for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> BIOLOGY (Total: 3003 journals)
    - BIOCHEMISTRY (237 journals)
    - BIOENGINEERING (108 journals)
    - BIOLOGY (1427 journals)
    - BIOPHYSICS (46 journals)
    - BIOTECHNOLOGY (218 journals)
    - BOTANY (220 journals)
    - CYTOLOGY AND HISTOLOGY (28 journals)
    - ENTOMOLOGY (63 journals)
    - GENETICS (162 journals)
    - MICROBIOLOGY (256 journals)
    - MICROSCOPY (10 journals)
    - ORNITHOLOGY (25 journals)
    - PHYSIOLOGY (70 journals)
    - ZOOLOGY (133 journals)

BIOCHEMISTRY (237 journals)                  1 2 | Last

Showing 1 - 200 of 237 Journals sorted alphabetically
AAPS PharmSciTech     Hybrid Journal   (Followers: 6)
Acetic Acid Bacteria     Open Access   (Followers: 2)
ACS Central Science     Open Access   (Followers: 7)
ACS Chemical Biology     Full-text available via subscription   (Followers: 256)
ACS Chemical Neuroscience     Full-text available via subscription   (Followers: 18)
Acta Biochimica Polonica     Open Access  
Acta Crystallographica Section D : Biological Crystallography     Hybrid Journal   (Followers: 9)
Acta Crystallographica Section F: Structural Biology Communications     Hybrid Journal   (Followers: 8)
Advances and Applications in Bioinformatics and Chemistry     Open Access   (Followers: 10)
Advances in Biological Chemistry     Open Access   (Followers: 7)
Advances in Carbohydrate Chemistry and Biochemistry     Full-text available via subscription   (Followers: 9)
Advances in Plant Biochemistry and Molecular Biology     Full-text available via subscription   (Followers: 8)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 20)
African Journal of Biochemistry Research     Open Access   (Followers: 1)
African Journal of Chemical Education     Open Access   (Followers: 2)
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 3)
American Journal of Biochemistry     Open Access   (Followers: 8)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 67)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 14)
American Journal of Polymer Science     Open Access   (Followers: 26)
Amino Acids     Hybrid Journal   (Followers: 8)
Analytical and Bioanalytical Chemistry Research     Open Access  
Analytical Biochemistry     Hybrid Journal   (Followers: 167)
Angiogenesis     Hybrid Journal   (Followers: 3)
Annals of Clinical Biochemistry     Hybrid Journal   (Followers: 8)
Annual Review of Biochemistry     Full-text available via subscription   (Followers: 55)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 12)
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 44)
Applied Biochemistry and Microbiology     Hybrid Journal   (Followers: 17)
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 7)
Archives of Biochemistry and Biophysics     Hybrid Journal   (Followers: 20)
Archives of Insect Biochemistry and Physiology     Hybrid Journal  
Archives Of Physiology And Biochemistry     Hybrid Journal   (Followers: 1)
Asian Journal of Biochemistry     Open Access   (Followers: 1)
Bangladesh Journal of Medical Biochemistry     Open Access   (Followers: 3)
BBA Clinical     Open Access  
BBR : Biochemistry and Biotechnology Reports     Open Access   (Followers: 4)
Biocatalysis     Open Access  
Biochemical and Biophysical Research Communications     Hybrid Journal   (Followers: 21)
Biochemical and Molecular Medicine     Full-text available via subscription   (Followers: 4)
Biochemical Compounds     Open Access  
Biochemical Engineering Journal     Hybrid Journal   (Followers: 14)
Biochemical Genetics     Hybrid Journal   (Followers: 3)
Biochemical Journal     Full-text available via subscription   (Followers: 25)
Biochemical Pharmacology     Hybrid Journal   (Followers: 10)
Biochemical Society Transactions     Full-text available via subscription   (Followers: 4)
Biochemical Systematics and Ecology     Hybrid Journal   (Followers: 3)
Biochemistry     Full-text available via subscription   (Followers: 305)
Biochemistry & Pharmacology : Open Access     Open Access   (Followers: 3)
Biochemistry & Physiology : Open Access     Open Access  
Biochemistry (Moscow)     Hybrid Journal   (Followers: 4)
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology     Hybrid Journal   (Followers: 3)
Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry     Hybrid Journal   (Followers: 3)
Biochemistry and Biophysics Reports     Open Access  
Biochemistry and Cell Biology     Hybrid Journal   (Followers: 14)
Biochemistry and Molecular Biology Education     Hybrid Journal   (Followers: 6)
Biochemistry and Molecular Biology of Fishes     Full-text available via subscription   (Followers: 1)
Biochemistry Research International     Open Access   (Followers: 6)
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids     Hybrid Journal   (Followers: 7)
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease     Hybrid Journal   (Followers: 14)
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research     Hybrid Journal   (Followers: 9)
Biochimie     Hybrid Journal   (Followers: 7)
Biochimie Open     Open Access  
Bioconjugate Chemistry     Full-text available via subscription   (Followers: 30)
BioDrugs     Full-text available via subscription   (Followers: 7)
Bioelectrochemistry     Hybrid Journal   (Followers: 2)
Biofuels     Hybrid Journal   (Followers: 11)
Biogeochemistry     Hybrid Journal   (Followers: 14)
BioInorganic Reaction Mechanisms     Hybrid Journal   (Followers: 1)
Biokemistri     Open Access  
Biological Chemistry     Partially Free   (Followers: 22)
Biomaterials Research     Open Access   (Followers: 4)
Biomedicines     Open Access   (Followers: 1)
BioMolecular Concepts     Hybrid Journal   (Followers: 2)
Bioscience, Biotechnology, and Biochemistry     Hybrid Journal   (Followers: 24)
Biosimilars     Open Access   (Followers: 1)
Biotechnology and Applied Biochemistry     Hybrid Journal   (Followers: 45)
Bitácora Digital     Open Access  
BMC Biochemistry     Open Access   (Followers: 14)
Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca : Food Science and Technology     Open Access   (Followers: 1)
Carbohydrate Polymers     Hybrid Journal   (Followers: 8)
Cell Biochemistry and Biophysics     Hybrid Journal   (Followers: 6)
Cell Biochemistry and Function     Hybrid Journal   (Followers: 6)
Cellular Physiology and Biochemistry     Open Access   (Followers: 3)
ChemBioChem     Hybrid Journal   (Followers: 7)
Chemical and Biological Technologies for Agriculture     Open Access  
Chemical Biology & Drug Design     Hybrid Journal   (Followers: 20)
Chemical Engineering Journal     Hybrid Journal   (Followers: 45)
Chemical Senses     Hybrid Journal   (Followers: 1)
Chemical Speciation and Bioavailability     Open Access   (Followers: 1)
Chemico-Biological Interactions     Hybrid Journal   (Followers: 3)
Chemistry & Biodiversity     Hybrid Journal   (Followers: 6)
Chemistry & Biology     Full-text available via subscription   (Followers: 30)
Chemistry and Ecology     Hybrid Journal  
ChemTexts     Hybrid Journal  
Clinica Chimica Acta     Hybrid Journal   (Followers: 33)
Clinical Biochemist Reviews     Full-text available via subscription   (Followers: 1)
Clinical Biochemistry     Hybrid Journal   (Followers: 18)
Clinical Chemistry     Full-text available via subscription   (Followers: 68)
Clinical Chemistry and Laboratory Medicine     Hybrid Journal   (Followers: 61)
Clinical Lipidology     Full-text available via subscription   (Followers: 1)
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology     Hybrid Journal   (Followers: 4)
Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 1)
Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology     Hybrid Journal   (Followers: 7)
Comparative Biochemistry and Physiology Part D: Genomics and Proteomics     Hybrid Journal   (Followers: 2)
Comprehensive Biochemistry     Full-text available via subscription   (Followers: 1)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 12)
Critical Reviews in Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 5)
Current Chemical Biology     Hybrid Journal   (Followers: 2)
Current Medicinal Chemistry     Hybrid Journal   (Followers: 16)
Current Opinion in Chemical Biology     Hybrid Journal   (Followers: 28)
Current Opinion in Lipidology     Hybrid Journal   (Followers: 6)
DNA Barcodes     Open Access  
Doklady Biochemistry and Biophysics     Hybrid Journal   (Followers: 1)
Doklady Chemistry     Hybrid Journal  
Egyptian Journal of Biochemistry and Molecular Biology     Full-text available via subscription  
FABICIB     Open Access  
FEBS Letters     Hybrid Journal   (Followers: 56)
FEBS Open Bio     Open Access   (Followers: 3)
Fish Physiology and Biochemistry     Hybrid Journal   (Followers: 4)
Food & Function     Full-text available via subscription   (Followers: 5)
Foundations of Modern Biochemistry     Full-text available via subscription  
Free Radicals and Antioxidants     Full-text available via subscription   (Followers: 4)
Frontiers in Molecular Biosciences     Open Access   (Followers: 2)
Frontiers in Natural Product Chemistry     Hybrid Journal  
Global Biogeochemical Cycles     Full-text available via subscription   (Followers: 15)
Green Chemistry     Full-text available via subscription   (Followers: 11)
Histochemistry and Cell Biology     Hybrid Journal   (Followers: 5)
Indian Journal of Biochemistry and Biophysics (IJBB)     Open Access   (Followers: 3)
Indian Journal of Clinical Biochemistry     Hybrid Journal   (Followers: 1)
Indonesian Biomedical Journal     Open Access  
Insect Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 3)
International Journal of Biochemistry & Cell Biology     Hybrid Journal   (Followers: 8)
International Journal of Biochemistry and Biophysics     Open Access   (Followers: 1)
International Journal of Biological Chemistry     Open Access   (Followers: 4)
International Journal of Biomedical Nanoscience and Nanotechnology     Hybrid Journal   (Followers: 6)
International Journal of Food Contamination     Open Access  
International Journal of Plant Physiology and Biochemistry     Open Access   (Followers: 1)
International Journal of Plant Research     Open Access   (Followers: 3)
International Journal of Secondary Metabolite     Open Access   (Followers: 1)
Invertebrate Immunity     Open Access   (Followers: 1)
JBIC Journal of Biological Inorganic Chemistry     Hybrid Journal   (Followers: 4)
Journal of Microbial & Biochemical Technology     Open Access   (Followers: 2)
Journal of Applied Biology & Biotechnology     Open Access   (Followers: 2)
Journal of Bioactive and Compatible Polymers     Hybrid Journal   (Followers: 3)
Journal of Biochemistry     Hybrid Journal   (Followers: 43)
Journal of Biochemistry and Molecular Biology Research     Open Access  
Journal of Biological Chemistry     Full-text available via subscription   (Followers: 198)
Journal of Biomaterials Science, Polymer Edition     Hybrid Journal   (Followers: 9)
Journal of Carbohydrate Chemistry     Hybrid Journal   (Followers: 7)
Journal of Cellular Biochemistry     Hybrid Journal   (Followers: 5)
Journal of Chemical Biology     Hybrid Journal   (Followers: 3)
Journal of Chemical Neuroanatomy     Hybrid Journal  
Journal of Clinical Lipidology     Hybrid Journal   (Followers: 1)
Journal of Comparative Physiology B : Biochemical, Systemic, and Environmental Physiology     Hybrid Journal   (Followers: 4)
Journal of Drug Discovery and Therapeutics     Open Access  
Journal of Enzyme Inhibition and Medicinal Chemistry     Open Access   (Followers: 3)
Journal of Evolutionary Biochemistry and Physiology     Hybrid Journal  
Journal of Food and Drug Analysis     Open Access  
Journal of Forensic Toxicology and Pharmacology     Hybrid Journal   (Followers: 4)
Journal of Inborn Errors of Metabolism and Screening     Open Access  
Journal of Inorganic Biochemistry     Hybrid Journal   (Followers: 6)
Journal of Medical and Biomedical Sciences     Open Access  
Journal of Medical Biochemistry     Open Access   (Followers: 4)
Journal of Medicine and Biomedical Research     Open Access   (Followers: 1)
Journal of Molecular Biochemistry     Open Access   (Followers: 3)
Journal of Molecular Diagnostics     Hybrid Journal   (Followers: 6)
Journal of Neurochemistry     Hybrid Journal   (Followers: 4)
Journal of Nutritional Biochemistry     Hybrid Journal   (Followers: 7)
Journal of Pediatric Biochemistry     Hybrid Journal   (Followers: 1)
Journal of Peptide Science     Hybrid Journal   (Followers: 23)
Journal of Photochemistry and Photobiology B: Biology     Hybrid Journal   (Followers: 3)
Journal of Physiobiochemical Metabolism     Hybrid Journal   (Followers: 1)
Journal of Physiology and Biochemistry     Hybrid Journal   (Followers: 3)
Journal of Plant Biochemistry and Biotechnology     Hybrid Journal   (Followers: 6)
Journal of Steroid Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 2)
Journal of Virology & Antiviral Research     Hybrid Journal   (Followers: 5)
Journal of Wood Chemistry and Technology     Hybrid Journal   (Followers: 10)
La Rivista Italiana della Medicina di Laboratorio - Italian Journal of Laboratory Medicine     Hybrid Journal  
Lab on a Chip     Full-text available via subscription   (Followers: 36)
Marine Chemistry     Hybrid Journal   (Followers: 6)
Methods in Enzymology     Full-text available via subscription   (Followers: 11)
Molecular and Biochemical Parasitology     Hybrid Journal   (Followers: 2)
Molecular and Cellular Biochemistry     Hybrid Journal   (Followers: 6)
Molecular Aspects of Medicine     Hybrid Journal   (Followers: 3)
Molecular Informatics     Hybrid Journal   (Followers: 6)
Molecular inhibitors in targeted therapy     Open Access  
Moscow University Chemistry Bulletin     Hybrid Journal   (Followers: 1)
Mycologia     Hybrid Journal  
Mycology : An International Journal on Fungal Biology     Hybrid Journal   (Followers: 5)
Natural Products and Bioprospecting     Open Access   (Followers: 2)
Nature Chemical Biology     Full-text available via subscription   (Followers: 72)
Nature Communications     Open Access   (Followers: 192)
Neurosignals     Open Access  
NOVA     Open Access  
Novelty in Biomedicine     Open Access  
OA Biochemistry     Open Access   (Followers: 1)
OA Inflammation     Open Access  
Ocean Acidification     Open Access   (Followers: 4)
Organic & Biomolecular Chemistry     Full-text available via subscription   (Followers: 89)

        1 2 | Last

Journal Cover Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
  [SJR: 0.939]   [H-I: 84]   [4 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1095-6433
   Published by Elsevier Homepage  [3043 journals]
  • How important is the CO2 chemoreflex for the control of breathing'
           Environmental and evolutionary considerations
    • Abstract: Publication date: Available online 29 September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Joseph M. Santin
      Haldane and Priestley (1905) discovered that the ventilatory control system is highly sensitive to CO2. This “CO2 chemoreflex” has been interpreted to dominate control of resting arterial PCO2/pH (PaCO2/pHa) by monitoring PaCO2/pHa and altering ventilation through negative feedback. However, PaCO2/pHa varies little in mammals as ventilation tightly couples to metabolic demands, which may minimize chemoreflex control of PaCO2. The purpose of this synthesis is to (1) interpret data from experimental models with meager CO2 chemoreflexes to infer their role in ventilatory control of steady-state PaCO2, and (2) identify physiological causes of respiratory acidosis occurring normally across vertebrate classes. Interestingly, multiple rodent and amphibian models with minimal/absent CO2 chemoreflexes exhibit normal ventilation, gas exchange, and PaCO2/pHa. The chemoreflex, therefore, plays at most a minor role in ventilatory control at rest; however, the chemoreflex may be critical for recovering PaCO2 following acute respiratory acidosis induced by breath-holding and activity in many ectothermic vertebrates. An apparently small role for CO2 feedback in the genesis of normal breathing contradicts the prevailing view that central CO2/pH chemoreceptors increased in importance throughout vertebrate evolution. Since the CO2 chemoreflex contributes minimally to resting ventilation, these CO2 chemoreceptors may have instead decreased importance throughout tetrapod evolution, particularly with the onset and refinement of neural innovations that improved the matching of ventilation to tissue metabolic demands. This distinct and elusive “metabolic ventilatory drive” likely underlies steady-state PaCO2 in air-breathers. Uncovering the mechanisms and evolution of the metabolic ventilatory drive presents a challenge to clinically-oriented and comparative respiratory physiologists alike.

      PubDate: 2017-09-29T22:28:41Z
       
  • Effects of exercise training on excitation-contraction coupling, calcium
           dynamics and protein expression in the heart of the Neotropical fish
           Brycon amazonicus
    • Abstract: Publication date: Available online 29 September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Rafael Zanelli Rissoli, Eliton da Silva Vasconcelos, Francisco Tadeu Rantin, Ana Lúcia Kalinin
      Matrinxã (Brycon amazonicus) is a great swimming performance teleost fish from the Amazon basin. However, the possible cardiac adaptations of this ability are still unknown. Therefore, the aim of the present work was to investigate the effects of prolonged exercise (EX group - 60days under 0.4BL·s−1) on ventricular contractility by (i) in-vitro analysis of contractility comparing the relative roles of sodium/calcium exchanger (NCX) and sarcoplasmic reticulum (SR) in the excitation-contraction (E-C) coupling and (ii) molecular analysis of NCX, sarcoplasmic reticulum Ca2+ ATPase (SERCA2) and phospholamban (PLB) expression and quantification. The exercise training significantly improved twitch tension, cardiac pumping capacity and the contraction rate when compared to controls (CT). Inhibition of the NCX function, replacing Na+ by Li+ in the physiological solutions, diminished cardiac contractility in the EX group, reduced all analyzed parameters under both high and low stimulation frequencies. The SR blockage, using 10μM ryanodine, caused ~50% tension reduction in CT at most analyzed frequencies while in EX, reductions (34–54%) were only found at higher frequencies. SR inhibition also decreased contraction and relaxation rates in both groups. Additionally, higher post-rest contraction values were recorded for EX, indicating an increase in SR Ca2+ loading. Higher NCX and PLB expression rates and lower SERCA2 rates were found in EX. Our data indicate that matrinxã presents a modulation in E-C coupling after exercise-training, enhancing the SR function under higher frequencies. This was the first study to functionally analyze the effects of swimming-induced exercise on fish cardiac E-C coupling.

      PubDate: 2017-09-29T22:28:41Z
       
  • Feeding alters blood flow patterns in the American alligator (Alligator
           mississippiensis)
    • Abstract: Publication date: Available online 27 September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Anders Findsen, I.I. Dane Crossley, Tobias Wang
      The crocodilian cardiovascular design with a four-chambered heart and a left aorta that emerge from the right ventricle allows blood to be shunted away from the lungs, a right-to-left (R-L) shunt. The adaptive significance of this R-L shunt remains both poorly understood and controversial with particular debate on its putative role during digestion. Here we measure blood flow patterns in the right aorta (RAo), left aorta (LAo) and the coeliac artery (CoA) of undisturbed American alligators (Alligator mississippiensis) during fasting and throughout most of the digestive period. Digestion doubled blood flow in the RAo (10.1±0.9 to 20.7±1.5ml min−1 kg−1), whereas LAo increased approximately 3-fold (3.8±0.6 to 12.2±2.1ml min−1 kg−1). Blood flow in the CoA increased more than four-fold during digestion (3.0±0.6 to 13.3±1.6ml min−1 kg−1). The rise in blood flows was achieved by a doubling of heart rate (18.5±3.3 to 37.8±3.6ml min−1 kg−1). Maximal flows measured in all arteries and heart rate occurred in the first hour of the postprandial period and continued for the next seven hours.

      PubDate: 2017-09-29T22:28:41Z
       
  • Differential expression of putative sodium-dependent cation-chloride
           cotransporters in Aedes aegypti
    • Abstract: Publication date: December 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 214
      Author(s): Peter M. Piermarini, Daniel C. Akuma, John C. Crow, Taylor L. Jamil, Willa G. Kerkhoff, Kenyatta C.M.F. Viel, Christopher M. Gillen
      The yellow fever mosquito, Aedes aegypti, has three genes that code for proteins with sequence similarity to vertebrate Na+-K+-Cl− cotransporters (NKCCs) of the solute-linked carrier 12 superfamily of cation-chloride cotransporters (CCCs). We hypothesized that these mosquito NKCC orthologues have diverged to perform distinct roles in salt secretion and absorption. In phylogenetic analyses, one protein (aeNKCC1) groups with a Drosophila melanogaster NKCC that mediates salt secretion whereas two others (aeCCC2 and aeCCC3) group with a Drosophila transporter that is not functionally characterized. The aeCCC2 and aeCCC3 genes probably result from a tandem gene duplication in the mosquito lineage; they have similar exon structures and are consecutive in genomic DNA. Predicted aeCCC2 and aeCCC3 proteins differ from aeNKCC1 and vertebrate NKCCs in residues from the third transmembrane domain known to influence ion and inhibitor binding. Quantitative PCR revealed that aeNKCC1 and aeCCC2 were approximately equally expressed in larvae and adults, whereas aeCCC3 was approximately 100-fold more abundant in larvae than in adults. In larval tissues, aeCCC2 was approximately 2-fold more abundant in Malpighian tubules compared to anal papillae. In contrast, aeCCC3 was nearly 100-fold more abundant in larval anal papillae compared to Malpighian tubules, suggesting a role in absorption. Western blots with polyclonal antibodies against isoform-specific peptides revealed stronger aeCCC2 immunoreactivity in adults versus larvae, whereas aeCCC3 immunoreactivity was stronger in larvae versus adults. The differential expression pattern of aeCCC2 and aeCCC3, and their sequence divergence in transmembrane domains, suggests that they may have different roles in transepithelial salt transport.

      PubDate: 2017-09-23T20:20:07Z
       
  • Interrelationship of salinity shift with oxidative stress and lipid
           metabolism in the monogonont rotifer Brachionus koreanus
    • Abstract: Publication date: Available online 23 September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Min-Chul Lee, Jun Chul Park, Duck-Hyun Kim, Sujin Kang, Kyung-Hoon Shin, Heum Gi Park, Jeonghoon Han, Jae-Seong Lee
      Salinity is a critical key abiotic factor affecting biological processes such as lipid metabolism, yet the relationship between salinity and lipid metabolism has not been studied in the rotifer. To understand the effects of salinity on the monogonont rotifer B. koreanus, we examined high saline (25 and 35psu) conditions compared to the control (15psu). In vivo life cycle parameters (e.g. cumulative offspring and life span) were observed in response to 25 and 35psu compared to 15psu. In addition, to investigate whether high salinity induces oxidative stress, the level of reactive oxygen species (ROS) and glutathione S-transferase activity (GST) were measured in a salinity- (15, 25, and 35psu; 24h) and time-dependent manner (3, 6, 12, 24h; 35psu). Furthermore composition of fatty acid (FA) and lipid metabolism-related genes (e.g. elongases and desaturases) were examined in response to different salinity conditions. As a result, retardation in cumulative offspring and significant increase in life span were demonstrated in the 35psu treatment group compared to the control (15psu). Furthermore, ROS level and GST activity have both demonstrated a significant increase (P <0.05) in the 35psu treatment. In general, the quantity of FA and mRNA expression of the lipid metabolism-related genes was significantly decreased (P <0.05) in response to high saline condition with exceptions for both GST-S4 and S5 demonstrated a significant increase in their mRNA expression. This study demonstrates that high salinity induces oxidative stress, leading to a negative impact on lipid metabolism in the monogonont rotifer, B. koreanus.

      PubDate: 2017-09-23T20:20:07Z
       
  • Purinergic and adenosine receptors contribute to hypoxic hyperventilation
           in zebrafish (Danio rerio)
    • Abstract: Publication date: Available online 21 September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Alisha J. Coe, Alexina J. Picard, Michael G. Jonz
      The chemoreceptors involved in oxygen sensing in teleost fish are neuroepithelial cells (NECs) in the gills, and are analogous to glomus cells in the mammalian carotid body. Purinergic signalling mechanisms involving the neurotransmitters, ATP and adenosine, have been identified in mediating hypoxic signalling in the carotid body, but these pathways are not well understood in the fish gill. The present study used a behavioural assay to screen for the effects of drugs, that target purinergic and adenosine receptors, on the hyperventilatory response to hypoxia in larval zebrafish (Danio rerio) in order to determine if the receptors on which these drugs act may be involved in hypoxic signalling. The purinergic receptor antagonist, PPADS, targets purinergic P2X2/3 receptors and inhibited the hyperventilatory response to hypoxia (IC50 =18.9μM). The broad-spectrum purinergic agonist, ATPγS, elicited a hyperventilatory response (EC50 =168μM). The non-specific adenosine receptor antagonist, caffeine, inhibited the hyperventilatory response to hypoxia, as did the specific A2a receptor antagonist, SCH58261 (IC50 =220nM). These results suggest that P2X2/3 and A2a receptors are candidates for mediating hypoxic hyperventilation in zebrafish. This study highlights the potential of applying chemical screening to ventilatory behaviour in zebrafish to further our understanding of the pathways involved in signalling by gill NECs and oxygen sensing in vertebrates.

      PubDate: 2017-09-23T20:20:07Z
       
  • Elevated expression of neuropeptide signaling genes in the eyestalk
           ganglia and Y-organ of Gecarcinus lateralis individuals that are
           refractory to molt induction
    • Abstract: Publication date: Available online 18 September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Natalie L. Pitts, Hanna M. Schulz, Stephanie R. Oatman, Donald L. Mykles
      Molting is induced in decapod crustaceans via multiple leg autotomy (MLA) or eyestalk ablation (ESA). MLA removes five or more walking legs, which are regenerated and become functional appendages at ecdysis. ESA eliminates the primary source of molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH), which suppress the production of molting hormones (ecdysteroids) from the molting gland or Y-organ (YO). Both MLA and ESA are effective methods for molt induction in Gecarcinus lateralis. However, some G. lateralis individuals are refractory to MLA, as they fail to complete ecdysis by 12weeks post-MLA; these animals are in the “blocked” condition. Quantitative polymerase chain reaction was used to quantify mRNA levels of neuropeptide and mechanistic target of rapamycin (mTOR) signaling genes in YO, eyestalk ganglia (ESG), thoracic ganglion (TG), and brain of intact and blocked animals. Six of the seven neuropeptide signaling genes, three of four mTOR signaling genes, and Gl-elongation factor 2 (EF2) mRNA levels were significantly higher in the ESG of blocked animals. Gl-MIH and Gl-CHH mRNA levels were higher in the TG and brain of blocked animals and levels increased in both control and blocked animals in response to ESA. By contrast, mRNA levels of Gl-EF2 and five of the 10 MIH signaling pathway genes in the YO were two to four orders of magnitude higher in blocked animals compared to controls. These data suggest that increased MIH and CHH synthesis in the ESG contributes to the prevention of molt induction by MLA in blocked animals. The up-regulation of MIH signaling genes in the YO of blocked animals suggests that the YO is more sensitive to MIH produced in the ESG, as well as MIH produced in brain and TG of ESA animals. Both the up-regulation of MIH signaling genes in the YO and of Gl-MIH and Gl-CHH in the ESG, TG, and brain appear to contribute to some G. lateralis individuals being refractory to MLA and ESA.

      PubDate: 2017-09-23T20:20:07Z
       
  • AMP-activated protein kinase protects against anoxia in Drosophila
           melanogaster
    • Abstract: Publication date: Available online 12 September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Justin J. Evans, Chengfeng Xiao, R. Meldrum Robertson
      During anoxia, proper energy maintenance is essential in order to maintain neural operation. Starvation activates AMP-activated protein kinase (AMPK), an evolutionarily conserved indicator of cellular energy status, in a cascade which modulates ATP production and consumption. We investigated the role of energetic status on anoxia tolerance in Drosophila and discovered that starvation or AMPK activation increases the speed of locomotor recovery from an anoxic coma. Using temporal and spatial genetic targeting we found that AMPK in the fat body contributes to starvation-induced fast locomotor recovery, whereas, under fed conditions, disrupting AMPK in oenocytes prolongs recovery. By evaluating spreading depolarization in the fly brain during anoxia we show that AMPK activation reduces the severity of ionic disruption and prolongs recovery of electrical activity. Further genetic targeting indicates that glial, but not neuronal, AMPK affects locomotor recovery. Together, these findings support a model in which AMPK is neuroprotective in Drosophila.

      PubDate: 2017-09-18T05:31:42Z
       
  • Does aerobic capacity predict the spatial position of individuals within
           schools in juvenile qingbo (Spinibarbus sinensis)'
    • Abstract: Publication date: Available online 9 September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Ling-Qing Zeng, Cheng Fu, Shi-Jian Fu
      Schooling behavior is an adaptive trait of important biological and ecological significance in fish species. However, the question of how aerobic capacity and environmental factors (i.e., food and water velocity) affect the spatial positioning within fish schools has received little attention. Our study measured the aerobic capacity—as indicated by standard metabolic rate (SMR), maximum metabolic rate (MMR) and aerobic scope (AS)—and swimming performance of juvenile qingbo (Spinibarbus sinensis) and filmed their schooling behavior in a swim tunnel under both a control treatment and food stimulus treatment at three water velocities (20, 30 and 40cm s−1). Neither aerobic capacity nor swimming performance was related to spatial position within schools. Food stimulation did not trigger any change in the characteristics of spatial position at three water velocities. However, an intra-school positional preference was found between water velocities under the control treatment and food stimulus treatment. Individuals who preferred the rear of the school had smaller coefficients of variation in position under the two treatments, but this behavior was not correlated with any parameters for metabolic rates. Inter-school social interaction level, as indicated by total chase times, was not affected by either water velocity or food appearance. Although aerobic capacity and food stimulus did not influence the spatial position of individuals within schools, individual qingbo had spatial positional preferences within schools between different water speeds.

      PubDate: 2017-09-11T04:20:34Z
       
  • Physiological and behavioral responses to salinity in coastal dice snakes
    • Abstract: Publication date: Available online 8 September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): François Brischoux, Yurii V. Kornilev, Harvey B. Lillywhite
      Secondarily marine tetrapods have evolved adaptations to maintain their osmotic balance in a hyperosmotic environment. During the transition to a marine habitat, the evolution of a euryhaline physiology likely encompassed successive changes in behavior and physiology that released organisms from regular access to fresh water. Deciphering these key steps is a complicated task. In this study, we investigated a species of freshwater natricine snake in which some populations are known to use marine environments. We experimentally subjected 30 adult Dice snakes (Natrix tessellata) from a population inhabiting the Black Sea coast to three salinities corresponding to freshwater (~0.1‰), brackish water (~15.0‰), and full-strength seawater (~34.0‰) in order to investigate their physiological (variation of body mass, osmolality) and behavioral (activity, drinking behavior) responses to salinity. Our results show that coastal Dice snakes from the study population are relatively tolerant to salinity close to that recorded in the Black Sea, but that prolonged exposure to full-strength seawater increases osmolality, stimulates thirst, decreases the activity of snakes and may ultimately jeopardize survival. Collectively with previously published data, our results strongly suggest specific physiological adaptations to withstand hyperosmolality rather than to reduce intake of salt, in coastal populations or species of semi-aquatic snakes. Future comparative investigations of Dice snakes from populations restricted to freshwater environment might reveal the functional traits and the behavioral and physiological responses of coastal N. tessellata to life in water with elevated salinity.

      PubDate: 2017-09-11T04:20:34Z
       
  • Extrinsic nerves are not involved in branchial 5-HT dynamics or pulsatile
           urea excretion in Gulf toadfish, Opsanus beta
    • Abstract: Publication date: Available online 6 September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Maria C. Cartolano, Molly H.B. Amador, Velislava Tzaneva, William K. Milsom, M. Danielle McDonald
      Gulf toadfish (Opsanus beta) can switch from continuously excreting ammonia as their primary nitrogenous waste to excreting predominantly urea in distinct pulses. Previous studies have shown that the neurotransmitter serotonin (5-HT) is involved in controlling this process, but it is unknown if 5-HT availability is under central nervous control or if the 5-HT signal originates from a peripheral source. Following up on a previous study, cranial nerves IX (glossopharyngeal) and X (vagus) were sectioned to further characterize their role in controlling pulsatile urea excretion and 5-HT release within the gill. In contrast to an earlier study, nerve sectioning did not result in a change in urea pulse frequency. Total urea excretion, average pulse size, total nitrogen excretion, and percent ureotely were reduced the first day post-surgery in nerve-sectioned fish but recovered by 72h post-surgery. Nerve sectioning also had no effect on toadfish urea transporter (tUT), 5-HT transporter (SERT), or 5-HT2A receptor mRNA expression or 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) abundance in the gill, all of which were found consistently across the three gill arches except 5-HIAA, which was undetectable in the first gill arch. Our findings indicate that the central nervous system does not directly control pulsatile urea excretion or local changes in gill 5-HT and 5-HIAA abundance.

      PubDate: 2017-09-11T04:20:34Z
       
  • Hypoxic acclimation leads to metabolic compensation after reoxygenation in
           Atlantic salmon yolk-sac alevins
    • Abstract: Publication date: November 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 213
      Author(s): Elias T. Polymeropoulos, Nicholas G. Elliott, Peter B. Frappell
      Hypoxia is common in aquatic environments and has substantial effects on development, metabolism and survival of aquatic organisms. To understand the physiological effects of hypoxia and its dependence on temperature, metabolic rate ( M ̇ O 2 ) and cardiorespiratory function were studied in response to acute hypoxia (21→5kPa) at different measurement temperatures (Ta; 4, 8 and 12°C) in Salmo salar alevins that were incubated under normoxic conditions (PO2 =21kPa) or following hypoxic acclimation (PO2 =10kPa) as well as two different temperatures (4°C or 8°C). Hypoxic acclimation lead to a developmental delay manifested through slower yolk absorption. The general response to acute hypoxia was metabolic depression (~60%). Hypoxia acclimated alevins had higher M ̇ O 2 s when measured in normoxia than alevins acclimated to normoxia. M ̇ O 2 s were elevated to the same degree (~30% per 4°C change) irrespective of Ta. Under severe, acute hypoxia (~5kPa) and irrespective of Ta or acclimation, M ̇ O 2 s were similar between most groups. This suggests that despite different acclimation regimes, O2 transport was limited to the same degree. While cardiorespiratory function (heart-, ventilation rate) was unchanged in response to acute hypoxia after normoxic acclimation, hypoxic acclimation led to cardiorespiratory changes predominantly in severe hypoxia, indicating earlier onset and plasticity of cardiorespiratory control mechanisms. Although M ̇ O 2 in normoxia was higher after hypoxic acclimation, at the respective acclimation PO2 , M ̇ O 2 was similar in normoxia and hypoxia acclimated alevins. This is indicative of metabolic compensation to an intrinsic M ̇ O 2 at the acclimation condition in hypoxia-acclimated alevins after re-exposure to normoxia.

      PubDate: 2017-09-06T02:11:09Z
       
  • The effects of fluctuating temperature regimes on the embryonic
           development of lake whitefish (Coregonus clupeaformis)
    • Abstract: Publication date: Available online 30 August 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Michael Y.-T. Lim, Richard G. Manzon, Christopher M. Somers, Douglas R. Boreham, Joanna Y. Wilson
      Fluctuating incubation temperatures may have significant effects on fish embryogenesis; yet most laboratory-based studies use constant temperatures. For species that experience large, natural seasonal temperature changes during embryogenesis, such as lake whitefish (Coregonus clupeaformis), seasonal temperature regimes are likely optimal for development. Anthropogenic activities can increase average and/or variability of natural incubation temperatures over large (e.g. through climate change) or smaller (e.g. thermal effluent discharge) geographic scales. To investigate this, we incubated lake whitefish embryos under constant (2, 5, or 8°C) and fluctuating temperature regimes. Fluctuating temperature regimes had a base temperature of 2°C with: 1) seasonal temperature changes that modelled natural declines/inclines; 2) tri-weekly +3°C, 1h temperature spikes; or 3) both seasonal temperature changes and temperature spikes. We compared mortality to hatch, morphometrics, and heart rate at three developmental stages. Mortality rate was similar for embryos incubated at constant 2°C, constant 5°C, or with seasonal temperatures, but was significantly greater at constant 8°C. Embryos incubated constantly at >2°C had reduced body growth and yolk consumption compared to embryos incubated with seasonal temperature changes. When measured at the common base temperature of 2°C, embryos incubated at constant 2°C had lower heart rates than embryos incubated with both seasonal temperature changes and temperature spikes. Our study suggests that incubating lake whitefish embryos with constant temperatures may significantly alter development, growth, and heart rate compared to incubating with seasonal temperature changes, emphasizing the need to include seasonal temperature changes in laboratory-based studies.

      PubDate: 2017-09-06T02:11:09Z
       
  • An essential role of Rieske domain oxygenase Neverland in the molting
           cycle of black tiger shrimp, Penaeus monodon
    • Abstract: Publication date: Available online 24 August 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Ponsit Sathapondecha, Sakol Panyim, Apinunt Udomkit
      Molting is an important process for development and growth in arthropods. In crustaceans, molt is regulated by ecdysteroids or molting hormones that are synthesized in Y-organs. However, ecdysteroid biosynthesis pathway in crustaceans and its participating enzymes have not been well studied so far. In this study, a Rieske domain oxygenase, the enzyme that acts as cholesterol 7,8-dehydrogenase by converting cholesterol to 7-dehydrocholesterol in the first step of the ecdysteroid biosynthesis was characterized in black tiger shrimp, Penaeus monodon. A full-length cDNA of P. monodon's Rieske domain oxygenase Neverland (PmNvd) was successfully cloned. The expression of PmNvd was dominantly found in the Y-organ, and changed during molting period. The PmNvd mRNA level was low in intermolt and early premolt stages, then dramatically increased in the mid premolt stage suggesting its role in molt regulation. The function of PmNvd in the molting process was investigated by RNAi approach. Silencing of PmNvd transcript in shrimp by specific double-stranded RNA (dsNvd) led to prolonged molt duration with abnormal molting progression, i.e. the molting process got stuck at early premolt stage. In addition, 20-hydroxyecdysone titer in the hemolymph of dsNvd-injected shrimp was significantly reduced compared with that in NaCl-injected shrimp. These evidences suggested a crucial role of PmNvd in molt progression, particularly during the initiation of premolt phase via the regulation of ecdysteroid production.

      PubDate: 2017-08-26T08:00:28Z
       
  • Hypoxia acclimation increases novelty response strength during fast-starts
           in the African mormyrid, Marcusenius victoriae
    • Abstract: Publication date: Available online 24 August 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Kerri Lynn Ackerly, Lauren J. Chapman, Rüdiger Krahe
      Many fishes perform quick and sudden swimming maneuvers known as fast-starts to escape when threatened. In pulse-type weakly electric fishes these responses are accompanied by transient increases in the rate of electric signal production known as novelty responses. While novelty responses may increase an individual's information about their surroundings, they are aerobically powered and may come at a high energetic cost when compared to fast-starts, which rely primarily on anaerobic muscle. The juxtaposition between two key aspects of fast-starts in these fishes – the aerobic novelty response and the anaerobic swimming performance – makes them an interesting model for studying effects of hypoxia on escape performance and sensory information acquisition. We acclimated the hypoxia-tolerant African mormyrid Marcusenius victoriae to either high or low dissolved oxygen (DO) levels for 8weeks, after which fast-starts and novelty responses were quantified under both high (normoxic) and low-DO (hypoxic) test conditions. Hypoxia-acclimated fish exhibited higher maximum curvature than normoxia-acclimated fish. Displacement of normoxia-acclimated fish was not reduced under acute hypoxic test conditions. Novelty responses were given upon each startle, whether or not the fish performed a fast-start; however, novelty responses associated with fast-starts were significantly stronger than those without, suggesting a functional link between fast-start initiation and the motor control of the novelty response. Overall, hypoxia-acclimated individuals produced significantly stronger novelty responses during fast-starts. We suggest that increased novelty response strength in hypoxia-acclimated fish corresponds to an increased rate of sensory sampling, which may compensate for potential negative effects of hypoxia on higher-level processing.

      PubDate: 2017-08-26T08:00:28Z
       
  • Molecular characterization of kiss2 and differential regulation of
           reproduction-related genes by sex steroids in the hypothalamus of
           half-smooth tongue sole (Cynoglossus semilaevis)
    • Abstract: Publication date: Available online 16 August 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Bin Wang, Quan Liu, Xuezhou Liu, Yongjiang Xu, Xuesong Song, Bao Shi
      Kisspeptin (Kiss) plays a critical role in mediating gonadal steroid feedback to the gonadotropin-releasing hormone (GnRH) neurons in mammals. However, little information regarding the regulation of kisspeptin gene by sex steroids is available in teleosts. In this study, we examined the direct actions of estradiol (E2) and testosterone (T) on hypothalamic expression of kisspeptin and other key factors involved in reproductive function of half-smooth tongue sole. As a first step, a partial-length cDNA of kiss2 was identified from the brain of tongue sole and kiss2 transcript levels were shown to be widely expressed in various tissues, notably in the ovary. Then, the actions of sex steroids on kiss2 and other reproduction-related genes were evaluated using a primary hypothalamus culture system. Our results showed that neither kiss2 nor its receptor kiss2r mRNA levels were significantly altered by sex steroids. Moreover, sex steroids did not modify hypothalamic expression of gonadotropin-inhibitory hormone (gnih) and its receptor gnihr mRNAs, either. However, E2 markedly stimulated both gnrh2 and gnrh3 mRNAs levels. Overall, this study provides insights into the role of sex steroids in the reproductive function of Pleuronectiform teleosts.

      PubDate: 2017-08-26T08:00:28Z
       
  • Characterization of two odorant binding proteins in Spodoptera exigua
           reveals functional conservation and difference
    • Abstract: Publication date: Available online 12 August 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Nai-Yong Liu, Jia-Yao Zhu, Ting Zhang, Shuang-Lin Dong
      As the first biochemical step of olfactory reception and recognition, odorant binding proteins (OBPs) have been demonstrated to be essential. Considering functional diversities of OBPs within a single species, we here extended the characterization of two other OBPs from Spodoptera exigua, belonging to insect Classic OBPs. With a combination of transcriptome and Rapid Amplification of cDNA End (RACE) approaches, two OBP genes in S. exigua were first identified, namely SexiOBP1 and OBP7. Expression pattern analysis revealed that both of them exhibited a distinct expression, where OBP1 was broadly and highly expressed in several tissues including antennae of adults whereas OBP7 was abundant only in the antennae of both sexes, strongly indicative of olfactory roles. Further, binding assays showed that the two SexiOBPs shared a common odorant-response spectrum with considerable affinities to host odorants of acetophenone, farnesol and β-ionone (K i <20μM). Specially, OBP1 could strongly bind an insect attractant β-caryophyllene (K i = 2.76μM) released by maize. Intriguingly, the major sex pheromone of S. exigua, Z9,E12-14:Ac, was the best ligand for OBP7 with K i value of 7.58μM. Ligand structural analysis revealed that the two SexiOBPs were capable of accommodating different types of ligands in shape and size, possibly implying the plasticity of binding pockets. Ultimately, comparison of binding properties among 10 SexiOBPs including the two OBPs in this study implied a cross-talk in functions, i.e. different OBPs are also suitable to accept some common odorants except for unique ligands. Taken together, this study has provided evidence for their involvements in seeking and orientation of host plants, and meanwhile indicates functional conservation and difference between OBP1 and OBP7 from S. xigua.

      PubDate: 2017-08-15T11:55:17Z
       
  • Altitudinal variation in metabolic parameters of a small Afrotropical bird
    • Abstract: Publication date: October 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 212
      Author(s): Lindy J. Thompson, Colleen T. Downs
      Of the numerous factors affecting avian metabolic rate, altitude is one of the least studied. We used mass-flow respirometry to measure resting metabolic rate (RMR), evaporative water loss (EWL) and respiratory exchange ratio (RER) in two populations of a small (10–12g) Afrotropical bird, the Cape White-eye (Zosterops virens), in summer and in winter. In total, 51 freshly wild-caught adult Cape White-eyes were measured overnight. Altitude was included as a source of variation in the best approximating models for body mass, whole-animal RMR, RER, whole-animal standard EWL and whole-animal basal EWL. RER was significantly lower in winter, suggesting a greater proportion of lipid oxidation at lower ambient temperatures (Ta). Cape White-eyes were 0.8g heavier at the higher altitude site and 0.5g heavier in winter, suggesting they may have increased their metabolic machinery to cope with cooler temperatures. EWL was generally significantly lower in winter than in summer, suggesting that birds may increase EWL with increasing Ta, as the need for evaporative cooling increases. Our results support the argument that the subtle and complex effects of altitude (and ambient temperature) should be taken into account in studies on avian metabolic rate. What is already known Of the numerous studies known to affect avian metabolic rate, altitude is one of the least studied. Although trends are not always clear, generally, at higher altitudes, avian metabolic rate increases. What the study adds There were statistically significant seasonal and altitudinal differences in various physiological parameters of Cape White-eyes. These results highlight the importance of accounting for altitude in studies of avian metabolic rate.

      PubDate: 2017-08-05T11:02:51Z
       
  • Peripheral neuropeptide Y differentially influences adipogenesis and
           lipolysis in chicks from lines selected for low or high body weight
    • Abstract: Publication date: Available online 5 August 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Lingbin Liu, Guoqing Wang, Yang Xiao, Steven L. Shipp, Paul B. Siegel, Mark A. Cline, Elizabeth R. Gilbert
      Neuropeptide Y (NPY) stimulates appetite and promotes lipid deposition. We demonstrated a differential sensitivity in the food intake response to central NPY in chicks from lines selected for low (LWS) or high (HWS) body weight, but have not reported whether such differences exist in the periphery. At 5days, LWS and HWS chicks were intraperitoneally injected with 0 (vehicle), 60, or 120μg/kg BW NPY and subcutaneous adipose tissue and plasma were collected at 1, 3, 6, 12, and 24h (n =12). NPY injection increased glycerol-3-phosphate dehydrogenase (G3PDH) activity at 1 and 3h and reduced plasma NEFAs at 1 and 12h. G3PDH activity was greater in HWS than LWS while NEFAs were greater in LWS. At 1h, peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein (C/EBP)α, and microsomal triglyceride transfer protein (MTTP) mRNAs were reduced in NPY-injected chicks whereas NPY receptor 1 (NPYR1) was increased. Expression of stearoyl-CoA desaturase (SCD1) was increased by NPY at 1h in HWS but not LWS. PPARγ (3 and 6h), C/EBPβ (3h), C/EBPα (6h) and NPYR1 and 2 (24h) mRNAs were greater in NPY- than vehicle-injected chicks. At several times, adipose triglyceride lipase, MTTP, perilipin 1, NPYR1, and NPYR2 mRNAs were greater in LWS than HWS, while expression of SCD1, glycerol-3-phosphate acyltransferase 3 and lipoprotein lipase was greater in HWS than LWS. Thus, NPY promotes fat deposition and inhibits lipolysis in chicks, with line differences indicative of greater rates of lipolysis in LWS and adipogenesis in HWS.

      PubDate: 2017-08-05T11:02:51Z
       
  • Aerobic scope in chicken embryos
    • Abstract: Publication date: Available online 31 July 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Satoko T. Ide, Ryoji Ide, Jacopo P. Mortola
      We investigated the aerobic scope of chicken embryos, that is, the margin of increase of oxygen consumption ( V ̇ O 2 ) above its normal value. V ̇ O 2 was measured by an open-flow methodology at embryonic ages E3, E7, E11, E15, E19 and at E20 at the internal (IP) and external pipping (EP) phases, at the normal incubation temperature (Ta=38°C), in hypothermia (Ta=30°C) and in hyperthermia (Ta=41 and 44°C). In the cold, Q10 averaged ~2 at all ages, except in IP and EP when lower values (~1.5) indicated some degree of thermogenesis. In hyperthermia (38–44°C) Q10 was between 1 and 1.4. Hyperthermia had no significant effects on V ̇ O 2 whether the results combined all ages or considered individual age groups, except in IP (in which V ̇ O 2 increased 8% with 44°C) and EP embryos (+13%). After opening the air cell, which exposed the embryo to a higher O2 pressure, hyperthermic V ̇ O 2 was significantly higher than in normothermia in E19 (+13%), IP (+22%) and EP embryos (+22%). We conclude that in chicken embryos throughout most of incubation neither heat nor oxygen availability limits the normal (normoxic-normothermic) values of V ̇ O 2 . Only close to hatching O2-diffusion represents a limiting factor to the embryo's V ̇ O 2 . Hence, embryos differ from postnatal animals for a nearly absent aerobic scope, presumably because their major sources of energy expenditure (growth and tissue maintenance) are constantly maximized.

      PubDate: 2017-08-05T11:02:51Z
       
  • Rhythmicity and plasticity of digestive physiology in a euryhaline teleost
           fish, permit (Trachinotus falcatus)
    • Abstract: Publication date: Available online 29 July 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Carlo C. Lazado, Per Bovbjerg Pedersen, Quang Huy Nguyen, Ivar Lund
      Digestive physiology is considered to be under circadian control, but there is little evidence in teleost fish. The present study explored the rhythmicity and plasticity to feeding schedules of enzymatic digestion in a candidate aquaculture fish, the permit (Trachinotus falcatus). The first experiment identified the rhythms of digestive factors throughout the light-dark (LD) cycle. Gastric luminal pH and pepsin activity showed significant daily variation albeit not rhythmic. These dynamic changes were likewise observed in several digestive enzymes, in which the activities of intestinal protease, chymotrypsin and lipase exhibited significant daily rhythms. In the second experiment, the existence of feed anticipatory activity in the digestive factors was investigated by subjecting the fish to either periodic or random feeding. Anticipatory gastric acidification prior to feeding was identified in periodically fed fish. However, pepsin activity did not exhibit such anticipation but a substantial postprandial increase was observed. Intestinal protease, leucine aminopeptidase and lipase anticipated periodic mealtime with elevated enzymatic activities. Plasma melatonin and cortisol demonstrated robust daily rhythms but feeding time manipulations revealed no significant impact. Plasma ghrelin level remained constant during the LD cycle and appeared to be unaffected by differing feeding regimes as well. Taken together, the digestive factors of permit were highly dynamic during the LD cycle. Periodic feeding entrained digestive physiology and mediated anticipatory gastric acidification and intestinal enzymatic activities. This knowledge will be essential in developing feeding protocols and husbandry-related welfare strategies that will further advance this candidate finfish as an aquaculture species.

      PubDate: 2017-08-05T11:02:51Z
       
  • Transcriptional, translational and systemic alterations during the time
           course of osmoregulatory acclimation in two palaemonid shrimps from
           distinct osmotic niches
    • Abstract: Publication date: Available online 29 July 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Rogério Oliveira Faleiros, Rosa P.M. Furriel, John Campbell McNamara
      Palaemonid shrimps exhibit numerous adaptive strategies, both in their life cycles and in biochemical, physiological, morphological and behavioral characteristics that reflect the wide variety of habitats in which they occur, including species that are of particular interest when analyzing adaptive osmoregulatory strategies. The present investigation evaluates the short- (hours) and long-term (days) time courses of responses of two palaemonid shrimps from separate yet overlapping osmotic niches, Palaemon northropi (marine) and Macrobrachium acanthurus (diadromous, fresh water), to differential salinity challenges at distinct levels of structural organization: (i) transcriptional, analyzing quantitative expression of gill mRNAs that encode for subunits of the Na+/K+-ATPase and V(H+)-ATPase ion transporters; (ii) translational, examining the kinetic behavior of gill Na+/K+-ATPase specific activity; and (iii) systemic, accompanying consequent adjustment of hemolymph osmolality. Palaemon northropi is an excellent hyper-hypo-osmoregulator in dilute and concentrated seawater, respectively. Macrobrachium acanthurus is a strong hyper-regulator in fresh water and hypo-regulates hemolymph osmolality and particularly [Cl−] in brackish water. Hemolymph hyper-regulation in fresh water (Macrobrachium acanthurus) and dilute seawater (Palaemon northropi) is underlain by augmented expression of both the gill Na+/K+-ATPase and V(H+)-ATPase. In contrast, in neither species is hypo-regulation sustained by changes in Na+/K+-ATPase mRNA expression levels, but rather by regulating enzyme specific activity. The integrated time course of Na+/K+- and V(H+)-ATPase expression and Na+/K+-ATPase activity in the gills of these palaemonid shrimps during acclimation to different salinities reveals versatility in their levels of regulation, and in the roles of these ion transporting pumps in sustaining processes of hyper- and hypo-osmotic and chloride regulation.

      PubDate: 2017-08-05T11:02:51Z
       
  • Behavioural, physiological and biochemical responses to aquatic hypoxia in
           the freshwater crayfish, Paranephrops zealandicus
    • Abstract: Publication date: Available online 27 July 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Rebecca J. Broughton, Islay D. Marsden, Jonathan V. Hill, Chris N. Glover
      Hypoxia resulting from aquatic eutrophication threatens the population health of the New Zealand freshwater crayfish (koura), Paranephrops zealandicus. An integrated study, combining behavioural, physiological and biochemical approaches, was therefore conducted to characterise the tolerance of this species to hypoxia. When provided with a choice between water flows of high or low dissolved oxygen in short-term laboratory assays, crayfish did not preferentially inhabit waters of higher PO2. However, when an aerial refuge was provided and dissolved oxygen was progressively decreased, crayfish emersed at a PO2 of 0.56±0.03kPa, suggesting a relative high tolerance to hypoxia. Closed-box respirometry delineated a P crit, the point at which crayfish transition from oxyregulating to oxyconforming, of 6.0kPa. Simultaneous measurement of heart rate showed no changes across the PO2 range. In response to 6-h exposures to fixed dissolved oxygen levels (normoxia, 19.3kPa; moderate hypoxia, 3.5kPa; and severe hypoxia, 1.7kPa), P. zealandicus showed a haemolymph PO2 that declined with the magnitude of hypoxia, and while plasma pH declined in severe hypoxia, there were no changes in plasma PCO2. Plasma glucose concentrations fell, and plasma lactate increased in both hypoxic groups. There were no changes in tissue glucose or lactate concentrations. These data indicate that P. zealandicus is relatively tolerant of hypoxia, and possesses biochemical and physiological mechanisms that facilitate survival during short-term exposures to acute hypoxia. If hypoxia is severe and/or prolonged, then this species is capable of escaping to aerial refugia.

      PubDate: 2017-07-27T09:36:33Z
       
  • Heart rate variability reveals that a decrease in parasympathetic
           (‘rest-and-digest’) activity dominates autonomic stress responses in a
           free-living seabird
    • Abstract: Publication date: Available online 23 July 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Martina S. Müller, Alexei L. Vyssotski, Maki Yamamoto, Ken Yoda
      The autonomic stress response, often referred to as the ‘fight-or-flight’ response, is a highly conserved physiological reaction to stress in vertebrates that occurs via a decrease in parasympathetic (PNS) activity, which promotes self-maintenance ‘rest and digest’ processes, and an increase in sympathetic (SNS) activity, which prepares an animal for danger (‘fight-or-flight’). Though the PNS and SNS both innervate most organs, they often control different tissues and functions within those organs (though the pacemaker of the heart is controlled by both). Moreover the PNS and SNS are regulated independently. Yet until now, most studies of autonomic stress responses in non-model species focused only on the SNS response. We used external electrocardiogram loggers to measure heart rate and heart rate variability indexes that reflect PNS and SNS activity in a seabird, the Streaked Shearwater (Calonectris leucomelas), during the stress of handling, and during recovery in the nest burrow or during restraint in a cloth bag. We show for the first time in a free-living animal that the autonomic stress response is mediated primarily by a rapid decrease in PNS activity: handling stress induced a large and long-lasting depression of PNS ‘rest-and-digest’ activity that required two hours to recover. We also found evidence for a substantially smaller and shorter-lasting SNS ‘fight-or-flight’ response. Confinement in a cloth bag was less stressful for birds than handling, but more stressful than recovering in nest burrows. We show that quantifying autonomic activity from heart rate variability is effective for non-invasively studying stress physiology in free-living animals.

      PubDate: 2017-07-27T09:36:33Z
       
  • The roles of metabolic thermogenesis in body fat regulation in striped
           hamsters fed high-fat diet at different temperatures
    • Abstract: Publication date: October 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 212
      Author(s): Lu-Lu Shi, Wei-Jia Fan, Ji-Ying Zhang, Xiao-Ya Zhao, Song Tan, Jing Wen, Jing Cao, Xue-Ying Zhang, Qing-Sheng Chi, De-Hua Wang, Zhi-Jun Zhao
      The metabolic thermogenesis plays important roles in thermoregulation, and it may be also involved in body fat regulation. The thermogenesis of brown adipose tissue (BAT) is largely affected by ambient temperature, but it is unclear if the roles in body fat regulation are dependent on the temperature. In the present study, uncoupling protein 1 (ucp1)-based BAT thermogenesis, energy budget and body fat content were examined in the striped hamsters fed high fat diet (HF) at cold (5°C) and warm (30°C) temperatures. The effect of 2, 4-dinitrophenol (DNP), a chemical uncoupler, on body fat was also examined. The striped hamsters showed a notable increase in body fat following the HF feeding at 21°C. The increased body fat was markedly elevated at 30°C, but was significantly attenuated at 5°C compared to that at 21°C. The hamsters significantly increased energy intake at 5°C, but consumed less food at 30°C relative to those at 21°C. Metabolic thermogenesis, indicated by basal metabolic rate, UCP1 expression and/or serum triiodothyronine levels, significantly increased at 5°C, but decreased at 30°C compared to that at 21°C. A significant decrease in body fat content was observed in DNP-treated hamsters relative to the controls. These findings suggest that the roles of metabolic thermogenesis in body fat regulation largely depend on ambient temperature. The cold-induced enhancement of BAT thermogenesis may contribute the decreased body fat, resulting in a lean mass. Instead, the attenuation of BAT thermogenesis at the warm may result in notable obesity.

      PubDate: 2017-07-21T09:12:34Z
       
  • The relationship between growth performance and metabolic rate flexibility
           varies with food availability in juvenile qingbo (Spinibarbus sinensis)
    • Abstract: Publication date: October 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 212
      Author(s): Ling-Qing Zeng, Lei Wang, Guan-Nan Wang, Yue Zeng, Shi-Jian Fu
      Phenotypic flexibility in traits can allow organisms to cope with environmental challenges. However, the ecological consequences (e.g., growth) of SMR flexibility in fish are poorly understood. Juvenile qingbo (Spinibarbus sinensis) were reared individually with two levels of food resources (satiation or limited) with either continuous feeding (CF) or starvation-refeeding (SR). In the CF experiment, SMR increased when individuals were fed either the satiation or limited diets, but no difference was found in average specific growth rate somatic growth (SGR) between the two food availabilities. The relationship between flexibility in SMR and SGR, feeding efficiency (FE) and food intake (FI) was positive in the satiation group but not in the limited food group. In the SR experiment, the initial SMR of individuals was negatively correlated with the SGR during starvation. During refeeding, the starved individuals increased both body mass and SMR under both food availabilities. Individuals with a greater increase in SMR were fed more and also had greater SGR and FE under the satiation diet, but these results were not observed under the limited diet. The average FE under the limited diet was greater than that under the satiation diet, causing there to be no significant difference in final body mass between the diet treatments at the end of refeeding. Our study suggested that SMR flexibility can allow individuals to maximize their potential growth performance in an environment with changing food availability, and the benefits from greater flexibility in SMR could be offset by their maintenance metabolism under environmental stress.

      PubDate: 2017-07-21T09:12:34Z
       
  • Glutamine protects intestinal calcium absorption against oxidative stress
           and apoptosis
    • Abstract: Publication date: Available online 19 July 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Luciana Moine, Gabriela Díaz de Barboza, Adriana Pérez, Mercedes Benedetto, Nori Tolosa de Talamoni
      The aim of this study was to investigate whether glutamine (GLN) could block the inhibition of the intestinal Ca2+ absorption caused by menadione (MEN), and elucidate the underlying mechanisms. To do this, one-month old chicks were divided in four groups: 1) controls, 2) MEN treated, 3) GLN treated and 4) GLN treated before or after MEN treatment. Intestinal Ca2+ absorption as well as protein expression of molecules involved in the transcellular Ca2+ pathway were determined. Glutathione (GSH) and superoxide anion and activity of enzymes of the antioxidant system were evaluated. Apoptosis was measured by the TUNEL technique, the expression of FAS and FASL and the caspase-3 activity. A previous dose of 0.5g GLN/kg of b.w. was necessary to show its protector effect and a dose of 1g/kg of b.w. could restore the intestinal Ca2+ absorption after MEN treatment. GLN alone did not modify the protein expression of calbindin D28k and plasma membrane Ca2+-ATPase, but blocked the inhibitory effect of the quinone. GLN avoided changes in the intestinal redox state provoked by MEN such as a decrease in the GSH content, and increases in the superoxide anion and in the SOD and CAT activities. GLN abrogated apoptotic effects caused by MEN in intestinal mucosa, as indicated by the reduction of TUNEL (+) cells and the FAS/FASL/caspase-3 pathway. In conclusion, GLN could be an oral nutritional supplement to normalize the redox state and the proliferation/cell death ratio in the small intestine improving the intestinal Ca2+ absorption altered by oxidative stress.

      PubDate: 2017-07-21T09:12:34Z
       
  • Characterization of the FoxL2 proximal promoter and coding sequence from
           the common snapping turtle (Chelydra serpentina)
    • Abstract: Publication date: Available online 12 July 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Lei Guo, Turk Rhen
      Sex is determined by temperature during embryogenesis in snapping turtles, Chelydra serpentina. Previous studies in this species show that dihydrotestosterone (DHT) induces ovarian development at temperatures that normally produce males or mixed sex ratios. The feminizing effect of DHT is associated with increased expression of FoxL2, suggesting that androgens regulate transcription of FoxL2. To test this hypothesis, we cloned the proximal promoter (1.6kb) and coding sequence for snapping turtle FoxL2 (tFoxL2) in frame with mCherry to produce a fluorescent reporter. The tFoxL2-mCherry fusion plasmid or mCherry control plasmid were stably transfected into mouse KK1 granulosa cells. These cells were then treated with 0, 1, 10, or 100nM DHT to assess androgen effects on tFoxL2-mCherry expression. In contrast to the main hypothesis, DHT did not alter expression of the tFoxL2-mCherry reporter. However, normal serum increased expression of tFoxL2-mCherry when compared to charcoal-stripped serum, indicating that the cloned region of tFoxL2 contains cis regulatory elements. We also used the tFoxL2-mCherry plasmid as an expression vector to test the hypothesis that DHT and tFoxL2 interact to regulate expression of endogenous genes in granulosa cells. While tFoxL2-mCherry and DHT had independent effects on mouse FoxL2, FshR, GnRHR, and StAR expression, tFoxL2-mCherry potentiated low concentration DHT effects on mouse aromatase expression. Further studies will be required to determine whether synergistic regulation of aromatase by DHT and FoxL2 also occurs in turtle gonads during the sex-determining period, which would explain the feminizing effect of DHT in this species.

      PubDate: 2017-07-21T09:12:34Z
       
  • Mitochondrial oxidative phosphorylation efficiency is upregulated during
           fasting in two major oxidative tissues of ducklings
    • Abstract: Publication date: October 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 212
      Author(s): Pierre-Axel Monternier, Loïc Teulier, Jocelyne Drai, Aurore Bourguignon, Delphine Collin-Chavagnac, Frédéric Hervant, Jean-Louis Rouanet, Damien Roussel
      Fasted endothermic vertebrates must develop physiological responses to maximize energy conservation and survival. The aim of this study was to determine the effect of 1-wk. fasting in 5-wk. old ducklings (Cairina moschata) from whole-body resting metabolic rate and body temperature to metabolic phenotype of tissues and mitochondrial coupling efficiency. At the level of whole organism, the mass-specific metabolic rate of ducklings was decreased by 40% after 1-wk. of fasting, which was associated with nocturnal Tb declines and shallow diurnal hypothermia during fasting. At the cellular level, fasting induced a large reduction in liver, gastrocnemius (oxidative) and pectoralis (glycolytic) muscle masses together with a fuel selection towards lipid oxidation and ketone body production in liver and a lower glycolytic phenotype in skeletal muscles. At the level of mitochondria, fasting induced a reduction of oxidative phosphorylation activities and an up-regulation of coupling efficiency (+30% on average) in liver and skeletal muscles. The present integrative study shows that energy conservation in fasted ducklings is mainly achieved by an overall reduction in mitochondrial activity and an increase in mitochondrial coupling efficiency, which would, in association with shallow hypothermia, increase the conservation of endogenous fuel stores during fasting.

      PubDate: 2017-07-11T02:40:38Z
       
  • The difficulty with correlations: Energy expenditure and brain mass in
           bats
    • Abstract: Publication date: October 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 212
      Author(s): Brian K. McNab, Meike Köhler
      Brain mass has been suggested to determine a mammal's energy expenditure. This potential dependence is examined in 48 species of bats. A correlation between characters may be direct or derived from shared correlations with intervening factors without a direct interaction. Basal rate of metabolism in these bats increases with brain mass: large brains are more expensive than small brains, and both brain mass and basal rate increase with body mass. Basal rate and brain mass also correlate with food habits in bats. Mass-independent basal rate weakly correlates with mass-independent brain mass, the correlation only accounting for 12% of the variation in basal rate, which disappears when the combined effects of body mass and food habits are deleted. The correlation between basal rate and brain mass seen in this and other studies usually accounts for <10% of the variation in basal rate and often <4%, even when statistically significant, a minimalist explanation for the level the basal rate. This correlation probably reflects the intermediacy of secondary factors, as occurred with food habits in bats. Most biological correlations are complicated and must be examined in detail before assurance can be given as to their bases.

      PubDate: 2017-07-11T02:40:38Z
       
  • Fish pigmentation and the melanocortin system
    • Abstract: Publication date: September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 211
      Author(s): Laura Cal, Paula Suarez-Bregua, José Miguel Cerdá-Reverter, Ingo Braasch, Josep Rotllant
      The melanocortin system is a complex neuroendocrine signaling mechanism involved in numerous physiological processes in vertebrates, including pigmentation, steroidogenesis and metabolic control. This review focuses at one of its most fascinating function in fish, its regulatory role in the control of pigmentation, in which the melanocortin 1 receptor (Mc1r), its agonist α-melanocyte stimulating hormone (α-Msh), and the endogenous antagonist agouti signaling protein (Asip1) are the main players. Functional control of Mc1r, which is highly expressed in fish skin and whose activation stimulates melanin production and melanosome dispersion in fish melanophores, is considered a key mechanism for vertebrate pigment phenotypes. The α-Msh peptide, the most documented Mc1r agonist involved in pigmentation, is produced in the pituitary gland, activating melanin synthesis by binding to Mc1r in fish melanophores. Finally, Asip1 is the putative factor for establishing the evolutionarily conserved dorso-ventral pigment pattern found across vertebrates. However, we are just starting to understand how other melanocortin system components are acting in this complex regulatory network.

      PubDate: 2017-07-11T02:40:38Z
       
  • β1- and β2-adrenergic receptor stimulation differ in their effects on
           PGC-1α and atrogin-1/MAFbx gene expression in chick skeletal muscle
    • Abstract: Publication date: September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 211
      Author(s): Saki Shimamoto, Daichi Ijiri, Mana Kawaguchi, Kazuki Nakashima, Osamu Tada, Hiroki Inoue, Akira Ohtsuka
      Adrenaline changes expression of the genes encoding peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), which is known as a regulator of muscle size, and atrogin-1/muscle atrophy F-box (MAFbx), which is a muscle-specific ubiquitin ligase. However, the subtype of β-adrenergic receptor (β-AR) involved in regulating these genes in skeletal muscle is not yet well defined. In this study, the effects of intraperitoneal injection of adrenaline and three β1–3-AR selective agonists on chick skeletal muscle metabolism were examined, to evaluate the functions of β-AR subtypes. Adrenaline decreased atrogin-1/MAFbx mRNA levels accompanied by an increase in PGC-1α mRNA and protein levels. However, among the three selective agonists, only the β1-AR agonist, dobutamine, increased PGC-1α mRNA and protein levels, while the β2-AR agonist, clenbuterol, suppressed atrogin-1/MAFbx mRNA levels. In addition, preinjection of the β1-AR antagonist, acebutolol, and the β2-AR antagonist, butoxamine, inhibited the adrenaline-induced increase in PGC-1α mRNA levels and the decrease in atrogin-1/MAFbx mRNA levels, respectively. Compared with adrenaline administration, the β3-AR agonist, BRL37344, decreased PGC-1α mRNA levels and increased atrogin-1/MAFbx mRNA levels. These results suggest that, in chick skeletal muscle, PGC-1α is induced via the β1-AR, while atrogin-1/MAFbx is suppressed via the β2-AR.

      PubDate: 2017-07-11T02:40:38Z
       
  • Distributional shift of urea production site from the extraembryonic yolk
           sac membrane to the embryonic liver during the development of cloudy
           catshark (Scyliorhinus torazame)
    • Abstract: Publication date: September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 211
      Author(s): Wataru Takagi, Makiko Kajimura, Hironori Tanaka, Kumi Hasegawa, Shuntaro Ogawa, Susumu Hyodo
      Urea is an essential osmolyte for marine cartilaginous fishes. Adult elasmobranchs and holocephalans are known to actively produce urea in the liver, muscle and other extrahepatic organs; however, osmoregulatory mechanisms in the developing cartilaginous fish embryo with an undeveloped urea-producing organ are poorly understood. We recently described the contribution of extraembryonic yolk sac membranes (YSM) to embryonic urea synthesis during the early developmental period of the oviparous holocephalan elephant fish (Callorhinchus milii). In the present study, to test whether urea production in the YSM is a general phenomenon among oviparous Chondrichthyes, we investigated gene expression and activities of ornithine urea cycle (OUC) enzymes together with urea concentrations in embryos of the elasmobranch cloudy catshark (Scyliorhinus torazame). The intracapsular fluid, in which the catshark embryo develops, had a similar osmolality to seawater, and embryos maintained a high concentration of urea at levels similar to that of adult plasma throughout development. Relative mRNA expressions and activities of catshark OUC enzymes were significantly higher in YSM than in embryos until stage 32. Concomitant with the development of the embryonic liver, the expression levels and activities of OUC enzymes were markedly increased in the embryo from stage 33, while those of the YSM decreased from stage 32. The present study provides further evidence that the YSM contributes to embryonic urea homeostasis until the liver and other extrahepatic organs become fully functional, and that urea-producing tissue shifts from the YSM to the embryonic liver in the late developmental period of oviparous marine cartilaginous fishes.

      PubDate: 2017-07-11T02:40:38Z
       
  • Molecular markers of oocyte differentiation in European eel during
           hormonally induced oogenesis
    • Abstract: Publication date: September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 211
      Author(s): Iratxe Rojo-Bartolomé, Leticia Martínez-Miguel, Anne-Gaëlle Lafont, M. Carmen Vílchez, Juan F. Asturiano, Luz Pérez, Ibon Cancio
      Reproduction in captivity is a key study issue in Anguilla anguilla as a possible solution for its dwindling population. Understanding the mechanisms controlling the production of ribosomal building blocks during artificially induced oocyte maturation could be particularly interesting. Transcription levels of ribosomal biogenesis associated genes could be used as markers to monitor oogenesis. Eels from the Albufera Lagoon were injected with carp pituitary extract for 15weeks and ovaries in previtellogenic (PV) stage (non-injected), in early-, mid-, late-vitellogenesis (EV, MV, LV), as well as in migratory nucleus stage (MN) were analysed. 5S rRNA and related genes were highly transcribed in ovaries with PV oocytes. As oocytes developed, transcriptional levels of genes related to 5S rRNA production (gtf3a), accumulation (gtf3a, 42sp43) and nucleocytoplasmic transport (rpl5, rpl11) and the 5S/18S rRNA index decreased (PV>EV>MV>LV>MN). On the contrary, 18S rRNA was at its highest at MN stage while ubtf1 in charge of activating RNA-polymerase I and synthesising 18S rRNA behaved as 5S related genes. Individuals that did not respond (NR) to the treatment showed 5S/18S index values similar to PV females, while studied genes showed EV/LV-like transcription levels. Therefore, NR females fail to express the largest rRNAs, which could thus be taken as markers of successful vitellogenesis progression. In conclusion, we have proved that the transcriptional dynamics of ribosomal genes provides useful tools to characterize induced ovarian development in European eels. In the future, such markers should be studied as putative indicators of response to hormonal treatments and of the quality of obtained eel oocytes.

      PubDate: 2017-07-11T02:40:38Z
       
  • Alpha-lipoic acid impairs body weight gain of young broiler chicks via
           modulating peripheral AMPK
    • Abstract: Publication date: September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 211
      Author(s): Yufeng Wang, Nadia Everaert, Zhigang Song, Eddy Decuypere, Daniel Vermeulen, Johan Buyse
      In mammals, the AMP-activated protein kinase (AMPK) pathways in the central and peripheral tissues coordinately integrate inputs from multiple sources to regulate energy balance. The present study was aimed to explore the potential role of hepatic AMPK in the energy homeostasis of broiler chickens. Diets with 0, 0.05% or 0.1% alpha-lipoic acid (α-LA), a known AMPK inhibitor were provided to broiler chicks for 7days. As a result, α-LA supplementation decreased the relative growth rate of broiler chicks. Hepatic AMPKα2 mRNA levels were significantly upregulated by dietary α-LA, in concert with the increased phosphorylated AMPKα protein levels. In addition, hepatic FAS mRNA levels together with the malonyl-CoA to total CoA ester ratio were reduced by α-LA supplementation. Moreover, the hepatic phosphorylated glycogen synthase levels were increased resulting in a markedly decreased hepatic glycogen content. In conclusion, dietary α-LA supplementation decreased the in vivo hepatic glycogenesis and lipogenesis via stimulating hepatic AMPKα mRNA levels and the phosphorylated gene product. The stimulatory effect of α-LA on hepatic AMPK mRNA and pAMPKα protein levels together with our previous observations regarding its inhibitory effect on hypothalamic AMPK may have altered the energy balance and hence impaired body weight gain of broiler chicks.

      PubDate: 2017-07-11T02:40:38Z
       
  • Evidence of extensive plasma glucose recycling following a glucose load in
           seabass
    • Abstract: Publication date: September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 211
      Author(s): João Rito, Ivan Viegas, Miguel A. Pardal, John G. Jones
      Seabass and other carnivorous fish are highly dependent on gluconeogenesis from dietary amino acids to maintain glycemia. Glucose recycling (glucose→C3-intermediate→glucose) may potentiate the effects of glucose administration in sparing amino acid gluconeogenesis. To date, very few measurements of glucose recycling have been reported in fish. Thus, to determine the extent of glucose recycling following a glycemic challenge, juvenile seabass were given an intraperitoneal glucose load (2gkg−1) enriched with [U-13C]glucose. 13C NMR analysis of plasma glucose 13C-isotopomers was used to determine the fractional contributions of glucose derived directly from the load versus that from glucose recycling at 48h after the load. Both fed and 21-day fasted fish (20 per condition) were studied. In fasted fish, 18±4% of plasma glucose was directly derived from the load while 13±2% was derived from glucose recycling. In fed fish, the load accounted for 6±1% of plasma glucose levels while glucose recycling contributed 16±4%. 13C NMR analysis of plasma lactate revealed 13C-isotopomers corresponding to the expected C3-intermediates of peripheral [U-13C]glucose catabolism indicating that circulating lactate was a key intermediate in glucose carbon recycling under these conditions. In conclusion, glucose recycling was shown to contribute a significant portion of plasma glucose levels in both fed and fasted seabass 48h after an intraperitoneal glucose challenge and circulating lactate was shown to be an intermediate of this pathway.

      PubDate: 2017-07-11T02:40:38Z
       
  • A high fat diet enhances the sensitivity of chick adipose tissue to the
           effects of centrally injected neuropeptide Y on gene expression of
           adipogenesis-associated factors
    • Abstract: Publication date: September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 211
      Author(s): Guoqing Wang, Carli A. Williams, Betty R. McConn, Mark A. Cline, Elizabeth R. Gilbert
      The purpose of this study was to determine how dietary macronutrient composition and exogenous neuropeptide Y (NPY) affect mRNA abundance of factors associated with lipid metabolism in chick adipose tissue. Chicks were fed one of three isocaloric (3000kcal metabolizable energy (ME)/kg) diets after hatch: high carbohydrate (HC; control), high fat (HF; 30% of ME from soybean oil) or high protein (HP; 25% crude protein). On day 4 post-hatch, vehicle or 0.2nmol of NPY was injected intracerebroventricularly and abdominal and subcutaneous fat depots collected 1h later. In abdominal fat, mRNA abundance of peroxisome proliferator-activated receptor γ (PPARγ) and fatty acid binding protein 4 (FABP4) increased after NPY injection in HF diet-fed chicks. NPY injection decreased expression of PPARγ and sterol regulatory element-binding transcription factor 1 (SREBP1) in the subcutaneous fat of HC diet-fed chicks, whereas SREBP1 expression was increased in the subcutaneous fat of HF diet-fed chicks after NPY injection. An acutely increased central concentration of NPY in chicks affects adipose tissue physiology in a depot- and diet-dependent manner. The chick may serve as a model to understand the relationship between diet and the brain-fat axis' role in maintaining whole body energy homeostasis, as well as to understand metabolic distinctions among fat depots.

      PubDate: 2017-07-11T02:40:38Z
       
  • Uncoupling effect of palmitate is exacerbated in skeletal muscle
           mitochondria of sea-acclimatized king penguins (Aptenodytes patagonicus)
    • Abstract: Publication date: September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 211
      Author(s): Benjamin Rey, Claude Duchamp, Damien Roussel
      In king penguin juveniles, the environmental transition from a terrestrial to a marine habitat, occurring at fledging, drastically stimulates lipid catabolism and the remodelling of muscle mitochondria to sustain extensive swimming activity and thermoregulation in the cold circumpolar oceans. However, the exact nature of these mechanisms remains only partially resolved. Here we investigated, in vitro, the uncoupling effect of increasing doses of fatty acids in pectoralis muscle intermyofibrillar mitochondria isolated, either from terrestrial never-immersed or experimentally cold water immersed pre-fledging king penguins or from sea-acclimatized fledged penguins. Mitochondria exhibited much greater palmitate-induced uncoupling respiration and higher maximal oxidative capacity after acclimatization to marine life. Such effects were not reproduced experimentally after repeated immersions in cold water, suggesting that the plasticity of mitochondrial characteristics may not be primarily driven by cold exposure per se but by other aspects of sea acclimatization.

      PubDate: 2017-07-11T02:40:38Z
       
  • The effects of hypoxia on active ionic transport processes in the gill
           epithelium of hyperregulating crab, Carcinus maneas
    • Abstract: Publication date: September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 211
      Author(s): Čedomil Lucu, Andreas Ziegler
      Effects of hypoxia on the osmorespiratory functions of the posterior gills of the shore crab Carcinus maenas acclimated to 12ppt seawater (DSW) were studied. Short-circuit current (Isc) across the hemilamella (one epithelium layer supported by cuticle) was substantially reduced under exposure to 1.6, 2.0, or 2.5mg O2/L hypoxic saline (both sides of epithelium) and fully recovered after reoxygenation. Isc was reduced equally in the epithelium exposed to 1.6mg O2/L on both sides and when the apical side was oxygenated and the basolateral side solely exposed to hypoxia. Under 1.6mg O2/L, at the level of maximum inhibition of Isc, conductance was decreased from 40.0mScm−2 to 34.7mScm−2 and fully recovered after reoxygenation. Isc inhibition under hypoxia and reduced 86Rb+ (K+) fluxes across apically located K+ channels were caused preferentially by reversible inhibition of basolaterally located and ouabain sensitive Na+,K+-ATPase mediated electrogenic transport. Reversible inhibition of Isc is discussed as decline in active transport energy supply down regulating metabolic processes and saving energy during oxygen deprivation. In response to a 4day exposure of Carcinus to 2.0mg O2/L, hemolymph Na+ and Cl− concentration decreased, i.e. hyperosmoregulation was weakened. Variations of the oxygen concentration level and exposure time to hypoxia lead to an increase of the surface of mitochondria per epithelium area and might in part compensate for the decrease in oxygen availability under hypoxic conditions.

      PubDate: 2017-07-11T02:40:38Z
       
  • Developmental cardiovascular physiology of the olive ridley sea turtle
           (Lepidochelys olivacea)
    • Abstract: Publication date: September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 211
      Author(s): Dane Alan Crossley, Janna Lee Crossley, Camilla Smith, Martha Harfush, Hermilo Sánchez-Sánchez, Mónica Vanessa Garduño-Paz, José Fernando Méndez-Sánchez
      Our understanding of reptilian cardiovascular development and regulation has increased substantially for two species the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina) during the past two decades. However, what we know about cardiovascular maturation in many other species remains poorly understood or unknown. Embryonic sea turtles have been studied to understand the maturation of metabolic function, but these studies have not addressed the cardiovascular system. Although prior studies have been pivotal in characterizing development, and factors that influence it, the development of cardiovascular function, which supplies metabolic function, is unknown in sea turtles. During our investigation we focused on quantifying how cardiovascular morphological and functional parameters change, to provide basic knowledge of development in the olive ridley sea turtle (Lepidochelys olivacea). Embryonic mass, as well as mass of the heart, lungs, liver, kidney, and brain increased during turtle embryo development. Although heart rate was constant during this developmental period, arterial pressure approximately doubled. Further, while embryonic olive ridley sea turtles lacked cholinergic tone on heart rate, there was a pronounced beta adrenergic tone on heart rate that decreased in strength at 90% of incubation. This beta adrenergic tone may be partially originating from the sympathetic nervous system at 90% of incubation, with the majority originating from circulating catecholamines. Data indicates that olive ridley sea turtles share traits of embryonic functional cardiovascular maturation with the American alligator (Alligator mississippiensis) but not the common snapping turtle (Chelydra serpentina).

      PubDate: 2017-07-11T02:40:38Z
       
  • Sardine procalcitonin amino-terminal cleavage peptide has a different
           action from calcitonin and promotes osteoblastic activity in the scales of
           goldfish
    • Abstract: Publication date: September 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 211
      Author(s): Yoichi Kase, Takahiro Ikari, Toshio Sekiguchi, Masayuki Sato, Shouzo Ogiso, Tsuyoshi Kawada, Shin Matsubara, Honoo Satake, Yuichi Sasayama, Masato Endo, Kei-ichiro Kitamura, Atsuhiko Hattori, Takushi X. Watanabe, Yusuke Maruyama, Yoshinari Watanabe, Hisayuki Funahashi, Akira Kambegawa, Nobuo Suzuki
      The nucleotide sequence of a sardine preprocalcitonin precursor has been determined from their ultimobranchial glands in the present study. From our analysis of this sequence, we found that sardine procalcitonin was composed of procalcitonin amino-terminal cleavage peptide (N-proCT) (53 amino acids), CT (32 amino acids), and procalcitonin carboxyl-terminal cleavage peptide (C-proCT) (18 amino acids). As compared with C-proCT, N-proCT has been highly conserved among teleosts, reptiles, and birds, which suggests that N-proCT has some bioactivities. Therefore, both sardine N-proCT and sardine CT were synthesized, and their bioactivities for osteoblasts and osteoclasts were examined using our assay system with goldfish scales that consisted of osteoblasts and osteoclasts. As a result, sardine N-proCT (10−7 M) activated osteoblastic marker enzyme activity, while sardine CT did not change. On the other hand, sardine CT (10−9 to 10−7 M) suppressed osteoclastic marker enzyme activity, although sardine N-proCT did not influence enzyme activity. Furthermore, the mRNA expressions of osteoblastic markers such as type 1 collagen and osteocalcin were also promoted by sardine N-proCT (10−7 M) treatment; however, sardine CT did not influence their expressions. The osteoblastic effects of N-proCT lack agreement. In the present study, we can evaluate exactly the action for osteoblasts because our scale assay system is very sensitive and it is a co-culture system for osteoblasts and osteoclasts with calcified bone matrix. Both CT and N-proCT seem to influence osteoblasts and osteoclasts and promote bone formation by different actions in teleosts.

      PubDate: 2017-07-11T02:40:38Z
       
  • Changes in free amino acid content during naupliar development of the
           Calanoid copepod Acartia tonsa
    • Abstract: Publication date: August 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 210
      Author(s): Thomas Allan Rayner, Niels Ole Gerslev Jørgensen, Guillaume Drillet, Benni Winding Hansen
      Changes in free amino acids (FAA) were investigated in the potentially important live feed and neritic copepod species Acartia tonsa during naupliar development. Total content of FAA in A. tonsa nauplii was around 17% of dry weight at first development stage, and declined to 6% for later stages. Relative to body-volume and biomass, the FAA content indicated possible volume-dependent changes. However, changes in FAA with osmolytic activity could not account for this decline in FAA content, but suggests that the decline reflected degradation of residual FAAs from the embryonic stage. Glutamic acid revealed the largest change in relative abundance during naupliar development and declined from 29.0% at first nauplius stage to 7.1% at later stages. The high FAA pool in early naupliar stages may be necessary for naupliar development due to an absence of feeding at first development stages. The high FAA content in early nauplii indicates that A. tonsa is a valuable source for nutritional energy for first-feeding fish larvae and should be further exploited for aquaculture purposes. Enhancements to FAA abundances in nauplii through manipulation of maternal diets could be of future interest, as copepod nauplii can contain a substantial pool of FAAs at first development stage.

      PubDate: 2017-07-11T02:40:38Z
       
  • Life-history dependent relationships between body condition and immunity,
           between immunity indices in male Eurasian tree sparrows
    • Abstract: Publication date: August 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 210
      Author(s): Yuliang Zhao, Mo Li, Yanfeng Sun, Wei Wu, Guanqun Kou, Lingling Guo, Danning Xing, Yuefeng Wu, Dongming Li, Baohua Zhao
      In free-living animals, recent evidence indicates that innate, and acquired, immunity varies with annual variation in the demand for, and availability of, food resources. However, little is known about how animals adjust the relationships between immunity and body condition, and between innate and acquired immunity to optimize survival over winter and reproductive success during the breeding stage. Here, we measured indices of body condition (size-corrected mass [SCM], and hematocrit [Hct]), constitutive innate immunity (plasma total complement hemolysis activity [CH50]) and acquired immunity (plasma immunoglobulin A [IgA]), plus heterophil/lymphocyte (H/L) ratios, in male Eurasian tree sparrows (Passer montanus) during the wintering and the breeding stages. We found that birds during the wintering stage had higher IgA levels than those from the breeding stage. Two indices of body condition were both negatively correlated with plasma CH50 activities, and positively with IgA levels in wintering birds, but this was not the case in the breeding birds. However, there was no correlation between CH50 activities and IgA levels in both stages. These results suggest that the relationships between body condition and immunity can vary across life-history stage, and there are no correlations between innate and acquired immunity independent of life-history stage, in male Eurasian tree sparrows. Therefore, body condition indices predict immunological state, especially during the non-breeding stage, which can be useful indicators of individual immunocompetences for understanding the variations in innate and acquired immunity in free-living animals.

      PubDate: 2017-07-11T02:40:38Z
       
  • Neither artificial light at night, anthropogenic noise nor distance from
           roads are associated with oxidative status of nestlings in an urban
           population of songbirds
    • Abstract: Publication date: August 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 210
      Author(s): Giulia Casasole, Thomas Raap, David Costantini, Hamada AbdElgawad, Han Asard, Rianne Pinxten, Marcel Eens
      Increasing urbanization is responsible for road-related pollutants and causes an unprecedented increase in light and noise pollution, with potential detrimental effects for individual animals, communities and ecosystems. These stressors rarely act in isolation but studies dissecting the effects of these multiple stressors are lacking. Moreover, studies on urban stressors have mainly focused on adults, while exposure in early-life may be detrimental but is largely ignored. To fill this important knowledge gap, we studied if artificial light at night, anthropogenic noise and road-related pollution (using distance from roads as a proxy) explain variation in oxidative status in great tit nestlings (Parus major) in an urban population. Artificial light at night, anthropogenic noise and distance from roads were not associated with variation of the nine studied metrics of oxidative status (superoxide dismutase-SOD-, glutathione peroxidase-GPX, catalase-CAT-, non-enzymatic total antioxidant capacity-TAC-, reduced glutathione-GSH-, oxidized glutathione-GSSG-, ratio GSH/GSSG, protein carbonyls and thiobarbituric acid reactive substances-TBARS). Interestingly, for all oxidative status metrics, we found that there was more variation in oxidative status among individuals of the same nest compared to between different nests. We also showed an increase in protein carbonyls and a decrease of the ratio GSH/GSSG as the day advanced, and an increase of GPX when weather conditions deteriorated. Our study suggests that anthropogenic noise, artificial light at night and road-related pollution are not the most important sources of variation in oxidative status in great tit nestlings. It also highlights the importance of considering bleeding time and weather conditions in studies with free-living animals.

      PubDate: 2017-07-11T02:40:38Z
       
  • Ovarian expression and localization of clathrin (Cltc) components in
           cutthroat trout, Oncorhynchus clarki: Evidence for Cltc involvement in
           endocytosis of vitellogenin during oocyte growth
    • Abstract: Publication date: Available online 4 July 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Hiroko Mizuta, Yuji Mushirobira, Jun Nagata, Takashi Todo, Akihiko Hara, Benjamin J. Reading, Craig V. Sullivan, Naoshi Hiramatsu
      To evaluate potential involvement of clathrin in endocytosis of vitellogenin (Vtg) by teleost oocytes, cDNAs encoding clathrin heavy chain (cltc) were cloned from ovaries of cutthroat trout. Quantitative PCR revealed three types of cltc (cltc-a1, cltc-a2, cltc-b) to be expressed in 10 different tissues including the ovary. The cltc-a1 alone exhibited a significant decrease in ovarian expression during vitellogenesis; this was correlated with a corresponding decrease in transcripts encoding the major Vtg receptor (Vtgr). No development-related changes in ovarian cltc-a2 or cltc-b transcript levels were observed. In situ hybridization revealed a strong ctlc signal in pre-vitellogenic oocytes, but not in vitellogenic oocytes. Western blotting using a rabbit antiserum (a-Cltc) raised against a recombinant Cltc preparation detected a polypeptide band with an apparent mass of ~170kDa in vitellogenic ovary extracts. Immunohistochemistry using a-Cltc revealed Cltc to be uniformly distributed throughout the ooplasm of perinucleolus stage oocytes, translocated to the periphery of lipid droplet stage oocytes, and localized to the oolemma during vitellogenesis. These patterns of cltc/Cltc distribution and abundance during oogenesis, which are identical to those previously reported for vtgr/Vtgr in this species, constitute the first empirical evidence that cltc-a1/Cltc-a1 is involved in Vtg endocytosis via the Vtgr in teleost fish.

      PubDate: 2017-07-11T02:40:38Z
       
  • Effects of nutrient and water restriction on thermal tolerance: A test of
           mechanisms and hypotheses
    • Abstract: Publication date: Available online 1 July 2017
      Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Author(s): Katherine A. Mitchell, Leigh Boardman, Susana Clusella-Trullas, John S. Terblanche
      Nutritional deprivation or desiccation can influence thermal tolerance by impacting the insects' ability to evaporatively cool, maintain cell membrane integrity and conduct protective or repair processes. Recovery from chilling is also linked to the re-establishment of iono- and osmo-regulatory homeostasis. Here, using Mediterranean fruit fly (Ceratitis capitata, Diptera: Tephritidae), we manipulated water and nutrient availability to test the mechanistic expectation that changes in whole organism lipid and water content can elicit variation in cold or heat tolerance (scored as chill coma recovery time and heat knockdown time). We measured body condition (body water and lipid content) as well as heat shock protein 70 gene (hsp70) and protein (HSP70) levels. A significant reduction in body water content with water restriction did not translate into differences in chill coma recovery. When nutrient restriction was coupled with water deprivation, this resulted in a significant reduction (−54%) of heat knockdown time in females but male flies were unaffected. There was no evidence for an hsp70 or HSP70 response under any of the stress treatments and therefore no correlation with heat or cold tolerance. Heat hardening did decrease all hsp levels. Therefore, although body water and total body lipid content differed between the treatment groups, the contribution of these factors to thermal tolerance was inconsistent with mechanistic expectations in heat knockdown time and insignificant for chill coma recovery. These results therefore highlight that the effects of resource restriction on thermal limits in insects are mechanistically more complex than previous models of stress resistance have suggested.

      PubDate: 2017-07-11T02:40:38Z
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.166.203.76
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016