antifungal mechanisms of this essential oil remain largely unexplored. Results We analyzed the impact of cinnamon bark oil on C. albicans RSY150, and clinical strains isolated from patients with candidemia and candidiasis. The viability of RSY150 was significantly compromised in a dose dependent manner when exposed to cinnamon bark oil, with extensive cell surface remodelling at sub inhibitory levels (62.5 μg/mL). Atomic force microscopy revealed cell surface exfoliation, altered ultrastructure and reduced cell wall integrity for both RSY150 and clinical isolates exposed to cinnamon bark oil. Cell wall damage induced by cinnamon bark oil was confirmed by exposure to stressors and the sensitivity of cell wall mutants involved in cell wall organization, biogenesis, and morphogenesis. The essential oil triggered cell cycle arrest by disrupting beta tubulin distribution, which led to mitotic spindle defects, ultimately compromising the cell membrane and allowing leakage of cellular components. The multiple targets of cinnamon bark oil can be attributed to its components, including cinnamaldehyde (74%), and minor components (< 6%) such as linalool (3.9%), cinamyl acetate (3.8%), α-caryophyllene (5.3%) and limonene (2%). Complete inhibition of the mitotic spindle assembly was observed in C. albicans treated with cinnamaldehyde at MIC (112 μg/mL). Conclusions Since cinnamaldehyde disrupts both the cell wall and tubulin polymerization, it may serve as an effective antifungal, either by chemical modification to improve its specificity and efficacy or in combination with other antifungal drugs.
      PubDate: 2018-02-09
      DOI: 10.1186/s40694-018-0046-5
      Issue No: Vol. 5, No. 1 (2018)
  • Heterologous and endogenous U6 snRNA promoters enable CRISPR/Cas9 mediated
           genome editing in Aspergillus niger

    • Authors: Xiaomei Zheng; Ping Zheng; Jibin Sun; Zhang Kun; Yanhe Ma
      Abstract: Background U6 promoters have been used for single guide RNA (sgRNA) transcription in the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas9) genome editing system. However, no available U6 promoters have been identified in Aspergillus niger, which is an important industrial platform for organic acid and protein production. Two CRISPR/Cas9 systems established in A. niger have recourse to the RNA polymerase II promoter or in vitro transcription for sgRNA synthesis, but these approaches generally increase cloning efforts and genetic manipulation. The validation of functional RNA polymerase II promoters is therefore an urgent need for A. niger. Results Here, we developed a novel CRISPR/Cas9 system in A. niger for sgRNA expression, based on one endogenous U6 promoter and two heterologous U6 promoters. The three tested U6 promoters enabled sgRNA transcription and the disruption of the polyketide synthase albA gene in A. niger. Furthermore, this system enabled highly efficient gene insertion at the targeted genome loci in A. niger using donor DNAs with homologous arms as short as 40-bp. Conclusions This study demonstrated that both heterologous and endogenous U6 promoters were functional for sgRNA expression in A. niger. Based on this result, a novel and simple CRISPR/Cas9 toolbox was established in A. niger, that will benefit future gene functional analysis and genome editing.
      PubDate: 2018-02-08
      DOI: 10.1186/s40694-018-0047-4
      Issue No: Vol. 5, No. 1 (2018)
  • Production of Aspergillus niger biomass on sugarcane distillery
           wastewater: physiological aspects and potential for biodiesel production

    • Authors: Graziella Chuppa-Tostain; Julien Hoarau; Marie Watson; Laetitia Adelard; Alain Shum Cheong Sing; Yanis Caro; Isabelle Grondin; Isabelle Bourven; Jean-Marie Francois; Elisabeth Girbal-Neuhauser; Thomas Petit
      Abstract: Background Sugarcane distillery waste water (SDW) or vinasse is the residual liquid waste generated during sugarcane molasses fermentation and alcohol distillation. Worldwide, this effluent is responsible for serious environmental issues. In Reunion Island, between 100 and 200 thousand tons of SDW are produced each year by the three local distilleries. In this study, the potential of Aspergillus niger to reduce the pollution load of SDW and to produce interesting metabolites has been investigated. Results The fungal biomass yield was 35 g L−1 corresponding to a yield of 0.47 g of biomass/g of vinasse without nutrient complementation. Analysis of sugar consumption indicated that mono-carbohydrates were initially released from residual polysaccharides and then gradually consumed until complete exhaustion. The high biomass yield likely arises from polysaccharides that are hydrolysed prior to be assimilated as monosaccharides and from organic acids and other complex compounds that provided additional C-sources for growth. Comparison of the size exclusion chromatography profiles of raw and pre-treated vinasse confirmed the conversion of humic- and/or phenolic-like molecules into protein-like metabolites. As a consequence, chemical oxygen demand of vinasse decreased by 53%. Interestingly, analysis of intracellular lipids of the biomass revealed high content in oleic acid and physical properties relevant for biodiesel application. Conclusions The soft-rot fungus A. niger demonstrated a great ability to grow on vinasse and to degrade this complex and hostile medium. The high biomass production is accompanied by a utilization of carbon sources like residual carbohydrates, organic acids and more complex molecules such as melanoidins. We also showed that intracellular lipids from fungal biomass can efficiently be exploited into biodiesel.
      PubDate: 2018-01-16
      DOI: 10.1186/s40694-018-0045-6
      Issue No: Vol. 5, No. 1 (2018)
  • Vita activa in biotechnology: what we do with fungi and what fungi do with

    • Authors: Martin Weinhold; Edeltraud Mast-Gerlach; Vera Meyer
      Abstract: Filamentous fungi are fascinating microorganisms. One of the reasons why it is so worthwhile to take a closer look at them is their capacity to produce secondary metabolites. Some of these substances have the potential to be of great use for mankind, such as it was the case with penicillin and its discovery in 1928. Almost a century later, the situation in healthcare could possibly turn back to the state before the development of the first antibiotics. Due to an overuse of antibiotics we are facing a surge of multiresistant bacteria that are not inhibited by any of the currently known drugs. That was part of the background why a European research project was launched in October 2013, titled “Quantitative Biology for Fungal Secondary Metabolite Producers”, or “QuantFung”. Fifteen young scientists embarked on a new phase in their career, moving to new work environments within Europe and dedicating their work lives intensively to the quest for useful secondary metabolites. After 4 years, the QuantFung project concluded in October this year. In this commentary, we aim to convey what it means to work in this field of fungal biotechnology and how important it is to improve the efficiency of the research therein. We introduce five out of the fifteen fellows at length and let them have their say about the adventure of science, euphoric moments, prospects and doubts. We also raise questions about the current state of research in academia, something the QuantFung fellows experienced first-hand. Being a scientist often goes beyond earning money to make one’s living. This is why we also reflect on aspects of the meaning of work in our western society, where production for profit’s sake is a main driver. For that we refer to one of the most distinguished thinkers of the twentieth century, to Hannah Arendt.
      PubDate: 2017-12-20
      DOI: 10.1186/s40694-017-0041-2
      Issue No: Vol. 4, No. 1 (2017)
  • ATNT: an enhanced system for expression of polycistronic secondary
           metabolite gene clusters in Aspergillus niger

    • Authors: Elena Geib; Matthias Brock
      Abstract: Background Fungi are treasure chests for yet unexplored natural products. However, exploitation of their real potential remains difficult as a significant proportion of biosynthetic gene clusters appears silent under standard laboratory conditions. Therefore, elucidation of novel products requires gene activation or heterologous expression. For heterologous gene expression, we previously developed an expression platform in Aspergillus niger that is based on the transcriptional regulator TerR and its target promoter PterA. Results In this study, we extended this system by regulating expression of terR by the doxycycline inducible Tet-on system. Reporter genes cloned under the control of the target promoter PterA remained silent in the absence of doxycycline, but were strongly expressed when doxycycline was added. Reporter quantification revealed that the coupled system results in about five times higher expression rates compared to gene expression under direct control of the Tet-on system. As production of secondary metabolites generally requires the expression of several biosynthetic genes, the suitability of the self-cleaving viral peptide sequence P2A was tested in this optimised expression system. P2A allowed polycistronic expression of genes required for Asp-melanin formation in combination with the gene coding for the red fluorescent protein tdTomato. Gene expression and Asp-melanin formation was prevented in the absence of doxycycline and strongly induced by addition of doxycycline. Fluorescence studies confirmed the correct subcellular localisation of the respective enzymes. Conclusion This tightly regulated but strongly inducible expression system enables high level production of secondary metabolites most likely even those with toxic potential. Furthermore, this system is compatible with polycistronic gene expression and, thus, suitable for the discovery of novel natural products.
      PubDate: 2017-12-19
      DOI: 10.1186/s40694-017-0042-1
      Issue No: Vol. 4, No. 1 (2017)
  • Spontaneous and CRISPR/Cas9-induced mutation of the osmosensor histidine
           kinase of the canola pathogen Leptosphaeria maculans

    • Authors: Alexander Idnurm; Andrew S. Urquhart; Dinesh R. Vummadi; Steven Chang; Angela P. Van de Wouw; Francisco J. López-Ruiz
      Abstract: Background The dicarboximide fungicide iprodione has been used to combat blackleg disease of canola (Brassica napus), caused by the fungus Leptosphaeria maculans. For example, in Australia the fungicide was used in the late 1990s but is no longer registered for use against blackleg disease, and therefore the impact of iprodione on L. maculans has not been investigated. Results Resistance to iprodione emerged spontaneously under in vitro conditions at high frequency. A basis for this resistance was mutations in the hos1 gene that encodes a predicted osmosensing histidine kinase. While loss of the homologous histidine kinase in some fungi has deleterious effects on growth and pathogenicity, the L. maculans strains with the hos1 gene mutated had reduced growth under high salt conditions, but were still capable of causing lesions on B. napus. The relative ease to isolate mutants with resistance to iprodione provided a method to develop and then optimize a CRISPR/Cas9 system for gene disruptions in L. maculans, a species that until now has been particularly difficult to manipulate by targeted gene disruptions. Conclusions While iprodione is initially effective against L. maculans in vitro, resistance emerges easily and these strains are able to cause lesions on canola. This may explain the limited efficacy of iprodione in field conditions. Iprodione resistance, such as through mutations of genes like hos1, provides an effective direction for the optimization of gene disruption techniques.
      PubDate: 2017-12-16
      DOI: 10.1186/s40694-017-0043-0
      Issue No: Vol. 4, No. 1 (2017)
  • Promoters from the itaconate cluster of Ustilago maydis are induced by
           nitrogen depletion

    • Authors: Thiemo Zambanini; Sandra K. Hartmann; Lisa M. Schmitz; Linda Büttner; Hamed Hosseinpour Tehrani; Elena Geiser; Melanie Beudels; Dominik Venc; Georg Wandrey; Jochen Büchs; Markus Schwarzländer; Lars M. Blank; Nick Wierckx
      Abstract: Background Ustilago maydis is known for its natural potential to produce a broad range of valuable chemicals, such as itaconate, from both industrial carbon waste streams and renewable biomass. Production of itaconate, and many other secondary metabolites, is induced by nitrogen limitation in U. maydis. The clustered genes responsible for itaconate production have recently been identified, enabling the development of new expression tools that are compatible with biotechnological processes. Results Here we report on the investigation of two of the native promoters, P tad1 and P mtt1 , from the itaconate cluster of U. maydis MB215. For both promoters the specific activation upon nitrogen limitation, which is known to be the trigger for itaconate production in Ustilago, could be demonstrated by gfp expression. The promoters cover a broad range of expression levels, especially when combined with the possibility to create single- and multicopy construct integration events. In addition, these reporter constructs enable a functional characterization of gene induction patterns associated with itaconate production. Conclusions The promoters are well suited to induce gene expression in response to nitrogen limitation, coupled to the itaconate production phase, which contributes towards the further improvement of organic acid production with Ustilago.
      PubDate: 2017-11-28
      DOI: 10.1186/s40694-017-0040-3
      Issue No: Vol. 4, No. 1 (2017)
  • Comparing the physiochemical parameters of three celluloses reveals new
           insights into substrate suitability for fungal enzyme production

    • Authors: Lara Hassan; Manfred J. Reppke; Nils Thieme; Steffen A. Schweizer; Carsten W. Mueller; J. Philipp Benz
      Abstract: Background The industrial applications of cellulases are mostly limited by the costs associated with their production. Optimized production pathways are therefore desirable. Based on their enzyme inducing capacity, celluloses are commonly used in fermentation media. However, the influence of their physiochemical characteristics on the production process is not well understood. In this study, we examined how physical, structural and chemical properties of celluloses influence cellulase and hemicellulase production in an industrially-optimized and a non-engineered filamentous fungus: Trichoderma reesei RUT-C30 and Neurospora crassa. The performance was evaluated by quantifying gene induction, protein secretion and enzymatic activities. Results Among the three investigated substrates, the powdered cellulose was found to be the most impure, and the residual hemicellulosic content was efficiently perceived by the fungi. It was furthermore found to be the least crystalline substrate and consequently was the most readily digested cellulose in vitro. In vivo however, only RUT-C30 was able to take full advantage of these factors. When comparing carbon catabolite repressed and de-repressed strains of T. reesei and N. crassa, we found that cre1/cre-1 is at least partially responsible for this observation, but that the different wiring of the molecular signaling networks is also relevant. Conclusions Our findings indicate that crystallinity and hemicellulose content are major determinants of performance. Moreover, the genetic background between WT and modified strains greatly affects the ability to utilize the cellulosic substrate. By highlighting key factors to consider when choosing the optimal cellulosic product for enzyme production, this study has relevance for the optimization of a critical step in the biotechnological (hemi-) cellulase production process.
      PubDate: 2017-11-03
      DOI: 10.1186/s40694-017-0039-9
      Issue No: Vol. 4, No. 1 (2017)
  • Openness and visibility of fungal bio(techno)logy

    • Authors: Vera Meyer; Corrado Nai; Alexander Idnurm
      PubDate: 2017-10-23
      DOI: 10.1186/s40694-017-0038-x
      Issue No: Vol. 4, No. 1 (2017)
  • Physiological characterization of secondary metabolite producing
           Penicillium cell factories

    • Authors: Sietske Grijseels; Jens Christian Nielsen; Jens Nielsen; Thomas Ostenfeld Larsen; Jens Christian Frisvad; Kristian Fog Nielsen; Rasmus John Normand Frandsen; Mhairi Workman
      Abstract: Background Penicillium species are important producers of bioactive secondary metabolites. However, the immense diversity of the fungal kingdom is only scarcely represented in industrial bioprocesses and the upscaling of compound production remains a costly and labor intensive challenge. In order to facilitate the development of novel secondary metabolite producing processes, two routes are typically explored: optimization of the native producer or transferring the enzymatic pathway into a heterologous host. Recent genome sequencing of ten Penicillium species showed the vast amount of secondary metabolite gene clusters present in their genomes, and makes them accessible for rational strain improvement. In this study, we aimed to characterize the potential of these ten Penicillium species as native producing cell factories by testing their growth performance and secondary metabolite production in submerged cultivations. Results Cultivation of the fungal species in controlled submerged bioreactors showed that the ten wild type Penicillium species had promising, highly reproducible growth characteristics in two different media. Analysis of the secondary metabolite production using liquid chromatography coupled with high resolution mass spectrometry proved that the species produced a broad range of secondary metabolites, at different stages of the fermentations. Metabolite profiling for identification of the known compounds resulted in identification of 34 metabolites; which included several with bioactive properties such as antibacterial, antifungal and anti-cancer activities. Additionally, several novel species–metabolite relationships were found. Conclusions This study demonstrates that the fermentation characteristics and the highly reproducible performance in bioreactors of ten recently genome sequenced Penicillium species should be considered as very encouraging for the application of native hosts for production via submerged fermentation. The results are particularly promising for the potential development of the ten analysed Penicillium species for production of novel bioactive compounds via submerged fermentations.
      PubDate: 2017-10-17
      DOI: 10.1186/s40694-017-0036-z
      Issue No: Vol. 4, No. 1 (2017)
  • Emergence and loss of spliceosomal twin introns

    • Authors: Michel Flipphi; Norbert Ág; Levente Karaffa; Napsugár Kavalecz; Gustavo Cerqueira; Claudio Scazzocchio; Erzsébet Fekete
      Abstract: Background In the primary transcript of nuclear genes, coding sequences—exons—usually alternate with non-coding sequences—introns. In the evolution of spliceosomal intron–exon structure, extant intron positions can be abandoned and new intron positions can be occupied. Spliceosomal twin introns (“stwintrons”) are unconventional intervening sequences where a standard “internal” intron interrupts a canonical splicing motif of a second, “external” intron. The availability of genome sequences of more than a thousand species of fungi provides a unique opportunity to study spliceosomal intron evolution throughout a whole kingdom by means of molecular phylogenetics. Results A new stwintron was encountered in Aspergillus nidulans and Aspergillus niger. It is present across three classes of Leotiomyceta in the transcript of a well-conserved gene encoding a putative lipase (lipS). It occupies the same position as a standard intron in the orthologue gene in species of the early divergent classes of the Pezizomycetes and the Orbiliomycetes, suggesting that an internal intron has appeared within a pre-extant intron. On the other hand, the stwintron has been lost from certain taxa in Leotiomycetes and Eurotiomycetes at several occasions, most likely by a mechanism involving reverse transcription and homologous recombination. Another ancient stwintron present across whole Pezizomycotina orders—in the transcript of the bifunctional biotin biosynthesis gene bioDA—occurs at the same position as a standard intron in many species of non-Dikarya. Nevertheless, also the bioDA stwintron has disappeared from certain lineages within the taxa where it occurs, i.e., Sordariomycetes and Botryosphaeriales. Intriguingly, only the internal intron was lost from the Sordariomycetes bioDA stwintron at all but one occasion, leaving a standard intron in the same position, while where the putative lipase stwintron was lost, no intronic sequences remain. Conclusions Molecular phylogeny of the peptide product was used to monitor the existence and fate of a stwintron in the transcripts of two neatly defined fungal genes, encoding well conserved proteins. Both defining events—stwintron emergence and loss—can be explained with extant models for intron insertion and loss. We thus demonstrate that stwintrons can serve as model systems to study spliceosomal intron evolution.
      PubDate: 2017-10-06
      DOI: 10.1186/s40694-017-0037-y
      Issue No: Vol. 4, No. 1 (2017)
  • A silver bullet in a golden age of functional genomics: the impact of
           Agrobacterium -mediated transformation of fungi

    • Authors: Alexander Idnurm; Andy M. Bailey; Timothy C. Cairns; Candace E. Elliott; Gary D. Foster; Giuseppe Ianiri; Junhyun Jeon
      Abstract: The implementation of Agrobacterium tumefaciens as a transformation tool revolutionized approaches to discover and understand gene functions in a large number of fungal species. A. tumefaciens mediated transformation (AtMT) is one of the most transformative technologies for research on fungi developed in the last 20 years, a development arguably only surpassed by the impact of genomics. AtMT has been widely applied in forward genetics, whereby generation of strain libraries using random T-DNA insertional mutagenesis, combined with phenotypic screening, has enabled the genetic basis of many processes to be elucidated. Alternatively, AtMT has been fundamental for reverse genetics, where mutant isolates are generated with targeted gene deletions or disruptions, enabling gene functional roles to be determined. When combined with concomitant advances in genomics, both forward and reverse approaches using AtMT have enabled complex fungal phenotypes to be dissected at the molecular and genetic level. Additionally, in several cases AtMT has paved the way for the development of new species to act as models for specific areas of fungal biology, particularly in plant pathogenic ascomycetes and in a number of basidiomycete species. Despite its impact, the implementation of AtMT has been uneven in the fungi. This review provides insight into the dynamics of expansion of new research tools into a large research community and across multiple organisms. As such, AtMT in the fungi, beyond the demonstrated and continuing power for gene discovery and as a facile transformation tool, provides a model to understand how other technologies that are just being pioneered, e.g. CRISPR/Cas, may play roles in fungi and other eukaryotic species.
      PubDate: 2017-09-26
      DOI: 10.1186/s40694-017-0035-0
      Issue No: Vol. 4, No. 1 (2017)
  • Marine fungi in the spotlight: opportunities and challenges for marine
           fungal natural product discovery and biotechnology

    • Authors: Deniz Tasdemir
      Abstract: The marine fungal natural products (MaFNaP) Consortium, a scientific network founded in 2014, aims to fuel systematic research on marine fungi and their secondary metabolites. The 2nd international conference of marine fungal natural products (MaFNaP_2017) that was held in Kiel (Germany) and hosted by GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech) in June 2017 brought together scientists working all relevant aspects of marine fungi. This conference report highlights the topics discussed in the conference and suggestions for future work on marine fungal compounds. One of the major aims is to attract scientists working on terrestrial fungi in tackling the common bottlenecks and to move marine fungal biodiscovery and biotechnology research forward.
      PubDate: 2017-08-31
      DOI: 10.1186/s40694-017-0034-1
      Issue No: Vol. 4, No. 1 (2017)
  • Filamentous ascomycetes fungi as a source of natural pigments

    • Authors: Rebecca Gmoser; Jorge A. Ferreira; Patrik R. Lennartsson; Mohammad J. Taherzadeh
      Abstract: Filamentous fungi, including the ascomycetes Monascus, Fusarium, Penicillium and Neurospora, are being explored as novel sources of natural pigments with biological functionality for food, feed and cosmetic applications. Such edible fungi can be used in biorefineries for the production of ethanol, animal feed and pigments from waste sources. The present review gathers insights on fungal pigment production covering biosynthetic pathways and stimulatory factors (oxidative stress, light, pH, nitrogen and carbon sources, temperature, co-factors, surfactants, oxygen, tricarboxylic acid intermediates and morphology) in addition to pigment extraction, analysis and identification methods. Pigmentation is commonly regarded as the output of secondary protective mechanisms against oxidative stress and light. Although several studies have examined pigmentation in Monascus spp., research gaps exist in the investigation of interactions among factors as well as process development on larger scales under submerged and solid-state fermentation. Currently, research on pigmentation in Neurospora spp. is at its infancy, but the increasing interest for biorefineries shows potential for booming research in this area.
      PubDate: 2017-05-10
      DOI: 10.1186/s40694-017-0033-2
      Issue No: Vol. 4, No. 1 (2017)
  • Multiple genotypes within aecial clusters in Puccinia graminis and
           Puccinia coronata : improved understanding of the biology of cereal rust

    • Authors: Anna Berlin; Berit Samils; Björn Andersson
      Abstract: Background Cereal rust fungi (Puccinia spp.) are among the most economically important plant pathogens. These fungi have a complex life cycle, including five spore stages and two hosts. They infect one grass host on which they reproduce clonally and cause the cereal rust diseases, while the alternate host is required for sexual reproduction. Although previous studies clearly demonstrate the importance of the alternate host in creating genetic diversity in cereal rust fungi, little is known about the amount of novel genotypes created in each successful completion of a sexual reproduction event. Results In this study, single sequence repeat markers were used to study the genotypic diversity within aecial clusters by genotyping individual aecial cups. Two common cereal rusts, Puccinia graminis causing stem rust and Puccinia coronata the causal agent of crown rust were investigated. We showed that under natural conditions, a single aecial cluster usually include several genotypes, either because a single pycnial cluster is fertilized by several different pycniospores, or because aecia within the cluster are derived from more than one fertilized adjoining pycnial cluster, or a combination of both. Conclusion Our results imply that although sexual events in cereal rust fungi in most regions of the world are relatively rare, the events that occur may still significantly contribute to the genetic variation within the pathogen populations.
      PubDate: 2017-05-03
      DOI: 10.1186/s40694-017-0032-3
      Issue No: Vol. 4, No. 1 (2017)
  • The fungal composition of natural biofinishes on oil-treated wood

    • Authors: Elke J. van Nieuwenhuijzen; Jos A. M. P. Houbraken; Peter J. Punt; Guus Roeselers; Olaf C. G. Adan; Robert A. Samson
      Abstract: Background Biofinished wood is considered to be a decorative and protective material for outdoor constructions, showing advantages compared to traditional treated wood in terms of sustainability and self-repair. Natural dark wood staining fungi are essential to biofinish formation on wood. Although all sorts of outdoor situated timber are subjected to fungal staining, the homogenous dark staining called biofinish has only been detected on specific vegetable oil-treated substrates. Revealing the fungal composition of various natural biofinishes on wood is a first step to understand and control biofinish formation for industrial application. Results A culture-based survey of fungi in natural biofinishes on oil-treated wood samples showed the common wood stain fungus Aureobasidium and the recently described genus Superstratomyces to be predominant constituents. A culture-independent approach, based on amplification of the internal transcribed spacer regions, cloning and Sanger sequencing, resulted in clone libraries of two types of biofinishes. Aureobasidium was present in both biofinish types, but was only predominant in biofinishes on pine sapwood treated with raw linseed oil. Most cloned sequences of the other biofinish type (pine sapwood treated with olive oil) could not be identified. In addition, a more in-depth overview of the fungal composition of biofinishes was obtained with Illumina amplicon sequencing that targeted the internal transcribed spacer region 1. All investigated samples, that varied in wood species, (oil) treatments and exposure times, contained Aureobasidium and this genus was predominant in the biofinishes on pine sapwood treated with raw linseed oil. Lapidomyces was the predominant genus in most of the other biofinishes and present in all other samples. Surprisingly, Superstratomyces, which was predominantly detected by the cultivation-based approach, could not be found with the Illumina sequencing approach, while Lapidomyces was not detected in the culture-based approach. Conclusions Overall, the culture-based approach and two culture-independent methods that were used in this study revealed that natural biofinishes were composed of multiple fungal genera always containing the common wood staining mould Aureobasidium. Besides Aureobasidium, the use of other fungal genera for the production of biofinished wood has to be considered.
      PubDate: 2017-01-26
      DOI: 10.1186/s40694-017-0030-5
      Issue No: Vol. 4, No. 1 (2017)
  • A flavoprotein supports cell wall properties in the necrotrophic fungus
           Alternaria brassicicola

    • Authors: Sandrine Pigné; Agata Zykwinska; Etienne Janod; Stéphane Cuenot; Mohammed Kerkoud; Roxane Raulo; Nelly Bataillé-Simoneau; Muriel Marchi; Anthony Kwasiborski; Guillaume N’Guyen; Guillaume Mabilleau; Philippe Simoneau; Thomas Guillemette
      Abstract: Background Flavin-dependent monooxygenases are involved in key biological processes as they catalyze a wide variety of chemo-, regio- and enantioselective oxygenation reactions. Flavoprotein monooxygenases are frequently encountered in micro-organisms, most of which require further functional and biocatalytic assessment. Here we investigated the function of the AbMak1 gene, which encodes a group A flavin monooxygenase in the plant pathogenic fungus Alternaria brassicicola, by generating a deficient mutant and examining its phenotype. Results Functional analysis indicates that the AbMak1 protein is involved in cell wall biogenesis and influences the melanization process. We documented a significant decrease in melanin content in the Δabmak1 strain compared to the wild-type and complemented strains. We investigated the cell wall morphology and physical properties in the wild-type and transformants using electron and atomic force microscopy. These approaches confirmed the aberrant morphology of the conidial wall structure in the Δabmak1 strain which had an impact on hydrophilic adhesion and conidial surface stiffness. However, there was no significant impairment in growth, conidia formation, pathogenicity or susceptibility to various environmental stresses in the Δabmak1 strain. Conclusion This study sheds new light on the function of a fungal flavin-dependent monooxygenase, which plays an important role in melanization.
      PubDate: 2017-01-06
      DOI: 10.1186/s40694-016-0029-3
      Issue No: Vol. 4, No. 1 (2017)
  • The beauty and the morbid: fungi as source of inspiration in contemporary

    • Authors: Corrado Nai; Vera Meyer
      Abstract: The arts have the power to irritate, to provoke and to let us think and dream about the impossible. The relationship of the arts and fungi is not immediate; however, fungi are ideal subjects for artists. They are both visible and invisible. They irritate. They evoke within each of us different feelings and inner pictures. Some are perceived as disgusting or dangerous because associated with dirt or death. Others are appreciated for their unique and delicious taste in our eating culture. Microbiologists further consider them as useful for industrial exploitation or per se as interesting because they are gratifying objects to study basic phenomena of life. To stimulate a fertile and interdisciplinary dialogue between artists and fungal scientists, we here present some examples of the inspirational powers of fungi and fungal science for contemporary art. Astonishing, poetic and perplexing artistic works could release scientific creativity and overcome the boundaries between art and science.
      PubDate: 2016-11-29
      DOI: 10.1186/s40694-016-0028-4
      Issue No: Vol. 3, No. 1 (2016)
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-