for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> BIOLOGY (Total: 3190 journals)
    - BIOCHEMISTRY (243 journals)
    - BIOENGINEERING (119 journals)
    - BIOLOGY (1522 journals)
    - BIOPHYSICS (49 journals)
    - BIOTECHNOLOGY (244 journals)
    - BOTANY (236 journals)
    - CYTOLOGY AND HISTOLOGY (29 journals)
    - ENTOMOLOGY (70 journals)
    - GENETICS (165 journals)
    - MICROBIOLOGY (262 journals)
    - MICROSCOPY (10 journals)
    - ORNITHOLOGY (26 journals)
    - PHYSIOLOGY (73 journals)
    - ZOOLOGY (142 journals)

BIOTECHNOLOGY (244 journals)                  1 2 | Last

Showing 1 - 200 of 244 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 8)
Advanced Biomedical Research     Open Access  
Advances in Bioscience and Biotechnology     Open Access   (Followers: 17)
Advances in Genetic Engineering & Biotechnology     Hybrid Journal   (Followers: 9)
Advances in Regenerative Medicine     Open Access   (Followers: 3)
African Journal of Biotechnology     Open Access   (Followers: 6)
Algal Research     Partially Free   (Followers: 11)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 69)
American Journal of Bioinformatics Research     Open Access   (Followers: 7)
American Journal of Polymer Science     Open Access   (Followers: 33)
Amylase     Open Access  
Anadolu University Journal of Science and Technology : C Life Sciences and Biotechnology     Open Access  
Animal Biotechnology     Hybrid Journal   (Followers: 8)
Annales des Sciences Agronomiques     Full-text available via subscription  
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 45)
Applied Biosafety     Hybrid Journal  
Applied Food Biotechnology     Open Access   (Followers: 3)
Applied Microbiology and Biotechnology     Hybrid Journal   (Followers: 67)
Applied Mycology and Biotechnology     Full-text available via subscription   (Followers: 4)
Arthroplasty Today     Open Access   (Followers: 1)
Artificial Cells, Nanomedicine and Biotechnology     Hybrid Journal   (Followers: 1)
Asia Pacific Biotech News     Hybrid Journal   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 9)
Asian Pacific Journal of Tropical Biomedicine     Open Access   (Followers: 2)
Australasian Biotechnology     Full-text available via subscription   (Followers: 1)
Banat's Journal of Biotechnology     Open Access  
BBR : Biochemistry and Biotechnology Reports     Open Access   (Followers: 5)
Beitr?ge zur Tabakforschung International/Contributions to Tobacco Research     Open Access   (Followers: 3)
Bio-Algorithms and Med-Systems     Hybrid Journal   (Followers: 2)
Bio-Research     Full-text available via subscription   (Followers: 4)
Bioactive Materials     Open Access   (Followers: 1)
Biocatalysis and Agricultural Biotechnology     Hybrid Journal   (Followers: 4)
Biocybernetics and Biological Engineering     Full-text available via subscription   (Followers: 5)
Bioethics UPdate     Hybrid Journal   (Followers: 1)
Biofuels     Hybrid Journal   (Followers: 11)
Biofuels Engineering     Open Access   (Followers: 1)
Biological & Pharmaceutical Bulletin     Full-text available via subscription   (Followers: 4)
Biological Cybernetics     Hybrid Journal   (Followers: 10)
Biomarkers and Genomic Medicine     Open Access   (Followers: 3)
Biomaterials Research     Open Access   (Followers: 4)
BioMed Research International     Open Access   (Followers: 4)
Biomédica     Open Access  
Biomedical and Biotechnology Research Journal     Open Access  
Biomedical Engineering Research     Open Access   (Followers: 6)
Biomedical Glasses     Open Access  
Biomedical Reports     Full-text available via subscription  
BioMedicine     Open Access  
Biomedika     Open Access  
Bioprinting     Hybrid Journal   (Followers: 1)
Bioresource Technology Reports     Hybrid Journal   (Followers: 1)
Bioscience, Biotechnology, and Biochemistry     Hybrid Journal   (Followers: 21)
Biosensors Journal     Open Access  
Biosimilars     Open Access   (Followers: 1)
Biosurface and Biotribology     Open Access  
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 1)
BioTechniques : The International Journal of Life Science Methods     Full-text available via subscription   (Followers: 28)
Biotechnologia Acta     Open Access   (Followers: 1)
Biotechnologie, Agronomie, Société et Environnement     Open Access   (Followers: 2)
Biotechnology     Open Access   (Followers: 8)
Biotechnology & Biotechnological Equipment     Open Access   (Followers: 4)
Biotechnology Advances     Hybrid Journal   (Followers: 34)
Biotechnology and Applied Biochemistry     Hybrid Journal   (Followers: 44)
Biotechnology and Bioengineering     Hybrid Journal   (Followers: 160)
Biotechnology and Bioprocess Engineering     Hybrid Journal   (Followers: 6)
Biotechnology and Genetic Engineering Reviews     Hybrid Journal   (Followers: 13)
Biotechnology and Health Sciences     Open Access   (Followers: 1)
Biotechnology and Molecular Biology Reviews     Open Access   (Followers: 2)
Biotechnology Annual Review     Full-text available via subscription   (Followers: 5)
Biotechnology for Biofuels     Open Access   (Followers: 10)
Biotechnology Frontier     Open Access   (Followers: 2)
Biotechnology Journal     Hybrid Journal   (Followers: 17)
Biotechnology Law Report     Hybrid Journal   (Followers: 4)
Biotechnology Letters     Hybrid Journal   (Followers: 34)
Biotechnology Progress     Hybrid Journal   (Followers: 41)
Biotechnology Reports     Open Access  
Biotechnology Research International     Open Access   (Followers: 1)
Biotechnology Techniques     Hybrid Journal   (Followers: 10)
Biotecnología Aplicada     Open Access  
Bioteknologi (Biotechnological Studies)     Open Access  
BIOTIK : Jurnal Ilmiah Biologi Teknologi dan Kependidikan     Open Access  
Biotribology     Hybrid Journal   (Followers: 1)
BMC Biotechnology     Open Access   (Followers: 17)
Cell Biology and Development     Open Access  
Chinese Journal of Agricultural Biotechnology     Full-text available via subscription   (Followers: 4)
Communications in Mathematical Biology and Neuroscience     Open Access  
Computational and Structural Biotechnology Journal     Open Access   (Followers: 2)
Computer Methods and Programs in Biomedicine     Hybrid Journal   (Followers: 8)
Copernican Letters     Open Access   (Followers: 1)
Critical Reviews in Biotechnology     Hybrid Journal   (Followers: 20)
Crop Breeding and Applied Biotechnology     Open Access   (Followers: 3)
Current Bionanotechnology     Hybrid Journal  
Current Biotechnology     Hybrid Journal   (Followers: 4)
Current Opinion in Biomedical Engineering     Hybrid Journal   (Followers: 1)
Current Opinion in Biotechnology     Hybrid Journal   (Followers: 55)
Current Pharmaceutical Biotechnology     Hybrid Journal   (Followers: 9)
Current Research in Bioinformatics     Open Access   (Followers: 13)
Current Trends in Biotechnology and Chemical Research     Open Access   (Followers: 3)
Current trends in Biotechnology and Pharmacy     Open Access   (Followers: 8)
DNA and RNA Nanotechnology     Open Access  
EBioMedicine     Open Access  
Electronic Journal of Biotechnology     Open Access  
Entomologia Generalis     Full-text available via subscription   (Followers: 1)
Environmental Science : Processes & Impacts     Full-text available via subscription   (Followers: 4)
Experimental Biology and Medicine     Hybrid Journal   (Followers: 3)
Folia Medica Indonesiana     Open Access  
Food Bioscience     Hybrid Journal  
Food Biotechnology     Hybrid Journal   (Followers: 9)
Food Science and Biotechnology     Hybrid Journal   (Followers: 8)
Frontiers in Bioengineering and Biotechnology     Open Access   (Followers: 6)
Frontiers in Systems Biology     Open Access   (Followers: 2)
Fungal Biology and Biotechnology     Open Access   (Followers: 2)
GM Crops and Food: Biotechnology in Agriculture and the Food Chain     Full-text available via subscription   (Followers: 1)
GSTF Journal of BioSciences     Open Access  
HAYATI Journal of Biosciences     Open Access  
Horticultural Biotechnology Research     Open Access  
Horticulture, Environment, and Biotechnology     Hybrid Journal   (Followers: 11)
IEEE Transactions on Molecular, Biological and Multi-Scale Communications     Hybrid Journal   (Followers: 1)
IET Nanobiotechnology     Hybrid Journal   (Followers: 2)
IN VIVO     Full-text available via subscription   (Followers: 4)
Indian Journal of Biotechnology (IJBT)     Open Access   (Followers: 2)
Indonesia Journal of Biomedical Science     Open Access   (Followers: 2)
Indonesian Journal of Biotechnology     Open Access   (Followers: 1)
Indonesian Journal of Medicine     Open Access  
Industrial Biotechnology     Hybrid Journal   (Followers: 18)
International Biomechanics     Open Access  
International Journal of Bioinformatics Research and Applications     Hybrid Journal   (Followers: 14)
International Journal of Biomechatronics and Biomedical Robotics     Hybrid Journal   (Followers: 4)
International Journal of Biomedical Research     Open Access   (Followers: 2)
International Journal of Biotechnology     Hybrid Journal   (Followers: 5)
International Journal of Biotechnology and Molecular Biology Research     Open Access   (Followers: 4)
International Journal of Biotechnology for Wellness Industries     Partially Free   (Followers: 1)
International Journal of Environment, Agriculture and Biotechnology     Open Access   (Followers: 5)
International Journal of Functional Informatics and Personalised Medicine     Hybrid Journal   (Followers: 4)
International Journal of Medicine and Biomedical Research     Open Access   (Followers: 1)
International Journal of Nanotechnology and Molecular Computation     Full-text available via subscription   (Followers: 3)
International Journal of Radiation Biology     Hybrid Journal   (Followers: 4)
Iranian Journal of Biotechnology     Open Access  
ISABB Journal of Biotechnology and Bioinformatics     Open Access  
Italian Journal of Food Science     Open Access   (Followers: 1)
JMIR Biomedical Engineering     Open Access  
Journal of Biometrics & Biostatistics     Open Access   (Followers: 3)
Journal of Bioterrorism & Biodefense     Open Access   (Followers: 6)
Journal of Petroleum & Environmental Biotechnology     Open Access   (Followers: 1)
Journal of Advanced Therapies and Medical Innovation Sciences     Open Access  
Journal of Advances in Biotechnology     Open Access   (Followers: 5)
Journal Of Agrobiotechnology     Open Access  
Journal of Analytical & Bioanalytical Techniques     Open Access   (Followers: 7)
Journal of Animal Science and Biotechnology     Open Access   (Followers: 4)
Journal of Applied Biomedicine     Open Access   (Followers: 2)
Journal of Applied Biotechnology     Open Access   (Followers: 2)
Journal of Applied Biotechnology Reports     Open Access   (Followers: 2)
Journal of Applied Mathematics & Bioinformatics     Open Access   (Followers: 5)
Journal of Biologically Active Products from Nature     Hybrid Journal   (Followers: 1)
Journal of Biomaterials and Nanobiotechnology     Open Access   (Followers: 6)
Journal of Biomedical Photonics & Engineering     Open Access  
Journal of Biomedical Practitioners     Open Access  
Journal of Bioprocess Engineering and Biorefinery     Full-text available via subscription  
Journal of Bioprocessing & Biotechniques     Open Access  
Journal of BioScience and Biotechnology     Open Access  
Journal of Biosecurity Biosafety and Biodefense Law     Hybrid Journal   (Followers: 3)
Journal of Biotechnology     Hybrid Journal   (Followers: 63)
Journal of Biotechnology and Strategic Health Research     Open Access   (Followers: 1)
Journal of Chemical and Biological Interfaces     Full-text available via subscription   (Followers: 1)
Journal of Chemical Technology & Biotechnology     Hybrid Journal   (Followers: 9)
Journal of Chitin and Chitosan Science     Full-text available via subscription   (Followers: 1)
Journal of Colloid Science and Biotechnology     Full-text available via subscription  
Journal of Commercial Biotechnology     Full-text available via subscription   (Followers: 6)
Journal of Crop Science and Biotechnology     Hybrid Journal   (Followers: 3)
Journal of Ecobiotechnology     Open Access  
Journal of Essential Oil Research     Hybrid Journal   (Followers: 2)
Journal of Experimental Biology     Full-text available via subscription   (Followers: 25)
Journal of Genetic Engineering and Biotechnology     Open Access   (Followers: 5)
Journal of Ginseng Research     Open Access  
Journal of Industrial Microbiology and Biotechnology     Hybrid Journal   (Followers: 18)
Journal of Integrative Bioinformatics     Open Access  
Journal of Medical Imaging and Health Informatics     Full-text available via subscription  
Journal of Molecular Biology and Biotechnology     Open Access  
Journal of Molecular Microbiology and Biotechnology     Full-text available via subscription   (Followers: 13)
Journal of Nano Education     Full-text available via subscription  
Journal of Nanobiotechnology     Open Access   (Followers: 4)
Journal of Nanofluids     Full-text available via subscription   (Followers: 1)
Journal of Organic and Biomolecular Simulations     Open Access  
Journal of Plant Biochemistry and Biotechnology     Hybrid Journal   (Followers: 4)
Journal of Science and Applications : Biomedicine     Open Access  
Journal of the Mechanical Behavior of Biomedical Materials     Hybrid Journal   (Followers: 13)
Journal of Trace Elements in Medicine and Biology     Hybrid Journal   (Followers: 1)
Journal of Tropical Microbiology and Biotechnology     Full-text available via subscription  
Journal of Yeast and Fungal Research     Open Access   (Followers: 1)
Marine Biotechnology     Hybrid Journal   (Followers: 4)
Meat Technology     Open Access  
Messenger     Full-text available via subscription  
Metabolic Engineering Communications     Open Access   (Followers: 4)
Metalloproteinases In Medicine     Open Access  
Microbial Biotechnology     Open Access   (Followers: 10)
MicroMedicine     Open Access   (Followers: 3)
Molecular and Cellular Biomedical Sciences     Open Access   (Followers: 1)
Molecular Biotechnology     Hybrid Journal   (Followers: 13)
Molecular Genetics and Metabolism Reports     Open Access   (Followers: 3)
Nanobiomedicine     Open Access  
Nanobiotechnology     Hybrid Journal   (Followers: 2)

        1 2 | Last

Journal Cover
3 Biotech
Journal Prestige (SJR): 0.511
Citation Impact (citeScore): 2
Number of Followers: 8  

  This is an Open Access Journal Open Access journal
ISSN (Print) 2190-572X - ISSN (Online) 2190-5738
Published by SpringerOpen Homepage  [234 journals]
  • Determination of organic acids for quality evaluation in Coptis herbs by
           ion chromatography

    • Abstract: Coptis herbs are important herbal medicinal materials. The bioactive composition, the quality and medicinal efficacy of these herbs, are determined significantly by their geo-authentic features. Among the effective components of these herbs are seven organic acids (quinic, acetic, formic, tartaric, malic, succinic, and oxalic acids). However, no quantitative data of these seven acids in these herbs are available. Therefore, we developed a method for simultaneous separation and determination of the seven organic acids in Coptis herbs using gradient ion chromatography (mobile phase and gradient were shown in Table 1). The seven acids were separated and determined in no more than 35 min. We found that the organic acid levels in C. teeta was obviously higher than in C. chinensis and C. deltoidea, in particular, the content of quinic acid in C. teeta was about eight times than that in C. chinensis and C. deltoidea. Furthermore, we analyzed the relationships between the contents of organic acids and clinical effects, and found that organic acids (content of total acids or content of quinic acid) could act as an reference ingredient for quality evaluation in Coptis herbs. Our studies would lay the foundation for effective quality evaluation of these herbs.
      PubDate: 2018-06-04
  • Inhibitory effects of Lepidium sativum polysaccharide extracts on TNF-α
           production in Escherichia coli -stimulated mouse

    • Abstract: The present study was designed to study the quantitative effects of extraction time, temperature and solvent to sample ratio on the yield of Lepidium sativum polysaccharides (LSP) using a Box–Behnken design. The activities of the optimized LSP extract were then tested in an in vivo experimental system of Escherichia coli (E. coli)-induced endotoxin shock. The optimal polysaccharide extraction conditions were established by the equation of regression and evaluation of the response surface contour plots: extraction time 5.2 h; temperature 95 °C and ratio of water to raw material 31.89 mL/g. Subsequently, an in vivo endotoxin shock was induced in mice with a single E. coli i.p. injection. Septic mice showed a substantial raise in the levels of tumor necrosis factor alpha (TNF-α) in plasma, whereas mice treated with LSP after E. coli injection showed considerable lower plasma levels of TNF-α (P < 0.05). These results suggest that LSP have beneficial effects when administered to mice with endotoxin shock by diminishing the pro-inflammatory response. The systemic activity of LSP indicated that the extract has a significant inhibitory effect against E. coli-induced inflammation by reducing the circulating levels of TNF-α. Further studies are warranted to explore the clinical implications of such observations.
      PubDate: 2018-06-04
  • Engineering fungal morphology for enhanced production of hydrolytic
           enzymes by Aspergillus oryzae SBS50 using microparticles

    • Abstract: Effect of microparticles and silver nanoparticles was studied on the production of hydrolytic enzymes by a potent phytase-producing mould, Aspergillus oryzae SBS50. Addition of microparticles, viz. talc powder and aluminum oxide enhanced phytase production from 2894 to 3903 and 2847 to 4204 U/L, cellulase from 2529 to 4931 and 2455 to 3444 U/L, xylanase from 9067 to 9642 and 9994 to 14,783 U/L, amylase from 5880 to 11,000 and 6130 to 13,145 U/L, respectively. Fungal morphology was also engineered by the use of microparticles. Fungal pellet size was significantly reduced (~ 90%) by the addition of microparticles. Fermentation time was reduced from 4 to 3 days after the addition of microparticles, thus increasing the productivity of the enzymes significantly. These results confirmed the importance of microparticles in engineering fungal morphology for enhanced production of hydrolytic enzymes.
      PubDate: 2018-06-02
  • Assessment of chemical and genetic variability in Tanacetum gracile
           accessions collected from cold desert of Western Himalaya

    • Abstract: Genetic diversity is essential for survival and adaptation of high altitude plants such as those of Tanacetum genus, which are constantly exposed to environmental stress. We collected flowering shoots of ten accessions of Tanacetum gracile Hook.f. & Thomson (Asteraceae) (Tg 1–Tg 10), from different regions of cold desert of Western Himalaya. Chemical profile of the constituents, as inferred from GC–MS, exhibited considerable variability. Percentage yield of essential oil ranged from 0.2 to 0.75% (dry-weight basis) amongst different accessions. Tg 1 and Tg 6 were found to produce high yields of camphor (46%) and lavandulol (41%), respectively. Alpha-phellendrene, alpha-bisabool, p-cymene and chamazulene were the main oil components in other accessions. Genetic variability among the accessions was studied using RAPD markers as well as by sequencing and analyzing nuclear 18S rDNA, and plastid rbcL and matK loci. The polymorphic information content (PIC) of RAPD markers ranged from 0.18 to 0.5 and the analysis clustered the accessions into two major clades. The present study emphasized the importance of survey, collection, and conservation of naturally existing chemotypes of medicinal and aromatic plants, considering their potential use in aroma and pharmaceutical industry.
      PubDate: 2018-06-02
  • Cultivated methanotrophs associated with rhizospheres of traditional rice
           landraces from Western India belong to Methylocaldum and Methylocysti s

    • Abstract: Aerobic methanotrophs associated with Indian rice plants have rarely been cultivated. In the present study, we cultured aerobic methanotrophic bacteria from the rhizosphere regions of rice plants. Rhizospheric soils from seven rice landraces traditionally grown and maintained by tribal people in Jawhar region belonging to part of the Western Ghats in India, were used. Seven methanotrophic cultures were isolated from the last positive dilution (10− 4). Methanotrophs were identified by analyzing the partial methane monooxygenase gene, pmoA gene and three of these belonged to the genus Methylocaldum (gammaproteobacterial, Type I methanotrophs) and four belonged to the genus Methylocystis (alphaproteobacterial, Type II methanotrophs). We present here the first report on the cultivation of methanotrophs from Indian traditional rice landraces originating from a biodiversity hotspot.
      PubDate: 2018-06-01
  • Changes in antioxidant and biochemical activities in castor oil-coated
           Capsicum annuum L. during postharvest storage

    • Abstract: This study, for the first time, evaluates the efficiency of castor oil when used as an external coating on Capsicum annuum L., to increase postharvest storage-life at 4 ± 1 °C. The castor oil-coated fruits were successfully stored for 36 days, while the non-coated fruits could only sustain for 18 days. Throughout the storage period (at 9-day intervals), different antioxidants and biochemical assays (allied with storage) such as titratable acidity, ascorbic acid content, ferrous ion chelating activity, reducing power, DPPH scavenging activity, hydroxyl radical scavenging activity, total phenolic content, total sugar estimation, and enzymatic study of polyphenol oxidase and pectate lyase, were assessed. During storage, the castor oil-coated fruits showed a substantial decrease in titratable acidity, ascorbic acid content, total phenolic content, including antioxidant activities such as reducing power and DPPH activity; however, an increase in ferrous ion chelating activity, total soluble sugar content, polyphenol oxidase activity and initial pectate lyase activity was observed, in contrast to that of the non-coated fruits. The application of castor oil proved to be effective in delaying the ripening process of fruits during storage.
      PubDate: 2018-06-01
  • Heliomycin and tetracinomycin D: anthraquinone derivatives with histone
           deacetylase inhibitory activity from marine sponge-associated Streptomyces
           sp. SP9

    • Abstract: Several actinomycetes strains were isolated from different marine sponges collected from the Red Sea shore in Egypt. The efficiency of their crude extracts to inhibit histone deacetylase (HDAC) enzyme was investigated in the nuclear extract of Hela cell line. The crude extract corresponding to Streptomyces sp. SP9 isolated from the marine sponge Pseudoceratina arabica showed a promising HDAC inhibitory activity with 64 and 81% at 50 and 100 µg/ml, respectively. The strain was identified as Streptomyces sp. by phylogenetic analyses based on its 16S rRNA gene sequence. The major compounds of Streptomyces sp. SP9 were isolated and purified by different chromatographic methods. The chemical structure of the isolated compounds was identified on the basis of their spectroscopic data including mass, 1H and 13C NMR, and by comparison with those of authenticated samples. Structures of compounds 1 and 2 were established as heliomycin and tetracenomycin D, respectively. These compounds exhibited HDAC inhibitory activities with IC50 values of 29.8 ± 0.04 µg/ml for heliomycin (1) and 10.9 ± 0.02 µg/ml for tetracenomycin D (2). A computational docking study for compounds 1 and 2 against HDAC1, HDAC2, and HDAC3 was performed to formulate a hypothetical mechanism by which the tested compounds inhibit HDAC. Tetracenomycin D (2) showed a good binding interactions with HDAC2 (− 5.230 kcal/mol) and HDAC3 (− 6.361 kcal/mol).
      PubDate: 2018-06-01
  • Recent advances and future prospects of iron oxide nanoparticles in
           biomedicine and diagnostics

    • Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) are considered as chemically inert materials and, therefore, being extensively applied in the areas of imaging, targeting, drug delivery and biosensors. Their unique properties such as low toxicity, biocompatibility, potent magnetic and catalytic behavior and superior role in multifunctional modalities have epitomized them as an appropriate candidate for biomedical applications. Recent developments in the area of materials science have enabled the facile synthesis of Iron oxide nanoparticles (IONPs) offering easy tuning of surface properties and surface functionalization with desired biomolecules. Such developments have enabled IONPs to be easily accommodated in nanocomposite platform or devices. Additionally, the tag of biocompatible material has realized their potential in myriad applications of nanomedicines including imaging modalities, sensing, and therapeutics. Further, IONPs enzyme mimetic activity pronounced their role as nanozymes in detecting biomolecules like glucose, and cholesterol etc. Hence, based on their versatile applications in biomedicine, the present review article focusses on the current trends, developments and future prospects of IONPs in MRI, hyperthermia, photothermal therapy, biomolecules detection, chemotherapy, antimicrobial activity and also their role as the multifunctional agent in diagnosis and nanomedicines.
      PubDate: 2018-06-01
  • Degradation of petroleum hydrocarbons and treatment of refinery wastewater
           under saline condition by a halophilic bacterial consortium enriched from
           marine environment (Red Sea), Jeddah, Saudi Arabia

    • Abstract: A halophilic bacterial consortium was enriched from Red Sea saline water and sediment samples collected from Abhor, Jeddah, Saudi Arabia. The consortium potentially degraded different low (above 90% for phenanthrene and fluorene) and high (69 ± 1.4 and 56 ± 1.8% at 50 and 100 mg/L of pyrene) molecular weight polycyclic aromatic hydrocarbons (PAHs) at different concentrations under saline condition (40 g/L NaCl concentration). The cell hydrophobicity (91° ± 1°) and biosurfactant production (30 mN/m) confirmed potential bacterial cell interaction with PAHs to facilitate biodegradation process. Co-metabolic study with phenanthrene as co-substrate during pyrene degradation recorded 90% degradation in 12 days. The consortium in continuous stirred tank reactor with petroleum refinery wastewater showed complete and 90% degradation of low and high molecular weight PAHs, respectively. The reactor study also revealed 94 ± 1.8% chemical oxygen demand removal by the halophilic consortium under saline condition (40 g/L NaCl concentration). The halophilic bacterial strains present in the consortium were identified as Ochrobactrum halosaudis strain CEES1 (KX377976), Stenotrophomonas maltophilia strain CEES2 (KX377977), Achromobacter xylosoxidans strain CEES3 (KX377978) and Mesorhizobium halosaudis strain CEES4 (KX377979). Thus, the promising halophilic consortium was highly recommended to be employed in petroleum saline wastewater treatment process.
      PubDate: 2018-05-28
  • l -Asparaginase: a feasible therapeutic molecule for multiple diseases

    • Abstract: This note highlights our understanding and thinking about the feasibility of l-asparaginase as therapeutics for multiple diseases. l-asparaginase enzyme (l-asparagine amidohydrolase, EC is prominently known for its chemotherapeutic application. It is primarily used in the treatment of acute lymphoblastic leukemia in children. It is also used in the treatment of other forms of cancer Hodgkin disease, lymphosarcoma, acute myelomonocytic leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, reticulosarcoma and melanosarcoma (Lopes et al. Crit Rev Biotechnol 23:1–18, 2015). It deaminates l-asparagine present in the plasma pool causing the demise of tumor cell due to nutritional starvation. The anti-tumorigenic property of this enzyme has been exploited for over four decades and evidenced as a boon for the cancer patients. Presently, the medical application of l-asparaginase is limited only in curing various forms of cancer.
      PubDate: 2018-05-28
  • The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in
           transgenic Nicotiana tabacum

    • Abstract: Our study aims to assess the implication of WRKY transcription factor in the molecular mechanisms of grapevine adaptation to salt and water stresses. In this respect, a full-length VvWRKY2 cDNA, isolated from a Vitis vinifera grape berry cDNA library, was constitutively over-expressed in Nicotiana tabacum seedlings. Our results showed that transgenic tobacco plants exhibited higher seed germination rates and better growth, under both salt and osmotic stress treatments, when compared to wild type plants. Furthermore, our analyses demonstrated that, under stress conditions, transgenic plants accumulated more osmolytes, such as soluble sugars and free proline, while no changes were observed regarding electrolyte leakage, H2O2, and malondialdehyde contents. The improvement of osmotic adjustment may be an important mechanism underlying the role of VvWRKY2 in promoting tolerance and adaptation to abiotic stresses. Principal component analysis of our results highlighted a clear partition of plant response to stress. On the other hand, we observed a significant adaptation behaviour response for transgenic lines under stress. Taken together, all our findings suggest that over-expression of VvWRKY2 gene has a compelling role in abiotic stress tolerance and, therefore, would provide a useful strategy to promote abiotic stress tolerance in grape via molecular-assisted breeding and/or new biotechnology tools.
      PubDate: 2018-05-28
  • Bacterial cellulase treatment for enhancing reactivity of pre-hydrolysed
           kraft dissolving pulp for viscose

    • Abstract: To improve the process economy of reactivity improvement, crude cellulase from Bacillus subtilis was employed for the treatment and significant dissolving pulp properties were analyzed. With increase in enzyme dose from 0.25 to 2 U/g o.d. pulp, improvement in Fock reactivity and alkali solubilities (S10 and S18) were observed with simultaneous reduction in viscosity and yield. Fourier transform infrared spectroscopy and scanning electron microscopy were used to observe the molecular level effects on dissolving grade pulp. The most suitable cellulase dose for reactivity improvement with lowering of viscosity was 0.25 U/g o.d. pulp. With increases in enzyme dose, alkali solubilities (S10 and S18) of dissolving pulp showed continuous increment, while alpha-cellulose of pulp showed reduction due to chain scission of long cellulose fiber fraction.
      PubDate: 2018-05-26
  • Characterization, phylogenetic distribution and evolutionary trajectories
           of diverse hydrocarbon degrading microorganisms isolated from refinery

    • Abstract: Phylogenic association between bacteria living under harsh conditions can provide important information on adaptive mechanism, survival strategy and their potential application. Indigenous microorganisms isolated from toxic refinery oily sludge with ability to degrade a diverse range of hydrocarbons were identified and characterized. The strains including Pseudomonas aeruginosa RS1, Microbacterium sp. RS2, Bacillus sp. RS3, Acinetobacter baumannii RS4 and Stenotrophomonas sp. RS5 could utilize n-alkanes, cycloalkanes, polynuclear aromatic hydrocarbons (PAHs) with 2–4 rings and also substituted PAHs as sole substrate. The phylogenetic position of Bacillus sp. RS3 and Pseudomonas sp. RS1 was tested by applying the maximum likelihood (ML) method to the aligned 16S rRNA nucleotide sequences of PAH and aliphatic hydrocarbon degrading strains belonging to the corresponding genus. The base substitution matrix created with each set of organisms capable of degrading aromatic and aliphatic hydrocarbons showed significant transitional event with high values of transition: transversion ratio (R) under all conditions. The guanine-cytosine (GC) content of the hydrocarbon degrading test strains was also found to be highest for the clade which harbored them. The test strains consistently occupied a distinct terminal end within the phylogenetic tree constructed by ML analysis. This study reveals that the refinery sludge imposed environmental stress on the bacterial strains which possibly caused significant genetic alteration and phenotypic adaptation. Due to the divergent evolution of the Pseudomonas and Bacillus strains in the sludge, they appeared distinctly different from other hydrocarbon degrading strains of the same genus.
      PubDate: 2018-05-26
  • Prediction of binding potential of natural leads against the prioritized

    • Abstract: The current study aimed to assess the binding potential of herbal lead molecules against the prioritized molecular targets of chikungunya virus (CHIKV) and dengue virus (DENV) by computational virtual screening and suggests a novel therapeutic intervention. Based on the metabolic pathway analysis and virulent functions, the non-structural and envelop proteins present in CHIKV and DENV were identified as putative drug targets. The structures of the protein not available in their native forms were computationally predicted by homology modeling. The lead compounds from 43 herbal sources were screened and their drug likeliness and pharmacokinetics properties were computationally predicted. The binding potential of selected phytoligands against the prioritized drug targets were analyzed by molecular docking studies. This study revealed that Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)chromen-4-one) and Chymopain (disodium;4,5-dihydroxybenzene-1,3-disulfonate), natural flavonols present in Carica papaya and Gossypetin (3, 5, 7, 8, 3′, 4′-hexahydroxyflavone), a natural flavonoid available in Hibiscus sabdariffa were demonstrated promising good binding potential with minimum binding energy (kcal/mol) and maximum stabilizing interactions to the putative drug targets of CHIKV and DENV. The selected lead molecules demonstrated ideal drug likeliness, ADMET (adsorption, distribution, excretion, metabolism and toxicity) features required for the drug development. The molecular docking studies suggested that the presence of these compounds probably responsible for the antiviral properties of Carica papaya, which was traditionally known as therapeutic remedy for dengue viral infections. This study provides profound insight for the experimental validation of the applied approach and industrial scale-up of the suggested herbal lead molecules as promising lead candidates against CHIKV and DENV infections.
      PubDate: 2018-05-26
  • Biochemical and functional properties of a lectin purified from the seeds
           of Cicer arietinum L.

    • Abstract: A 35 kDa rabbit erythrocyte agglutinating lectin from the seeds of Cicer arietinum was purified and designated as CAL. The lectin was inhibited by fetuin and N-acetyl-d-galactosamine at a concentration of 20 and 50 mM respectively, but not by simple mono or oligosaccharides. CAL is active between pH 5 and 10 presented thermo stability up to 50 °C and demonstrated DNA damage inhibition at 30 µg concentration. The lectin elicited maximum mitogenic activity towards mice splenocytes at 7.5 µg ml− 1. CAL exerted an inhibitory activity on HIV-1 reverse transcriptase with IC50 of 180 µM. CAL abilities in animal bioassay resulted decreased levels of total triglyceride and creatinine. In vitro and in vivo studies revealed that CAL may constitute an important role impending biomedical applications.
      PubDate: 2018-05-26
  • Diversity of culturable methylotrophic bacteria in different genotypes of
           groundnut and their potential for plant growth promotion

    • Abstract: This study aimed at documenting the culturable methylotrophic bacterial diversity across different groundnut genotypes and evaluating their effect on the growth of groundnut. 80 methylotrophic bacterial isolates were obtained from the phyllosphere of 15 groundnut genotypes collected from Tamil Nadu, India. The bacterial isolates were identified through sequencing of the 16S rDNA and were tested for their plant growth-promoting properties. Groundnut seeds were inoculated with methylotrophic bacteria and their effect on growth was evaluated via in vitro and pot experiments. Molecular identification revealed that the isolates belonged to 30 different species. A higher diversity of methylotrophic bacteria at genus and species level was found in groundnut genotype TMV2. Shannon diversity index was the highest in genotype TMV7, followed by VRI2 and TMV2. Similarly, geographical location also influenced the diversity of methylotrophic bacteria. In vitro seed germination assay revealed that methylotrophic isolates enhanced root growth and improved formation of root hair. The radicle length of treated seeds ranged from 2.7 to 8.4 cm. A higher shoot length was observed in the plants from seeds treated with Methylobacterium radiotolerans VRI8-A4 (27.3 cm), followed by Pseudomonas psychrotolerans TMV13-A1 (26.3 cm) and Bacillus aryabhattai K-CO3-3 (23 cm). The findings of this study strongly suggest that beneficial methylotrophic bacteria associated with the phyllosphere of groundnut play a major role in regulating plant growth.
      PubDate: 2018-05-26
  • Microbial degradation of myo -inositol hexakisphosphate (IP6):
           specificity, kinetics, and simulation

    • Abstract: Microbial degradation of myo-inositol hexakisphosphate (IP6) is crucial to deal with nutritional problems in monogastric animals as well as to prevent environmental phosphate pollution. The present study deals with the degradation of IP6 by microorganisms such as Sporosarcina spp. pasteurii, globiospora, psychrophila, Streptococcus thermophilus and Saccharomyces boulardii. These microbes were screened for phytase production under laboratory conditions. The specificity of the enzyme was tested for various phosphorylated substrates such as sodium phytate (IP6), sodium hexametaphosphate, phenyl phosphate, α-d-glucose-6 phosphate, inosine 5′ monophosphate and pyridoxal 5′ phosphate. These enzymes were highly specific to IP6. The influence of modulators such as phytochemicals and metal ions on the enzymatic activity was assessed. These modulators in different concentrations had varying effect on microbial phytases. Calcium (in optimal concentration of 0.5 M) played an important role in enzyme activation. The enzymes were then characterized based on their molecular weight 41~43 kDa. The phytase-producing microbes were assessed for IP6 degradation in a simulated intestinal setup. Among the selected microbes, Sporosarcina globiospora hydrolyzed IP6 effectively, as confirmed by colorimetric time-based analysis.
      PubDate: 2018-05-25
  • Engineering membrane morphology and manipulating synthesis for increased
           lycopene accumulation in Escherichia coli cell factories

    • Abstract: The goal of this work was to improve the lycopene storage capacity of the E. coli membrane by engineering both morphological and biosynthetic aspects. First, Almgs, a protein from Acholeplasma laidlawii that is involved in membrane bending is overexpressed to expand the storage space for lycopene, which resulted in a 12% increase of specific lycopene production. Second, several genes related to the membrane-synthesis pathway in E. coli, including plsb, plsc, and dgka, were also overexpressed, which led to a further 13% increase. In addition, membrane separation and component analysis confirmed that the increased amount of lycopene was mainly accumulated within the cell membranes. Finally, by integrating both aforementioned modification strategies, a synergistic effect could be observed which caused a 1.32-fold increase of specific lycopene production, from the 27.5 mg/g of the parent to 36.4 mg/g DCW in the engineered strain. This work demonstrates that membrane engineering is a feasible strategy for increasing the production and accumulation of lycopene in E. coli.
      PubDate: 2018-05-25
  • Characterization of Aspergillus fumigatus CAS-21 tannase with potential
           for propyl gallate synthesis and treatment of tannery effluent from
           leather industry

    • Abstract: One of the tannase isoforms produced by the fungus Aspergillus fumigatus CAS-21 under submerged fermentation (SbmF) was purified 4.9-fold with a 10.2% recovery. The glycoprotein (39.1% carbohydrate content) showed an estimated molecular mass of 60 kDa. Optimum temperature and pH for its activity were 30–40 °C and 5.0, respectively. It showed a half-life (t50) of 60 min at 45 and 50 °C, and it was stable at pH 5.0 and 6.0 for 3 h. The tannase activity was insensitive to most salts used, but it reduced in the presence of Fe2(SO4)3 and FeCl3. On contrary, in presence of SDS, Triton-X100, and urea the enzyme activity increased. The Km value indicated high affinity for propyl gallate (3.61 mmol L−1) when compared with tannic acid (6.38 mmol L−1) and methyl gallate (6.28 mmol L−1), but the best Kcat (362.24 s−1) and Kcat/Km (56.78 s−1 mmol−1 L) were obtained for tannic acid. The purified tannase reduced 89 and 25% of tannin content of the leather tannery effluent generated by manual and mechanical processing, respectively, after 2-h treatment. The total phenolic content was also reduced. Additionally, the enzyme produced propyl gallate, indicating its ability to do the transesterification reaction. Thus, A. fumigatus CAS-21 tannase presents interesting properties, especially the ability to degrade tannery effluent, highlighting its potential in biotechnological applications.
      PubDate: 2018-05-25
  • Adaptive physiological response, carbon partitioning, and biomass
           production of Withania somnifera (L.) Dunal grown under elevated CO 2

    • Abstract: Winter cherry or Ashwagandha (Withania somnifera) is an important medicinal plant used in traditional and herbal medicine system. Yet, there is no information available on response of this plant to changing climatic conditions particularly elevated atmospheric CO2 concentrations. Therefore, we conducted an experiment to examine the effect of elevated CO2 concentrations (ECs) on Withania somnifera. The variations in traits of physiological adaptation, net primary productivity, carbon partitioning, morphology, and biomass in response to elevated CO2 concentrations (ambient, 600 and 800 µmol mol−1) during one growth cycle were investigated within the open top chamber (OTC) facility in the foothill of the Himalayas, Dehardun, India. ECs significantly increased photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, soil respiration, net primary productivity and the carbon content of plant tissues (leaf, stem, and root), and soil carbon. Furthermore, ECs significantly enhanced biomass production (root and shoot), although declined night leaf respiration. Overall, it was summarized that photosynthesis, stomatal conductance, water use efficiency, leaf, and soil carbon and biomass increased under ECs rendering the physiological adaptation to the plant. Increased net primary productivity might facilitate mitigation effects by sequestering elevated levels of carbon dioxide. We advocate further studies to investigate the effects of ECs on the accumulation of secondary metabolites and health-promoting substances of this as well as other medicinal plants.
      PubDate: 2018-05-25
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-