for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> BIOLOGY (Total: 3153 journals)
    - BIOCHEMISTRY (243 journals)
    - BIOENGINEERING (119 journals)
    - BIOLOGY (1504 journals)
    - BIOPHYSICS (48 journals)
    - BIOTECHNOLOGY (240 journals)
    - BOTANY (229 journals)
    - CYTOLOGY AND HISTOLOGY (30 journals)
    - ENTOMOLOGY (69 journals)
    - GENETICS (164 journals)
    - MICROBIOLOGY (259 journals)
    - MICROSCOPY (10 journals)
    - ORNITHOLOGY (26 journals)
    - PHYSIOLOGY (73 journals)
    - ZOOLOGY (139 journals)

BIOTECHNOLOGY (240 journals)                  1 2 | Last

Showing 1 - 200 of 240 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 8)
Advanced Biomedical Research     Open Access  
Advances in Bioscience and Biotechnology     Open Access   (Followers: 16)
Advances in Genetic Engineering & Biotechnology     Hybrid Journal   (Followers: 7)
Advances in Regenerative Medicine     Open Access   (Followers: 2)
African Journal of Biotechnology     Open Access   (Followers: 6)
Algal Research     Partially Free   (Followers: 11)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 67)
American Journal of Bioinformatics Research     Open Access   (Followers: 7)
American Journal of Polymer Science     Open Access   (Followers: 33)
Anadolu University Journal of Science and Technology : C Life Sciences and Biotechnology     Open Access  
Animal Biotechnology     Hybrid Journal   (Followers: 8)
Annales des Sciences Agronomiques     Full-text available via subscription  
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 43)
Applied Biosafety     Hybrid Journal  
Applied Food Biotechnology     Open Access   (Followers: 3)
Applied Microbiology and Biotechnology     Hybrid Journal   (Followers: 65)
Applied Mycology and Biotechnology     Full-text available via subscription   (Followers: 4)
Arthroplasty Today     Open Access   (Followers: 1)
Artificial Cells, Nanomedicine and Biotechnology     Hybrid Journal   (Followers: 1)
Asia Pacific Biotech News     Hybrid Journal   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 9)
Asian Pacific Journal of Tropical Biomedicine     Open Access   (Followers: 2)
Australasian Biotechnology     Full-text available via subscription   (Followers: 1)
Banat's Journal of Biotechnology     Open Access  
BBR : Biochemistry and Biotechnology Reports     Open Access   (Followers: 5)
Beitr?ge zur Tabakforschung International/Contributions to Tobacco Research     Open Access   (Followers: 3)
Bio-Algorithms and Med-Systems     Hybrid Journal   (Followers: 2)
Bio-Research     Full-text available via subscription   (Followers: 4)
Bioactive Materials     Open Access   (Followers: 1)
Biocatalysis and Agricultural Biotechnology     Hybrid Journal   (Followers: 4)
Biocybernetics and Biological Engineering     Full-text available via subscription   (Followers: 5)
Bioethics UPdate     Hybrid Journal   (Followers: 1)
Biofuels     Hybrid Journal   (Followers: 11)
Biofuels Engineering     Open Access   (Followers: 1)
Biological & Pharmaceutical Bulletin     Full-text available via subscription   (Followers: 4)
Biological Cybernetics     Hybrid Journal   (Followers: 10)
Biomarkers and Genomic Medicine     Open Access   (Followers: 3)
Biomarkers in Drug Development     Partially Free   (Followers: 1)
Biomaterials Research     Open Access   (Followers: 4)
BioMed Research International     Open Access   (Followers: 4)
Biomédica     Open Access  
Biomedical and Biotechnology Research Journal     Open Access  
Biomedical Engineering Research     Open Access   (Followers: 6)
Biomedical Glasses     Open Access  
Biomedical Reports     Full-text available via subscription  
BioMedicine     Open Access  
Biomedika     Open Access  
Bioprinting     Hybrid Journal   (Followers: 1)
Bioresource Technology Reports     Hybrid Journal   (Followers: 1)
Bioscience, Biotechnology, and Biochemistry     Hybrid Journal   (Followers: 21)
Biosensors Journal     Open Access  
Biosimilars     Open Access   (Followers: 1)
Biosurface and Biotribology     Open Access  
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 1)
BioTechniques : The International Journal of Life Science Methods     Full-text available via subscription   (Followers: 28)
Biotechnologia Acta     Open Access   (Followers: 1)
Biotechnologie, Agronomie, Société et Environnement     Open Access   (Followers: 2)
Biotechnology     Open Access   (Followers: 6)
Biotechnology & Biotechnological Equipment     Open Access   (Followers: 4)
Biotechnology Advances     Hybrid Journal   (Followers: 33)
Biotechnology and Applied Biochemistry     Hybrid Journal   (Followers: 44)
Biotechnology and Bioengineering     Hybrid Journal   (Followers: 156)
Biotechnology and Bioprocess Engineering     Hybrid Journal   (Followers: 5)
Biotechnology and Genetic Engineering Reviews     Hybrid Journal   (Followers: 13)
Biotechnology and Health Sciences     Open Access   (Followers: 1)
Biotechnology and Molecular Biology Reviews     Open Access   (Followers: 2)
Biotechnology Annual Review     Full-text available via subscription   (Followers: 5)
Biotechnology for Biofuels     Open Access   (Followers: 10)
Biotechnology Frontier     Open Access   (Followers: 2)
Biotechnology Journal     Hybrid Journal   (Followers: 16)
Biotechnology Law Report     Hybrid Journal   (Followers: 4)
Biotechnology Letters     Hybrid Journal   (Followers: 34)
Biotechnology Progress     Hybrid Journal   (Followers: 40)
Biotechnology Reports     Open Access  
Biotechnology Research International     Open Access   (Followers: 1)
Biotechnology Techniques     Hybrid Journal   (Followers: 10)
Biotecnología Aplicada     Open Access  
Bioteknologi (Biotechnological Studies)     Open Access  
BIOTIK : Jurnal Ilmiah Biologi Teknologi dan Kependidikan     Open Access  
Biotribology     Hybrid Journal   (Followers: 1)
BMC Biotechnology     Open Access   (Followers: 16)
Cell Biology and Development     Open Access  
Chinese Journal of Agricultural Biotechnology     Full-text available via subscription   (Followers: 4)
Communications in Mathematical Biology and Neuroscience     Open Access  
Computational and Structural Biotechnology Journal     Open Access   (Followers: 2)
Computer Methods and Programs in Biomedicine     Hybrid Journal   (Followers: 8)
Copernican Letters     Open Access   (Followers: 1)
Critical Reviews in Biotechnology     Hybrid Journal   (Followers: 20)
Crop Breeding and Applied Biotechnology     Open Access   (Followers: 3)
Current Bionanotechnology     Hybrid Journal  
Current Biotechnology     Hybrid Journal   (Followers: 4)
Current Opinion in Biomedical Engineering     Hybrid Journal   (Followers: 1)
Current Opinion in Biotechnology     Hybrid Journal   (Followers: 56)
Current Pharmaceutical Biotechnology     Hybrid Journal   (Followers: 9)
Current Research in Bioinformatics     Open Access   (Followers: 12)
Current Trends in Biotechnology and Chemical Research     Open Access   (Followers: 3)
Current trends in Biotechnology and Pharmacy     Open Access   (Followers: 8)
EBioMedicine     Open Access  
Electronic Journal of Biotechnology     Open Access  
Entomologia Generalis     Full-text available via subscription   (Followers: 1)
Environmental Science : Processes & Impacts     Full-text available via subscription   (Followers: 4)
Experimental Biology and Medicine     Hybrid Journal   (Followers: 3)
Folia Medica Indonesiana     Open Access  
Food Bioscience     Hybrid Journal  
Food Biotechnology     Hybrid Journal   (Followers: 9)
Food Science and Biotechnology     Hybrid Journal   (Followers: 8)
Frontiers in Bioengineering and Biotechnology     Open Access   (Followers: 6)
Frontiers in Systems Biology     Open Access   (Followers: 2)
Fungal Biology and Biotechnology     Open Access   (Followers: 2)
GM Crops and Food: Biotechnology in Agriculture and the Food Chain     Full-text available via subscription   (Followers: 1)
GSTF Journal of BioSciences     Open Access  
HAYATI Journal of Biosciences     Open Access  
Horticulture, Environment, and Biotechnology     Hybrid Journal   (Followers: 11)
IEEE Transactions on Molecular, Biological and Multi-Scale Communications     Hybrid Journal   (Followers: 1)
IET Nanobiotechnology     Hybrid Journal   (Followers: 2)
IN VIVO     Full-text available via subscription   (Followers: 4)
Indian Journal of Biotechnology (IJBT)     Open Access   (Followers: 2)
Indonesia Journal of Biomedical Science     Open Access   (Followers: 2)
Indonesian Journal of Biotechnology     Open Access   (Followers: 1)
Indonesian Journal of Medicine     Open Access  
Industrial Biotechnology     Hybrid Journal   (Followers: 17)
International Biomechanics     Open Access  
International Journal of Bioinformatics Research and Applications     Hybrid Journal   (Followers: 13)
International Journal of Biomechatronics and Biomedical Robotics     Hybrid Journal   (Followers: 4)
International Journal of Biomedical Research     Open Access   (Followers: 2)
International Journal of Biotechnology     Hybrid Journal   (Followers: 5)
International Journal of Biotechnology and Molecular Biology Research     Open Access   (Followers: 4)
International Journal of Biotechnology for Wellness Industries     Partially Free   (Followers: 1)
International Journal of Environment, Agriculture and Biotechnology     Open Access   (Followers: 5)
International Journal of Functional Informatics and Personalised Medicine     Hybrid Journal   (Followers: 4)
International Journal of Medicine and Biomedical Research     Open Access   (Followers: 1)
International Journal of Nanotechnology and Molecular Computation     Full-text available via subscription   (Followers: 3)
International Journal of Radiation Biology     Hybrid Journal   (Followers: 4)
Iranian Journal of Biotechnology     Open Access  
ISABB Journal of Biotechnology and Bioinformatics     Open Access  
Italian Journal of Food Science     Open Access   (Followers: 1)
JMIR Biomedical Engineering     Open Access  
Journal of Biometrics & Biostatistics     Open Access   (Followers: 3)
Journal of Bioterrorism & Biodefense     Open Access   (Followers: 6)
Journal of Petroleum & Environmental Biotechnology     Open Access   (Followers: 1)
Journal of Advanced Therapies and Medical Innovation Sciences     Open Access  
Journal of Advances in Biotechnology     Open Access   (Followers: 5)
Journal Of Agrobiotechnology     Open Access  
Journal of Analytical & Bioanalytical Techniques     Open Access   (Followers: 7)
Journal of Animal Science and Biotechnology     Open Access   (Followers: 4)
Journal of Applied Biomedicine     Open Access   (Followers: 2)
Journal of Applied Biotechnology     Open Access   (Followers: 2)
Journal of Applied Biotechnology Reports     Open Access   (Followers: 2)
Journal of Applied Mathematics & Bioinformatics     Open Access   (Followers: 5)
Journal of Biologically Active Products from Nature     Hybrid Journal   (Followers: 1)
Journal of Biomaterials and Nanobiotechnology     Open Access   (Followers: 6)
Journal of Biomedical Photonics & Engineering     Open Access  
Journal of Biomedical Practitioners     Open Access  
Journal of Bioprocess Engineering and Biorefinery     Full-text available via subscription  
Journal of Bioprocessing & Biotechniques     Open Access  
Journal of BioScience and Biotechnology     Open Access  
Journal of Biosecurity Biosafety and Biodefense Law     Hybrid Journal   (Followers: 3)
Journal of Biotechnology     Hybrid Journal   (Followers: 64)
Journal of Biotechnology and Strategic Health Research     Open Access   (Followers: 1)
Journal of Chemical and Biological Interfaces     Full-text available via subscription   (Followers: 1)
Journal of Chemical Technology & Biotechnology     Hybrid Journal   (Followers: 9)
Journal of Chitin and Chitosan Science     Full-text available via subscription   (Followers: 1)
Journal of Colloid Science and Biotechnology     Full-text available via subscription  
Journal of Commercial Biotechnology     Full-text available via subscription   (Followers: 6)
Journal of Crop Science and Biotechnology     Hybrid Journal   (Followers: 3)
Journal of Essential Oil Research     Hybrid Journal   (Followers: 2)
Journal of Experimental Biology     Full-text available via subscription   (Followers: 25)
Journal of Genetic Engineering and Biotechnology     Open Access   (Followers: 5)
Journal of Ginseng Research     Open Access  
Journal of Industrial Microbiology and Biotechnology     Hybrid Journal   (Followers: 17)
Journal of Integrative Bioinformatics     Open Access  
Journal of Medical Imaging and Health Informatics     Full-text available via subscription  
Journal of Molecular Biology and Biotechnology     Open Access  
Journal of Molecular Microbiology and Biotechnology     Full-text available via subscription   (Followers: 12)
Journal of Nano Education     Full-text available via subscription  
Journal of Nanobiotechnology     Open Access   (Followers: 4)
Journal of Nanofluids     Full-text available via subscription   (Followers: 1)
Journal of Organic and Biomolecular Simulations     Open Access  
Journal of Plant Biochemistry and Biotechnology     Hybrid Journal   (Followers: 4)
Journal of Science and Applications : Biomedicine     Open Access  
Journal of the Mechanical Behavior of Biomedical Materials     Hybrid Journal   (Followers: 12)
Journal of Trace Elements in Medicine and Biology     Hybrid Journal   (Followers: 1)
Journal of Tropical Microbiology and Biotechnology     Full-text available via subscription  
Journal of Yeast and Fungal Research     Open Access   (Followers: 1)
Marine Biotechnology     Hybrid Journal   (Followers: 4)
Meat Technology     Open Access  
Messenger     Full-text available via subscription  
Metabolic Engineering Communications     Open Access   (Followers: 4)
Metalloproteinases In Medicine     Open Access  
Microbial Biotechnology     Open Access   (Followers: 10)
MicroMedicine     Open Access   (Followers: 3)
Molecular and Cellular Biomedical Sciences     Open Access   (Followers: 1)
Molecular Biotechnology     Hybrid Journal   (Followers: 13)
Molecular Genetics and Metabolism Reports     Open Access   (Followers: 3)
Nanobiomedicine     Open Access  
Nanobiotechnology     Hybrid Journal   (Followers: 2)
Nanomaterials and Nanotechnology     Open Access  
Nanomedicine and Nanobiology     Full-text available via subscription  
Nanomedicine Research Journal     Open Access  

        1 2 | Last

Journal Cover
Biotechnology and Bioprocess Engineering
Journal Prestige (SJR): 0.399
Citation Impact (citeScore): 1
Number of Followers: 5  
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1976-3816 - ISSN (Online) 1226-8372
Published by Springer-Verlag Homepage  [2351 journals]
  • Biosensors Using Hybridization Chain Reaction - Design and Signal
           Amplification Strategies of Hybridization Chain Reaction
    • Authors: Chae Rin Park; Sung Jin Park; Woo Gi Lee; Byeong Hee Hwang
      Pages: 355 - 370
      Abstract: Signal amplification strategies are essential for sensitive and efficient detection. Among the recent amplification strategies, the hybridization chain reaction has been intensively studied because it has advantages of reaction at constant temperature and detection at low cost without specialized equipment. In this review, we have discussed how to adjust experimental conditions of the hybridization chain reaction and attractive signal amplification techniques including colorimetric, fluorescence, and electrochemistry. As a result, many studies using the hybridization chain reaction have been successful in detecting sensitive signals by enhancing the signaling of the various targets. These exciting features of the hybridization chain reaction have the potential to be widely used in many areas such as in situ disease diagnosis, food, and environmental analysis. Therefore, various platforms developed by applying this technology are expected to play an essential role as an efficient biosensor in many fields in the near future.
      PubDate: 2018-08-01
      DOI: 10.1007/s12257-018-0182-z
      Issue No: Vol. 23, No. 4 (2018)
  • Biosensor for Rapid and Sensitive Detection of Influenza Virus
    • Authors: Jong Min Yang; Kyeong Rok Kim; Chang Sup Kim
      Pages: 371 - 382
      Abstract: Influenza viruses continue to threaten human life, causing considerable damage socially and economically. To reduce influenza-related morbidity and mortality, there is an immediate requirement to develop efficient and effective tools to detect the virus. Several methods are currently employed for diagnosing influenza infections in humans, including viral culture, polymerase chain reaction (PCR), and immunoassay. In addition, biosensors are being developed to improve the limitations of the conventional methods. In this article, we review the current progress in investigative techniques, including the development of biosensors having high sensitivity and selectivity and shorter detection time.
      PubDate: 2018-08-01
      DOI: 10.1007/s12257-018-0220-x
      Issue No: Vol. 23, No. 4 (2018)
  • Hydroxyapatite from Cuttlefish Bone: Isolation, Characterizations, and
    • Authors: Jayachandran Venkatesan; P. D. Rekha; Sukumaran Anil; Ira Bhatnagar; P. N. Sudha; Chutiwan Dechsakulwatana; Se-Kwon Kim; Min Suk Shim
      Pages: 383 - 393
      Abstract: Hydroxyapatite (HA), a bioceramic, is a widely utilized material for bone tissue repair and regeneration because of its excellent properties such as biocompatibility, exceptional mechanical strength, and osteoconductivity. HA can be obtained by both synthetic and natural means. Animal bones are often considered a promising natural resource for the preparation of pure HA for biological and biomedical applications. Cuttlefish bone, also called as cuttlebone, mainly consists of calcium carbonate, and pure HA can be produced by adding phosphoric acid or ammonium hydrogen phosphate to it. Recently, cuttlefish bone-derived HA has shown promising results in terms of bone tissue repair and regeneration. The synthesized cuttlefish bone-derived has shown excellent biocompatibility, cell proliferation, increased alkaline phosphate activity, and efficient biomineralization ability with mesenchymal stem cells and osteoblastic cells. To further improve the biological properties of cuttlefish bone-derived HA, bioglass, polycaprolactone, and polyvinyl alcohol were added to it, which gave better results in terms of cell proliferation and osteogenic differentiation. Cuttlefish bone-derived HA with polymeric substances provides excellent bone formation under in vivo conditions. The studies indicate that cuttlefish bone-derived HA, along with polymeric and, protein materials, will be promising biomaterials in the field of bone tissue regeneration.
      PubDate: 2018-08-01
      DOI: 10.1007/s12257-018-0169-9
      Issue No: Vol. 23, No. 4 (2018)
  • Designing a Non-invasive Surface Acoustic Resonator for Ultra-high
           Sensitive Ethanol Detection for an On-the-spot Health Monitoring System
    • Authors: Peyman Jahanshahi; Qin Wei; Zhang Jie; Erfan Zalnezhad
      Pages: 394 - 404
      Abstract: Surface acoustic wave (SAW) sensors–based on piezoelectric crystal resonators–are extremely sensitive to even very small perturbations in the external atmosphere, because the energy associated with the acoustic waves is confined to the crystal surface. In this study, we present a critical review of the recent researches and developments predominantly used for SAW-based organic vapor sensors, especially ethanol. Besides highlighting their potential to realize real-time ethanol sensing, their drawbacks such as indirect sensing, invasive, time initializing, and low reliability, are properly discussed. The study investigates a proposed YZ-lithium niobate piezoelectric substrate with interdigital transducers patterned on the surface. Design of the resonator plays an important role in improving mass sensitivity, particularly the sensing area. Accordingly, a tin dioxide (SnO2) layer with a specific thickness is generated on the surface of the sensor because of its high affinity to ethanol molecules. To determine the values of sensor configuration without facing the practical problems and the long theoretical calculation time, it is shown that the mass sensitivity of SAW sensors can be calculated by a simple three-dimensional (3-D) finite element analysis (FEA) using a commercial finite-element platform. In design validation step, different concentrations of ethanol are applied to investigate the acoustic wave properties of the sensor. The FEA data are used to obtain the surface and bulk total displacements of the sensor and fast Fourier transform (FFT) on output spectrum. The sensor could develop into highly sensitive and fast responsive structure so that a positive intensity shift of 0.18e-2 RIU is observed when the sensor is exposed to 15 ppm ethanol. It is capable of continuously monitoring the ethanol gas whether as an ultra-high sensitive sensor or switching applications for medical and industrial purposes.
      PubDate: 2018-08-01
      DOI: 10.1007/s12257-017-0432-5
      Issue No: Vol. 23, No. 4 (2018)
  • Utilization of Organic Liquid Fertilizer in Microalgae Cultivation for
           Biodiesel Production
    • Authors: Nhat Minh Dang; Kisay Lee
      Pages: 405 - 414
      Abstract: The utilization of organic liquid fertilizer PAL-1 as the culture medium of the microalga Chlorella vulgaris was investigated for the purpose of biodiesel production. Cell growth and lipid accumulation in PAL-1 were evaluated and compared with those in the artificial medium BG-11. Cells showed mixotrophic growth when utilizing the organic liquid fertilizer PAL-1. The rates of cell growth (0.143 d-1) and N consumption (14.9 mg/L/d) in PAL-1 were almost the same as those in BG-11, under the presence of 2% CO2-enriched aeration and light irradiation. Lipid synthesis was triggered in PAL-1 on day 4, when nitrogen was completely consumed, and the lipid content reached up to 48% thereafter. Lipid productivity could be enhanced using repeated-batch cultivation in which cells were exposed to N limitation repeatedly, and thus lipid synthesis was induced while maintaining a sufficiently high cell density.
      PubDate: 2018-08-01
      DOI: 10.1007/s12257-018-0081-3
      Issue No: Vol. 23, No. 4 (2018)
  • Enhancement of Neuroprotective Effects of Spirulina maxima by a
           Low-temperature Extraction Process with Ultrasonic Pretreatment
    • Authors: Woon Yong Choi; Do Hyung Kang; Hyeon Yong Lee
      Pages: 415 - 423
      Abstract: 17.5 ± 2.41 mg/g and 15.2 ± 2.09 mg/g of total chlorophyll and chlorophyll a, respectively, were obtained from the marine microalga, Spirulina maxima under an optimal extraction condition of 70% ethanol at 65°C for 4 h associated with ultrasonic pretreatment at 40 kHz for 8 h. In comparison, 14.5 ± 1.36 mg/g and 7.1 ± 0.99 mg/g of total chlorophyll and chlorophyll a, respectively, were obtained from a conventional extraction process using 70% ethanol at 80°C for 12 h. The extract from the optimal conditions had the highest ratio of chlorophyll a to total chlorophyll, approximately 3:4, indicating that more intact chlorophyll a was obtained at low temperature. Moreover, the extract obtained using the optimal extraction condition showed substantial neuroprotective effects such as 92.78 ± 0.04% protection against glutamate-induced mouse hippocampal neuronal cells, compared to 81.64 ± 0.07% protection with the extract from the conventional extraction process. Compared to the control, the activities of two key enzymes related to glutathione synthesis, i.e., glutathione reductase and glutathione peroxidase, were also strongly increased, up to 90%, by the extracts from the optimal conditions. Interestingly, the addition of the same concentration of chlorophyll a as in the optimized extract had lower neuroprotective effects than did the extracts. This finding indicates that the extract likely exerted a synergistic effect, showing that the extract had better neuroprotective activity than the single component (chlorophyll a) alone. This work also confirmed the neuroprotective mechanism of the extract mainly due to its high antioxidant activity, allowing it to greatly decrease accumulation of ROS and Ca2+ within HT22 cells. The results of this work will have implications for expanding the use of a nonthermal ultrasonic process to extract heat-sensitive bioactive substances from natural resources.
      PubDate: 2018-08-01
      DOI: 10.1007/s12257-018-0066-2
      Issue No: Vol. 23, No. 4 (2018)
  • Culture Optimization Strategy for 1-Deoxynojirimycin-producing Bacillus
           methylotrophicus K26 Isolated from Korean Fermented Soybean Paste,
    • Authors: Hyunjin Lee; Hae-Hun Shin; Hye Ryun Kim; Young-Do Nam; Dong-Ho Seo; Myung-Ji Seo
      Pages: 424 - 431
      Abstract: 1-Deoxynojirimycin (1-DNJ) is an α-glucosidase inhibitor that is used for the treatment of type 2 diabetes. In this study, we isolated Bacillus methylotrophicus K26 with α-glucosidase inhibition (AGI) activity from Korean fermented soybean paste (Doenjang) and confirmed that the genome harbored the DNJ biosynthesis genes including gabT1, yktc1, and gutB1 by PCR screening, while 1-DNJ production was confirmed by ultra-performance liquid chromatography–quadrupole time-of-flight–mass spectrometry. To increase 1-DNJ production by B. methylotrophicus K26, culture conditions were optimized with one-factor-ata- time (OFAT) and response surface methodology (RSM) approaches. Screen of 11 carbon and 9 nitrogen sources by the OFAT method identified sucrose and yeast extract as optimal culture components. Sucrose concentration (X1), yeast extract concentration (X2), and culture temperature (X3) were selected as independent variables for central composite design. The coefficient of determination (R2) for the model was 0.927, and the probability value of the regression model was highly significant. RSM predicted the optimal conditions for 1-DNJ production by B. methylotrophicus K26 as sucrose and yeast extract concentrations of 4.61% and 7.03%, respectively, at a temperature of 34°C. Under these conditions, AGI activity was experimentally measured as 89.3%, which was close to the predicted value of 91.9%.
      PubDate: 2018-08-01
      DOI: 10.1007/s12257-018-0159-y
      Issue No: Vol. 23, No. 4 (2018)
  • Optimization of a Novel Two-step Process Comprising Re-esterification and
           Transesterification in a Single Reactor for Biodiesel Production Using
           Waste Cooking Oil
    • Authors: Sung Ho Yeom; Young Wook Go
      Pages: 432 - 441
      Abstract: Waste cooking oil (WCO) has attracted attention as a non-edible feedstock for biodiesel. Although an alkali catalyst has several advantages over an acid catalyst in biodiesel production, biodiesel conversion from WCO is only 5.2% when using an alkali catalyst (NaOH), owing to its high free fatty acid (FFA) content of 4.2%. In this study, a novel two-step process in a single reactor, comprised of re-esterification of the FFAs with crude glycerol, using a Tin (II) chloride (SnCl2) catalyst, and subsequent transesterification with methanol, using an alkali catalyst, was adopted, and each step was optimized. This study revealed that the FFA content after re-esterification should be approximately 1.5%, not only to save glycerol and the catalyst involved in the re-esterification, but also to achieve high biodiesel conversion during the transesterification. An alkaline catalyst was successfully used to produce biodiesel in the second step, and a 92.8% conversion to biodiesel was achieved under the optimized conditions (0.6% catalyst relative to WCO, 0.2mL-methanol/WCO, 70ºC, 3 h). Overall, this novel two-step process achieved highly enhanced biodiesel conversion (4.0% to 92.8%) with significantly reduced reaction time (12 h to 4 h) and methanol requirements (15 mL/g-WCO to 0.2 mL/g-WCO).
      PubDate: 2018-08-01
      DOI: 10.1007/s12257-018-0209-5
      Issue No: Vol. 23, No. 4 (2018)
  • Whole-cell Immobilization of Engineered Escherichia coli JY001 with
           Barium-alginate for Itaconic Acid Production
    • Authors: Yu-Mi Moon; Ranjit Gurav; Junyoung Kim; Yun-Gi Hong; Shashi Kant Bhatia; Hye-Rim Jung; Ju-Won Hong; Tae Rim Choi; Soo Yeon Yang; Hyung Yeon Park; Hwang-Soo Joo; Yung-Hun Yang
      Pages: 442 - 447
      Abstract: Itaconic acid is an important organic acid and a major component of various polymers. It is used in resins, superabsorbent polymers, and substitutes for petrochemicalbased monomers such as acrylic and methacrylic acids. Itaconic acid is primarily produced by the fungus Aspergillus terreus, which yields a high titer with albeit long fermentation period and by-products. In our previous study, Escherichia coli JY001 was reported to produce itaconic acid using citric acid in whole-cell reaction resulting in higher itaconic acid productivity with less by-products formation. The present study aimed to increase whole-cell enzyme stability and reusability, via immobilization of E. coli JY001 using barium-alginate beads. We optimized the cations, temperature, pH, alginate, BaCl2 concentration, cell density per bead, and CTAB content to improve transfer rate of substrates and products. Under the optimized conditions, immobilized whole cells were stable for four repeated cycles of itaconic acid production. The present results would strengthen the basis for a continuous itaconic acid production.
      PubDate: 2018-08-01
      DOI: 10.1007/s12257-018-0170-3
      Issue No: Vol. 23, No. 4 (2018)
  • Calmodulin 2 Functions as an RNA Chaperone in Prokaryotic Cells
    • Authors: Mi Sun Cheong; Yong-Hun Chi; Ji-Yeon Lee; Kyung Hye Seo; Dae-Jin Yun; Jin-Hyo Kim
      Pages: 448 - 455
      Abstract: Plants express many calmodulin (CaM) isoforms. These proteins regulate the growth, development and environmental stress responses of plants by modulating targets. Herein, the Arabidopsis CaM2 isoform was found to be crucial for cold adaptation in prokaryotic cells, similar to the Escherichia coli cold shock protein CspA. Expressing CaM2 or CspA in the cold-sensitive E. coli BX04 mutant complemented the cold-sensitive phenotype under cold stress, but expression of CaM1, CaM7 or CML8 (CaM8) did not. Similar to RNA chaperones such as CspA, CaM2 strongly interacted with nucleic acids and its nucleic acid-binding capacity was much higher than that of CaM7, despite there being only a single amino acid difference between these two isoforms. Microscopic observation of CaM2-GFP revealed that CaM2 plays roles in both the nucleus and cytosol where RNA molecules are abundant. These results suggest that CaM2 can positively modulate cold stress responses by interacting with nucleic acid targets. Furthermore, CaM2 has both nucleic acid targets, similar to CaM7, and protein targets such as CAMTA3.
      PubDate: 2018-08-01
      DOI: 10.1007/s12257-018-0172-1
      Issue No: Vol. 23, No. 4 (2018)
  • Effect of Environmental Parameters on Glycosylation of Recombinant
           Immunoglobulin G Produced from Recombinant CHO Cells
    • Authors: Seong-Min Kim; Kyu-Ho Chang; Duk Jae Oh
      Pages: 456 - 464
      Abstract: Site specific glycosylation of immunoglobulin G (IgG) occurs at Asn297 in the Fc region. The heterogeneous ensemble of glycoform occurs due to the degree of terminal galactosylation and sialylation, and these differences in glycosylation affect both the pharmacokinetic behavior and effector functions of the IgG, such as complementdependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC). In this study, the differential glycosylation of IgG was compared and environmental physical and chemical parameters were evaluated in an attempt to promote glycosylation of recombinant antibodies, thereby creating more humanized glycoform antibodies and increasing their in vivo efficacy as therapeutic drugs. It was shown that cells at late stationary growth phase in batch cultures, cells with increased passage number, and the culture conditions of lowered temperature and pH promoted galactosylation and sialylation of antibodies. Galactose, fructose and mannose were found to elicit galactosylation and sialylation when they were used alone as a substitute of glucose. Mannose showed synergistic effects on glycosylation when used with other sugars, such as glucose and galactose. However when fructose was used with other sugars, the degree of galactosylation mechanism appeared to be decreased. These results support understandings of the glycosylation mechanisms in glycoprotein, particularly recombinant antibodies for therapeutics.
      PubDate: 2018-08-01
      DOI: 10.1007/s12257-018-0109-8
      Issue No: Vol. 23, No. 4 (2018)
  • Dissociation of Systemic Glucose Homeostasis from Triacylglyceride
           Accumulation by Reduced Acsl6 Expression in Skeletal Muscle
    • Authors: Jun Yeup Lee; A-Reum Kim; Yun-Hee Jung; So Young Bu
      Pages: 465 - 472
      Abstract: Long chain acyl-CoA synthetase (ACSL) is an enzyme that activates fatty acids before they are further metabolized. ACSL6 is the one of main ACSL isoforms exclusively expressed in skeletal muscle, but the consequences of the suppression of this gene in systemic glucose homeostasis has yet to be reported. Hence, we investigated the roles of ACSL6 gene in glucose tolerance and TAG distribution in physiological conditions. Eight-week-old male C57BL/6J mice were administered with control or Acsl6 siRNAs and then fed with either AIN-93 control diet or high fat diet. At seven days after the first siRNA injection, oral glucose tolerance tests and TAG quantification were performed. In vivo administration of Acsl6 siRNA decreased Acsl6 expression only in skeletal muscle under AIN-93 or a high fat diet. However Acsl6 siRNA injection to animals increased TAG accumulation in the liver without the change of Acsl6 expression. Atelocollagen mediated Acsl6 suppression enhanced whole-body glucose tolerance coinciding with decreased TAG accumulation in skeletal muscle of mice fed an AIN-93 diet. However, the improved glucose tolerance by Acsl6 reduction was ablated by high fat diet. Moreover reduced Acsl6 did not alter the phosphorylation of insulin signaling proteins in skeletal muscle. These results suggest that Acsl6 reduction in skeletal muscle enhances glucose homeostasis and dissociates the insulin responses from TAG accumulation in skeletal muscle.
      PubDate: 2018-08-01
      DOI: 10.1007/s12257-018-0261-1
      Issue No: Vol. 23, No. 4 (2018)
  • Selection of Escherichia coli Glutamate Decarboxylase Active at Neutral pH
           from a Focused Library
    • Authors: Chen Yuan Hou; Cheeyoon Ahn; Byung-Kwan Cho; Taek Jin Kang
      Pages: 473 - 479
      Abstract: Bacterial glutamate decarboxylase (GAD) converts glutamate (Glu) into γ-aminobutyric acid (GABA) at acidic conditions. Since the reaction consumes a proton per GABA synthesis, cells use this reaction to survive in the acidic environments. Characteristically, the enzyme displays a sigmoidal decrease in its activity as pH rises becoming completely inactive at or above pH 6. This cooperative activity loss is accompanied by several distinct structural changes. Previously, by examining structures at acidic and neutral pH, two key regions had been chosen and mutated to break the cooperativity; Glu89 and C-terminal 15 residues. In this study, we included Asp86 in candidate key residues for mutation to break the cooperativity of GAD. We devised a selection strategy according to which only Escherichia coli cells expressing a variant GAD that was active at neutral pH could survive. In this scheme, an alanine (Ala) auxotroph was rescued by the intracellular synthesis of GABA that was subsequently converted into Ala by heterologously expressed GABA-pyruvate transaminase. New GAD variants were readily selected using this strategy and the most of them indeed had a mutation at residue 86. The results suggest that the role of Asp86 in the wild-type enzyme might be the same as Glu89; to make GAD keep its activity only at acidic environments. Characterization of representative variants are also presented.
      PubDate: 2018-08-01
      DOI: 10.1007/s12257-018-0258-9
      Issue No: Vol. 23, No. 4 (2018)
  • Synergistic Transdermal Delivery of Biomacromolecules Using Sonophoresis
           after Microneedle Treatment
    • Authors: Yeong Chae Ryu; Dong In Kim; Seung Hoon Kim; Hui-Min David Wang; Byeong Hee Hwang
      Pages: 286 - 292
      Abstract: Transdermal drug delivery systems have been studied as an attractive alternative to conventional delivery routes. However, the outermost layer of the skin, the stratum corneum, acts as a primary barrier to drug delivery. A synergistic combination of microneedles (MNs) and low-frequency ultrasound (U) was used to enhance the penetration of siRNA and ovalbumin. The specific gene knockdown caused by siRNAs through the RNA interference pathway is more stable when delivered via the transdermal route. Ovalbumin, a representative adjuvant, causes a more efficient immune response in the skin because of the numerous immune cells in the skin. The synergistic transdermal delivery resulted in approximately 7 times and 15 times greater penetration of siRNA and ovalbumin respectively than in their respective negative controls, and histological analysis showed minimal invasion. Thus, as the synergistic transdermal delivery enhanced the penetration of biomacromolecules into the skin, this technique is expected to yield a promising technology for a transdermal drug delivery system.
      PubDate: 2018-06-01
      DOI: 10.1007/s12257-018-0070-6
      Issue No: Vol. 23, No. 3 (2018)
  • Gene Cloning, Expression, and Properties of a Fibrinolytic Enzyme Secreted
           by Bacillus pumilus BS15 Isolated from Gul (Oyster) Jeotgal
    • Authors: Zhuang Yao; Jeong A. Kim; Jeong Hwan Kim
      Pages: 293 - 301
      Abstract: A Bacillus strain, BS15, showing strong fibrinolytic activity, antibacterial activity, and salt tolerance was isolated from gul (oyster) jeotgal, a Korean fermented sea food. BS15 was identified as B. pumilus. B. pumilus BS15 was able to grow in LB broth with 18% (w/v) NaCl. When culture supernatant was analyzed by SDS-PAGE, 22, 27, 35, and 60 kDa proteins were observed. The 27 kDa protein was determined to be major fibrinolytic enzyme by fibrin zymography. The gene (aprEBS15) was cloned in pHY300PLK, a Bacillus-E. coli shuttle vector. A B. subtilis transformant (TF) harboring pHYBS15 showed higher fibrinolytic activity than B. pumilus BS15, and produced the same 27 kDa protein. aprEBS15 was overexpressed in E. coli BL21 (DE3), and recombinant enzyme (AprEBS15) was purified. The optimum pH and temperature of AprEBS15 were pH 8.0 and 40°C, respectively. Km and Vmax values were 0.26 mM and 21.88 µmol/L/min, respectively. B. pumilus BS15 can be used as a starter for jeotgals and other fermented foods with high salinities.
      PubDate: 2018-06-01
      DOI: 10.1007/s12257-018-0029-7
      Issue No: Vol. 23, No. 3 (2018)
  • Molecular and Functional Characterization of a Rice Thioredoxin m Isoform
           and Its Interaction Proteins
    • Authors: Seong-Cheol Park; Young Jun Jung; Ji Hyun Jung; Il Ryong Kim; Yongjae Lee; Hyosuk Son; Seunghak Kang; Mi-Kyeong Jang; Kyun Oh Lee; Sang Yeol Lee; Jung Ro Lee
      Pages: 319 - 325
      Abstract: Although subcellular localization and substrate specificity of thioredoxin isoforms have been characterized, there is little information on the specific functions of mtype plant thioredoxins or their interaction targets. Here, we describe the functional characterization of an Oryza sativa thioredoxin m (OsTrxm). We undertook yeast twohybrid screening using OsTrxm as a bait and found three interaction proteins, Pex14 and two Pex5 variants. Furthermore, two cysteines of OsTrxm were sufficient for the interaction between OsTrxm and these peroxisome proteins. To verify whether OsTrxm and the target proteins can be co-localized in vivo, we examined subcellular localization of OsTrxm-GFP and a peroxisomal marker RFP-SKL in Arabidopsis protoplast cells. Surprisingly, we detected OsTrxm localization in the cytosol and chloroplast. We confirmed these results by 2-D PAGE and Western blot analysis. Our results indicate that OsTrxm may play important roles in the cytoplasm for peroxisome biogenesis as well as in redox regulation of chloroplast proteins.
      PubDate: 2018-06-01
      DOI: 10.1007/s12257-018-0133-8
      Issue No: Vol. 23, No. 3 (2018)
  • Screening of Yeasts Isolated from Brazilian Environments for the
           2-Phenylethanol (2-PE) Production
    • Authors: Lorena Azevedo de Lima; Raphael Hermano Santos Diniz; Marisa Vieira de Queiroz; Luciano Gomes Fietto; Wendel Batista da Silveira
      Pages: 326 - 332
      Abstract: Phenylethanol alcohol, or 2-phenylethanol (2-PE) production by yeasts has been considered a promising alternative to its chemical synthesis. In order to evaluate the potential of yeast strains isolated from different Brazilian environments, we evaluated the 2-PE production of 267 strains. Among them, the Kluyveromyces marxianus CCT 7735 yeast stood out as being the best 2-PE producer. The K. marxianus CCT 7735 growth was impaired by 2-PE; nevertheless, this effect is less pronounced than the inhibition reported for certain Saccharomyces cerevisiae strains. The maximum 2-PE titer obtained under optimized conditions was 3.44 g/L, 28% higher than the titer achieved under unoptimized conditions. The optimized conditions were: 30ºC, and glucose and L-phe concentrations of 3.0 and 4.0 g/L, respectively. Moreover, the specific production rate of 2-PE increased twofold compared to the unoptimized conditions.
      PubDate: 2018-06-01
      DOI: 10.1007/s12257-018-0119-6
      Issue No: Vol. 23, No. 3 (2018)
  • Microalgal Biomass and Lipid Production on Dairy Effluent Using a Novel
           Microalga, Chlorella sp. Isolated from Dairy Wastewater
    • Authors: Yong-Keun Choi; Hyun Min Jang; Eunsung Kan
      Pages: 333 - 340
      Abstract: The present study focused on cost-effective production of microalgal biomass and lipid production on dairy effluent. The novel microalga, Chlorella sp. isolated from the dairy effluent showed high growth and lipid production on the undiluted and two-fold diluted dairy effluent which were four to five times higher than those of Chlorella vulgaris (control). The high growth of Chlorella sp. was thought to be possibly due to its heterotrophic growth capacity, high turbidity, COD, nutrients and trace elements. In contrast, C. vulgaris showed poor heterotrophic and photoautotrophic growth under the highly turbid conditions of dairy effluent. Both Chlorella sp. and C. vulgaris showed similar total FAME (mg FAME/g algal cells). The fatty acid composition analysis revealed that both Chlorella sp. and C. vulgaris possessed major C18 and C20 fatty acids which will be used for biodiesel production. Overall, the novel microalga, Chlorella sp. isolated from the dairy effluent showed high potential for cost-effective algal cultivation and lipid production on dairy effluent without any modification of process.
      PubDate: 2018-06-01
      DOI: 10.1007/s12257-018-0094-y
      Issue No: Vol. 23, No. 3 (2018)
  • Development of a Polyaniline-coated Monolith Reactor for the Synthesis of
           Cephalexin Using Penicillin G Acylase Aggregates
    • Authors: Young Deok Ahn; Jung Heon Lee
      Pages: 349 - 354
      Abstract: A monolith reactor for the synthesis of cephalexin was developed using capillary columns. The micro channel in the monolith reactor was coated with polyaniline (PANI), and penicillin G acylase was aggregated with PANI using 0.5% of glutaraldehyde as a cross-linker. The developed monolith reactor exhibited many advantages over other enzyme reactors such as batch and continuous reactors. It showed fast enzyme reaction rates owing to the decrease in external mass transfer and internal diffusion limitations. The reactor can easily be scaled up by bundling together multiple monolith reactors, enabling a corresponding increase in feed rate. Furthermore, the monolith reactor showed good operational stability, with 95% of its original activity maintained after 48 h of continuous operation. The PANI coating on the surface of the capillary column increased the enzyme immobilization capacity and conversion was increased from 15.4% to 70.6% after PANI coating. The conversion ratio increased to approximately 70.6% with an increase in residence time and reactor length.
      PubDate: 2018-06-01
      DOI: 10.1007/s12257-018-0124-9
      Issue No: Vol. 23, No. 3 (2018)
  • Mechanisms of Salinity Control in Sea Bass
    • Authors: Jangsun Hwang; Sangsoo Kim; Youngmin Seo; Kyungwoo Lee; Chanhwi Park; Yonghyun Choi; Dasom Kim; Assaf A. Gilad; Jonghoon Choi
      Abstract: Sea bass can regulate the concentration of Na+, K+, and Cl-, among other ions, in their blood, skin, gills, and kidney. Therefore, the salinity of the water does not have a great influence on their metabolism, and sea bass can live in both sea and freshwater in accordance with the salt concentration. Most salinity control occurs in the gills, primarily through the control of chloride cells present there. The concentration of ions in the blood is controlled by the cotransporter Na+ / K+ / 2Cl- (NKCC) in the chloride cell, and the subunits of Na+ / K+ ATPase (NKA) function to maintain homeostasis. The expression of NKA is regulated by subunits of the protein FXYD, allowing the sea bass to survive in compliance with the salinity. In this way, it is possible for sea bass to live in sea and freshwater by controlling the salinity of its body using functions of various channels, proteins, and genes present in the chloride cells of sea bass. In this study, we investigated recent studies of salt control mechanisms in sea bass and their application.
      PubDate: 2018-06-23
      DOI: 10.1007/s12257-018-0049-3
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-