for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> BIOLOGY (Total: 2603 journals)
    - BIOCHEMISTRY (192 journals)
    - BIOENGINEERING (63 journals)
    - BIOLOGY (1322 journals)
    - BIOPHYSICS (42 journals)
    - BIOTECHNOLOGY (145 journals)
    - BOTANY (195 journals)
    - CYTOLOGY AND HISTOLOGY (24 journals)
    - ENTOMOLOGY (54 journals)
    - GENETICS (137 journals)
    - MICROBIOLOGY (210 journals)
    - MICROSCOPY (9 journals)
    - ORNITHOLOGY (23 journals)
    - PHYSIOLOGY (66 journals)
    - ZOOLOGY (121 journals)

BIOCHEMISTRY (192 journals)                  1 2     

AAPS PharmSciTech     Hybrid Journal   (Followers: 6)
Acetic Acid Bacteria     Open Access   (Followers: 1)
ACS Chemical Biology     Full-text available via subscription   (Followers: 269)
ACS Chemical Neuroscience     Full-text available via subscription   (Followers: 13)
Acta Crystallographica Section D : Biological Crystallography     Hybrid Journal   (Followers: 8)
Acta Crystallographica Section F: Structural Biology Communications     Hybrid Journal   (Followers: 5)
Advances and Applications in Bioinformatics and Chemistry     Open Access   (Followers: 7)
Advances in Biological Chemistry     Open Access   (Followers: 5)
Advances in Carbohydrate Chemistry and Biochemistry     Full-text available via subscription   (Followers: 6)
Advances in Plant Biochemistry and Molecular Biology     Full-text available via subscription   (Followers: 6)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 10)
African Journal of Biochemistry Research     Open Access  
African Journal of Chemical Education     Open Access   (Followers: 1)
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 4)
American Journal of Biochemistry     Open Access   (Followers: 6)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 157)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 11)
Amino Acids     Hybrid Journal   (Followers: 7)
Analytical Biochemistry     Hybrid Journal   (Followers: 181)
Annals of Clinical Biochemistry     Hybrid Journal   (Followers: 1)
Annual Review of Biochemistry     Full-text available via subscription   (Followers: 28)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 10)
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 18)
Applied Biochemistry and Microbiology     Hybrid Journal   (Followers: 7)
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 4)
Archives of Biochemistry and Biophysics     Hybrid Journal   (Followers: 9)
Archives of Insect Biochemistry and Physiology     Hybrid Journal   (Followers: 1)
Archives Of Physiology And Biochemistry     Hybrid Journal   (Followers: 1)
Asian Journal of Biochemistry     Open Access   (Followers: 1)
Bangladesh Journal of Medical Biochemistry     Open Access   (Followers: 2)
BBA Clinical     Open Access  
BBR : Biochemistry and Biotechnology Reports     Open Access   (Followers: 3)
Biochemical and Biophysical Research Communications     Hybrid Journal   (Followers: 14)
Biochemical and Molecular Medicine     Full-text available via subscription   (Followers: 2)
Biochemical Engineering Journal     Hybrid Journal   (Followers: 8)
Biochemical Genetics     Hybrid Journal   (Followers: 2)
Biochemical Journal     Full-text available via subscription   (Followers: 15)
Biochemical Pharmacology     Hybrid Journal   (Followers: 6)
Biochemical Society Transactions     Full-text available via subscription   (Followers: 2)
Biochemical Systematics and Ecology     Hybrid Journal   (Followers: 3)
Biochemistry     Full-text available via subscription   (Followers: 191)
Biochemistry (Moscow)     Hybrid Journal   (Followers: 3)
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology     Hybrid Journal   (Followers: 4)
Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry     Hybrid Journal   (Followers: 4)
Biochemistry and Cell Biology     Full-text available via subscription   (Followers: 9)
Biochemistry and Molecular Biology Education     Hybrid Journal   (Followers: 3)
Biochemistry and Molecular Biology of Fishes     Full-text available via subscription   (Followers: 1)
Biochemistry Research International     Open Access   (Followers: 4)
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids     Hybrid Journal   (Followers: 3)
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease     Hybrid Journal   (Followers: 18)
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research     Hybrid Journal   (Followers: 5)
Biochimie     Hybrid Journal   (Followers: 4)
Bioconjugate Chemistry     Full-text available via subscription   (Followers: 14)
BioDrugs     Full-text available via subscription   (Followers: 7)
Bioelectrochemistry     Hybrid Journal   (Followers: 3)
Biofuels     Hybrid Journal   (Followers: 7)
Biogeochemistry     Hybrid Journal   (Followers: 5)
BioInorganic Reaction Mechanisms     Full-text available via subscription   (Followers: 1)
Biokemistri     Open Access  
Biological Chemistry     Partially Free   (Followers: 11)
Biomedicines     Open Access   (Followers: 1)
BioMolecular Concepts     Full-text available via subscription   (Followers: 2)
Bioscience, Biotechnology, and Biochemistry     Hybrid Journal   (Followers: 6)
Biosimilars     Open Access   (Followers: 1)
Biotechnology and Applied Biochemistry     Hybrid Journal   (Followers: 17)
BMC Biochemistry     Open Access   (Followers: 8)
BMC Chemical Biology     Open Access   (Followers: 4)
Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca : Food Science and Technology     Open Access  
Carbohydrate Polymers     Hybrid Journal   (Followers: 8)
Cell Biochemistry and Biophysics     Hybrid Journal   (Followers: 6)
Cell Biochemistry and Function     Hybrid Journal   (Followers: 3)
Cellular Physiology and Biochemistry     Open Access   (Followers: 3)
Central European Journal of Chemistry     Hybrid Journal   (Followers: 5)
ChemBioChem     Hybrid Journal   (Followers: 2)
Chemical and Biological Technologies for Agriculture     Open Access  
Chemical Biology & Drug Design     Hybrid Journal   (Followers: 23)
Chemical Engineering Journal     Hybrid Journal   (Followers: 18)
Chemical Senses     Hybrid Journal   (Followers: 1)
Chemical Speciation and Bioavailability     Full-text available via subscription   (Followers: 1)
Chemico-Biological Interactions     Hybrid Journal   (Followers: 2)
Chemistry & Biodiversity     Hybrid Journal   (Followers: 5)
Chemistry & Biology     Full-text available via subscription   (Followers: 16)
Chemistry and Ecology     Hybrid Journal   (Followers: 1)
Clinical Biochemist Reviews     Full-text available via subscription   (Followers: 1)
Clinical Biochemistry     Hybrid Journal   (Followers: 3)
Clinical Chemistry and Laboratory Medicine     Full-text available via subscription   (Followers: 3)
Clinical Lipidology     Full-text available via subscription  
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology     Hybrid Journal   (Followers: 5)
Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 2)
Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology     Hybrid Journal   (Followers: 4)
Comparative Biochemistry and Physiology Part D: Genomics and Proteomics     Hybrid Journal   (Followers: 3)
Comprehensive Biochemistry     Full-text available via subscription   (Followers: 1)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 8)
Critical Reviews in Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 2)
Current Chemical Biology     Hybrid Journal   (Followers: 2)
Current Opinion in Chemical Biology     Hybrid Journal   (Followers: 14)
Current Opinion in Lipidology     Hybrid Journal   (Followers: 2)
DNA Barcodes     Open Access  
Doklady Biochemistry and Biophysics     Hybrid Journal   (Followers: 2)
Doklady Chemistry     Hybrid Journal  

        1 2     

Journal Cover Archives of Insect Biochemistry and Physiology
   Journal TOC RSS feeds Export to Zotero [3 followers]  Follow    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
     ISSN (Print) 0739-4462 - ISSN (Online) 1520-6327
     Published by John Wiley and Sons Homepage  [1603 journals]   [SJR: 0.572]   [H-I: 44]
           thuringiensis δ‐ENDOTOXIN Cry1Ac
    • Authors: Inakarla Paramasiva; Yogesh Shouche, Girish Jayant Kulkarni, Pulipaka Venkata Krishnayya, Shaik Mohammed Akbar, Hari Chand Sharma
      Abstract: Transgenic crops expressing toxin proteins from Bacillus thuringiensis (Bt) have been deployed on a large scale for management of Helicoverpa armigera. Resistance to Bt toxins has been documented in several papers, and therefore, we examined the role of midgut microflora of H. armigera in its susceptibility to Bt toxins. The susceptibility of H. armigera to Bt toxin Cry1Ac was assessed using Log‐dose‐Probit analysis, and the microbial communities were identified by 16S rRNA sequencing. The H. armigera populations from nine locations harbored diverse microbial communities, and had some unique bacteria, suggesting a wide geographical variation in microbial community in the midgut of the pod borer larvae. Phylotypes belonging to 32 genera were identified in the H. armigera midgut in field populations from nine locations. Bacteria belonging to Enterobacteriaceae (Order Bacillales) were present in all the populations, and these may be the common members of the H. armigera larval midgut microflora. Presence and/or absence of certain species were linked to H. armigera susceptibility to Bt toxins, but there were no clear trends across locations. Variation in susceptibility of F1 neonates of H. armigera from different locations to the Bt toxin Cry1Ac was found to be 3.4‐fold. These findings support the idea that insect migut microflora may influence the biological activity of Bt toxins.
      PubDate: 2014-09-04T06:29:31.575519-05:
      DOI: 10.1002/arch.21190
  • Editorial Board
    • PubDate: 2014-09-03T05:31:53.367316-05:
      DOI: 10.1002/arch.21129
    • Authors: Pu Yang; Xiao‐Ming Chen
      Abstract: The Chinese white wax scale insect (Ericerus pela) is sexually dimorphic with holometabolous males and hemimetabolous females. Holometabolous insects were assumed to originate from hemimetabolous ancestors. Therefore, the male pupal stage is a major innovation compared with hemimetabolous female insects. Here, the protein profiles of the male pupae were obtained by high‐throughput proteomics and analyzed using bioinformatics methods. A total of 1,437 peptides were identified and assigned to 677 protein groups. Most of the proteins had molecular weights below 40 kDa and isoelectric points from 4 to 7. Gene Ontology terms were assigned to 331 proteins, including metabolic process, developmental process, and cellular process. Kyoto Encyclopedia of Genes and Genomes annotations identified 142 pathways and most proteins were assigned to metabolism events. Pathways involved in cell growth and death, signal transduction, folding, and sorting and degradation were also identified. Six proteins that had undergone positive selection were classified into four groups, protein biosynthesis, protein degeneration, signal transduction, and detoxification. Many of the high‐abundance proteins were enzymes involved in carbohydrate, lipid, and amino acid metabolism; signal transduction; degradation; and immunization, which indicated that metabolism, disruption, and development occurred intensely at the pupal stage. These processes are closely related to the physiological status of pupae. The results also suggested that these related proteins may be fundamental factors in the formation of pupae. This study describes pupal characterization at the molecular level and provides a basis for further physiological studies.
      PubDate: 2014-09-03T04:07:18.881343-05:
      DOI: 10.1002/arch.21191
           Plutella xylostella
    • Authors: Huidong Wang; Liang Gong, Jiangwei Qi, Meiying Hu, Guohua Zhong, Liang Gong
      Abstract: RNA interference (RNAi) signal can spread from the point where the double‐stranded RNA (dsRNA) was initially applied to other cells or tissues. SID‐related genes in Caenorhabditis elegans help in the spreading of this signal. However, the mechanisms of systemic RNAi are still not unveiled in insects. In this study, we cloned a full‐length cDNA of sid‐1‐like gene, Pxylsid‐1, from Plutella xylostella that contains 1,047 bp opening reading frame encoding a putative protein of 348 amino acids. This transcript is very much similar to the sil‐1 in Bombyx mori (68.8%). The higher expression levels of Pxylsid‐1 were found at the adult and fourth‐instar stages compared to the second‐instar stage with 21.48‐ and 10.36‐fold increase, respectively. Its expression levels in different tissues were confirmed with the highest expression in the hemolymph, which showed 21.09‐fold increase than the midgut; however it was lower in other tissues. The result of RNAi by feeding bacterially expressed dsRNA targeting Pxylace‐1, which showed that the mRNA level of Pxylace‐1 decreased by 34.52 and 64.04% after 36‐ and 72‐h treatment, respectively. However, the mRNA level of Pxylsid‐1 was not significantly induced when the Pxylace‐1 was downregulated. Furthermore, we found that downregulation of Pxylsid‐1 did not affect the RNAi effect of Pxylace‐1. Hence, the Pxylsid‐1 may not be involved in absorption of dsRNA from the midgut fluid. A further study is needed to uncover the function of Pxylsid‐1.
      PubDate: 2014-08-18T07:31:07.391918-05:
      DOI: 10.1002/arch.21189
    • Authors: Qian Ju; Xiao Li, Xiao‐Jing Jiang, Ming‐Jing Qu, Xiao‐Qiang Guo, Zhao‐Jun Han, Fei Li
      Abstract: The dark black chafer, Holotrichia parallela, is an economically important pest in China and worldwide. Traps based on chemical communication are being developed as an alternative control measure to pesticides for this pest, and studies to reveal chemical communication mechanisms in this pest are highly desirable. To systematically analyze genes potentially involved in chemical communication in this pest, we generated a comprehensive transcriptome with combined samples derived from multiple tissues and developmental stages. A total of 43,967 nonredundant sequences (unigenes) with average length of 806 bp were obtained. These unigenes were annotated into different pathways using gene ontology analysis and cluster analysis of orthologous groups of proteins, and kyoto encyclopedia of genes and genomes. In total, 25 transcripts encoding odorant‐binding proteins (OBPs) and 16 transcripts encoding chemosensory proteins (CSPs) were identified based on homology searches. Tissue‐specific expression profile indicates that OBP17 and CSP7 are likely responsible for male sex pheromone recognition, whereas OBP1–4, OBP9, OBP13–14, OBP17–18, OBP20, OBP22, OBP25, CSP1–7, CSP11, and CSP12–15 are likely responsible for chemical communication between the beetle and environments. Our data shall provide a foundation for further research on the molecular aspects of chemical communication of this insect, and for comparative genomic studies with other species.
      PubDate: 2014-08-06T12:18:51.2571-05:00
      DOI: 10.1002/arch.21188
    • Authors: Rojalin Pattanayak; Geetanjali Mishra, Omkar, Chandan Singh Chanotiya, Prasant Kumar Rout, Chandra Sekhar Mohanty
      Abstract: Insect hydrocarbons (HCs) primarily serve as a waterproofing cuticular layer and function extensively in chemical communication by facilitating species, sex, and colony recognition. In this study, headspace solid‐phase microextraction is employed for investigating the sex‐specific volatile HC profile of five ladybirds collected from Lucknow, India namely, Coccinella septempunctata (L.), Coccinella transversalis (Fabr.), Menochilus sexmaculatus (Fabr.), Propylea dissecta (Mulsant), and Anegleis cardoni (Weise) for the first time. Major compounds reported in C. septempunctata, C. transversalis, and A. cardoni are methyl‐branched saturated HCs, whereas in M. sexmaculatus, and P. dissecta, they are unsaturated HCs. Other than A. cardoni, both the sexes of the other four ladybirds had similar compounds at highest peak but with statistically significant differences. However, in A. cardoni, which is a beetle with a narrow niche, the major compound in both male and female was different. The difference in volatile HC profile of the sexes of the five ladybirds indicates that gender‐specific differences primarily exist due to quantitative differences in chemicals with only very few chemicals being unique to a gender. This variation in semiochemicals might have a role in behavioral or ecological aspects of the studied ladybirds.
      PubDate: 2014-07-25T03:46:18.030303-05:
      DOI: 10.1002/arch.21184
  • ANALYSIS OF THE Vitellogenin GENE OF RICE MOTH, Corcyra cephalonica
    • Authors: Mayura Veerana; Anchanee Kubera, Lertluk Ngernsiri
      Abstract: Vitellogenin (Vg) is a precursor of the major yolk protein, an essential nutrient for the embryonic development of oviparous animals including insects. Here, the gene(CceVg [Corcyra cephalonica Vg] ) encoding the Vg (CceVg of moth, C. cephalonica, was cloned and sequenced. The gene sequence was 6,721‐bp long and contained 5five introns and six exons that together formed a 5,382‐bp open reading frame. The deduced protein (CceVg) consisted of 1,793 amino acid residues, including a 16‐amino‐acid signal peptide. The putative molecular weight of the primary Vg protein was 202.46 kDa. The CceVg contained all conserved domains and motifs that were commonly found in most insect Vgs except the presence of a polyserine tract at the C‐terminal region, which had not been reported in other lepidopteran Vgs. The expression pattern showed thatCceVg was first transcribed at a very low level in the early larval stage but disappeared in later stage larva. In female, theCceVg mRNA was detected in early pupal stage and throughout adult stage. Interestingly, theCceVg mRNA was detected only in mated males at low levels, not in the virgin ones. Injection ofCceVg double‐stranded RNA into early‐emergent females caused severely abnormal ovaries.
      PubDate: 2014-07-23T05:27:49.054991-05:
      DOI: 10.1002/arch.21185
    • Authors: Jimena Leyria; Leonardo L. Fruttero, Silvina A. Aguirre, Lilián E. Canavoso
      Abstract: In this study, we have analyzed the changes of the ovarian nutritional resources in Dipetalogaster maxima at representative days of the reproductive cycle: previtellogenesis, vitellogenesis, as well as fasting‐induced early and late atresia. As expected, the amounts of ovarian lipids, proteins, and glycogen increased significantly from previtellogenesis to vitellogenesis and then, diminished during atresia. However, lipids and protein stores found at the atretic stages were higher in comparison to those registered at previtellogenesis. Specific lipid staining of ovarian tissue sections evidenced remarkable changes in the shape, size, and distribution of lipid droplets throughout the reproductive cycle. The role of lipophorin (Lp) as a yolk protein precursor was analyzed by co‐injecting Lp‐OG (where OG is Oregon Green) and Lp‐DiI (where DiI is 1,10‐dioctadecyl‐3,3,30,30‐tetramethylindocarbocyanine) to follow the entire particle, demonstrating that both probes colocalized mainly in the yolk bodies of vitellogenic oocytes. Immunofluorescence assays also showed that Lp was associated to yolk bodies, supporting its endocytic pathway during vitellogenesis. The involvement of Lp in lipid delivery to oocytes was investigated in vivo by co‐injecting fluorescent probes to follow the fate of the entire particle (Lp‐DiI) and its lipid cargo (Lp‐Bodipy‐FA). Lp‐DiI was readily incorporated by vitellogenic oocytes and no lipoprotein uptake was observed in terminal follicles of ovaries at atretic stages. Bodipy‐FA was promptly transferred to vitellogenic oocytes and, to a much lesser extent, to previtellogenic follicles and to oocytes of ovarian tissue at atretic stages. Colocalization of Lp‐DiI and Lp‐Bodipy‐FA inside yolk bodies indicated the relevance of Lp in the buildup of lipid and protein oocyte stores during vitellogenesis.
      PubDate: 2014-07-23T05:27:40.046268-05:
      DOI: 10.1002/arch.21186
    • Authors: Lulu Kong; Anrui Lu, Jingmin Guan, Bing Yang, Muwang Li, Julián F. Hillyer, Nalini Ramarao, Kenneth Söderhäll, Chaoliang Liu, Erjun Ling
      Abstract: Thermolysin, a metallopeptidase secreted by pathogenic microbes, is concluded as an important virulence factor due to cleaving purified host proteins in vitro. Using the silkworm Bombyx mori as a model system, we found that thermolysin injection into larvae induces the destruction of the coagulation response and the activation of hemolymph melanization, which results in larval death. Thermolysin triggers the rapid degradation of insect and mammalian plasma proteins at a level that is considerably greater than expected in vitro and/or in vivo. To more specifically explore the mechanism, thermolysin‐induced changes to key proteins belonging to the insect melanization pathway were assessed as a window for observing plasma protein cleavage. The application of thermolysin induced the rapid cleavage of the melanization negative regulator serpin‐3, but did not directly activate the melanization rate‐limiting enzyme prophenoloxidase (PPO) or the terminal serine proteases responsible for PPO activation. Terminal serine proteases of melanization are activated indirectly after thermolysin exposure. We hypothesize that thermolysin induces the rapid degradation of serpins and the activation of proteases directly or indirectly, boosting uncontrolled plasma protein degradation in insects and mammalians.
      PubDate: 2014-07-10T03:26:35.907129-05:
      DOI: 10.1002/arch.21178
    • Authors: Hongtao Tu; Yuchuan Qin
      First page: 53
      Abstract: The heterotrimeric G proteins play an essential role in a wide variety of signal transduction pathways, mediating the process of chemical signals from the environment in all higher eukaryotic organisms. In this article, two G‐protein subunit genes encoding Gαq and Gβ1 were cloned from Bemisia tabaci Gennadius. The full‐length cDNA sequence of BtGαq consisted of 2,336 bp with an ORF of 1,062 bp encoding 353 amino acids and BtGβ1 had a full length of 1,942 bp with an ORF of 1,023 nucleotides encoding 340 amino acids. The amino acid sequences of BtGαq and BtGβ1 from B. tabaci B biotype were identical to those from the Q biotype. Phylogenetic analysis identified G protein α and β subunit families from insects based on their amino acid sequences. The expression patterns of BtGαq and BtGβ1 at different development stages and in different body regions were analyzed by real‐time quantitative PCR and Western blot. The results show that BtGαq and BtGβ1 are neither developmental stage‐specific nor tissue‐specific. The transcript levels of BtGαq in the B biotype are similar to that in the Q biotype, the transcript levels of BtGβ1 at egg, first instar and pupae in B biotype were significantly higher than that in Q biotype. The transcript levels of BtGαq and BtGβ1 in the head were significantly higher than those in thorax and abdomen indicating that they are involved in nervous system and sensory functions.
      PubDate: 2014-07-12T06:27:53.197614-05:
      DOI: 10.1002/arch.21180
           lugens (STÅ L), THE BROWN PLANTHOPPER
    • Authors: Xiaowa Qin; Runjie Zhang, Jie Zhang, Yanwei Shi
      First page: 72
      Abstract: Nilaparvata lugens (Stål) is a major rice pest in Asia. Paichongding is a novel neonicotinoid insecticide developed in 2008. The effects of this insecticide on the activity of detoxification enzymes of N. lugens and on rice resistance to the pest were examined in the laboratory. The results showed that paichongding could significantly decrease the acetylcholinesterase and GSHs transferase activities of N. lugens. The variation tendency of mixed function oxidase (MFO) activity was similar with that of the esterase. After 12 h treatment, there was no significance between the treatment and control. However, the activities of MFO and esterase increased after 24 and 48 h treatment, which suggested that MFO and esterase may play an important role in the detoxification of paichongding for N. lugens. Our results also demonstrated that treated with paichongding, damage levels of rice plants were significantly lower than those of control plants except 15 days after treatment. Compared with the control, injury indices decreased 70.22, 49.12, 34.44, and 23.23% at 3 , 6 , 9, and 12 days after paichongding treatment, respectively. The laboratory results suggested that paichongding may be effective for the control of brown planthopper.
      PubDate: 2014-07-14T02:08:11.458774-05:
      DOI: 10.1002/arch.21181
    • Authors: Guilherme Duarte Rossi; Gabriela Salvador, Fernando Luis Cônsoli
      First page: 85
      Abstract: Parasitoids exploit host insects for food and other resources; they alter host development and physiology to optimize conditions to favor parasitoid development. Parasitoids influence their hosts by injecting eggs, along with a variety of substances, including venoms, polydnaviruses, ovarian fluids, and other maternal factors, into hosts. These factors induce profound changes in hosts, such as behavior, metabolism, endocrine events, and immune defense. Because endoparasitoids develop and consume tissues from within their hosts, it is reasonable to suggest that internal parasitization would also influence host food consumption and metabolism. We report on the effects of parasitism by Cotesia flavipes on the food consumption and utilization of its host, Diatraea saccharalis. Cotesia flavipes reduces the host food consumption, but parasitized larvae considered a unit with their parasitoid's attained the same final weight as the nonparasitized larvae. Nutritional indices, midgut activities of carbohydrases, and trypsin of parasitized and nonparasitized D. saccharalis were assessed. Parasitized larvae had reduced relative food consumption, metabolic and growth rates, coupled with higher efficiency for conversion of the digested, but not ingested, food into body mass. Parasitism also affected food flux through the gut and protein contents in the midgut of parasitized larvae. The activity of α‐amylase and trehalase in parasitized host was enhanced in the first day after parasitism relative to control larvae. Saccharase activity remained unchanged during larval development. Trypsin activity was reduced from the fifth to ninth day after parasitism. We argue on the mechanisms involved in host food processing after parasitism.
      PubDate: 2014-07-12T06:27:42.471578-05:
      DOI: 10.1002/arch.21182
           CRICKET, Gryllus bimaculatus
    • Authors: Woodring Joseph
      First page: 95
      Abstract: The function of Phenoloxidases (POs) in sclerotization and defense in insects is well understood, but little is known concerning their occurrence, origins, and function in the digestive tract. In Gyrllus bimaculatus gut all of the PO activity is found in the lumen of the digestive tract, and no detectible activity is found in homogenates of the gut epithelium or secretions from incubated epithelial tissues. Prophenoloxidases (PPOs) are synthesized in the hemocytes of  Bombyx mori and are transported into the cuticle. It is suggested that the PPOs in the caecal lumen of G. bimaculatus likewise are synthesized in hemocytes and are transported by unknown means into the caecal lumen, where they are activated to POs by trypsin. Peristalsis transports the POs both forward into the crop and posterior within the peritrophic membrane into the hind gut. The PPOs in the hemolymph consist of a trimer (270–280 kDa) and a tetramer (340–370 kDa). The active POs in the gut lumen consist of a monomer (85–95 kDa) in addition to an activated trimer and tetramer.
      PubDate: 2014-07-16T05:05:59.437319-05:
      DOI: 10.1002/arch.21183
  • Hormonal and nutritional regulation of insect fat body development and
    • Authors: Ying Liu; Hanhan Liu, Shumin Liu, Sheng Wang, Rong‐Jing Jiang, Sheng Li
      Pages: n/a - n/a
      Abstract: The insect fat body is an organ analogue to vertebrate adipose tissue and liver and functions as a major organ for nutrient storage and energy metabolism. Similar to other larval organs, fat body undergoes a developmental “remodeling” process during the period of insect metamorphosis, with the massive destruction of obsolete larval tissues by programmed cell death and the simultaneous growth and differentiation of adult tissues from small clusters of progenitor cells. Genetic ablation of Drosophila fat body cells during larval‐pupal transition results in lethality at the late pupal stage and changes sizes of other larval organs indicating that fat body is the center for pupal development and adult formation. Fat body development and function are largely regulated by several hormonal (i.e. insulin and ecdysteroids) and nutritional signals, including oncogenes and tumor suppressors in these pathways. Combining silkworm physiology with fruitfly genetics might provide a valuable system to understand the mystery of hormonal regulation of insect fat body development and function. © 2009 Wiley Periodicals, Inc.
      PubDate: 2009-02-03T00:00:00-05:00
      DOI: 10.1002/arch.20291
    • Abstract: Insecticide synergists biochemically inhibit insect metabolic enzyme activity and are used both to increase the effectiveness of insecticides and as a diagnostic tool for resistance mechanisms. Considerable attention has been focused on identifying new synergists from phytochemicals with recognized biological activities, specifically enzyme inhibition. Jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) BSP.), balsam fir (Abies balsamea (L.) Mill.), and tamarack larch (Larix laricina (Du Roi) Koch) have been used by native Canadians as traditional medicine, specifically for the anti‐inflammatory and antioxidant properties based on enzyme inhibitory activity. To identify the potential allelochemicals with synergistic activity, ethanol crude extracts and methanol/water fractions were separated by Sephadex LH‐20 chromatographic column and tested for in vitro glutathione S‐transferase (GST) inhibition activity using insecticide‐resistant Colorado potato beetle, Leptinotarsa decemlineata (Say) midgut and fat‐body homogenate. The fractions showing similar activity were combined and analyzed by ultra pressure liquid chromatography‐mass spectrometry. A lignan, (+)‐lariciresinol 9′‐p‐coumarate, was identified from P. mariana cone extracts, and L. laricina and A. balsamea bark extracts. A flavonoid, taxifolin, was identified from P. mariana and P. banksiana cone extracts and L. laricina bark extracts. Both compounds inhibit GST activity with taxifolin showing greater activity compared to (+)‐lariciresinol 9′‐p‐coumarate and the standard GST inhibitor, diethyl maleate. The results suggested that these compounds can be considered as potential new insecticide synergists.
    • Abstract: Odorant binding proteins (OBPs) are crucial for insects to detect food, mates, predators, or other purposes. They are mostly located on antennae and other olfactory sensilla. In this study, we identified an OBP from the venom of Pteromalus puparum, designated as PpOBP. The cDNA of PpOBP is 517 bp in length, encoding 132 amino acids. Phylogenetic analysis revealed that PpOBP was clustered with OBP68 and OBP67 of Nasonia vitripennis. PpOBP was highly expressed in the venom apparatus at the transcriptional and translational levels. PpOBP was located in all parts of venom apparatus including venom gland, venom reservoir, and Dufour's gland. During 0–6 days post adult eclosion, the PpOBP mRNA level peaked at 2 days in the venom apparatus, whereas the protein remained at a high level. In the venom apparatus, the PpOBP mRNA was significantly upregulated following feeding with honey and parasitization. We propose that PpOBP is involved in parasitoid‐host interactions.
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2014