for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> BIOLOGY (Total: 2807 journals)
    - BIOCHEMISTRY (212 journals)
    - BIOENGINEERING (92 journals)
    - BIOLOGY (1374 journals)
    - BIOPHYSICS (44 journals)
    - BIOTECHNOLOGY (180 journals)
    - BOTANY (213 journals)
    - CYTOLOGY AND HISTOLOGY (25 journals)
    - ENTOMOLOGY (56 journals)
    - GENETICS (147 journals)
    - MICROBIOLOGY (234 journals)
    - MICROSCOPY (10 journals)
    - ORNITHOLOGY (27 journals)
    - PHYSIOLOGY (66 journals)
    - ZOOLOGY (127 journals)

BIOCHEMISTRY (212 journals)                  1 2 3     

AAPS PharmSciTech     Hybrid Journal   (Followers: 8)
Acetic Acid Bacteria     Open Access   (Followers: 2)
ACS Chemical Biology     Full-text available via subscription   (Followers: 380)
ACS Chemical Neuroscience     Full-text available via subscription   (Followers: 15)
Acta Crystallographica Section D : Biological Crystallography     Hybrid Journal   (Followers: 10)
Acta Crystallographica Section F: Structural Biology Communications     Hybrid Journal   (Followers: 7)
Advances and Applications in Bioinformatics and Chemistry     Open Access   (Followers: 8)
Advances in Biological Chemistry     Open Access   (Followers: 5)
Advances in Carbohydrate Chemistry and Biochemistry     Full-text available via subscription   (Followers: 8)
Advances in Plant Biochemistry and Molecular Biology     Full-text available via subscription   (Followers: 7)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 10)
African Journal of Biochemistry Research     Open Access   (Followers: 1)
African Journal of Chemical Education     Open Access   (Followers: 1)
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 5)
American Journal of Biochemistry     Open Access   (Followers: 6)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 228)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 12)
American Journal of Polymer Science     Open Access   (Followers: 18)
Amino Acids     Hybrid Journal   (Followers: 7)
Analytical Biochemistry     Hybrid Journal   (Followers: 247)
Annals of Clinical Biochemistry     Hybrid Journal   (Followers: 1)
Annual Review of Biochemistry     Full-text available via subscription   (Followers: 30)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 11)
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 17)
Applied Biochemistry and Microbiology     Hybrid Journal   (Followers: 8)
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 4)
Archives of Biochemistry and Biophysics     Hybrid Journal   (Followers: 9)
Archives of Insect Biochemistry and Physiology     Hybrid Journal   (Followers: 1)
Archives Of Physiology And Biochemistry     Hybrid Journal   (Followers: 1)
Asian Journal of Biochemistry     Open Access   (Followers: 1)
Asian Journal of Biomedical and Pharmaceutical Sciences     Open Access   (Followers: 2)
Avicenna Journal of Medical Biochemistry     Open Access  
Bangladesh Journal of Medical Biochemistry     Open Access   (Followers: 2)
BBA Clinical     Open Access  
BBR : Biochemistry and Biotechnology Reports     Open Access   (Followers: 3)
Biocatalysis     Open Access  
Biochemical and Biophysical Research Communications     Hybrid Journal   (Followers: 16)
Biochemical and Molecular Medicine     Full-text available via subscription   (Followers: 4)
Biochemical Compounds     Open Access  
Biochemical Engineering Journal     Hybrid Journal   (Followers: 9)
Biochemical Genetics     Hybrid Journal   (Followers: 3)
Biochemical Journal     Full-text available via subscription   (Followers: 18)
Biochemical Pharmacology     Hybrid Journal   (Followers: 6)
Biochemical Society Transactions     Full-text available via subscription   (Followers: 3)
Biochemical Systematics and Ecology     Hybrid Journal   (Followers: 3)
Biochemistry     Full-text available via subscription   (Followers: 290)
Biochemistry & Pharmacology : Open Access     Open Access  
Biochemistry & Physiology : Open Access     Open Access  
Biochemistry (Moscow)     Hybrid Journal   (Followers: 3)
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology     Hybrid Journal   (Followers: 4)
Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry     Hybrid Journal   (Followers: 3)
Biochemistry and Cell Biology     Full-text available via subscription   (Followers: 8)
Biochemistry and Molecular Biology Education     Hybrid Journal   (Followers: 3)
Biochemistry and Molecular Biology of Fishes     Full-text available via subscription   (Followers: 1)
Biochemistry Research International     Open Access   (Followers: 4)
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids     Hybrid Journal   (Followers: 3)
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease     Hybrid Journal   (Followers: 18)
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research     Hybrid Journal   (Followers: 6)
Biochimie     Hybrid Journal   (Followers: 5)
Bioconjugate Chemistry     Full-text available via subscription   (Followers: 14)
BioDrugs     Full-text available via subscription   (Followers: 7)
Bioelectrochemistry     Hybrid Journal   (Followers: 3)
Biofuels     Hybrid Journal   (Followers: 9)
Biogeochemistry     Hybrid Journal   (Followers: 8)
BioInorganic Reaction Mechanisms     Full-text available via subscription   (Followers: 1)
Biokemistri     Open Access  
Biological Chemistry     Partially Free   (Followers: 11)
Biomaterials Research     Open Access  
Biomedicines     Open Access   (Followers: 1)
BioMolecular Concepts     Full-text available via subscription   (Followers: 2)
Bioscience, Biotechnology, and Biochemistry     Hybrid Journal   (Followers: 7)
Biosimilars     Open Access   (Followers: 1)
Biotechnology and Applied Biochemistry     Hybrid Journal   (Followers: 17)
BMC Biochemistry     Open Access   (Followers: 8)
BMC Chemical Biology     Open Access   (Followers: 4)
Brain Plasticity     Hybrid Journal  
Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca : Food Science and Technology     Open Access  
Carbohydrate Polymers     Hybrid Journal   (Followers: 9)
Cell Biochemistry and Biophysics     Hybrid Journal   (Followers: 6)
Cell Biochemistry and Function     Hybrid Journal   (Followers: 3)
Cellular Physiology and Biochemistry     Open Access   (Followers: 3)
Central European Journal of Chemistry     Hybrid Journal   (Followers: 5)
ChemBioChem     Hybrid Journal   (Followers: 2)
Chemical and Biological Technologies for Agriculture     Open Access  
Chemical Biology & Drug Design     Hybrid Journal   (Followers: 24)
Chemical Engineering Journal     Hybrid Journal   (Followers: 21)
Chemical Senses     Hybrid Journal   (Followers: 1)
Chemical Speciation and Bioavailability     Open Access   (Followers: 1)
Chemico-Biological Interactions     Hybrid Journal   (Followers: 2)
Chemistry & Biodiversity     Hybrid Journal   (Followers: 5)
Chemistry & Biology     Full-text available via subscription   (Followers: 17)
Chemistry and Ecology     Hybrid Journal   (Followers: 1)
ChemTexts     Hybrid Journal  
Clinical Biochemist Reviews     Full-text available via subscription   (Followers: 1)
Clinical Biochemistry     Hybrid Journal   (Followers: 3)
Clinical Chemistry and Laboratory Medicine     Full-text available via subscription   (Followers: 6)
Clinical Lipidology     Full-text available via subscription  
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology     Hybrid Journal   (Followers: 4)
Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 1)
Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology     Hybrid Journal   (Followers: 5)

        1 2 3     

Journal Cover   Insect Biochemistry and Molecular Biology
  [SJR: 1.703]   [H-I: 75]   [6 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 0965-1748
   Published by Elsevier Homepage  [2705 journals]
  • A novel sucrose hydrolase from the bombycoid silkworms Bombyx mori,
           Trilocha varians, and Samia cynthia ricini with a substrate specificity
           for sucrose
    • Abstract: Publication date: Available online 29 April 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Huabing Wang , Takashi Kiuchi , Susumu Katsuma , Toru Shimada
      Although membrane-associated sucrase activity has been detected in the midgut of various lepidopteran species, it has not yet been identified and characterized at the molecular level. In the present study, we identified a novel sucrose hydrolase (SUH) gene from the following three bombycoid silkworms: Bombyx mori, Trilocha varians, and Samia cynthia ricini and named them BmSuh, TvSuh, and ScSuh, respectively. The EST dataset showed that BmSuh is one of the major glycoside hydrolase genes in the larval midgut of B. mori. These genes were almost exclusively expressed in the larval midgut in all three species, mainly at the feeding stage. SUHs are classified into the glycoside hydrolase family 13 and show significant homology to insect maltases. Enzymatic assays revealed that recombinant SUHs were distinct from conventional maltases and exhibited substrate specificity for sucrose. The recombinant BmSUH was less sensitive to sugar-mimic alkaloids than TvSUH and ScSUH, which may explain the reason why the sucrase activity in the B. mori midgut was less affected by the sugar-mimic alkaloids derived from mulberry.
      Graphical abstract image

      PubDate: 2015-05-01T11:07:11Z
       
  • Effect of host plant and immune challenge on the levels of chemosensory
           and odorant-binding proteins in caterpillar salivary glands
    • Abstract: Publication date: Available online 29 April 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Maria de la Paz Celorio-Mancera , A.Jimmy Ytterberg , Dorothea Rutishauser , Niklas Janz , Roman A. Zubarev
      More than half of the proteome from mandibular glands in caterpillars is represented by chemosensory proteins. Based on sequence similarity, these proteins are putative transporters of ligands to gustatory receptors in sensory organs of insects. We sought to determine whether these proteins are inducible by comparing, both qualitatively and quantitatively, the salivary (mandibular and labial) proteomes from caterpillars (Vanessa cardui) reared on different plants and artificial diet containing either bacteria or bacterial cell-walls. We included a treatment where the caterpillars were switched from feeding on artificial diet to plant material at some point in their development. Additionally, we evaluated the degree of overlap between the proteomes in the hemolymph-filled coelom and salivary glands of caterpillars reared on plant material. We found that the quality and quantity of the identified proteins differed clearly between hemolymph-filled coelom, labial and mandibular glands. Our results indicated that even after molting and two-day feeding on a new diet, protein production is affected by the previous food source used by the caterpillar. Candidate proteins involved in chemosensory perception by insects were detected: three chemosensory (CSPs) and two odorant-binding proteins (OBPs). Using the relative amounts of these proteins across tissues and treatments as criteria for their classification, we detected hemolymph- and mandibular gland-specific CSPs and observed that their levels were affected by caterpillar diet. Moreover, we could compare the protein and transcript levels across tissues and treatment for at least one CSP and one OBP. Therefore, we have identified specific isoforms for testing the role of CSPs and OBPs in plant and pathogen recognition. We detected catalase, immune-related protein and serine proteases and their inhibitors in high relative levels in the mandibular glands in comparison to the labial glands. These findings suggest that the mandibular glands of caterpillars may play an important role protecting the caterpillar from oxidative stress, pathogens and aiding in digestion. Contamination with hemolymph proteins during dissection of salivary glands from caterpillars may occur but it is not substantial since the proteomes from hemolymph, mandibular and labial glands were easily discriminated from each other by principal component analysis of proteomic data.
      Graphical abstract image

      PubDate: 2015-05-01T11:07:11Z
       
  • Frizzled 2 is a key component in the regulation of TOR signaling-mediated
           egg production in the mosquito Aedes aegypti
    • Abstract: Publication date: Available online 15 April 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Shih-Che Weng , Shin-Hong Shiao
      The Wnt signaling pathway was first discovered as a key event in embryonic development and cell polarity in Drosophila. Recently, several reports have shown that Wnt stimulates translation and cell growth by activating the mTOR pathway in mammals. Previous studies have demonstrated that the Target of Rapamycin (TOR) pathway plays an important role in mosquito vitellogenesis. However, the interactions between these two pathways are poorly understood in the mosquito. In this study, we hypothesized that factors from the TOR and Wnt signaling pathways interacted synergistically in mosquito vitellogenesis. Our results showed that silencing Aedes aegypti Frizzled 2 (AaFz2), a transmembrane receptor of the Wnt signaling pathway, decreased the fecundity of mosquitoes. We showed that AaFz2 was highly expressed at the transcriptional and translational levels in the female mosquito 6 h after a blood meal, indicating amino acid-stimulated expression of AaFz2. Notably, the phosphorylation of S6K, a downstream target of the TOR pathway, and the expression of vitellogenin were inhibited in the absence of AaFz2. A direct link was found in this study between Wnt and TOR signaling in the regulation of mosquito reproduction.
      Graphical abstract image

      PubDate: 2015-04-27T03:52:46Z
       
  • Genome-wide analysis of homeobox genes from Mesobuthus martensii reveals
           Hox gene duplication in scorpions
    • Abstract: Publication date: Available online 21 April 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Zhiyong Di , Yao Yu , Yingliang Wu , Pei Hao , Yawen He , Huabin Zhao , Yixue Li , Guoping Zhao , Xuan Li , Wenxin Li , Zhijian Cao
      Homeobox genes belong to a large gene group, which encodes the famous DNA-binding homeodomain that plays a key role in development and cellular differentiation during embryogenesis in animals. Here, one hundred forty-nine homeobox genes were identified from the Asian scorpion, Mesobuthus martensii (Chelicerata: Arachnida: Scorpiones: Buthidae) based on our newly assembled genome sequence with approximately 248 × coverage. The identified homeobox genes were categorized into eight classes including 82 families: 67 ANTP class genes, 33 PRD genes, 11 LIM genes, five POU genes, six SINE genes, 14 TALE genes, five CUT genes, two ZF genes and six unclassified genes. Transcriptome data confirmed that more than half of the genes were expressed in adults. The homeobox gene diversity of the eight classes is similar to the previously analyzed Mandibulata arthropods. Interestingly, it is hypothesized that the scorpion M. martensii may have two Hox clusters. The first complete genome-wide analysis of homeobox genes in Chelicerata not only reveals the repertoire of scorpion, arachnid and chelicerate homeobox genes, but also shows some insights into the evolution of arthropod homeobox genes.
      Graphical abstract image

      PubDate: 2015-04-27T03:52:46Z
       
  • The silkworm glutathione S-transferase gene noppera-bo is required for
           ecdysteroid biosynthesis and larval development
    • Abstract: Publication date: June 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 61
      Author(s): Sora Enya , Takaaki Daimon , Fumihiko Igarashi , Hiroshi Kataoka , Miwa Uchibori , Hideki Sezutsu , Tetsuro Shinoda , Ryusuke Niwa
      Insect molting and metamorphosis are tightly controlled by ecdysteroids, which are important steroid hormones that are synthesized from dietary sterols in the prothoracic gland. One of the ecdysteroidogenic genes in the fruit fly Drosophila melanogaster is noppera-bo (nobo), also known as GSTe14, which encodes a member of the epsilon class of glutathione S-transferases. In D. melanogaster, nobo plays a crucial role in utilizing cholesterol via regulating its transport and/or metabolism in the prothoracic gland. However, it is still not known whether the orthologs of nobo from other insects are also involved in ecdysteroid biosynthesis via cholesterol transport and/or metabolism in the prothoracic gland. Here we report genetic evidence showing that the silkworm Bombyx mori ortholog of nobo (nobo-Bm; GSTe7) is essential for silkworm development. nobo-Bm is predominantly expressed in the prothoracic gland. To assess the functional importance of nobo-Bm, we generated a B. mori genetic mutant of nobo-Bm using TALEN-mediated genome editing. We show that loss of nobo-Bm function causes larval arrest and a glossy cuticle phenotype, which are rescued by the application of 20-hydroxyecdysone. Moreover, the prothoracic gland cells isolated from the nobo-Bm mutant exhibit an abnormal accumulation of 7-dehydrocholesterol, a cholesterol metabolite. These results suggest that the nobo family of glutathione S-transferases is essential for development and for the regulation of sterol utilization in the prothoracic gland in not only the Diptera but also the Lepidoptera. On the other hand, loss of nobo function mutants of D. melanogaster and B. mori abnormally accumulates different sterols, implying that the sterol utilization in the PG is somewhat different between these two insect species.
      Graphical abstract image

      PubDate: 2015-04-27T03:52:46Z
       
  • Chitin is a component of the Rhodnius prolixus midgut
    • Abstract: Publication date: Available online 21 April 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Evelyn S.L. Alvarenga , Juliana F. Mansur , Silvia A. Justi , Janaina Figueira-Mansur , Vivian M. dos Santos , Sheila G. Lopez , Hatisaburo Masuda , Flavio A. Lara , Ana C.A. Melo , Monica F. Moreira
      Chitin is an essential component of the peritrophic matrix (PM), which is a structure that lines the insect's gut and protects against mechanical damage and pathogens. Rhodnius prolixus (Hemiptera: Reduviidae) does not have a PM, but it has an analogous structure, the perimicrovillar membrane (PMM); chitin has not been described in this structure. Here, we show that chitin is present in the R. prolixus midgut using several techniques. The FTIR spectrum of the KOH-resistant putative chitin-material extracted from the midgut bolus showed peaks characteristic of the chitin molecule at 3500, 1675 and 1085 cm1. Both the midgut bolus material and the standard chitin NMR spectra showed a peak at 1.88 ppm, which is certainly due to methyl protons in the acetamide a group. The percentages of radioactive N-acetylglucosamine (CPM) incorporated were 2 and 4% for the entire intestine and bolus, respectively. The KOH-resistant putative chitin-material was also extracted and purified from the N-acetylglucosamine radioactive bolus, and the radioactivity was estimated through liquid scintillation. The intestinal CHS cDNA translated sequence was the same as previously described for the R. prolixus cuticle and ovaries. Phenotypic alterations were observed in the midgut of females with a silenced CHS gene after a blood meal, such as retarded blood meal digestion; the presence of fresh blood that remained red nine days after the blood meal; and reduced trachea and hemozoin content compared with the control. Wheat germ agglutinin (a specific probe that detects chitin) labeling proximal to the intestine (crop and midgut) was much lower in females with a silenced CHS gene, especially in the midgut region, where almost no fluorescence signal was detected compared with the control groups. Midguts from females with a CHS gene silenced by dsRNA-CHS and control midguts pre-treated with chitinase showed that the chitin-derived fluorescence signal decreased in the region around the epithelium, the region facing the midgut and projections towards the intestinal lumen when evaluated microscopically. The relative reduction in CHS transcripts by approximately 80% using an RNAi assay supports the phenotypical alterations in the midgut observed using fluorescence microscopy assays. These data show that chitin is present in the R. prolixus midgut epithelium and in its surface projections facing the lumen. The CHS gene expression and the presence of chitin in the R. prolixus midgut may suggest a target for controlling Chagas disease vectors and addressing this public health problem.
      Graphical abstract image

      PubDate: 2015-04-27T03:52:46Z
       
  • Clathrin-dependent endocytosis plays a predominant role in cellular uptake
           of double-stranded RNA in the red flour beetle
    • Abstract: Publication date: Available online 9 April 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Da Xiao , Xiwu Gao , Jiaping Xu , Xiao Liang , Qingqing Li , Jianxiu Yao , Kun Yan Zhu
      RNA interference (RNAi) is a highly conserved gene regulatory mechanism in eukaryotic organisms; however, an understanding of mechanisms of cellular uptake of double-stranded RNA (dsRNA) in different organisms remains elusive. By using pharmacological inhibitors of different endocytic pathways in conjunction with RNAi of a marker gene (lethal giant larvae, TcLgl) in the red flour beetle (Tribolium castaneum), we demonstrated that two inhibitors (chlorpromazine and bafilomycin-A1) of clathrin-dependent endocytosis can nearly abolish or significantly diminish RNAi of TcLgl, whereas methyl-β-cyclodextrin and cytochalasin-D, known to inhibit other endocytic pathways, showed no effect on RNAi of TcLgl. By using Cy3-labeled TcLgl dsRNA, we observed significantly reduced cellular uptake of TcLgl dsRNA in midgut cells after larvae were injected with each of the two clathrin-dependent endocytosis inhibitors. By using an “RNAi of RNAi” strategy, we further demonstrated that suppression of each transcript of the four key genes encoding clathrin heavy chain (TcChc), clathrin coat assembly protein AP50 (TcAP50), vacuolar (H+)-ATPase subunit H (TcVhaSFD) and a ras-related protein (TcRab7) in clathrin-dependent endocytosis by RNAi can significantly impair RNAi of TcLgl. These results support our conclusion that clathrin-dependent endocytosis is a major mechanism in cellular uptake of dsRNA in T. castaneum. Our study also provides new insights into improving RNAi efficiency by enhancing dsRNA endosomal release.
      Graphical abstract image

      PubDate: 2015-04-12T11:54:38Z
       
  • The immune signaling pathways of Manduca sexta
    • Abstract: Publication date: Available online 7 April 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Xiaolong Cao , Yan He , Yingxia Hu , Yang Wang , Yun-Ru Chen , Bart Bryant , Rollie J. Clem , Lawrence M. Schwartz , Gary Blissard , Haobo Jiang
      Signal transduction pathways and their coordination are critically important for proper functioning of animal immune systems. Our knowledge of the constituents of the intracellular signaling network in insects mainly comes from genetic analyses in Drosophila melanogaster. To facilitate future studies of similar systems in the tobacco hornworm and other lepidopteran insects, we have identified and examined the homologous genes in the genome of Manduca sexta. Based on 1:1 orthologous relationships in most cases, we hypothesize that the Toll, Imd, MAPK-JNK-p38 and JAK-STAT pathways are intact and operative in this species, as are most of the regulatory mechanisms. Similarly, cellular processes such as autophagy, apoptosis and RNA interference probably function in similar ways, because their mediators and modulators are mostly conserved in this lepidopteran species. We have annotated a total of 186 genes encoding 199 proteins, studied their domain structures and evolution, and examined their mRNA levels in tissues at different life stages. Such information provides a genomic perspective of the intricate signaling system in a non-drosophiline insect.
      Graphical abstract image

      PubDate: 2015-04-12T11:54:38Z
       
  • Sulfakinin is an important regulator of digestive processes in the
           migratory locust, Locusta migratoria
    • Abstract: Publication date: Available online 3 April 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Sven Zels , Senne Dillen , Katleen Crabbé , Jornt Spit , Ronald J. Nachman , Jozef Vanden Broeck
      Sulfakinin (SK) is a sulfated insect neuropeptide that is best known for its function as a satiety factor. It displays structural and functional similarities with the vertebrate peptides gastrin and cholecystokinin. Peptidomic studies in multiple insects, crustaceans and arachnids have revealed the widespread occurrence of SK in the arthropod phylum. Multiple studies in hemi- and holometabolous insects revealed the pleiotropic nature of this neuropeptide: in addition to its activity as a satiety factor, SK was also reported to affect muscle contraction, digestive enzyme release, odor preference, aggression and metabolism. However, the main site of action seems to be the digestive system of insects. In this study, we have investigated whether SK can intervene in the control of nutrient uptake and digestion in the migratory locust (Locusta migratoria). We provide evidence that sulfakinin reduces food uptake in this species. Furthermore, we discovered that SK has very pronounced effects on the main digestive enzyme secreting parts of the locust gut. It effectively reduced digestive enzyme secretion from both the midgut and gastric caeca. SK injection also elicited a reduction in absorbance and proteolytic activity of the gastric caeca contents. The characteristic sulfation of the tyrosine residue is crucial for the observed effects on digestive enzyme secretion. In an attempt to provide potential leads for the development of peptidomimetic compounds based on SK, we also tested two mimetic analogs of the natural peptide ligand in the digestive enzyme secretion assay. These analogs were able to mimic the effect of the natural SK, but their effects were milder. The results of this study provide new insights into the action of SK on the digestive system in (hemimetabolous) insects.
      Graphical abstract image

      PubDate: 2015-04-07T11:49:36Z
       
  • Molecular evolution and expression of the CRAL_TRIO protein family in
           insects
    • Abstract: Publication date: Available online 13 February 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Gilbert Smith , Adriana D. Briscoe
      CRAL_TRIO domain proteins are known to bind small lipophilic molecules such as retinal, inositol and Vitamin E and include such gene family members as PINTA, α-tocopherol transfer (ATT) proteins, retinoid binding proteins, and clavesins. In insects, very little is known about either the molecular evolution of this family of proteins or their ligand specificity. Here we characterize insect CRAL_TRIO domain proteins and present the first insect CRAL_TRIO protein phylogeny constructed by performing reciprocal BLAST searches of the reference genomes of Drosophila melanogaster, Anopheles gambiae, Apis mellifera, Tribolium castaneum, Bombyx mori, Manduca sexta and Danaus plexippus. We find several highly conserved amino acid residues in the CRAL_TRIO domain-containing genes across insects and a gene expansion resulting in more than twice as many gene family members in lepidopterans than in other surveyed insect species, but no lepidopteran homolog of the PINTA gene in Drosophila. In addition, we examined the expression pattern of CRAL_TRIO domain genes in Manduca sexta heads using RNA-Seq data. Of the 42 gene family members found in the M. sexta reference genome, we found 30 expressed in the head tissue with similar expression profiles between males and females. Our results suggest this gene family underwent a large expansion in Lepidoptera, making the leptidopteran CRAL_TRIO domain family distinct from other holometabolous insect lineages.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Behavioral and genomic characterization of molt-sleep in the tobacco
           hornworm, Manduca sexta
    • Abstract: Publication date: Available online 7 February 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Dyan MacWilliam , Peter Arensburger , Jason Higa , Xinping Cui , Michael E. Adams
      During the transition from feeding to molting, larval insects undergo profound changes in behavior and patterns of gene expression regulated by the neuroendocrine system. For some species, a distinctive characteristic of molting larvae is presence of a quiescent state sometimes referred to as “molt-sleep”. Here, observations of 4th instar Manduca sexta larvae indicate the molting period involves a predominantly quiescent state that shares behavioral properties of adult insect sleep in that it is rapidly reversible and accompanied by a reduced responsiveness to both mildly arousing and noxious stimuli. When subjected to noxious stimuli, molting larvae exhibit locomotory and avoidance behaviors similar to those of inter-molt larvae. Although less consolidated, inter-molt quiescence shares many of the same behavioral traits with molting quiescence. However, when subjected to deprivation of quiescence, inter-molt larvae display a compensatory rebound behavior that is not detected in molting larvae. This suggests that molting quiescence is a specialized form of inactivity that affords survival advantages to molting larvae. RNA-seq analysis of molting larvae shows general reduction in expression of genes encoding GPCRs and down regulation of genes connected with cyclic nucleotide signaling. On the other hand, certain ion channel genes are up-regulated, including transient receptor potential (TRP) channels, chloride channels and a voltage-dependent calcium channel. These findings suggest patterns of gene expression consistent with elevation of quiescent state characteristic of the molt in a model holometabolous insect.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Phylogenetic analysis and expression profiling of the pattern recognition
           receptors: Insights into molecular recognition of invading pathogens in
           Manduca sexta
    • Abstract: Publication date: Available online 18 February 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Xiufeng Zhang , Yan He , Xiaolong Cao , Ramesh T. Gunaratna , Yun-ru Chen , Gary Blissard , Michael R. Kanost , Haobo Jiang
      Pattern recognition receptors (PRRs) detect microbial pathogens and trigger innate immune responses. Previous biochemical studies have elucidated the physiological functions of eleven PRRs in Manduca sexta but our understanding of the recognition process is still limited, lacking genomic perspectives. While 34 C-type lectin-domain proteins and 16 Toll-like receptors are reported in the companion papers, we present here 120 other putative PRRs identified through the genome annotation. These include 76 leucine-rich repeat (LRR) proteins, 14 peptidoglycan recognition proteins, 6 EGF/Nim-domain proteins, 5 β-1,3-glucanase-related proteins, 4 galectins, 4 fibrinogen-related proteins, 3 thioester proteins, 5 immunoglobulin-domain proteins, 2 hemocytins, and 1 Reeler. Sequence alignment and phylogenetic analysis reveal the evolution history of a diverse repertoire of proteins for pathogen recognition. While functions of insect LRR proteins are mostly unknown, their structure diversification is phenomenal: In addition to the Toll homologs, 22 LRR proteins with a signal peptide are expected to be secreted; 18 LRR proteins lacking signal peptides may be cytoplasmic; 36 LRRs with a signal peptide and a transmembrane segment may be non-Toll receptors on the surface of cells. Expression profiles of the 120 genes in 52 tissue samples reflect complex regulation in various developmental stages and physiological states, including some likely by Rel family transcription factors via κB motifs in the promoter regions. This collection of information is expected to facilitate future biochemical studies detailing their respective roles in this model insect.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Characterisation of the Manduca sexta sperm proteome: Genetic novelty
           underlying sperm composition in Lepidoptera
    • Abstract: Publication date: Available online 27 February 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Emma Whittington , Qian Zhao , Kirill Borziak , James R. Walters , Steve Dorus
      The application of mass spectrometry based proteomics to sperm biology has greatly accelerated progress in understanding the molecular composition and function of spermatozoa. To date, these approaches have been largely restricted to model organisms, all of which produce a single sperm morph capable of oocyte fertilisation. Here we apply high-throughput mass spectrometry proteomic analysis to characterise sperm composition in Manduca sexta, the tobacco hornworm moth, which produce heteromorphic sperm, including one fertilisation competent (eupyrene) and one incompetent (apyrene) sperm type. This resulted in the high confidence identification of 896 proteins from a co-mixed sample of both sperm types, of which 167 are encoded by genes with strict one-to-one orthology in Drosophila melanogaster. Importantly, over half (55.1%) of these orthologous proteins have previously been identified in the D. melanogaster sperm proteome and exhibit significant conservation in quantitative protein abundance in sperm between the two species. Despite the complex nature of gene expression across spermatogenic stages, a significant correlation was also observed between sperm protein abundance and testis gene expression. Lepidopteran-specific sperm proteins (e.g., proteins with no homology to proteins in non-Lepidopteran taxa) were present in significantly greater abundance on average than those with homology outside the Lepidoptera. Given the disproportionate production of apyrene sperm (96% of all mature sperm in Manduca) relative to eupyrene sperm, these evolutionarily novel and highly abundant proteins are candidates for possessing apyrene-specific functions. Lastly, comparative genomic analyses of testis-expressed, ovary-expressed and sperm genes identified a concentration of novel sperm proteins shared amongst Lepidoptera of potential relevance to the evolutionary origin of heteromorphic spermatogenesis. As the first published Lepidopteran sperm proteome, this whole-cell proteomic characterisation will facilitate future evolutionary genetic and developmental studies of heteromorphic sperm production and parasperm function. Furthermore, the analyses presented here provide useful annotation information regarding sex-biased gene expression, novel Lepidopteran genes and gene function in the male gamete to complement the newly sequenced and annotated Manduca genome.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Tweedle cuticular protein BmCPT1 is involved in innate immunity by
           participating in recognition of Escherichia coli
    • Abstract: Publication date: March 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 58
      Author(s): Jiubo Liang , Ting Wang , Zhonghuai Xiang , Ningjia He
      Bombyx mori, a lepidopteran insect, is one of the earliest models for pattern recognition of Gram-negative bacteria, which may induce the IMD pathway for production of antibacterial peptides. So far, several recognition proteins have been reported in B. mori. However, the connection between pattern recognition of Gram negative bacteria and activation of BmRelish1, a transcription factor controlled by the IMD pathway remains largely unknown. In the present study, we identify BmCPT1, a cuticle protein bearing a Tweedle domain. Its gene expression is co-regulated by NF-kappaB and juvenile hormone signals. BmCPT1 is induced by Escherichia coli in fat bodies and hemocytes, but is constitutively expressed in the epidermis. In vitro binding assays indicate that BmCPT1 protein recognizes and binds to E. coli peptidoglycan. Post-transcriptionally modified BmCPT1 in the hemolymph binds to E. coli cells through interactions with peptidoglycan recognition protein-5 (BmPGRP5) and lipopolysaccharide binding protein (BmLBP). Transgenic overexpression of BmCPT1 causes the upregulated expression of BmRelish1 and clear induction of two gloverin genes. Therefore, BmCPT1 may work along with BmPGRP-S5 and BmLBP to recognize E. coli in the hemolymph and indirectly activate BmRelish1 to induce antimicrobial peptide synthesis.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Altered tyrosine metabolism and melanization complex formation underlie
           the developmental regulation of melanization in Manduca sexta
    • Abstract: Publication date: March 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 58
      Author(s): Kevin D. Clark
      The study of hemolymph melanization in Lepidoptera has contributed greatly to our understanding of its role in insect immunity. Manduca sexta in particular has been an excellent model for identifying the myriad components of the phenoloxidase (PO) cascade and their activation through exposure to pathogen-associated molecular patterns (PAMPs). However, in a process that is not well characterized or understood, some insect species rapidly melanize upon wounding in the absence of added PAMPs. We sought to better understand this process by measuring wound-induced melanization in four insect species. Of these, only plasma from late 5th instar M. sexta was unable to melanize, even though each contained millimolar levels of the putative melanization substrate tyrosine (Tyr). Analysis of Tyr metabolism using substrate-free plasmas (SFPs) from late 5th instar larvae of each species showed that only M. sexta SFP failed to melanize with added Tyr. In contrast, early instar M. sexta larvae exhibited wound-induced melanization and Tyr metabolism, and SFPs prepared from these larvae melanized in the presence of Tyr. Early instar melanization in M. sexta was associated with the formation of a high mass protein complex that could be observed enzymatically in native gels or by PO-specific immunoblotting. Topical treatment of M. sexta larvae with the juvenile hormone (JH) analog methoprene delayed pupation and increased melanizing ability late in the instar, thus linking development with immunity. Our results demonstrate that melanization rates are highly variable in Lepidoptera, and that developmental stage can be an important factor for melanization within a species. More specifically, we show that the physiological substrate for melanization in M. sexta is Tyr, and that melanization is associated with the formation of a PO-containing protein complex.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Two chitinase 5 genes from Locusta migratoria: Molecular characteristics
           and functional differentiation
    • Abstract: Publication date: March 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 58
      Author(s): Daqi Li , Jianqin Zhang , Yan Wang , Xiaojian Liu , Enbo Ma , Yi Sun , Sheng Li , Kun Yan Zhu , Jianzhen Zhang
      The duplication of chitinase 5 (Cht5) into two to five different genes has been reported only in mosquito species to date. Here, we report the duplication of Cht5 genes (LmCht5-1 and LmCht5-2) in the migratory locust (Locusta migratoria). Both LmCht5-1 (505 aa) and LmCht5-2 (492 aa) possess a signal peptide and a catalytic domain with four conserved motifs, but only LmCht5-1 contains a chitin-binding domain. Structural and phylogenetic analyses suggest that LmCht5-1 is orthologous to other insect Cht5 genes, whereas LmCht5-2 might be newly duplicated. Both LmCht5 genes were expressed in all tested tissues with LmCht5-1 highly expressed in hindgut and LmCht5-2 highly expressed in integument, foregut, hindgut and fat bodies. From the fourth-instar nymphs to the adults, LmCht5-1 and LmCht5-2 showed similar developmental expression patterns with transcript peaks prior to each nymphal molting, suggesting that their expression levels are similarly regulated. Treatment with 20-hydroxyecdysone (20E; the most active molting hormone) and reducing expression of EcR (ecdysone receptor gene) by RNAi increased and decreased expression of both LmCht5 genes, respectively, indicating that both genes are responsive to 20E. Although transcript level of LmCht5-2 is generally 10-fold higher than that of LmCht5-1, RNAi-mediated suppression of LmCht5-1 transcript led to severe molting defects and lethality, but such effects were not seen with RNAi of LmCht5-2, suggesting that the newly duplicated LmCht5-2 is not essential for development and survivorship of the locust.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Biochemical characterization of maintenance DNA methyltransferase DNMT-1
           from silkworm, Bombyx mori
    • Abstract: Publication date: March 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 58
      Author(s): Takumi Mitsudome , Hiroaki Mon , Jian Xu , Zhiqing Li , Jae Man Lee , Anandrao Ashok Patil , Atsushi Masuda , Kazuhiro Iiyama , Daisuke Morokuma , Takahiro Kusakabe
      DNA methylation is an important epigenetic mechanism involved in gene expression of vertebrates and invertebrates. In general, DNA methylation profile is established by de novo DNA methyltransferases (DNMT-3A, -3B) and maintainance DNA methyltransferase (DNMT-1). DNMT-1 has a strong substrate preference for hemimethylated DNA over the unmethylated one. Because the silkworm genome lacks an apparent homologue of de novo DNMT, it is still unclear that how silkworm chromosome establishes and maintains its DNA methylation profile. As the first step to unravel this enigma, we purified recombinant BmDNMT-1 using baculovirus expression system and characterized its DNA-binding and DNA methylation activity. We found that the BmDNMT-1 preferentially methylates hemimethylated DNA despite binding to both unmethylated and hemimethylated DNA. Interestingly, BmDNMT-1 formed a complex with DNA in the presence or absence of methyl group donor, S-Adenosylmethionine (AdoMet) and the AdoMet-dependent complex formation was facilitated by Zn2+ and Mn2+. Our results provide clear evidence that BmDNMT-1 retained the function as maintenance DNMT but its sensitivity to metal ions is different from mammalian DNMT-1.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Glandular β-glucosidases in juvenile Chrysomelina leaf beetles
           support the evolution of a host-plant-dependent chemical defense
    • Abstract: Publication date: March 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 58
      Author(s): Peter Rahfeld , Wiebke Haeger , Roy Kirsch , Gerhard Pauls , Tobias Becker , Eva Schulze , Natalie Wielsch , Ding Wang , Marco Groth , Wolfgang Brandt , Wilhelm Boland , Antje Burse
      Plant-feeding insects are spread across the entire plant kingdom. Because they chew externally on leaves, leaf beetle of the subtribe Chrysomelina sensu stricto are constantly exposed to life-threatening predators and parasitoids. To counter these pressures, the juveniles repel their enemies by displaying glandular secretions that contain defensive compounds. These repellents can be produced either de novo (iridoids) or by using plant-derived precursors. The autonomous production of iridoids pre-dates the evolution of phytochemical-based defense strategies. Both strategies include hydrolysis of the secreted non-toxic glycosides in the defensive exudates. By combining in vitro as well as in vivo experiments, we show that iridoid de novo producing as well as sequestering species rely on secreted β-glucosidases to cleave the pre-toxins. Our phylogenetic analyses support a common origin of chrysomeline β-glucosidases. The kinetic parameters of these β-glucosidases demonstrated substrate selectivity which reflects the adaptation of Chrysomelina sensu stricto to the chemistry of their hosts during the course of evolution. However, the functional studies also showed that the broad substrate selectivity allows building a chemical defense, which is dependent on the host plant, but does not lead to an “evolutionary dead end”.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Positive feedback regulation of prothoracicotropic hormone secretion by
           ecdysteroid – A mechanism that determines the timing of
           metamorphosis
    • Abstract: Publication date: March 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 58
      Author(s): Akira Mizoguchi , Manabu Kamimura , Makoto Kiuchi , Hiroshi Kataoka
      When insect larvae have fully grown, prothoracicotropic hormone (PTTH) is released from the brain, triggering the initiation of metamorphic development through stimulation of ecdysteroid secretion by the prothoracic glands. The present study analyzes the mechanism that regulates the occurrence of this PTTH surge. In the silkworm Bombyx mori, the PTTH surge occurs on day 6 of the fifth instar and is preceded by a small rise in hemolymph ecdysteroid titer, which occurs late on day 5. We therefore hypothesized that this rise of ecdysteroid titer is involved in the induction of the PTTH surge. To test this hypothesis, two experiments were conducted. First, a small amount of 20-hydroxyecdysone was injected on day 4, two days before the expected day of the PTTH surge, to simulate the small rise in hemolymph ecdysteroid titer on day 5. This injection led to a precocious surge of PTTH the next day. Next, the hemolymph ecdysteroid titer on day 5 was artificially lowered by injecting ecdysteroid-22-oxidase, which inactivates 20-hydroxyecdysone. After this treatment, the PTTH surge did not occur on day 6 in 80% of the animals. These results indicate that a small rise of the hemolymph ecdysteroid titer plays a critical role in the induction of the PTTH surge. Since basal ecdysteroidogenic activity of the prothoracic glands increases with larval growth, a circulating level of ecdysteroids may convey information about larval maturity to the brain, to coordinate larval growth and metamorphosis. This is the first report in invertebrates to demonstrate positive feedback regulation of the surge of a tropic hormone by a downstream steroid hormone.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Molecular characterization and functional expression of the Apis mellifera
           voltage-dependent Ca2+ channels
    • Abstract: Publication date: March 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 58
      Author(s): Thierry Cens , Matthieu Rousset , Claude Collet , Mercedes Charreton , Lionel Garnery , Yves Le Conte , Mohamed Chahine , Jean-Christophe Sandoz , Pierre Charnet
      Voltage-gated Ca2+ channels allow the influx of Ca2+ ions from the extracellular space upon membrane depolarization and thus serve as a transducer between membrane potential and cellular events initiated by Ca2+ transients. Most insects are predicted to possess three genes encoding Cavα, the main subunit of Ca2+ channels, and several genes encoding the two auxiliary subunits, Cavβ and Cavα2δ; however very few of these genes have been cloned so far. Here, we cloned three full-length cDNAs encoding the three Cavα subunits (AmelCav1a, AmelCav2a and AmelCav3a), a cDNA encoding a novel variant of the Cavβ subunit (AmelCavβc), and three full-length cDNAs encoding three Cavα2δ subunits (AmelCavα2δ1 to 3) of the honeybee Apis mellifera. We identified several alternative or mutually exclusive exons in the sequence of the AmelCav2 and AmelCav3 genes. Moreover, we detected a stretch of glutamine residues in the C-terminus of the AmelCav1 subunit that is reminiscent of the motif found in the human Cav2.1 subunit of patients with Spinocerebellar Ataxia type 6. All these subunits contain structural domains that have been identified as functionally important in their mammalian homologues. For the first time, we could express three insect Cavα subunits in Xenopus oocytes and we show that AmelCav1a, 2a and 3a form Ca2+ channels with distinctive properties. Notably, the co-expression of AmelCav1a or AmelCav2a with AmelCavβc and AmCavα2δ1 produces High Voltage-Activated Ca2+ channels. On the other hand, expression of AmelCav3a alone leads to Low Voltage-Activated Ca2+ channels.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Editorial Board
    • Abstract: Publication date: March 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 58




      PubDate: 2015-04-02T11:26:24Z
       
  • Digestive peptidase evolution in holometabolous insects led to a divergent
           group of enzymes in Lepidoptera
    • Abstract: Publication date: March 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 58
      Author(s): Renata O. Dias , Allegra Via , Marcelo M. Brandão , Anna Tramontano , Marcio C. Silva-Filho
      Trypsins and chymotrypsins are well-studied serine peptidases that cleave peptide bonds at the carboxyl side of basic and hydrophobic l-amino acids, respectively. These enzymes are largely responsible for the digestion of proteins. Three primary processes regulate the activity of these peptidases: secretion, precursor (zymogen) activation and substrate-binding site recognition. Here, we present a detailed phylogenetic analysis of trypsins and chymotrypsins in three orders of holometabolous insects and reveal divergent characteristics of Lepidoptera enzymes in comparison with those of Coleoptera and Diptera. In particular, trypsin subsite S1 was more hydrophilic in Lepidoptera than in Coleoptera and Diptera, whereas subsites S2–S4 were more hydrophobic, suggesting different substrate preferences. Furthermore, Lepidoptera displayed a lineage-specific trypsin group belonging only to the Noctuidae family. Evidence for facilitated trypsin auto-activation events were also observed in all the insect orders studied, with the characteristic zymogen activation motif complementary to the trypsin active site. In contrast, insect chymotrypsins did not seem to have a peculiar evolutionary history with respect to their mammal counterparts. Overall, our findings suggest that the need for fast digestion allowed holometabolous insects to evolve divergent groups of peptidases with high auto-activation rates, and highlight that the evolution of trypsins led to a most diverse group of enzymes in Lepidoptera.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • In vivo functional analysis of the Drosophila melanogaster nicotinic
           acetylcholine receptor Dα6 using the insecticide spinosad
    • Abstract: Publication date: Available online 4 March 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Jason Somers , Joseph Nguyen , Chris Lumb , Phil Batterham , Trent Perry
      The vinegar fly, Drosophila melanogaster, has been used to identify and manipulate insecticide resistance genes. The advancement of genome engineering technology and the increasing availability of pest genome sequences has increased the predictive and diagnostic capacity of the Drosophila model. The Drosophila model can be extended to investigate the basic biology of the interaction between insecticides and the proteins they target. Recently we have developed an in vivo system that permits the expression and study of key insecticide targets, the nicotinic acetylcholine receptors (nAChRs), in controlled genetic backgrounds. Here this system is used to study the interaction between the insecticide spinosad and a nAChR subunit, Dα6. Reciprocal chimeric subunits were created from Dα6 and Dα7, a subunit that does not respond to spinosad. Using the in vivo system, the Dα6/Dα7 chimeric subunits were tested for their capacity to respond to spinosad. Only the subunits containing the C-terminal region of Dα6 were able to respond to spinosad, thus confirming the importance this region for spinosad binding. A new incompletely dominant, spinosad resistance mechanism that may evolve in pest species is also examined. First generated using chemical mutagenesis, the Dα6 P146S mutation was recreated using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, the first use of this technology to introduce a resistant mutation into a controlled genetic background. Both alleles present with the same incompletely dominant, spinosad resistance phenotype, proving the P146S replacement to be the causal mutation. The proximity of the P146S mutation to the conserved Cys-loop indicates that it may impair the gating of the receptor. The results of this study enhance the understanding of nAChR structure:function relationships.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Expression of insect α6-like nicotinic acetylcholine receptors
           in Drosophila melanogaster highlights a high level of conservation
           of the receptor:spinosyn interaction
    • Abstract: Publication date: Available online 4 March 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Trent Perry , Jason Somers , Ying Ting Yang , Philip Batterham
      Insecticide research has often relied on model species for elucidating the resistance mechanisms present in the targeted pests. The accuracy and applicability of extrapolations of these laboratory findings to field conditions varies but, for target site resistance, conserved mechanisms are generally the rule rather than the exception (Perry et al., 2011). The spinosyn class of insecticides appear to fit this paradigm and are a pest control option with many uses in both crop and animal protection. Resistance to spinosyns has been identified in both laboratory-selected and field-collected pest insects. Studies using the model insect, Drosophila melanogaster, have identified the nicotinic acetylcholine receptor subunit, Dα6 as an important target of the insecticide spinosad (Perry et al., 2007; Watson et al., 2010). Field-isolated resistant strains of several agricultural pest insects provide evidence that resistance cases are often associated with mutations in orthologues to Dα6 (Baxter et al., 2010; Puinean et al., 2013). The expression of these receptors is difficult in heterologous systems. In order to examine the biology of the Dα6 receptor subunit further, we used Drosophila as a model and developed an in vivo rescue system. This allowed us to express four different isoforms of Dα6 and show that each is able to rescue the response to spinosad. Regulatory sequences upstream of the Dα6 gene able to rescue the resistance phenotype were identified. Expression of other D. melanogaster subunits revealed that the rescue phenotype appears to be Dα6 specific. We also demonstrate that expression of pest insect orthologues of Dα6 from a variety of species are capable of rescuing the spinosad response phenotype, verifying the relevance of this receptor to resistance monitoring in the field. In the absence of a robust heterologous expression system, this study presents an in vivo model that will be useful in analysing many other aspects of these receptors and their biology.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Development of neuropeptide analogs capable of traversing the integument:
           A case study using diapause hormone analogs in Helicoverpa zea
    • Abstract: Publication date: Available online 6 March 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Qirui Zhang , Ronald J. Nachman , Krzysztof Kaczmarek , Krzysztof Kierus , Janusz Zabrocki , David L. Denlinger
      Diapause hormone and its analogs terminate pupal diapause in Helicoverpa zea when injected, but if such agents are to be used as effective diapause disruptors it will be essential to develop simple techniques for administering active compounds that can exert their effect by penetrating the insect epidermis. In the current study, we used two molecules previously shown to have high diapause-terminating activity as lead molecules to rationally design and synthesize new amphiphilic compounds with modified hydrophobic components. An assay for diapause termination identified 13 active compounds with EC50's ranging from 0.9 to 46.0 pmol per pupa. Three compounds, Decyl-1963, Dodecyl-1967, and Heptyl-1965, selected from the 13 compounds most active in breaking diapause following injection, also successfully prevented newly-formed pupae from entering diapause when applied topically. These compounds feature straight-chain, aliphatic hydrocarbons from 7 to 12 carbons in length; DH analogs with either a short-chain length of 4 or an aromatic phenethyl group failed to act topically. Compared to a high diapause incidence of 80–90% in controls, diapause incidence in pupae receiving a 10 nmole topical application of Decyl-1963, Dodecyl-1967, or Heptyl-1965 dropped to 30–45%. Decyl-1963 and Dodecyl-1967 also remained effective when topically applied at the 1 nmole level. These results suggest the feasibility of developing DH agonists that can be applied topically and suggest the identity of new lead molecules for development of additional topically-active DH analogs. The ability to penetrate the insect epidermis and/or midgut lining is critical if such agents are to be considered for future use as pest management tools.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • The Lepidoptera Odorant Binding Protein gene family: Gene gain and loss
           within the GOBP/PBP complex of moths and butterflies
    • Abstract: Publication date: Available online 14 March 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Richard G. Vogt , Ewald Grosse-Wilde , Jing-Jiang Zhou
      Butterflies and moths differ significantly in their daily activities: butterflies are diurnal while moths are largely nocturnal or crepuscular. This life history difference is presumably reflected in their sensory biology, and especially the balance between the use of chemical versus visual signals. Odorant Binding Proteins (OBP) are a class of insect proteins, at least some of which are thought to orchestrate the transfer of odor molecules within an olfactory sensillum (olfactory organ), between the air and odor receptor proteins (ORs) on the olfactory neurons. A Lepidoptera specific subclass of OBPs are the GOBPs and PBPs; these were the first OBPs studied and have well documented associations with olfactory sensilla. We have used the available genomes of two moths, Manduca sexta and Bombyx mori, and two butterflies. Danaus plexippus and Heliconius melpomene, to characterize the GOBP/PBP genes, attempting to identify gene orthologs and document specific gene gain and loss. First, we identified the full repertoire of OBPs in the M. sexta genome, and compared these with the full repertoire of OBPs from the other three lepidopteran genomes, the OBPs of Drosophila melanogaster and select OBPs from other Lepidoptera. We also evaluated the tissue specific expression of the M. sexta OBPs using an available RNAseq databases. In the four lepidopteran species, GOBP2 and all PBPs reside in single gene clusters; in two species GOBP1 is documented to be nearby, about 100 kb from the cluster; all GOBP/PBP genes share a common gene structure indicating a common origin. As such, the GOBP/PBP genes form a gene complex. Our findings suggest that (1) the lepidopteran GOBP/PBP complex is a monophyletic lineage with origins deep within Lepidoptera phylogeny, (2) within this lineage PBP gene evolution is much more dynamic than GOBP gene evolution, and (3) butterflies may have lost a PBP gene that plays an important role in moth pheromone detection, correlating with a shift from olfactory (moth) to visual (butterfly) communication, at least regarding long distance mate recognition. These findings will be clarified by additional lepidopteran genomic data, but the observation that moths and butterflies share most of the PBP/GOBP genes suggests that they also share common chemosensory-based behavioral pathways.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • An investigation of binding ability of Ixodes persulcatus Schulze Salp15
           with Lyme disease spirochetes
    • Abstract: Publication date: Available online 19 March 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Yusuke Murase , Satoru Konnai , Shinji Yamada , Naftaly Githaka , Masayoshi Isezaki , Takuya Ito , Ai Takano , Shuji Ando , Hiroki Kawabata , Siro Murata , Kazuhko Ohashi
      Salp15, a 15-kDa tick salivary gland protein, has several suppressive modes of activity against host immunity and plays a critical role in the transmission of Lyme disease spirochetes in Ixodes scapularis and Ixodes ricinus, major vectors of Lyme disease in North America and Western Europe. Salp15 adheres to Borrelia burgdorferi and specifically interacts with its outer surface protein C (OspC), protecting the spirochete from antibody-mediated cytotoxicity and facilitating infection in the mice. Recently, we identified two Salp15 homologues, IperSalp15-1 and IperSalp15-2, in Ixodes persulcatus, a vector for Lyme disease in Japan. Here we describe the function of IperSalp15 in the transmission of Lyme borreliosis. To investigate the function of IperSalp15, recombinant IperSalp15-1 and IperSalp15-2 were prepared in bacterial and insect cells. Both were identified in the sera of tick-immunized hamsters, indicating that these are secretory proteins in exposed host animals. Solid-phase overlay and indirect fluorescence assays showed that IperSalp15 binds to OspC from B. burgdorferi, Borrelia garinii, and Borrelia afzelii. Importantly, this binding likely protected the spirochete from antibody-mediated cytotoxicity in vitro. In addition, IperSalp15 tended to facilitate infection in mice. Thus, further characterization of tick molecules, including IperSalp15, could lead to the development of new strategies to prevent the transmission of tick-borne diseases.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Myofilament proteins in the synchronous flight muscles of Manduca sexta
           show both similarities and differences to Drosophila melanogaster
    • Abstract: Publication date: Available online 19 March 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Agnes Ayme-Southgate , Samuel Feldman , Diana Fulmer
      Insect flight muscles have been classified as either synchronous or asynchronous based on the coupling between excitation and contraction. In the moth Manduca sexta, the flight muscles are synchronous and do not display stretch activation, which is a property of asynchronous muscles. We annotated the M. sexta genes encoding the major myofibrillar proteins and analyzed their isoform pattern and expression. Comparison with the homologous genes in Drosophila melanogaster indicates both difference and similarities. For proteins such as myosin heavy chain, tropomyosin, and troponin I the availability and number of potential variants generated by alternative spicing is mostly conserved between the two insects. The exon usage associated with flight muscles indicates that some exon sets are similarly used in the two insects, whereas others diverge. For actin the number of individual genes is different and there is no evidence for a flight muscle specific isoform. In contrast for troponin C, the number of genes is similar, as well as the isoform composition in flight muscles despite the different calcium regulation. Both troponin I and tropomyosin can include COOH-terminal hydrophobic extensions similar to tropomyosinH and troponinH found in D. melanogaster and the honeybee.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Characterization of plasma membrane associated type II
           α-d-mannosidase and β-N-acetylglucosaminidase of Aquarius
           remigis sperm
    • Abstract: Publication date: Available online 20 March 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Kimberly Stephens , Catherine D. Thaler , Richard A. Cardullo
      For successful fertilization to occur, molecules on the surface of male and female gametes must recognize each other in a complementary manner. In some organisms, sperm possess a glycosidase on the plasma membrane overlying the head while eggs have glycoproteins that are recognized by those glycosidases resulting in sperm-egg recognition. In this study, two glycosidases, mannosidase and β-N-acetylglucosaminidase, were identified and biochemically characterized in Aquarius remigis sperm. The mannosidase had a Km of 2.36 ± 0.19 mM, a Vmax of 27.49 ± 0.88 pmol/min and a Hill coefficient of 0.94 ± 0.18 at its optimal pH of 7.0. The mannosidase was extracted most efficiently with CHAPSO but was also efficiently extracted with sodium chloride. Mannosidase activity was effectively inhibited by swainsonine, but not by kifunesine, and was significantly reduced in the presence of Mn2+ and Mg2+, but not Zn2+. N-acetylglucosaminidase had a Km of 0.093 ± 0.01 mM, a Vmax of 153.80 ± 2.97 pmol/min and a Hill coefficient of 0.96 ± 0.63 at its optimal pH of 7.0. N-acetylglucosaminidase was extracted most efficiently with potassium iodide but was also efficiently extracted with Triton X-100 and Zn2+, but not Ca2+, Co2+, Mn2+ or Mg2+, significantly inhibited its activity. Taken together, these results indicate that the A. remigis sperm surface contains at least two glycosidases that may recognize complementary glycoconjugates on the surface of water strider eggs.


      PubDate: 2015-04-02T11:26:24Z
       
  • Cysteine cathepsins as digestive enzymes in the spider Nephilengys
           cruentata
    • Abstract: Publication date: Available online 25 March 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Felipe J. Fuzita , Martijn W.H. Pinkse , Peter D.E.M. Verhaert , Adriana R. Lopes
      Cysteine cathepsins are widely spread on living organisms associated to protein degradation in lysosomes, but some groups of Arthropoda (Heteroptera, Coleoptera, Crustacea and Acari) present these enzymes related to digestion of the meal proteins. Although spiders combine a mechanism of extra-oral with intracellular digestion, the sporadic studies on this subject were mainly concerned with the digestive fluid (DF) analysis. Thus, a more complete scenario of the digestive process in spiders is still lacking in the literature. In this paper we describe the identification and characterization of cysteine cathepsins in the midgut diverticula (MD) and DF of the spider Nephilengys cruentata by using enzymological assays. Furthermore, qualitative and quantitative data from transcriptomic followed by proteomic experiments were used together with biochemical assays for results interpretation. Five cathepsins L, one cathepsin F and one cathepsin B were identified by mass spectrometry, with cathepsins L1 (NcCTSL1) and 2 (NcCTSL2) as the most abundant enzymes. The native cysteine cathepsins presented acidic characteristics such as pH optima of 5.5, pH stability in acidic range and zymogen conversion to the mature form after in vitro acidification. NcCTSL1 seems to be a lysosomal enzyme with its recombinant form displaying acidic characteristics as the native ones and being inhibited by pepstatin. Evolutionarily, arachnid cathepsin L may have acquired different roles but its use for digestion is a common feature to studied taxa. Now a more elucidative picture of the digestive process in spiders can be depicted, with trypsins and astacins acting extra-orally under alkaline conditions whereas cysteine cathepsins will act in an acidic environment, likely in the digestive vacuoles or lysosome-like vesicles.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Quantification of symbiotic contributions to lower termite lignocellulose
           digestion using antimicrobial treatments
    • Abstract: Publication date: April 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 59
      Author(s): Brittany F. Peterson , Hannah L. Stewart , Michael E. Scharf
      Animal-microbe co-evolution and symbiosis are broadly distributed across the animal kingdom. Insects form a myriad of associations with microbes ranging from vectoring of pathogens to intracellular, mutualistic relationships. Lower termites are key models for insect-microbe symbiosis because of the diversity, complexity and functionality of their unique tripartite symbiosis. This collaboration allows termites to live on a diet of nitrogen-poor lignocellulose. Recent functional investigations of lignocellulose digestion in lower termites have primarily focused on the contributions of the eukaryotic members of the termite holobiont (termite and protist). Here, using multiple antimicrobial treatments, we induced differing degrees of dysbiosis in the termite gut, leading to variably altered symbiont abundance and diversity, and lignocellulolytic capacity. Although protists are clearly affected by antimicrobial treatments, our findings provide novel evidence that the removal of distinct groups of bacteria partially reduces, but does not abolish, the saccharolytic potential of the termite gut holobiont. This is specifically manifested by reductions of 23–47% and 30–52% in glucose and xylose yields respectively from complex lignocellulose. Thus, all members of the lower termite holobiont (termite, protist and prokaryotes) are involved in the process of efficient, sustained lignocellulase activity. This unprecedented quantification of the relative importance of prokaryotes in this system emphasizes the collaborative nature of the termite holobiont, and the relevance of lower termites as models for inter-domain symbioses.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Ostrinia furnacalis serpin-3 regulates melanization cascade by inhibiting
           a prophenoloxidase-activating protease
    • Abstract: Publication date: Available online 25 March 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Yuan Chu , Fan Zhou , Yang Liu , Guirong Wang , Chunju An
      Serine protease cascade-mediated prophenolxidase activation is a prominent innate immune response in insect defense against the invading pathogens. Serpins regulate this reaction to avoid excessive activation. However, the function of serpins in most insect species, especially in some non-model agriculture insect pests, is largely unknown. We here cloned a full-length cDNA for a serpin, named as serpin-3, from Asian corn borer, Ostrinia furnacalis (Guenée). The open reading frame of serpin-3 encodes 462-amino acid residue protein with a 19-residue signal peptide. It contains a reactive center loop strikingly similar to the proteolytic activation site in prophenoloxidase. Sequence comparison indicates that O. furnacalis serpin-3 is an apparent ortholog of Manduca sexta serpin-3, a defined negative regulator of melanization reaction. Serpin-3 mRNA and protein levels significantly increase after a bacterial or fungal injection. Recombinant serpin-3 efficiently blocks prophenoloxidase activation in larval plasma in a concentration-dependent manner. It forms SDS-stable complexes with serine protease 13 (SP13), and prevents SP13 from cleaving prophenoloxidase. Injection of recombinant serpin-3 into larvae results in decreased fungi-induced melanin synthesis and reduced the expression of attacin, cecropin, gloverin, and peptidoglycan recognition protein-1 genes in the fat body. Altogether, serpin-3 plays important roles in the regulation of prophenoloxidase activation and antimicrobial peptide production in O. furnacalis larvae.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Editorial Board
    • Abstract: Publication date: February 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 57




      PubDate: 2015-04-02T11:26:24Z
       
  • Identification and functional characterization of FGLamide-related
           allatostatin receptor in Rhodnius prolixus
    • Abstract: Publication date: February 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 57
      Author(s): Meet Zandawala , Ian Orchard
      FGLamide-related ASTs (FGLa/ASTs) are a family of brain/gut peptides with numerous physiological roles, including inhibition of juvenile hormone (JH) biosynthesis by the corpora allata and inhibition of visceral muscle contraction. FGLa/ASTs mediate their effects by binding to a rhodopsin-like G-protein coupled receptor that is evolutionarily related to the vertebrate galanin receptor. Here we determine the cDNA sequence encoding FGLa/AST receptor (FGLa/AST-R) from the Chagas disease vector, Rhodnius prolixus (Rhopr-FGLa/AST-R), determine its spatial expression pattern using quantitative PCR and functionally characterize the receptor using a heterologous assay. Our expression analysis indicates that Rhopr-FGLa/AST-R is highly expressed in the central nervous system. The receptor is also expressed in various peripheral tissues including the dorsal vessel, midgut, hindgut and reproductive tissues of both males and females, suggesting a role in processes associated with feeding and reproduction. The possible involvement of Rhopr-FGLa/ASTs in the inhibition of JH biosynthesis is also implicated due to presence of the receptor transcript in the R. prolixus corpora cardiaca/corpora allata complex. The functional assay showed that various Rhopr-FGLa/ASTs activate the receptor, with EC50 values for the response in the nanomolar range. Moreover, Rhopr-FGLa/AST-R can couple with Gq alpha subunits and cause an increase in intracellular calcium concentration. Lastly, we tested various FGLa/AST analogs in our heterologous assay. These compounds also activated the receptor and thus have the potential to serve as insect growth regulators and aid in pest control.


      PubDate: 2015-04-02T11:26:24Z
       
  • A genome-wide analysis of antimicrobial effector genes and their
           transcription patterns in Manduca sexta
    • Abstract: Publication date: Available online 3 February 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Yan He , Xiaolong Cao , Kai Li , Yingxia Hu , Yun-ru Chen , Gary Blissard , Michael R. Kanost , Haobo Jiang
      Antimicrobial proteins/peptides (AMPs) are effectors of innate immune systems against pathogen infection in multicellular organisms. Over half of the AMPs reported so far come from insects, and these effectors act in concert to suppress or kill bacteria, fungi, viruses, and parasites. In this work, we have identified 86 AMP genes in the Manduca sexta genome, most of which seem likely to be functional. They encode 15 cecropins, 6 moricins, 6 defensins, 3 gallerimycins, 4 X-tox splicing variants, 14 diapausins, 15 whey acidic protein homologs, 11 attacins, 1 gloverin, 4 lebocins, 6 lysozyme-related proteins, and 4 transferrins. Some of these genes (e.g. attacins, cecropins) constitute large clusters, likely arising after rounds of gene duplication. We compared the amino acid sequences of M. sexta AMPs with their homologs in other insects to reveal conserved structural features and phylogenetic relationships. Expression data showed that many of them are synthesized in fat body and midgut during the larval-pupal molt. Certain genes contain one or more predicted κB binding sites and other regulatory elements in their promoter regions, which may account for the dramatic mRNA level increases in fat body and hemocytes after an immune challenge. Consistent with these strong mRNA increases, many AMPs become highly abundant in the larval plasma at 24 h after the challenge, as demonstrated in our previous peptidomic study. Taken together, these data suggest the existence of a large repertoire of AMPs in M. sexta, whose expression is up-regulated via immune signaling pathways to fight off invading pathogens in a coordinated manner.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Folding behavior of four silks of giant honey bee reflects the
           evolutionary conservation of aculeate silk proteins
    • Abstract: Publication date: April 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 59
      Author(s): Jakkrawut Maitip , Holly E. Trueman , Benjamin D. Kaehler , Gavin A. Huttley , Panuwan Chantawannakul , Tara D. Sutherland
      Multiple gene duplication events in the precursor of the Aculeata (bees, ants, hornets) gave rise to four silk genes. Whilst these homologs encode proteins with similar amino acid composition and coiled coil structure, the retention of all four homologs implies they each are important. In this study we identified, produced and characterized the four silk proteins from Apis dorsata, the giant Asian honeybee. The proteins were readily purified, allowing us to investigate the folding behavior of solutions of individual proteins in comparison to mixtures of all four proteins at concentrations where they assemble into their native coiled coil structure. In contrast to solutions of any one protein type, solutions of a mixture of the four proteins formed coiled coils that were stable against dilution and detergent denaturation. The results are consistent with the formation of a heteromeric coiled coil protein complex. The mechanism of silk protein coiled coil formation and evolution is discussed in light of these results.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Identification of Bacillus thuringiensis Cry3Aa toxin domain II loop 1 as
           the binding site of Tenebrio molitor cadherin repeat CR12
    • Abstract: Publication date: April 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 59
      Author(s): Fernando Zúñiga-Navarrete , Isabel Gómez , Guadalupe Peña , Itzel Amaro , Ernesto Ortíz , Baltazar Becerril , Jorge E. Ibarra , Alejandra Bravo , Mario Soberón
      Bacillus thuringiensis Cry toxins exert their toxic effect by specific recognition of larval midgut proteins leading to oligomerization of the toxin, membrane insertion and pore formation. The exposed domain II loop regions of Cry toxins have been shown to be involved in receptor binding. Insect cadherins have shown to be functionally involved in toxin binding facilitating toxin oligomerization. Here, we isolated a VHH (VHHA5) antibody by phage display that binds Cry3Aa loop 1 and competed with the binding of Cry3Aa to Tenebrio molitor brush border membranes. VHHA5 also competed with the binding of Cry3Aa to a cadherin fragment (CR12) that was previously shown to be involved in binding and toxicity of Cry3Aa, indicating that Cry3Aa binds CR12 through domain II loop 1. Moreover, we show that a loop 1 mutant, previously characterized to have increased toxicity to T. molitor, displayed a correlative enhanced binding affinity to T. molitor CR12 and to VHHA5. These results show that Cry3Aa domain II loop 1 is a binding site of CR12 T. molitor cadherin.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Multicopper oxidase-1 orthologs from diverse insect species have ascorbate
           oxidase activity
    • Abstract: Publication date: April 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 59
      Author(s): Zeyu Peng , Neal T. Dittmer , Minglin Lang , Lisa M. Brummett , Caroline L. Braun , Lawrence C. Davis , Michael R. Kanost , Maureen J. Gorman
      Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Epoxide hydrolase activities and epoxy fatty acids in the mosquito Culex
           quinquefasciatus
    • Abstract: Publication date: April 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 59
      Author(s): Jiawen Xu , Christophe Morisseau , Jun Yang , Dadala M. Mamatha , Bruce D. Hammock
      Culex mosquitoes have emerged as important model organisms for mosquito biology, and are disease vectors for multiple mosquito-borne pathogens, including West Nile virus. We characterized epoxide hydrolase activities in the mosquito Culex quinquefasciatus, which suggested multiple forms of epoxide hydrolases were present. We found EH activities on epoxy eicosatrienoic acids (EETs). EETs and other eicosanoids are well-established lipid signaling molecules in vertebrates. We showed EETs can be synthesized in vitro from arachidonic acids by mosquito lysate, and EETs were also detected in vivo both in larvae and adult mosquitoes by LC-MS/MS. The EH activities on EETs can be induced by blood feeding, and the highest activity was observed in the midgut of female mosquitoes. The enzyme activities on EETs can be inhibited by urea-based inhibitors designed for mammalian soluble epoxide hydrolases (sEH). The sEH inhibitors have been shown to play diverse biological roles in mammalian systems, and they can be useful tools to study the function of EETs in mosquitoes. Besides juvenile hormone metabolism and detoxification, insect epoxide hydrolases may also play a role in regulating lipid signaling molecules, such as EETs and other epoxy fatty acids, synthesized in vivo or obtained from blood feeding by female mosquitoes.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Down-regulation of a novel ABC transporter gene (Pxwhite) is associated
           with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.)
    • Abstract: Publication date: April 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 59
      Author(s): Zhaojiang Guo , Shi Kang , Xun Zhu , Jixing Xia , Qingjun Wu , Shaoli Wang , Wen Xie , Youjun Zhang
      Biopesticides or transgenic crops based on Cry toxins from the soil bacterium Bacillus thuringiensis (Bt) effectively control agricultural insect pests. The sustainable use of Bt biopesticides and Bt crops is threatened, however, by the development of Cry resistance in the target pests. The diamondback moth, Plutella xylostella (L.), is the first pest that developed resistance to a Bt biopesticide in the field, and a recent study has shown that the resistance of P. xylostella to Cry1Ac is caused by a mutation in an ATP-binding cassette (ABC) transporter gene (ABCC2). In this study, we report that down-regulation of a novel ABC transporter gene from ABCG subfamily (Pxwhite) is associated with Cry1Ac resistance in P. xylostella. The full-length cDNA sequence of Pxwhite was cloned and analyzed. Spatial-temporal expression detection revealed that Pxwhite was expressed in all tissues and developmental stages, and highest expressed in Malpighian tubule tissue and in egg stage. Sequence variation analysis of Pxwhite indicated the absence of constant non-synonymous mutations between susceptible and resistant strains, whereas midgut transcript analysis showed that Pxwhite was remarkably reduced in all resistant strains and further reduced when larvae of the moderately resistant SZ-R strain were subjected to selection with Cry1Ac toxin. Furthermore, RNA interference (RNAi)-mediated suppression of Pxwhite gene expression significantly reduced larval susceptibility to Cry1Ac toxin, and genetic linkage analysis confirmed that down-regulation of Pxwhite gene is tightly linked to Cry1Ac resistance in P. xylostella. To our knowledge, this is the first report indicating that Pxwhite gene is involved in Cry1Ac resistance in P. xylostella.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Editorial Board
    • Abstract: Publication date: April 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 59




      PubDate: 2015-04-02T11:26:24Z
       
  • Endogenous expression of a Bt toxin receptor in the Cry1Ac-susceptible
           insect cell line and its synergistic effect with cadherin on
           cytotoxicity of activated Cry1Ac
    • Abstract: Publication date: April 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 59
      Author(s): Zuwen Chen , Fei He , Yutao Xiao , Chenxi Liu , Jianghuai Li , Yongbo Yang , Hui Ai , Jianxin Peng , Huazhu Hong , Kaiyu Liu
      Although many insect cell lines derived from various tissues are available, it is unclear whether endogenous receptors of Bacillus thuringiensis (Bt) crystal toxins are expressed in these cell lines. In the present study, we demonstrated that the ovaries-derived Spodoptera litura Sl-HP cell line was susceptible to activated Cry1Ac although larvae of S. litura are not susceptible to the toxin. Assays of the transcriptome revealed that thirteen ATP-binding cassette transporter genes (ABC) were expressed at different levels in this cell line. Of these, the SlABCC3 shared 52–55% amino acid sequence identity with the known Bt toxin receptor ABCC2. RNAi-mediated knockdown targeting SlABCC3 significantly decreased the susceptibility of Sl-HP cells to activated Cry1Ac. Over-expression of the gene strongly increased the susceptibility of Trichoplusia ni Hi5 cells to the toxin. Not only was SlABCC3 comparable to the heterologously expressed Helicoverpa armigera Hacadherin on the receptor-mediated cytotoxicity of activated Cry1Ac to Hi5 cells, but also SlABCC3 and Hacadherin had a strong synergistic effect on cytotoxicity of activated Cry1Ac. These results suggested that Bt toxin receptors-expressing insect cell lines can be used as an alternative model for evaluating cytotoxicity of Bt toxins and studying their mechanisms of action.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Adaptive regulation of digestive serine proteases in the larval midgut of
           Helicoverpa armigera in response to a plant protease inhibitor
    • Abstract: Publication date: April 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 59
      Author(s): Suyog S. Kuwar , Yannick Pauchet , Heiko Vogel , David G. Heckel
      Protease inhibitors (PIs) are direct defenses induced by plants in response to herbivory. PIs reduce herbivore digestive efficiency by inhibiting insects' digestive proteases; in turn insects can adapt to PIs by generally increasing protease levels and/or by inducing the expression of PI-insensitive proteases. Helicoverpa armigera, a highly polyphagous lepidopteran insect pest, is known for its ability to adapt to PIs. To advance our molecular and functional understanding of the regulation of digestive proteases, we performed a comprehensive gene expression experiment of H. armigera exposed to soybean Kunitz trypsin inhibitor (SKTI) using a custom-designed microarray. We observed poor larval growth on the SKTI diet until 24 h, however after 48 h larvae attained comparable weight to that of control diet. Although initially the expression of several trypsins and chymotrypsins increased, eventually the expression of some trypsins decreased, while the number of chymotrypsins and their expression increased in response to SKTI. Some of the diverged serine proteases were also differentially expressed. The expression of serine proteases observed using microarrays were further validated by qRT-PCR at different time points (12, 24, 48, 72 and 96 h) after the start of SKTI ingestion. There were also large changes in transcriptional patterns over time in the control diet. Carbohydrate metabolism and immune defense genes were affected in response to SKTI ingestion. Enzyme assays revealed reduced trypsin-specific activity and increased chymotrypsin-specific activity in response to SKTI. The differential regulation of trypsins and chymotrypsins at the transcript and protein levels accompanying a rebound in growth rate indicates that induction of SKTI-insensitive proteases is an effective strategy of H. armigera in coping with this protease inhibitor in its diet.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • A gustatory receptor tuned to d-fructose in antennal sensilla chaetica of
           Helicoverpa armigera
    • Abstract: Publication date: May 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 60
      Author(s): Xiao-Jing Jiang , Chao Ning , Hao Guo , Yan-Yan Jia , Ling-Qiao Huang , Ming-Jing Qu , Chen-Zhu Wang
      Insect gustatory systems play important roles in food selection and feeding behaviors. In spite of the enormous progress in understanding gustation in Drosophila, for other insects one of the key elements in gustatory signaling, the gustatory receptor (GR), is still elusive. In this study, we report that fructose elicits behavioral and physiological responses in Helicoverpa armigera (Harm) to fructose and identify the gustatory receptor for this sugar. Using the proboscis extension reflex (PER) assays we found that females respond to fructose following stimulation of the distal part of the antenna, where we have identified contact chemosensilla tuned to fructose in tip recording experiments. We isolated three full-length cDNAs encoding candidate HarmGRs based on comparison with orthologous GR sequences in Heliothis virescens and functionally characterized the responses of HarmGR4 to 15 chemicals when this receptor was expressed in Xenopus oocytes with two-electrode voltage-clamp recording. Among the tastants tested, the oocytes dose-dependently responded only to d-fructose (EC50 = 0.045 M). By combining behavioral, electrophysiological and molecular approaches, these results provide basic knowledge for further research on the molecular mechanisms of gustatory reception.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Distinct modulating effects of TipE-homologs 2–4 on Drosophila
           sodium channel splice variants
    • Abstract: Publication date: May 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 60
      Author(s): Lingxin Wang , Yuzhe Du , Yoshiko Nomura , Ke Dong
      The Drosophila melanogaster TipE protein is thought to be an insect sodium channel auxiliary subunit functionally analogous to the β subunits of mammalian sodium channels. Besides TipE, four TipE-homologous proteins (TEH1–4) have been identified. It has been reported that TipE and TEH1 have both common and distinct effects on the gating properties of splice variants of the Drosophila sodium channel, DmNav. However, limited information is available on the effects of TEH2, TEH3 and TEH4 on the function of DmNav channel variants. In this study, we found that TEH2 increased the amplitude of peak current, but did not alter the gating properties of three examined DmNav splice variants expressed in Xenopus oocytes. In contrast, TEH4 had no effect on peak current, yet altered the gating properties of all three channel variants. Furthermore, TEH4 enhanced persistent current and slowed sodium current decay. The effects of TEH3 on DmNav variants are similar to those of TEH4, but the data were collected from a small portion of oocytes because co-expression of TEH3 with DmNav variants generated a large leak current in the majority of oocytes examined. In addition, TEH3 and TEH4 enhanced the expression of endogenous currents in oocytes. Taken together, our results reveal distinct roles of TEH proteins in modulating the function of sodium channels and suggest that TEH proteins might provide an important layer of regulation of membrane excitability in vivo. Our results also raise an intriguing possibility of TEH3/TEH4 as auxiliary subunits of other voltage-gated ion channels besides sodium channels.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Chitosan/DsiRNA nanoparticle targeting identifies AgCad1 cadherin in
           Anopheles gambiae larvae as an in vivo receptor of Cry11Ba toxin of
           Bacillus thuringiensis subsp. jegathesan
    • Abstract: Publication date: May 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 60
      Author(s): Qi Zhang , Gang Hua , Michael J. Adang
      The Cry11Ba protein of Bacillus thuringiensis subsp. jegathesan crystals has uniquely high toxicity against a spectrum of mosquito species. The high potency of Cry11Ba against Anopheles gambiae is caused by recognition of multiple midgut proteins including glycosyl phosphatidylinositol-anchored alkaline phosphatase AgALP1, aminopeptidase AgAPN2, α-amylase AgAmy1 and α-glucosidase Agm3 that bind Cry11Ba with high affinity and function as putative receptors. The cadherin AgCad2 in An. gambiae larvae also binds Cry11Ba with high affinity (K d = 12 nM) and is considered a putative receptor, while cadherin AgCad1 bound Cry11Ba with low affinity (K d = 766 nM), a property not supportive for a Cry11Ba receptor role. Here, we show the in vivo involvement of AgCad1 in Cry11Ba toxicity in An. gambiae larvae using chitosan/DsiRNA nanoparticles to inhibit AgCad expression in larvae. Cry11Ba was significantly less toxic to AgCad1-silenced larvae than to control larvae. Because AgCad1 was co-suppressed by AgCad2 DsRNAi, the involvement of AgCad2 in Cry11Ba toxicity could not be ascertained. The ratio of AgCad1:AgCad2 transcript level is 36:1 for gut tissue in 4th instar larvae. Silencing AgCad expression had no effect on transcript levels of other binding receptors of Cry11Ba. We conclude that AgCad1 and possibly AgCad2 in An. gambiae larvae are functional receptors of Cry11Ba toxin in vivo.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Molecular and pharmacological characterization of the Chelicerata
           pyrokinin receptor from the southern cattle tick, Rhipicephalus
           (Boophilus) microplus
    • Abstract: Publication date: May 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 60
      Author(s): Yunlong Yang , Ronald J. Nachman , Patricia V. Pietrantonio
      We identified the first pyrokinin receptor (Rhimi-PKR) in Chelicerata and analyzed structure-activity relationships of cognate ligand neuropeptides and their analogs. Based on comparative and phylogenetic analyses, this receptor, which we cloned from larvae of the cattle tick Rhipicephalus microplus (Acari: Ixodidae), is the ortholog of the insect pyrokinin (PK)/pheromone biosynthesis activating neuropeptide (PBAN)/diapause hormone (DH) neuropeptide family receptor. Rhimi-PKR functional analyses using calcium bioluminescence were performed with a developed stable recombinant CHO-K1 cell line. Rhimi-PKR was activated by four endogenous PKs from the Lyme disease vector, the tick Ixodes scapularis (EC50s range: 85.4 nM-546 nM), and weakly by another tick PRX-amide peptide, periviscerokinin (PVK) (EC50 = 24.5 μM). PK analogs with substitutions of leucine, isoleucine or valine at the C-terminus for three tick PK peptides, Ixosc-PK1, Ixosc-PK2, and Ixosc-PK3, retained their potency on Rhimi-PKR. Therefore, Rhimi-PKR is less selective and substantially more tolerant than insect PK receptors of C-terminal substitutions of leucine to isoleucine or valine, a key structural feature that serves to distinguish insect PK from PVK/CAP2b receptors. In females, ovary and synganglion had the highest Rhimi-PKR relative transcript abundance followed by the rectal sac, salivary glands, Malpighian tubules, and midgut. This is the first pharmacological analysis of a PK/PBAN/DH-like receptor from the Chelicerata, which will now permit the discovery of the endocrinological roles of this neuropeptide family in vectors of vertebrate pathogens.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Knickkopf and retroactive proteins are required for formation of laminar
           serosal procuticle during embryonic development of Tribolium castaneum
    • Abstract: Publication date: May 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 60
      Author(s): Sujata S. Chaudhari , Mi Young Noh , Bernard Moussian , Charles A. Specht , Karl J. Kramer , Richard W. Beeman , Yasuyuki Arakane , Subbaratnam Muthukrishnan
      Chitin, a homopolymer of β-1-4-linked N-acetylglucosamine synthesized by chitin synthase A (Chs-A), is organized in the procuticle of the postembryonic cuticle or exoskeleton, which is composed of laminae stacked parallel to the cell surface to give stability and integrity to the underlying insect epidermal and other tissues. Our previous work has revealed an important role for two proteins from Tribolium castaneum named Knickkopf (TcKnk) and Retroactive (TcRtv) in postembryonic cuticular chitin maintenance. TcKnk and TcRtv were shown to be required for protection and organization of newly synthesized procuticular chitin. To study the functions of TcKnk and TcRtv in serosal and larval cuticles produced during embryogenesis in T. castaneum, dsRNAs specific for these two genes were injected into two week-old adult females. The effects of dsRNA treatment on ovarial integrity, oviposition, egg hatching and adult survival were determined. Insects treated with dsRNA for chitin synthase-A (TcChs-A) and tryptophan oxygenase (TcVer) were used as positive and negative controls for these experiments, respectively. Like TcChs-A RNAi, injection of dsRNA for TcKnk or TcRtv into adult females exhibited no adult lethality and oviposition was normal. However, a vast majority of the embryos did not hatch. The remaining (∼10%) of the embryos hatched into first instar larvae that died without molting to the second instar. Chitin content analysis following TcKnk and TcRtv parental RNAi revealed approximately 50% reduction in chitin content of eggs in comparison with control TcVer RNAi, whereas TcChs-A dsRNA-treatment led to >90% loss of chitin. Furthermore, transmission electron microscopic (TEM) analysis of serosal cuticle from TcChs-A, TcKnk and TcRtv dsRNA-treated insects revealed a complete absence of laminar organization of serosal (and larval) procuticle in comparison with TcVer dsRNA-treated controls, which exhibited normal laminar organization of procuticular chitin. The results of this study demonstrate that in addition to their essential roles in maintenance and organization of chitin in epidermal cuticle in larval and later stages of insect development, TcKnk and TcRtv also are required for egg hatch, chitin maintenance and laminar organization of both serosal and larval cuticle during embryonic development of T. castaneum.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Elucidation of the serosal cuticle machinery in the beetle Tribolium by
           RNA sequencing and functional analysis of Knickkopf1, Retroactive and
           Laccase2
    • Abstract: Publication date: May 2015
      Source:Insect Biochemistry and Molecular Biology, Volume 60
      Author(s): Chris G.C. Jacobs , Nora Braak , Gerda E.M. Lamers , Maurijn van der Zee
      Insects have been extraordinary successful in colonizing terrestrial habitats and this success is partly due to a protective cuticle that mainly contains chitin and proteins. The cuticle has been well studied in larvae and adults, but little attention has been paid to the cuticle of the egg. This cuticle is secreted by the serosa, an extraembryonic epithelium that surrounds the yolk and embryo in all insect eggs, but was lost in the Schizophoran flies to which Drosophila belongs. We therefore set out to investigate serosal cuticle formation and function in a beetle (Tribolium castaneum) using RNAi-mediated knockdown of three candidate genes known to structure chitin in the adult cuticle, and we aimed to identify other serosal cuticle genes using RNA sequencing. Knockdown of Knickkopf (TcKnk-1) or Retroactive (TcRtv) affects the laminar structure of the serosal cuticle, as revealed by Transmission Electron Microscopy in knockdown eggs. In the absence of this laminar structure, significantly fewer eggs survive at low humidity compared to wild-type eggs. Survival in dry conditions is also adversely affected when cross-linking among proteins and chitin is prevented by Laccase2 (TcLac-2) RNAi. Finally, we compare the transcriptomes of wild-type eggs to serosa-less eggs and find serosa-biased expression of 21 cuticle-related genes including structural components, chitin deacetylases and chitinases. Our data indicate that the serosal cuticle utilizes the same machinery for structuring the cuticle as adults. We demonstrate that the structure of the cuticle is crucial for desiccation resistance, and we put forward the serosal cuticle of Tribolium as an excellent model to study the ecological properties of the insect cuticle.
      Graphical abstract image

      PubDate: 2015-04-02T11:26:24Z
       
  • Silencing the odorant receptor co-receptor RproOrco affects the physiology
           and behavior of the Chagas disease vector Rhodnius prolixus
    • Abstract: Publication date: Available online 4 March 2015
      Source:Insect Biochemistry and Molecular Biology
      Author(s): Thiago A. Franco , Daniele S. Oliveira , Monica F. Moreira , Walter S. Leal , Ana C.A. Melo
      Olfaction is one of the main sensory modalities that allow insects to interpret their environment. Several proteins, including odorant-binding proteins (OBPs) and odorant receptors (ORs), are involved in this process. Odorant receptors are ion channels formed by a binding unit OR and an odorant receptor co-receptor (Orco). The main goal of this study was to characterize the Orco gene of Rhodnius prolixus (RproOrco) and to infer its biological functions using gene silencing. The full-length RproOrco gene sequence was downloaded from VectorBase. This gene has 7 introns and is located in the genome SuperContig GL563069: 1,017,713-1,023,165. RproOrco encodes a protein of 473 amino acids, with predicted 7 transmembrane domains, and is highly expressed in the antennae during all R. prolixus developmental stages. The RNAi technique effectively silenced RproOrco, reducing the gene’s expression by approximately 73%. Interestingly, the effect of gene silencing persisted for more than 100 days, indicating a prolonged effect of dsRNA that was maintained even after molting. The phenotypic effects of silencing involved the following: (1) loss of the ability to find a vertebrate host in a timely manner, (2) decreased ingested blood volume, (3) delayed and decreased molt rate, (4) increased mortality rate, and (5) decreased egg laying. Our data strongly suggest that dsOrco disrupts R. prolixus host-finding behavior, which is further reflected in the blood ingestion, molting, mortality, and egg laying data. This study clearly demonstrates that Orco is an excellent target for controlling triatomine populations. Thus, the data presented here open new possibilities for the control of vector-borne diseases.
      Graphical abstract image

      PubDate: 2015-03-05T15:01:14Z
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2015