for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> BIOLOGY (Total: 3071 journals)
    - BIOCHEMISTRY (242 journals)
    - BIOENGINEERING (113 journals)
    - BIOLOGY (1453 journals)
    - BIOPHYSICS (46 journals)
    - BIOTECHNOLOGY (227 journals)
    - BOTANY (220 journals)
    - CYTOLOGY AND HISTOLOGY (28 journals)
    - ENTOMOLOGY (67 journals)
    - GENETICS (166 journals)
    - MICROBIOLOGY (261 journals)
    - MICROSCOPY (11 journals)
    - ORNITHOLOGY (26 journals)
    - PHYSIOLOGY (73 journals)
    - ZOOLOGY (138 journals)

BIOTECHNOLOGY (227 journals)                  1 2 | Last

Showing 1 - 200 of 227 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 7)
Advances in Bioscience and Biotechnology     Open Access   (Followers: 15)
Advances in Genetic Engineering & Biotechnology     Hybrid Journal   (Followers: 8)
African Journal of Biotechnology     Open Access   (Followers: 6)
Algal Research     Partially Free   (Followers: 9)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 69)
American Journal of Bioinformatics Research     Open Access   (Followers: 8)
American Journal of Polymer Science     Open Access   (Followers: 30)
Animal Biotechnology     Hybrid Journal   (Followers: 10)
Annales des Sciences Agronomiques     Full-text available via subscription  
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 42)
Applied Bioenergy     Open Access  
Applied Biosafety     Hybrid Journal  
Applied Microbiology and Biotechnology     Hybrid Journal   (Followers: 62)
Applied Mycology and Biotechnology     Full-text available via subscription   (Followers: 5)
Arthroplasty Today     Open Access   (Followers: 1)
Artificial Cells, Nanomedicine and Biotechnology     Hybrid Journal   (Followers: 2)
Asia Pacific Biotech News     Hybrid Journal   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 9)
Asian Pacific Journal of Tropical Biomedicine     Open Access   (Followers: 2)
Australasian Biotechnology     Full-text available via subscription   (Followers: 1)
Banat's Journal of Biotechnology     Open Access  
BBR : Biochemistry and Biotechnology Reports     Open Access   (Followers: 4)
Bio-Algorithms and Med-Systems     Hybrid Journal   (Followers: 1)
Bio-Research     Full-text available via subscription   (Followers: 2)
Bioactive Materials     Open Access   (Followers: 1)
Biocatalysis and Agricultural Biotechnology     Hybrid Journal   (Followers: 4)
Biocybernetics and Biological Engineering     Full-text available via subscription   (Followers: 5)
Bioethics UPdate     Hybrid Journal  
Biofuels     Hybrid Journal   (Followers: 11)
Biofuels Engineering     Open Access   (Followers: 1)
Biological & Pharmaceutical Bulletin     Full-text available via subscription   (Followers: 5)
Biological Cybernetics     Hybrid Journal   (Followers: 10)
Biomarkers and Genomic Medicine     Open Access   (Followers: 5)
Biomarkers in Drug Development     Partially Free   (Followers: 1)
Biomaterials Research     Open Access   (Followers: 4)
BioMed Research International     Open Access   (Followers: 6)
Biomédica     Open Access  
Biomedical Engineering Research     Open Access   (Followers: 7)
Biomedical glasses     Open Access  
Biomedical Reports     Full-text available via subscription  
BioMedicine     Open Access  
Bioprinting     Hybrid Journal  
Bioresource Technology Reports     Hybrid Journal  
Bioscience, Biotechnology, and Biochemistry     Hybrid Journal   (Followers: 22)
Biosimilars     Open Access   (Followers: 1)
Biosurface and Biotribology     Open Access  
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 2)
BioTechniques : The International Journal of Life Science Methods     Full-text available via subscription   (Followers: 28)
Biotechnologia Acta     Open Access   (Followers: 1)
Biotechnologie, Agronomie, Société et Environnement     Open Access   (Followers: 2)
Biotechnology     Open Access   (Followers: 7)
Biotechnology & Biotechnological Equipment     Open Access   (Followers: 5)
Biotechnology Advances     Hybrid Journal   (Followers: 33)
Biotechnology and Applied Biochemistry     Hybrid Journal   (Followers: 44)
Biotechnology and Bioengineering     Hybrid Journal   (Followers: 160)
Biotechnology and Bioprocess Engineering     Hybrid Journal   (Followers: 6)
Biotechnology and Genetic Engineering Reviews     Hybrid Journal   (Followers: 14)
Biotechnology and Health Sciences     Open Access   (Followers: 1)
Biotechnology and Molecular Biology Reviews     Open Access   (Followers: 1)
Biotechnology Annual Review     Full-text available via subscription   (Followers: 7)
Biotechnology for Biofuels     Open Access   (Followers: 11)
Biotechnology Frontier     Open Access   (Followers: 2)
Biotechnology Journal     Hybrid Journal   (Followers: 16)
Biotechnology Law Report     Hybrid Journal   (Followers: 4)
Biotechnology Letters     Hybrid Journal   (Followers: 34)
Biotechnology Progress     Hybrid Journal   (Followers: 39)
Biotechnology Reports     Open Access  
Biotechnology Research International     Open Access   (Followers: 2)
Biotechnology Techniques     Hybrid Journal   (Followers: 10)
Biotecnología Aplicada     Open Access  
Biotribology     Hybrid Journal  
BMC Biotechnology     Open Access   (Followers: 16)
Chinese Journal of Agricultural Biotechnology     Full-text available via subscription   (Followers: 4)
Communications in Mathematical Biology and Neuroscience     Open Access  
Computational and Structural Biotechnology Journal     Open Access   (Followers: 2)
Computer Methods and Programs in Biomedicine     Hybrid Journal   (Followers: 8)
Contributions to Tobacco Research     Open Access   (Followers: 3)
Copernican Letters     Open Access   (Followers: 1)
Critical Reviews in Biotechnology     Hybrid Journal   (Followers: 20)
Crop Breeding and Applied Biotechnology     Open Access   (Followers: 4)
Current Bionanotechnology     Hybrid Journal  
Current Biotechnology     Hybrid Journal   (Followers: 4)
Current Opinion in Biomedical Engineering     Hybrid Journal   (Followers: 1)
Current Opinion in Biotechnology     Hybrid Journal   (Followers: 55)
Current Pharmaceutical Biotechnology     Hybrid Journal   (Followers: 9)
Current Research in Bioinformatics     Open Access   (Followers: 14)
Current trends in Biotechnology and Pharmacy     Open Access   (Followers: 9)
EBioMedicine     Open Access  
Electronic Journal of Biotechnology     Open Access   (Followers: 1)
Entomologia Generalis     Full-text available via subscription  
Environmental Science : Processes & Impacts     Full-text available via subscription   (Followers: 4)
Experimental Biology and Medicine     Hybrid Journal   (Followers: 3)
Folia Medica Indonesiana     Open Access  
Food Bioscience     Hybrid Journal  
Food Biotechnology     Hybrid Journal   (Followers: 13)
Food Science and Biotechnology     Hybrid Journal   (Followers: 9)
Frontiers in Bioengineering and Biotechnology     Open Access   (Followers: 6)
Frontiers in Systems Biology     Open Access   (Followers: 2)
Fungal Biology and Biotechnology     Open Access   (Followers: 1)
GM Crops and Food: Biotechnology in Agriculture and the Food Chain     Full-text available via subscription   (Followers: 1)
GSTF Journal of BioSciences     Open Access  
HAYATI Journal of Biosciences     Open Access  
Horticulture, Environment, and Biotechnology     Hybrid Journal   (Followers: 11)
IEEE Transactions on Molecular, Biological and Multi-Scale Communications     Hybrid Journal   (Followers: 1)
IET Nanobiotechnology     Hybrid Journal   (Followers: 2)
IIOAB Letters     Open Access  
IN VIVO     Full-text available via subscription   (Followers: 4)
Indian Journal of Biotechnology (IJBT)     Open Access   (Followers: 2)
Indonesia Journal of Biomedical Science     Open Access   (Followers: 1)
Indonesian Journal of Biotechnology     Open Access   (Followers: 1)
Industrial Biotechnology     Hybrid Journal   (Followers: 18)
International Biomechanics     Open Access  
International Journal of Bioinformatics Research and Applications     Hybrid Journal   (Followers: 15)
International Journal of Biomechatronics and Biomedical Robotics     Hybrid Journal   (Followers: 4)
International Journal of Biomedical Research     Open Access   (Followers: 2)
International Journal of Biotechnology     Hybrid Journal   (Followers: 5)
International Journal of Biotechnology and Molecular Biology Research     Open Access   (Followers: 2)
International Journal of Biotechnology for Wellness Industries     Partially Free   (Followers: 1)
International Journal of Environment, Agriculture and Biotechnology     Open Access   (Followers: 5)
International Journal of Functional Informatics and Personalised Medicine     Hybrid Journal   (Followers: 4)
International Journal of Medicine and Biomedical Research     Open Access   (Followers: 1)
International Journal of Nanotechnology and Molecular Computation     Full-text available via subscription   (Followers: 3)
International Journal of Radiation Biology     Hybrid Journal   (Followers: 4)
Iranian Journal of Biotechnology     Open Access  
ISABB Journal of Biotechnology and Bioinformatics     Open Access  
Italian Journal of Food Science     Open Access   (Followers: 1)
Journal of Biometrics & Biostatistics     Open Access   (Followers: 3)
Journal of Bioterrorism & Biodefense     Open Access   (Followers: 6)
Journal of Petroleum & Environmental Biotechnology     Open Access   (Followers: 2)
Journal of Advanced Therapies and Medical Innovation Sciences     Open Access  
Journal of Advances in Biotechnology     Open Access   (Followers: 5)
Journal Of Agrobiotechnology     Open Access  
Journal of Analytical & Bioanalytical Techniques     Open Access   (Followers: 7)
Journal of Animal Science and Biotechnology     Open Access   (Followers: 6)
Journal of Applied Biomedicine     Open Access   (Followers: 3)
Journal of Applied Biotechnology     Open Access   (Followers: 2)
Journal of Applied Biotechnology Reports     Open Access   (Followers: 2)
Journal of Applied Mathematics & Bioinformatics     Open Access   (Followers: 5)
Journal of Biologically Active Products from Nature     Hybrid Journal   (Followers: 1)
Journal of Biomaterials and Nanobiotechnology     Open Access   (Followers: 6)
Journal of Biomedical Photonics & Engineering     Open Access  
Journal of Biomedical Practitioners     Open Access  
Journal of Bioprocess Engineering and Biorefinery     Full-text available via subscription  
Journal of Bioprocessing & Biotechniques     Open Access  
Journal of Biosecurity, Biosafety and Biodefense Law     Hybrid Journal   (Followers: 3)
Journal of Biotechnology     Hybrid Journal   (Followers: 68)
Journal of Chemical and Biological Interfaces     Full-text available via subscription   (Followers: 1)
Journal of Chemical Technology & Biotechnology     Hybrid Journal   (Followers: 10)
Journal of Chitin and Chitosan Science     Full-text available via subscription  
Journal of Colloid Science and Biotechnology     Full-text available via subscription  
Journal of Commercial Biotechnology     Full-text available via subscription   (Followers: 6)
Journal of Crop Science and Biotechnology     Hybrid Journal   (Followers: 7)
Journal of Essential Oil Research     Hybrid Journal   (Followers: 3)
Journal of Experimental Biology     Full-text available via subscription   (Followers: 25)
Journal of Genetic Engineering and Biotechnology     Open Access   (Followers: 5)
Journal of Ginseng Research     Open Access  
Journal of Industrial Microbiology and Biotechnology     Hybrid Journal   (Followers: 16)
Journal of Integrative Bioinformatics     Open Access  
Journal of International Biotechnology Law     Hybrid Journal   (Followers: 3)
Journal of Medical Imaging and Health Informatics     Full-text available via subscription  
Journal of Molecular Microbiology and Biotechnology     Full-text available via subscription   (Followers: 14)
Journal of Nano Education     Full-text available via subscription  
Journal of Nanobiotechnology     Open Access   (Followers: 4)
Journal of Nanofluids     Full-text available via subscription   (Followers: 2)
Journal of Organic and Biomolecular Simulations     Open Access  
Journal of Plant Biochemistry and Biotechnology     Hybrid Journal   (Followers: 6)
Journal of Science and Applications : Biomedicine     Open Access  
Journal of the Mechanical Behavior of Biomedical Materials     Hybrid Journal   (Followers: 11)
Journal of Trace Elements in Medicine and Biology     Hybrid Journal   (Followers: 1)
Journal of Tropical Microbiology and Biotechnology     Full-text available via subscription  
Journal of Yeast and Fungal Research     Open Access   (Followers: 1)
Marine Biotechnology     Hybrid Journal   (Followers: 5)
Messenger     Full-text available via subscription  
Metabolic Engineering Communications     Open Access   (Followers: 4)
Metalloproteinases In Medicine     Open Access  
Microalgae Biotechnology     Open Access   (Followers: 2)
Microbial Biotechnology     Open Access   (Followers: 9)
MicroMedicine     Open Access   (Followers: 3)
Molecular and Cellular Biomedical Sciences     Open Access  
Molecular Biotechnology     Hybrid Journal   (Followers: 16)
Molecular Genetics and Metabolism Reports     Open Access   (Followers: 3)
Nanobiomedicine     Open Access  
Nanobiotechnology     Hybrid Journal   (Followers: 3)
Nanomaterials and Nanotechnology     Open Access  
Nanomaterials and Tissue Regeneration     Open Access  
Nanomedicine and Nanobiology     Full-text available via subscription  
Nanomedicine Research Journal     Open Access  
Nanotechnology Reviews     Hybrid Journal   (Followers: 5)
Nature Biotechnology     Full-text available via subscription   (Followers: 521)
Network Modeling and Analysis in Health Informatics and Bioinformatics     Hybrid Journal   (Followers: 3)
New Biotechnology     Hybrid Journal   (Followers: 4)
Nigerian Journal of Biotechnology     Open Access  
Nova Biotechnologica et Chimica     Open Access  
NPG Asia Materials     Open Access  
npj Biofilms and Microbiomes     Open Access  
OA Biotechnology     Open Access  
Plant Biotechnology Journal     Open Access   (Followers: 10)
Plant Biotechnology Reports     Hybrid Journal   (Followers: 4)
Preparative Biochemistry and Biotechnology     Hybrid Journal   (Followers: 4)

        1 2 | Last

Journal Cover Plant Biotechnology Reports
  [SJR: 0.685]   [H-I: 18]   [4 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1863-5474 - ISSN (Online) 1863-5466
   Published by Springer-Verlag Homepage  [2351 journals]
  • Functional conservation of MtFPA, a nucleus-localized RNA-recognition
           motif-binding protein that regulates flowering time in Medicago truncatula
    • Authors: Hyun-Ju Hwang; Hyemin Lim; Mi Ok Lee; A-Ram Kim; Dae-Woo Lee; So-Young Kim; Jong-Seong Jeon; Gang-Seob Lee
      Pages: 39 - 46
      Abstract: The FLOWERING TIME CONTROL PROTEIN FPA (FPA) gene encodes an RNA recognition motif (RRM) domain protein and plays an important role in flowering time control. Flowering responds to environmental conditions and developmental regulation through a network of signaling pathways. However, a little is known about the functions of autonomous pathway genes in Medicago truncatula. Here, we characterized the M. truncatula FPA (MtFPA) gene expression profiling through quantitative RT-PCR analysis, cellular localization, and functional analyses in transgenic plants. We cloned the FPA gene of M. truncatula based on its sequence similarity with Arabidopsis thaliana FPA. The quantitative RT-PCR analysis of MtFPA expression patterns showed that the MtFPA transcripts accumulated ubiquitously in the roots, leaves, stems, flowers, and pods of M. truncatula. The confocal image analysis of the fusion protein MtFPA:GFP revealed that MtFPA was localized in the nucleus. To examine the function of MtFPA, the 35S::MtFPA transgenic plants were generated in the Arabidopsis late-flowering mutant background, fpa-2. The overexpression of MtFPA accelerated flowering under long day conditions compared to the non-transgenic plants. In MtFPA transgenic lines, the expression of AtFLC was down-regulated, whereas that of the floral integrators, AtFT and AtSOC1, was up-regulated as compared to the control plants. These results suggest that MtFPA is a functional orthologue of Arabidopsis and plays an important role in the regulation of flowering time in legumes, especially in M. truncatula.
      PubDate: 2018-02-20
      DOI: 10.1007/s11816-018-0470-2
      Issue No: Vol. 12, No. 1 (2018)
  • Nitric oxide-induced salt stress tolerance in plants: ROS metabolism,
           signaling, and molecular interactions
    • Abstract: Nitric oxide (NO), a non-charged, small, gaseous free-radical, is a signaling molecule in all plant cells. Several studies have proposed multifarious physiological roles for NO, from seed germination to plant maturation and senescence. Nitric oxide is thought to act as an antioxidant, quenching ROS during oxidative stress and reducing lipid peroxidation. NO also mediates photosynthesis and stomatal conductance and regulates programmed cell death, thus providing tolerance to abiotic stress. In mitochondria, NO participates in the electron transport pathway. Nitric oxide synthase and nitrate reductase are the key enzymes involved in NO-biosynthesis in aerobic plants, but non-enzymatic pathways have been reported as well. Nitric oxide can interact with a broad range of molecules, leading to the modification of protein activity, GSH biosynthesis, S-nitrosylation, peroxynitrite formation, proline accumulation, etc., to sustain stress tolerance. In addition to these interactions, NO interacts with fatty acids to form nitro-fatty acids as signals for antioxidant defense. Polyamines and NO interact positively to increase polyamine content and activity. A large number of genes are reprogrammed by NO; among these genes, proline metabolism genes are upregulated. Exogenous NO application is also shown to be involved in salinity tolerance and/or resistance via growth promotion, reversing oxidative damage and maintaining ion homeostasis. This review highlights NO-mediated salinity-stress tolerance in plants, including NO biosynthesis, regulation, and signaling. Nitric oxide-mediated ROS metabolism, antioxidant defense, and gene expression and the interactions of NO with other bioactive molecules are also discussed. We conclude the review with a discussion of unsolved issues and suggestions for future research.
      PubDate: 2018-03-21
  • Molecular profiling of a y-type high molecular weight glutenin subunit at
           Glu-D1 locus from a North Korean landrace wheat ( Triticum aestivum L.)
    • Authors: Seong-Woo Cho; Kun Cho; Geul Bang; Chul Soo Park
      Abstract: The objective of this study is to demonstrate characteristics of a y-type high molecular weight glutenin subunit (D1y HMW-GS) at Glu-D1 found in IT212991, a North Korean landrace wheat compared to Dy12 and Dy12.K as a novel HMW-GS in JB20, a Korean wheat line onto molecular analyses as PCR, cloning, DNA sequencing, and RP-HPLC and proteomic analyses as sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE), two-dimensional electrophoresis (2-DE), Fourier-transform mass spectrometry (LTQ-FT-MS). The D1y of IT212991 was identified to have faster electrophoretic mobility than that of Dy12 by SDS–PAGE. HMW-GS components of IT212991 were identified to be different from Chinese Spring (CS) and JB20, a Korean wheat line by RP-HPLC. The result of mass spectrometric analysis, the D1y of IT212991 (68510.8 Da) was similar to that of Dy12.K of JB20 (68514.4 Da), and lower than Dy12 of CS (69151.2 Da). The result of LTQ-FT-MS based on 2-DE, the D1y of IT212991 was identified to be similar with Dy12 corresponding to the protein function as ‘Glutenin, high molecular weight subunit 12’. The D1y encoding the D1y of IT212991 was identified to consist of 652 amino acid sequences corresponding to 1962 bp according to DNA sequencing. The gene was identified to have a insertion and deletion (InDel) corresponding to 18 bp sequences ‘AACAGGACAAGGGCAACA’ compared to ordinary Dy12 gene. It was demonstrated that the D1y of IT212991 is the same as Dy12.K.
      PubDate: 2018-03-09
      DOI: 10.1007/s11816-018-0479-6
  • A bicistronic transgene system for genetic modification of Parthenium
    • Authors: Grisel Ponciano; Niu Dong; Grace Chen; Colleen McMahan
      Abstract: Parthenium argentatum (guayule) was transformed with a bicistronic transgene containing a viral 2A cleavage sequence. The transgene includes the coding sequences of two key enzymes of the mevalonate pathway, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and farnesyl pyrophosphate synthase (FPPS), involved in rubber biosynthesis. The viral 2A peptide sequence located between the two transgenes allowed for their co-expression via the Arabidopsis CBF2 (C-Binding repeat Factor 2) cold-inducible promoter. We identified three independent transgenic lines expressing the bicistronic transgenes upon cold treatment and examined the rubber content in the in vitro guayule plants.
      PubDate: 2018-02-22
      DOI: 10.1007/s11816-018-0478-7
  • Improvement of conditional Cre-lox system through application of the
           regulatory sequences from Cowpea mosaic virus
    • Authors: L. Kopertekh; E. Krebs; F. Guzmann
      Abstract: To study the impact of regulatory sequences from Cowpea mosaic virus (CPMV) on Cre-mediated recombination rates, the cre gene was flanked by the 5′ non-translated and 3′ non-translated regions of CPMV. This cre configuration was tested by simultaneous excision of nptII selectable marker gene and heat-inducible cre recombinase gene in potato. Fusion of the cre recombinase sequence with modified regulatory sequences of CPMV increased both the excision efficiencies in primary regenerants and transmission frequencies of recombined loci to vegetative progeny as was confirmed by molecular analysis. These data might have practical implication with regard to selection of putative recombinants in vegetative progeny of potato and other clonally propagated plants as well.
      PubDate: 2018-02-22
      DOI: 10.1007/s11816-018-0477-8
  • Perspective: functional genomics towards new biotechnology in medicinal
    • Authors: Mami Yamazaki; Amit Rai; Naoko Yoshimoto; Kazuki Saito
      Abstract: The secret of chemical diversity and function of specialized metabolites in medicinal plants will be unveiled by study of functional genomics at an unprecedentedly rapid rate in the coming years. This is mostly ascribed to the remarkable advancement in the high-throughput DNA sequencing together with other omics technologies such as metabolomics, in particular, due to drastic reduction in the cost of acquiring, storing and analyzing massive omics datasets. Once the genes involved in a biosynthetic pathway of specialized compounds in plants are elucidated, synthetic biology or genome editing can be applied to produce the target compounds in an engineered organism or to manipulate the pathway in planta. Coupled with these advancements in pathway elucidation approaches, modern plant biotechnology strategies are bound to significantly contribute to the sustainable development goals set by United Nations.
      PubDate: 2018-02-19
      DOI: 10.1007/s11816-018-0476-9
  • Functional analysis of an APETALA1 -like MADS box gene from Eustoma
           grandiflorum in regulating floral transition and formation
    • Authors: Tien-Hsin Chuang; Kun-Hung Li; Pei-Fang Li; Chang-Hsien Yang
      Abstract: An Eustoma grandiflorum APETALA1 (EgAP1) gene showing high homology to the SQUA subfamily of MADS-box genes was isolated and characterized. EgAP1, containing a conserved euAP1 motif at the C-terminus, showed high sequence identity to Antirrhinum majus SQUAMOSA in the SQUA subfamily. EgAP1 mRNA was detected in the leaf and expressed significantly higher in young flower buds than in mature flower buds. In flowers, EgAP1 mRNA was strongly detected in sepal, weakly detected in petal and was absent in stamen and carpel. Transgenic Arabidopsis plants ectopically expressing EgAP1 flowered early and produced terminal flowers. In addition, the conversion of petals into stamen-like structures was also observed in 35S::EgAP1 flowers. 35S::EgAP1 was able to complement the ap1 flower defects by restoring the defect for sepal formation and significantly increasing second whorl petal production in Arabidopsis ap1 mutant plants. These results revealed that EgAP1 is the APETALA1 homolog in E. grandiflorum and that the function of EgAP1 is involved in floral induction and flower formation.
      PubDate: 2018-02-12
      DOI: 10.1007/s11816-018-0475-x
  • Ectopic expression of the LoERF017 transcription factor from Larix
           olgensis Henry enhances salt and osmotic-stress tolerance in Arabidopsis
    • Authors: Xiaoqing Hu; Xuemei Xu; Chenghao Li
      Abstract: Dehydration-responsive element binding (DREB) transcription factors (TFs) play a significant role in the response to many abiotic stresses, and they can regulate the downstream expression of some defense genes. In this study, a novel DREB TF gene, designated as LoERF017, was identified from Larix olgensis. The ORF of the LoERF017 gene is 624 bp and it contains an AP2/EREBP domain belonging to a typical DREB TF. Sub-cellular location analysis showed that LoERF017 was located in the nucleus. QRT-PCR analysis indicated that LoERF017 could be induced by NaCl, PEG6000, sodium nitroprusside (SNP), and ABA treatment. Moreover, an analysis of the survival rate and the development of transgenic plants under mannitol and NaCl revealed that the overexpression of LoERF017 in Arabidopsis could improve tolerance to osmotic and salt stress. Compared with wild-type (WT) plants, the overexpression of LoERF017 resulted in higher superoxide dismutase (SOD) and peroxidase (POD) activities and lower malondialdehyde (MDA) and reactive oxygen species (ROS) levels under osmotic stress. Downstream stress-responsive genes, including COR, rd29A, and ERD10, were also activated in transgenic plants overexpressing LoERF017. In brief, the overexpression of the LoERF017 gene may directly or indirectly induce antioxidant enzyme systems and downstream stress-response genes to enhance osmotic resistance capacity in plants.
      PubDate: 2018-02-10
      DOI: 10.1007/s11816-018-0473-z
  • The 5′ UTR intron-mediated enhancement of constitutive splicing of the
           tobacco microsome ω-3 fatty acid desaturase gene
    • Authors: Sayuri Ohta; Sakie Nakagawara; Sayaka Hirai; Kumi Miyagishima; Gorou Horiguchi; Hiroaki Kodama
      Abstract: Several plant genes have their first intron in the 5′ untranslated region (5′ UTR), and such 5′ UTR introns often show several biological functions, including the intron-mediated enhancement of protein expression through an increase of mRNA level (IME), intron-dependent spatial expression, and intron-mediated enhancement of translation. Here, we show another function of the 5′ UTR intron, i.e., the 5′ UTR intron-mediated enhancement of constitutive splicing. The NtFAD3 gene, which encodes a tobacco microsome ω-3 fatty acid desaturase, has a 552 nucleotide-long 5′ UTR intron (intron 1), and the other seven introns are located in the coding sequence. The splicing of the 5′ half region of the NtFAD3 was studied through an in vivo splicing assay using Arabidopsis leaf explants. The low splicing efficiency of intron 2 was much improved when the assay construct harbored intron 1. Deletion of intron 1 and the replacement of intron 1 to the NtFAD3 intron 8 decreased the splicing efficiency of intron 2. The splicing enhancers were redundant and dispersed in the 5′ splice site-proximal, 284-nucleotides region of intron 1. In addition, the interaction among the cis-elements, i.e., the splicing enhancers in the intron 1 and exon 2, were necessary for the efficient splicing of intron 2. The 5′ UTR intron-mediated constitutive splicing was partially inhibited when an SR-like protein, SR45, was deficient. These results indicated a novel function of the 5′ UTR intron, namely an enhancement of the constitutive splicing.
      PubDate: 2018-02-10
      DOI: 10.1007/s11816-018-0474-y
  • Genome editing technologies and their applications in crop improvement
    • Authors: Rukmini Mishra; Kaijun Zhao
      Abstract: Crop improvement is very essential to meet the increasing global food demands and enhance food nutrition. Conventional crop-breeding methods have certain limitations such as taking lot of time and resources, and causing biosafety concerns. These limitations could be overcome by the recently emerged-genome editing technologies that can precisely modify DNA sequences at the genomic level using sequence-specific nucleases (SSNs). Among the artificially engineered SSNs, the CRISPR/Cas9 is the most recently developed targeted genome modification system and seems to be more efficient, inexpensive, easy, user-friendly and rapidly adopted genome-editing tool. Large-scale genome editing has not only improved the yield and quality but also has enhanced the disease resistance ability in several model and other major crops. Increasing case studies suggest that genome editing is an efficient, precise and powerful technology that can accelerate basic and applied research towards crop improvement. In this review, we briefly overviewed the structure and mechanism of genome editing tools and then emphatically reviewed the advances in the application of genome editing tools for crop improvement, including the most recent case studies with CRISPR/Cpf1 and base-editing technologies. We have also discussed the future prospects towards the improvement of agronomic traits in crops.
      PubDate: 2018-01-23
      DOI: 10.1007/s11816-018-0472-0
  • Broad-specificity amino acid racemase, a novel non-antibiotic selectable
           marker for transgenic plants
    • Authors: Yi-Chia Kuan; Venkatesan Thiruvengadam; Jia-Shin Lin; Jia-Hsin Liu; Tsan-Jan Chen; Hsin-Mao Wu; Wen-Ching Wang; Liang-Jwu Chen
      Abstract: The broad-specificity amino acid racemase (Bsar) from Pseudomonas putida catalyzes the racemization of various amino acids, offering a flexible and feasible platform to develop a new non-antibiotic selectable marker system for plant transformation. In the present study, we demonstrated that a Bsar variant, Bsar-R174K, that is useful as a selectable marker gene in Arabidopsis and rice that were susceptible to l-lysine and D-alanine. The introduction of wild-type Bsar, Bsar-R174K or Bsar-R174A into E. coli lysine or asparagine auxotrophs was able to rescue the growth of these microorganisms in minimal media supplemented with selectable amino acid enantiomers. The transformation of Arabidopsis with Bsar or Bsar variants based on d-alanine selection revealed that Bsar-R174K had the greatest efficiency (2.40%), superior to kanamycin selection-based transformation (1.10%). Whereas, l-lysine-based selection exhibited lower efficiency for Bsar-R174K (0.17%). The progenies of selected Bsar-R174K transgenic Arabidopsis revealed normal growth properties. In addition, Bsar-R174K transgenic rice was obtained on l-lysine medium with an efficiency of 0.9%, and the progenies of the transgenic rice revealed morphologically normal phenotypes comparable with their wild-type counterparts. This study presents the first report of broad range amino acid racemase Bsar-R174K as a non-antibiotic selectable marker system applied in transgenic plants.
      PubDate: 2018-01-11
      DOI: 10.1007/s11816-018-0469-8
  • Overexpression of the maize ZmAMT1;1a gene enhances root ammonium uptake
           efficiency under low ammonium nutrition
    • Authors: Yang Zhao; Zhi Liu; Fengying Duan; Xia An; Xiangguo Liu; Dongyun Hao; Riliang Gu; Zhangkui Wang; Fanjun Chen; Lixing Yuan
      Abstract: High-affinity ammonium uptake in maize roots is mainly mediated by AMT1-type ammonium transporters ZmAMT1;1a and ZmAMT1;3, but whether the increased expression of ZmAMTs genes is able to enhance ammonium uptake capacity and subsequently improves overall nitrogen use efficiency remains to be elucidated. In this work, ZmAMT1;1a-overexpression transgenic maize plants were generated with the elevated levels of transcripts and proteins, and phenotypically analyzed together with wild-type plants grown in nutrient solution under two regimes of ammonium supply. Under low ammonium nutrition (0.04 mM), in relative to wild-type plants, the maize transgenic lines showed an approximately 17% increases in the high-affinity ammonium uptake capacity of roots as revealed by 15N-labeled ammonium influx assay and further contributed to about 7% increases in the total nitrogen uptake at the whole plant level. By contrast, when ammonium was supplied in high amounts (1 mM), wild-type plants expressed higher levels of ZmAMT1;1a, but exhibited a lower ammonium uptake capacity in roots. Furthermore, the transgenic maize line accumulated more amounts of ZmAMT1;1a protein, but did not translate into an enhanced ammonium acquisition, suggesting a possible post-translational down-regulation of ZmAMT1;1a by high ammonium. This study proved the possibility to enhance ammonium acquisition by elevating ZmAMTs expression in maize roots and provided an effective transgenic approach on developing high nitrogen use efficient maize cultivars.
      PubDate: 2018-01-11
      DOI: 10.1007/s11816-018-0471-1
  • Plant microRNAs in molecular breeding
    • Authors: Franz Marielle Nogoy; Marjohn C. Niño; Jae Young Song; Yu Jin Jung; Kwon Kyoo Kang; Illsup Nou; Yong-Gu Cho
      Abstract: MicroRNAs are small, endogenous, non-coding RNAs found in plants, animals, and in some viruses, which negatively regulate the expression of genes by promoting the degradation of target mRNAs or by translation inhibition. Ever since the discovery of miRNAs, its biology, mechanisms, and functions were extensively studied in the past two decades. Plant and animal miRNAs both regulate target mRNAs, but they differ in scope of complementarity to their target mRNA. Plant microRNAs are known to play essential roles in a wide array of plant development. To date, there are many studies giving evidence that the regulation of miRNA levels can reprogram plant responses to abiotic (physical environment) and biotic stresses (pathogen and herbivore). Most of these studies were first carried out in the model plant Arabidopsis thaliana. Recently, the trend of miRNA research is furthering its role in crop breeding and its evolutionary origin. In this review, we presented the dynamic biogenesis of microRNAs, the diverse functions of miRNAs in plants, and experimental designs used in studying microRNAs in plants, and most importantly, we presented the applications of microRNA-based technology to improve the resistance of crops in abiotic and biotic stresses.
      PubDate: 2018-01-10
      DOI: 10.1007/s11816-018-0468-9
  • Recent strategies of increasing metal tolerance and phytoremediation
           potential using genetic transformation of plants
    • Authors: Aleksandra Koźmińska; Alina Wiszniewska; Ewa Hanus-Fajerska; Ewa Muszyńska
      Abstract: Avoidance and reduction of soil contamination with heavy metals is one of the most serious global challenges. Nowadays, science offers us new opportunities of utilizing plants to extract toxic elements from the soil by means of phytoremediation. Plant abilities to uptake, translocate, and transform heavy metals, as well as to limit their toxicity, may be significantly enhanced via genetic engineering. This paper provides a comprehensive review of recent strategies aimed at the improvement of plant phytoremediation potential using plant transformation and employing current achievements in nuclear and cytoplasmic genome transformation. Strategies for obtaining plants suitable for effective soil clean-up and tolerant to excessive concentrations of heavy metals are critically assessed. Promising directions in genetic manipulations, such as gene silencing and cis- and intragenesis, are also discussed. Moreover, the ways of overcoming disadvantages of phytoremediation using genetic transformation approachare proposed. The knowledge gathered here could be useful for designing new research aimed at biotechnological improvement of phytoremediation efficiency.
      PubDate: 2018-01-03
      DOI: 10.1007/s11816-017-0467-2
  • Genomic clues to the parental origin of the wild flowering cherry Prunus
           yedoensis var. nudiflora (Rosaceae)
    • Authors: Ara Cho; Seunghoon Baek; Goon-Bo Kim; Chang-Ho Shin; Chan-Soo Kim; Kyung Choi; Youngje Kang; Hee-Ju Yu; Joo-Hwan Kim; Jeong-Hwan Mun
      Abstract: Prunus yedoensis Matsumura is one of the popular ornamental flowering cherry trees native to northeastern Asia, and its wild populations have only been found on Jeju Island, Korea. Previous studies suggested that wild P. yedoensis (P. yedoensis var. nudiflora) is a hybrid species; however, there is no solid evidence on its exact parental origin and genomic organization. In this study, we developed a total of 38 nuclear gene-based DNA markers that can be universally amplifiable in the Prunus species using 586 Prunus Conserved Orthologous Gene Set (Prunus COS). Using the Prunus COS markers, we investigated the genetic structure of wild P. yedoensis populations and evaluated the putative parental species of wild P. yedoensis. Population structure and phylogenetic analysis of 73 wild P. yedoensis accessions and 54 accessions of other Prunus species revealed that the wild P. yedoensis on Jeju Island is a natural homoploid hybrid. Sequence-level comparison of Prunus COS markers between species suggested that wild P. yedoensis might originate from a cross between maternal P. pendula f. ascendens and paternal P. jamasakura. Moreover, approximately 81% of the wild P. yedoensis accessions examined were likely F1 hybrids, whereas the remaining 19% were backcross hybrids resulting from additional asymmetric introgression of parental genotypes. These findings suggest that complex hybridization of the Prunus species on Jeju Island can produce a range of variable hybrid offspring. Overall, this study makes a significant contribution to address issues of the origin, nomenclature, and genetic relationship of ornamental P. yedoensis.
      PubDate: 2017-12-14
      DOI: 10.1007/s11816-017-0465-4
  • Acknowledgment
    • PubDate: 2017-11-09
      DOI: 10.1007/s11816-017-0463-6
  • Investigation of karyotypic composition and evolution in Lilium species
           belonging to the section martagon
    • Authors: Yun-Jae Ahn; Yoon-Jung Hwang; Adnan Younis; Moon-Seok Sung; Fahad Ramzan; Min-Ji Kwon; Yun-Im Kang; Chang-Kil Kim; Ki-Byung Lim
      Abstract: Analyzing chromosomal traits is one of the pragmatic ways to establish evolutionary and genetic database of plants that has complicated phylogenetic system. There are some conflicts on the exact phylogeny and evolutionary pathway of Lilium, and section martagon is the most complicated part among them. In this study, chromosomal traits of martagon lily species are described. All martagon lilies were analyzed with FISH (Fluorescence in situ hybridization) technique, followed by detailed karyotyping. Each species showed 2n = 2x = 24 of chromosome complement. Size of chromosomes ranged from 451.04 to 680.06 µm. 5S and 45S ribosomal DNA, general molecular markers in modern evolutionary research were used as probe in this study. Variation in rDNA loci and chromosome translocation were observed in Lilium hansonii; the highest number of 45S rDNA loci was detected in Lilium hansonii, followed by other martagon lilies, in similar locations but with differences, and chromosome translocation was observed from one individual of Lilium hansonii. Additionally, Lilium tsingtauense from Jeju-do Island, Korea was detected with two extra chromosomes. These kind of genetic variations through karyotyping indicate ongoing genetic variations in martagon lilies. In this study, precise analysis of chromosome traits in Lilium species belonging to section martagonperformed to contribute to better comprehension of the evolutionary pathway and establishment of cytogenetic database for further plant breeding research.
      PubDate: 2017-11-09
      DOI: 10.1007/s11816-017-0462-7
  • Engineering resistance to a resistance-breaking strain of Cucumber mosaic
           virus in plants utilizing viral dsRNA
    • Authors: Eun Gyeong Song; Ki Hyun Ryu
      Abstract: Cucumber mosaic virus Ca-P1 strain, a P0 resistance-breaking virus, was isolated from the leaves of virus-infected Capsicum annuum ‘Manidda’ (a P0 resistant cultivar) in South Korea. Since CMV-Ca-P1 was first reported in 2006, this virus causing damage on pepper production has been constantly detected in South Korea. We constructed three CMV RNAi vectors based on the post-transcriptional gene silencing of defense system against virus infection. These independent vectors (hpCMV1, hpCMV2, and hpCMV2 + 1 RNAi vectors) were designed to produce dsRNAs containing each hpCMV1 (1270–1629 nt), hpCMV2 (1–300 nt), and hpCMV2 + 1 (fused hpCMV2 and hpCMV1) fragments, in RNA-1 (replicase gene) of CMV-Ca-P1, which were then confirmed by Agrobacterium-mediated transformation transient assay. Among these, dsRNAs expressed from the hpCMV2 + 1 vector showed resistance to both CMV-Ca-P1 and CMV-Fny (ordinary strain). To obtain high level of resistance to both CMV-Ca-P1 and CMV-Fny, transgenic Nicotiana benthamiana plants containing hpCMV2 + 1 vector were developed and conferred resistance to both CMV-Ca-P1 and CMV-Fny. This study contributes to the effective selection of target sequences that may inhibit CMV infection.
      PubDate: 2017-10-27
      DOI: 10.1007/s11816-017-0461-8
  • Molecular genetics and functional genomics of abiotic stress-responsive
           genes in oilseed rape ( Brassica napus L.): a review of recent advances
           and future
    • Authors: Channakeshavaiah Chikkaputtaiah; Johni Debbarma; Indrani Baruah; Lenka Havlickova; Hari Prasanna Deka Boruah; Vladislav Curn
      Abstract: Abiotic stresses are the key factors which negatively influence plant development and productivity and are the main cause of extensive agricultural production losses worldwide. Brassica napus is an oilseed crop of global economic significance and major contributor to the total oilseed production, quite often encounters abiotic stresses, resulting in reduced agricultural productivity. Hence, there is an immediate need being felt to raise B. napus cultivars which would be more suitable for various abiotic stress conditions presently and in the years to come. Biotechnology and molecular plant breeding has emerged as an important tool for molecular understanding of plant response to various abiotic stresses. Currently, various stress-responsive genes and mechanisms have been identified and functionally characterized in model plant Arabidopsis and other major crop plants such as Oryza sativa and Zea mays. However, very inadequate success has been achieved in this direction in a major oilseed crop such as B. napus. In this review, we present the latest methods and approaches of studying abiotic stress in B. napus. In this review, we describe the genes functioning as markers for crop breeding and discuss the recent progress and advances in genome editing by break through CRISPR/Cas9 multigene–multiplex approaches for developing multiple abiotic stress tolerance with our on-going research as a scheme. We also throw some light on molecular genetics, plant breeding and abiotic stress biotechnology of B. napus which offer a new prospective on the research directions for the practical plant breeding and functional genomics of B. napus in response to different abiotic stress conditions.
      PubDate: 2017-10-27
      DOI: 10.1007/s11816-017-0458-3
  • Optimization of Agrobacterium -mediated transient expression of
           heterologous genes in spinach
    • Authors: Dang Viet Cao; Reniel S. Pamplona; Jiwon Kim; Young Kyoung Oh; Seok-Keun Cho; Jongcheol Ahn; Seong-Wook Yang; Key-Zung Riu; Kyung-Hwan Boo
      Abstract: The Agrobacterium-mediated transient assay is a relatively rapid technique and a promising approach for assessing the expression of a gene of interest. Despite the successful application of this transient expression system in several plant species, it is not well understood in spinach. In this study, we analyzed various factors, including infiltration method, Agrobacterium strain and density, and co-infiltration of an RNA silencing suppressor (p19), that affect transient expression following agroinfiltration in spinach. To evaluate the effects of these factors on the transient expression system, we used the β-glucuronidase (GUS) reporter gene construct pB7WG2D as a positive control. The vacuum-based infiltration method was much more effective at GUS gene expression than was the syringe-based infiltration method. Among the three Agrobacterium strains examined (EHA105, LBA4404, and GV2260), infiltration with the GV2260 strain suspension at a final optical cell density (OD600) of 1.0 resulted in the highest gene expression. Furthermore, co-expression of suppressor p19 also increased the efficiency and duration of gene expression and protein accumulation. The results indicate that the use of optimized conditions for transient gene expression could be a simple, rapid, and effective tool for functional genomics in spinach.
      PubDate: 2017-10-25
      DOI: 10.1007/s11816-017-0457-4
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-