for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> BIOLOGY (Total: 2691 journals)
    - BIOCHEMISTRY (207 journals)
    - BIOENGINEERING (77 journals)
    - BIOLOGY (1342 journals)
    - BIOPHYSICS (45 journals)
    - BIOTECHNOLOGY (152 journals)
    - BOTANY (205 journals)
    - CYTOLOGY AND HISTOLOGY (24 journals)
    - ENTOMOLOGY (54 journals)
    - GENETICS (141 journals)
    - MICROBIOLOGY (224 journals)
    - MICROSCOPY (9 journals)
    - ORNITHOLOGY (23 journals)
    - PHYSIOLOGY (66 journals)
    - ZOOLOGY (122 journals)

BIOCHEMISTRY (207 journals)                  1 2 3     

AAPS PharmSciTech     Hybrid Journal   (Followers: 6)
Acetic Acid Bacteria     Open Access   (Followers: 1)
ACS Chemical Biology     Full-text available via subscription   (Followers: 321)
ACS Chemical Neuroscience     Full-text available via subscription   (Followers: 13)
Acta Crystallographica Section D : Biological Crystallography     Hybrid Journal   (Followers: 9)
Acta Crystallographica Section F: Structural Biology Communications     Hybrid Journal   (Followers: 6)
Advances and Applications in Bioinformatics and Chemistry     Open Access   (Followers: 8)
Advances in Biological Chemistry     Open Access   (Followers: 5)
Advances in Carbohydrate Chemistry and Biochemistry     Full-text available via subscription   (Followers: 7)
Advances in Plant Biochemistry and Molecular Biology     Full-text available via subscription   (Followers: 7)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 10)
African Journal of Biochemistry Research     Open Access  
African Journal of Chemical Education     Open Access   (Followers: 1)
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 4)
American Journal of Biochemistry     Open Access   (Followers: 6)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 188)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 11)
American Journal of Polymer Science     Open Access   (Followers: 17)
Amino Acids     Hybrid Journal   (Followers: 7)
Analytical Biochemistry     Hybrid Journal   (Followers: 215)
Annals of Clinical Biochemistry     Hybrid Journal   (Followers: 1)
Annual Review of Biochemistry     Full-text available via subscription   (Followers: 28)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 10)
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 17)
Applied Biochemistry and Microbiology     Hybrid Journal   (Followers: 7)
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 4)
Archives of Biochemistry and Biophysics     Hybrid Journal   (Followers: 9)
Archives of Insect Biochemistry and Physiology     Hybrid Journal   (Followers: 1)
Archives Of Physiology And Biochemistry     Hybrid Journal   (Followers: 1)
Asian Journal of Biochemistry     Open Access   (Followers: 1)
Asian Journal of Biomedical and Pharmaceutical Sciences     Open Access  
Avicenna Journal of Medical Biochemistry     Open Access  
Bangladesh Journal of Medical Biochemistry     Open Access   (Followers: 2)
BBA Clinical     Open Access  
BBR : Biochemistry and Biotechnology Reports     Open Access   (Followers: 3)
Biocatalysis     Open Access  
Biochemical and Biophysical Research Communications     Hybrid Journal   (Followers: 15)
Biochemical and Molecular Medicine     Full-text available via subscription   (Followers: 3)
Biochemical Compounds     Open Access  
Biochemical Engineering Journal     Hybrid Journal   (Followers: 8)
Biochemical Genetics     Hybrid Journal   (Followers: 2)
Biochemical Journal     Full-text available via subscription   (Followers: 16)
Biochemical Pharmacology     Hybrid Journal   (Followers: 6)
Biochemical Society Transactions     Full-text available via subscription   (Followers: 3)
Biochemical Systematics and Ecology     Hybrid Journal   (Followers: 3)
Biochemistry     Full-text available via subscription   (Followers: 235)
Biochemistry (Moscow)     Hybrid Journal   (Followers: 3)
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology     Hybrid Journal   (Followers: 4)
Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry     Hybrid Journal   (Followers: 3)
Biochemistry and Cell Biology     Full-text available via subscription   (Followers: 8)
Biochemistry and Molecular Biology Education     Hybrid Journal   (Followers: 3)
Biochemistry and Molecular Biology of Fishes     Full-text available via subscription   (Followers: 1)
Biochemistry Research International     Open Access   (Followers: 4)
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids     Hybrid Journal   (Followers: 3)
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease     Hybrid Journal   (Followers: 18)
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research     Hybrid Journal   (Followers: 6)
Biochimie     Hybrid Journal   (Followers: 4)
Bioconjugate Chemistry     Full-text available via subscription   (Followers: 14)
BioDrugs     Full-text available via subscription   (Followers: 7)
Bioelectrochemistry     Hybrid Journal   (Followers: 3)
Biofuels     Hybrid Journal   (Followers: 7)
Biogeochemistry     Hybrid Journal   (Followers: 7)
BioInorganic Reaction Mechanisms     Full-text available via subscription   (Followers: 1)
Biokemistri     Open Access  
Biological Chemistry     Partially Free   (Followers: 11)
Biomaterials Research     Open Access  
Biomedicines     Open Access   (Followers: 1)
BioMolecular Concepts     Full-text available via subscription   (Followers: 2)
Bioscience, Biotechnology, and Biochemistry     Hybrid Journal   (Followers: 6)
Biosimilars     Open Access   (Followers: 1)
Biotechnology and Applied Biochemistry     Hybrid Journal   (Followers: 17)
BMC Biochemistry     Open Access   (Followers: 8)
BMC Chemical Biology     Open Access   (Followers: 4)
Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca : Food Science and Technology     Open Access  
Carbohydrate Polymers     Hybrid Journal   (Followers: 9)
Cell Biochemistry and Biophysics     Hybrid Journal   (Followers: 6)
Cell Biochemistry and Function     Hybrid Journal   (Followers: 3)
Cellular Physiology and Biochemistry     Open Access   (Followers: 3)
Central European Journal of Chemistry     Hybrid Journal   (Followers: 5)
ChemBioChem     Hybrid Journal   (Followers: 2)
Chemical and Biological Technologies for Agriculture     Open Access  
Chemical Biology & Drug Design     Hybrid Journal   (Followers: 23)
Chemical Engineering Journal     Hybrid Journal   (Followers: 20)
Chemical Senses     Hybrid Journal   (Followers: 1)
Chemical Speciation and Bioavailability     Full-text available via subscription   (Followers: 1)
Chemico-Biological Interactions     Hybrid Journal   (Followers: 2)
Chemistry & Biodiversity     Hybrid Journal   (Followers: 5)
Chemistry & Biology     Full-text available via subscription   (Followers: 16)
Chemistry and Ecology     Hybrid Journal   (Followers: 1)
Clinical Biochemist Reviews     Full-text available via subscription   (Followers: 1)
Clinical Biochemistry     Hybrid Journal   (Followers: 3)
Clinical Chemistry and Laboratory Medicine     Full-text available via subscription   (Followers: 6)
Clinical Lipidology     Full-text available via subscription  
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology     Hybrid Journal   (Followers: 5)
Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 2)
Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology     Hybrid Journal   (Followers: 5)
Comparative Biochemistry and Physiology Part D: Genomics and Proteomics     Hybrid Journal   (Followers: 3)
Comprehensive Biochemistry     Full-text available via subscription   (Followers: 1)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 8)
Critical Reviews in Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 2)

        1 2 3     

Journal Cover Archives of Insect Biochemistry and Physiology
   [3 followers]  Follow    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
     ISSN (Print) 0739-4462 - ISSN (Online) 1520-6327
     Published by John Wiley and Sons Homepage  [1603 journals]   [SJR: 0.572]   [H-I: 44]
  • DEPLETION OF AUTOPHAGY‐RELATED GENES ATG3 AND ATG5 IN Tenebrio
           molitor LEADS TO DECREASED SURVIVABILITY AGAINST AN INTRACELLULAR
           PATHOGEN, Listeria monocytogenes
    • Authors: Hamisi Tindwa; Yong Hun Jo, Bharat Bhusan Patnaik, Mi Young Noh, Dong Hyun Kim, Iksoo Kim, Yeon Soo Han, Yong Seok Lee, Bok Luel Lee, Nam Jung Kim
      Abstract: Macroautophagy (autophagy) is an evolutionarily conserved catabolic process involved in physiological and developmental processes including cell survival, death, and innate immunity. Homologues of most of 36 originally discovered autophagy‐related (ATG) genes in yeast have been characterized in higher eukaryotes including insects. In this study, the homologues of ATG3 (TmATG3) and ATG5 (TmATG5) were isolated from the coleopteran beetle, Tenebrio molitor by expressed sequence tag and RNAseq approaches. The cDNA of TmATG3 and TmATG5 comprise open‐reading frame sizes of 963 and 792 bp encoding polypeptides of 320 and 263 amino acid residues, respectively. TmATG3 and TmATG5 mRNA are expressed in all developmental stages, and mainly in fat body and hemocytes of larvae. TmATG3 and TmATG5 showed an overall sequence identity of 58–95% to other insect Atg proteins. There exist clear one‐to‐one orthologs of TmATG3 and TmATG5 in Tribolium and that they clustered together in the gene tree. Depletion of TmATG3 and TmATG5 by RNA interference led to a significant reduction in survival ability of T. molitor larvae against an intracellular pathogen, Listeria monocytogenes. Six days post‐Listeria challenge, the survival rate in the dsEGFP‐injected (where EGFP is enhanced green fluorescent protein) control larvae was significantly higher (55%) compared to 4 and 3% for TmATG3 and TmATG5 double‐stranded RNA injected larvae, respectively. These data suggested that TmATG3 and TmATG5 may play putative role in mediating autophagy‐based clearance of Listeria in T. molitor model.
      PubDate: 2014-11-17T06:13:55.601556-05:
      DOI: 10.1002/arch.21212
       
  • KNOCKDOWN OF CS‐SPOOK INDUCES DELAYED LARVAL MOLTING IN RICE STRIPED
           STEM BORER Chilo suppressalis
    • Authors: Muhammad Faisal Shahzad; Yao Li, Chang Ge, Yang Sun, Qiupu Yang, Fei Li
      Abstract: Spook has essential roles in the biogenesis of the molting hormone 20‐hydroxyecdysone (20‐E). The function of spook in the rice striped stem borer (SSB) Chilo suppressalis remains unclear, prompting our hypothesis that it exerts actions similar to those reported for other insect species. Here we amplified the full‐length transcript of spook (Cs‐Spook) in SSB by 5′ and 3′ rapid amplification of cDNA ends. Cs‐Spook has conserved P450 motifs such as Helix‐C, Helix‐I, Helix‐K, and PERF motif (PxxFxPxRF). It was highly expressed in late instar larvae but less so in newly molted larvae. Cs‐Spook was highly expressed in prothoracic glands. Cs‐Spook was knocked down by dsRNA treatments. Compared with controls, the gene expression level was reduced to 9% at 24 h post injection (PI), 33% at 48 h PI, and 24% at 72 h PI. The ecdysteroid titer decreased significantly in the dsRNA‐treated group (P < 0.05), resulting in delayed larval development. The delayed development in dsRNA‐treatment group was rescued by treating with 20‐E. Our work demonstrates that Cs‐Spook participates in the biogenesis of 20‐E and regulates the molt of SSB, as seen in other species.
      PubDate: 2014-10-29T08:11:19.788019-05:
      DOI: 10.1002/arch.21213
       
  • THE OCTOPAMINE RECEPTOR octß2R IS ESSENTIAL FOR OVULATION AND
           FERTILIZATION IN THE FRUIT FLY Drosophila melanogaster
    • Authors: Yong Li; Christine Fink, Samar El‐Kholy, Thomas Roeder
      Abstract: The biogenic monoamine octopamine is essential for ovulation and fertilization in insects. Release of this hormone from neurons in the thoracoabdominal ganglion triggers ovulation and sperm release from the spermathecae. Here we show that the effects of octopamine on ovulation are mediated by at least two different octopamine receptors. In addition to the Oamb receptor that is present in the epithelium of the oviduct, the octß2R receptor is essential for ovulation and fertilization. Octß2R is widely expressed in the female reproductive tract. Most prominent is expression in the oviduct muscle and the spermathecae. Animals deficient in expression of the receptor show a severe egg‐laying defect. The corresponding females have a much larger ovary that is caused by egg retention in the ovary. Moreover, the very few laid eggs are not fertilized, indicating problems in the process of sperm delivery. We assume that octß2R acts in a similar way as ß2‐adrenoreceptors in smooth muscles, were activation of this receptor induces an increase in cAMP levels that lead to relaxation of the muscle. Taken together, our findings show that octopaminergic control of ovulation and fertilization is more complex than anticipated and that various receptors located in different cells act together to enable a well‐orchestrated activity of the female reproductive system in response to copulation.
      PubDate: 2014-10-29T08:11:07.865342-05:
      DOI: 10.1002/arch.21211
       
  • MOLECULAR CHARACTERIZATION OF AN APOLIPOPHORIN‐III GENE FROM THE
           CHINESE OAK SILKWORM, Antheraea pernyi (LEPIDOPTERA: SATURNIIDAE)
    • Authors: Qiu‐Ning Liu; Kun‐Zhang Lin, Lin‐Nan Yang, Li‐Shang Dai, Lei Wang, Yu Sun, Cen Qian, Guo‐Qing Wei, Dong‐Ran Liu, Bao‐Jian Zhu, Chao‐Liang Liu
      Abstract: Apolipophorin‐III (ApoLp‐III) acts in lipid transport, lipoprotein metabolism, and innate immunity in insects. In this study, an ApoLp‐III gene of Antheraea pernyi pupae (Ap‐ApoLp‐III) was isolated and characterized. The full‐length cDNA of Ap‐ApoLp‐III is 687 bp, including a 5′‐untranslated region (UTR) of 40 bp, 3′‐UTR of 86 bp and an open reading frame of 561 bp encoding a polypeptide of 186 amino acids that contains an Apolipophorin‐III precursor domain (PF07464). The deduced Ap‐apoLp‐III protein sequence has 68, 59, and 23% identity with its orthologs of Manduca sexta, Bombyx mori, and Aedes aegypti, respectively. Phylogenetic analysis showed that the Ap‐apoLp‐III was close to that of Bombycoidea. qPCR analysis revealed that Ap‐ApoLp‐III expressed during the four developmental stages and in integument, fat body, and ovaries. After six types of microorganism infections, expression levels of the Ap‐ApoLp‐III gene were upregulated significantly at different time points compared with control. RNA interference (RNAi) of Ap‐ApoLp‐III showed that the expression of Ap‐ApoLp‐III was significantly downregulated using qPCR after injection of E. coli. We infer that the Ap‐ApoLp‐III gene acts in the innate immunity of A. pernyi.
      PubDate: 2014-10-27T07:46:44.97292-05:0
      DOI: 10.1002/arch.21210
       
  • TRANSCRIPTOME ANALYSIS OF AN ENDOPARASITOID WASP Cotesia chilonis
           
    • Authors: Yixiang Qi; Ziwen Teng, Lingfeng Gao, Shunfan Wu, Jia Huang, Gongyin Ye, Qi Fang
      Abstract: For successful parasitization, parasitiods usually depend on the chemosensory cues for the selection of hosts, as well as a variety of virulence factors introduced into their hosts to overcome host immunity and prevent rejection of progeny development. In bracovirus‐carrying wasps, the symbiotic polydnaviruses act in manipulating development and immunity of hosts. The endoparasitoid Cotesia chilonis carrying bracovirus as a key host immunosuppressive factor is a superior endoparasitoid of rice stem borer, Chilo suppressalis. So far, genomic information for C. chilonis is not available and transcriptomic data may provide valuable resources for global studying on physiological processes of C. chilonis, including chemosensation and parasitism at molecular level. Here, we performed RNA‐seq to characterize the transcriptome of C. chilonis adults. We obtained 27,717,892 reads, assembled into 38,318 unigenes with a mean size of 690 bp. Approximately, 62.1% of the unigenes were annotated using NCBI databases. A large number of chemoreception‐related genes encoding proteins including odorant receptors, gustatory receptors, odorant‐binding proteins, chemosensory proteins, transient receptor potential ion channels, and sensory neuron membrane proteins were identified in silico. Totally, 72 transcripts possessing high identities with the bracovirus‐related genes were identified. We investigated the mRNA expression levels of several transcripts at different developmental stages (including egg, larva, pupae, and adult) by quantitative real‐time PCR analysis. The results revealed that some genes had adult‐specific expression, indicating their potential significance for mating and parasitism. Overall, these results provide comprehensive insights into transcriptomic data of a polydnavirus‐carrying parasitoid of a rice pest.
      PubDate: 2014-10-22T00:08:59.36601-05:0
      DOI: 10.1002/arch.21214
       
  • KNOCKDOWN OF ATPsyn‐b CAUSED LARVAL GROWTH DEFECT AND MALE
           INFERTILITY IN Drosophila
    • Authors: Ya‐Na Chen; Chun‐Hong Wu, Ya Zheng, Jing‐Jing Li, Jia‐Lin Wang, Yu‐Feng Wang
      Abstract: The ATPsyn‐b encoding for subunit b of ATP synthase in Drosophila melanogaster is proposed to act in ATP synthesis and phagocytosis, and has been identified as one of the sperm proteins in both Drosophila and mammals. At present, its details of functions in animal growth and spermatogenesis have not been reported. In this study, we knocked down ATPsyn‐b using Drosophila lines expressing inducible hairpin RNAi constructs and Gal4 drivers. Ubiquitous knockdown of ATPsyn‐b resulted in growth defects in larval stage as the larvae did not grow bigger than the size of normal second‐instar larvae. Knockdown in testes did not interrupt the developmental excursion to viable adult flies, however, these male adults were sterile. Analyses of testes revealed disrupted nuclear bundles during spermatogenesis and abnormal shaping in spermatid elongation. There were no mature sperm in the seminal vesicle of ATPsyn‐b knockdown male testes. These findings suggest us that ATPsyn‐b acts in growth and male fertility of Drosophila.
      PubDate: 2014-10-22T00:08:49.499284-05:
      DOI: 10.1002/arch.21209
       
  • ANTI‐INFLAMMATORY ACTIVITIES OF CECROPIN A AND ITS MECHANISM OF
           ACTION
    • Authors: Eunjung Lee; Areum Shin, Yangmee Kim
      Abstract: Cecropin A is a novel 37‐residue cecropin‐like antimicrobial peptide isolated from the cecropia moth, Hyalophora cecropia. We have demonstrated that cecropin A is an antibacterial agent and have investigated its mode of action. In this study, we show that cecropin A has potent antimicrobial activity against 2 multidrug resistant organisms—Acinetobacter baumanii and—Pseudomonas aeruginosa. Interactions between cecropin A and membrane phospholipids were studied using tryptophan blue shift experiments. Cecropin A has a strong interaction with bacterial cell mimetic membranes. These results imply that cecropin A has selectivity for bacterial cells. To address the potential the rapeutic efficacy of cecropin A, its anti‐inflammatory activities and mode of action in mouse macrophage‐derived RAW264.7 cells stimulated with lipopolysaccharide (LPS) were examined. Cecropin A suppressed nitrite production, mTNF‐α, mIL‐1β, mMIP‐1, and mMIP‐2 cytokine release in LPS‐stimulated RAW264.7 cells. Furthermore, cecropin A inhibited intracellular cell signaling via the ERK, JNK, and p38 MAPK pathway, leading to the prevention of COX‐2 expression in LPS‐stimulated RAW264.7 cells. These results strongly suggest that cecropin A should be investigated as a potential agent for the prevention and treatment of inflammatory diseases.
      PubDate: 2014-10-15T10:09:28.107007-05:
      DOI: 10.1002/arch.21193
       
  • Tcmof REGULATES LARVAL/PUPAL DEVELOPMENT AND FEMALE FECUNDITY IN RED FLOUR
           BEETLE, Tribolium castaneum
    • Authors: Yanyun Wang; Chengjun Li, Ming Sang, Bin Li
      Abstract: Males absent on the first (MOF) was originally identified as an essential component of the X chromosome dosage compensation system in Drosophila melanogaster, and is also a member of the MYST family of histone acetyltransferases. MOF has been extensively studied in D. melanogaster and mammals. However, whether MOF is involved in dosage compensation and/or other vital functions for newly emerging model insects such as Tribolium castaneum, is unclear. We cloned the mof from T. castaneum, named Tcmof. Phylogenetic analysis revealed that mof is highly conserved in eukaryotes but lost in birds. qPCR showed that Tcmof was most highly expressed in the early embryo stage and equally expressed in males and females. Treating larvae with ds‐Tcmof led 79.1% of the insects to arrest during its eclosion; the remaining insects died either in the larval stage or immediately following eclosion. Treating pupae with the same construct eliminated the fertility of T. castaneum. This effect was rescued by reciprocal crosses with wild‐type females, but not males. We infer that the mof gene is essential for larval/pupal development and female fertility in T. castaneum.
      PubDate: 2014-10-10T23:27:03.37915-05:0
      DOI: 10.1002/arch.21207
       
  • CHANGES IN THE HEMOLYMPH PROTEIN PROFILES IN Galleria mellonella INFECTED
           WITH Bacillus thuringiensis INVOLVE APOLIPOPHORIN III. THE EFFECT OF
           HEAT‐SHOCK
    • Authors: Paulina Taszłow; Iwona Wojda
      Abstract: This report concerns the effect of heat shock on host–pathogen interaction in Galleria mellonella infected with Bacillus thuringiensis. We show enhanced activity against Gram‐positive bacteria in the hemolymph of larvae pre‐exposed to heat shock before infection with B. thuringiensis. Heat shock influenced the protein pattern in the hemolymph of infected larvae: more peptides with a molecular weight below 10 kDa were detected in comparison with nonshocked animals. Additionally, we noticed that the amount of apolipophorin III (apoLp‐III) in the hemolymph decreased transiently following infection, which was considerably higher in larvae pre‐exposed to heat shock. On the other hand, its expression in the fat body showed a consequent infection‐induced decline, observed equally in shocked and nonshocked animals. This suggests that the amount of apoLp‐III in the hemolymph of G. mellonella larvae is regulated at multiple levels. We also report that this protein is more resistant to degradation in the hemolymph of larvae pre‐exposed to heat shock in comparison to nonshocked larvae. Two‐dimensional analysis revealed the presence of three isoforms of apoLp‐III, all susceptible to proteolytic degradation. However, one of them was the most abundant, both in the protease‐treated and untreated hemolymph. Taking into consideration that, in general, apoLp‐III has a stimulative effect on different immune‐related hemolymph proteins and peptides, the reported findings bring us closer to understanding the effect of heat shock on the resistance of G. mellonella to infection.
      PubDate: 2014-10-10T23:25:20.418079-05:
      DOI: 10.1002/arch.21208
       
  • VENOM OF THE PARASITOID WASP Pteromalus puparum CONTAINS AN ODORANT
           BINDING PROTEIN
    • Authors: Lei Wang; Jia‐Ying Zhu, Cen Qian, Qi Fang, Gong‐Yin Ye
      Abstract: Odorant binding proteins (OBPs) are crucial for insects to detect food, mates, predators, or other purposes. They are mostly located on antennae and other olfactory sensilla. In this study, we identified an OBP from the venom of Pteromalus puparum, designated as PpOBP. The cDNA of PpOBP is 517 bp in length, encoding 132 amino acids. Phylogenetic analysis revealed that PpOBP was clustered with OBP68 and OBP67 of Nasonia vitripennis. PpOBP was highly expressed in the venom apparatus at the transcriptional and translational levels. PpOBP was located in all parts of venom apparatus including venom gland, venom reservoir, and Dufour's gland. During 0–6 days post adult eclosion, the PpOBP mRNA level peaked at 2 days in the venom apparatus, whereas the protein remained at a high level. In the venom apparatus, the PpOBP mRNA was significantly upregulated following feeding with honey and parasitization. We propose that PpOBP is involved in parasitoid‐host interactions.
      PubDate: 2014-09-25T04:18:47.630955-05:
      DOI: 10.1002/arch.21206
       
  • THERMOLYSIN DAMAGES ANIMAL LIFE THROUGH DEGRADATION OF PLASMA PROTEINS
           ENHANCED BY RAPID CLEAVAGE OF SERPINS AND ACTIVATION OF PROTEASES
    • Authors: Lulu Kong; Anrui Lu, Jingmin Guan, Bing Yang, Muwang Li, Julián F. Hillyer, Nalini Ramarao, Kenneth Söderhäll, Chaoliang Liu, Erjun Ling
      Abstract: Thermolysin, a metallopeptidase secreted by pathogenic microbes, is concluded as an important virulence factor due to cleaving purified host proteins in vitro. Using the silkworm Bombyx mori as a model system, we found that thermolysin injection into larvae induces the destruction of the coagulation response and the activation of hemolymph melanization, which results in larval death. Thermolysin triggers the rapid degradation of insect and mammalian plasma proteins at a level that is considerably greater than expected in vitro and/or in vivo. To more specifically explore the mechanism, thermolysin‐induced changes to key proteins belonging to the insect melanization pathway were assessed as a window for observing plasma protein cleavage. The application of thermolysin induced the rapid cleavage of the melanization negative regulator serpin‐3, but did not directly activate the melanization rate‐limiting enzyme prophenoloxidase (PPO) or the terminal serine proteases responsible for PPO activation. Terminal serine proteases of melanization are activated indirectly after thermolysin exposure. We hypothesize that thermolysin induces the rapid degradation of serpins and the activation of proteases directly or indirectly, boosting uncontrolled plasma protein degradation in insects and mammalians.
      PubDate: 2014-07-10T03:26:35.907129-05:
      DOI: 10.1002/arch.21178
       
  • Hormonal and nutritional regulation of insect fat body development and
           function
    • Authors: Ying Liu; Hanhan Liu, Shumin Liu, Sheng Wang, Rong‐Jing Jiang, Sheng Li
      Pages: n/a - n/a
      Abstract: The insect fat body is an organ analogue to vertebrate adipose tissue and liver and functions as a major organ for nutrient storage and energy metabolism. Similar to other larval organs, fat body undergoes a developmental “remodeling” process during the period of insect metamorphosis, with the massive destruction of obsolete larval tissues by programmed cell death and the simultaneous growth and differentiation of adult tissues from small clusters of progenitor cells. Genetic ablation of Drosophila fat body cells during larval‐pupal transition results in lethality at the late pupal stage and changes sizes of other larval organs indicating that fat body is the center for pupal development and adult formation. Fat body development and function are largely regulated by several hormonal (i.e. insulin and ecdysteroids) and nutritional signals, including oncogenes and tumor suppressors in these pathways. Combining silkworm physiology with fruitfly genetics might provide a valuable system to understand the mystery of hormonal regulation of insect fat body development and function. © 2009 Wiley Periodicals, Inc.
      PubDate: 2009-02-03T00:00:00-05:00
      DOI: 10.1002/arch.20291
       
  • PARALYTIC PEPTIDE: AN INSECT CYTOKINE THAT MEDIATES INNATE IMMUNITY
    • Abstract: Host animals combat invading pathogens by activating various immune responses. Modulation of the immune pathways by cytokines is critical for efficient pathogen elimination. Insects and mammals possess common innate immune systems, and individual immune pathways have been intensively studied over the last two decades. Relatively less attention, however, has been focused on the functions of cytokines in insect innate immunity. Here, we summarize our recent findings from studies of the insect cytokine, paralytic peptide, in the silkworm Bombyx mori. The content of this report was presented at the First Asian Invertebrate Immunity Symposium. Acute activation of paralytic peptide occurs via proteolysis after stimulation with the cell wall components of pathogens, leading to the induction of a wide range of cellular and humoral immune responses. The pathogenic bacterium Serratia marcescens suppresses paralytic peptide‐dependent immune activation, which impairs host resistance. Studies of insect cytokines will broaden our understanding of the basic mechanisms underlying the interaction between host innate immunity and pathogenic agents.
       
  • CLONING, EXPRESSION, AND CHARACTERIZATION OF PROPHENOLOXIDASE FROM
           Antheraea pernyi
    • Abstract: Prophenoloxidase (PPO) is an essential enzyme in insect innate immunity because of its role in humoral defense. In this study, we have cloned a full‐length cDNA of Antheraea pernyi prophenoloxidase (ApPPO) with an open‐reading frame encoding 683 amino acids, and the deduced amino acid sequence of ApPPO exhibited a high similarity with those of lepidoptera. The expression of ApPPO was inducible so that the mRNA level was significantly upregulated in the microbial challenged tissues, including fat body, hemocytes, and midgut. To better investigate the enzymatic and immunological properties of ApPPO, recombinant ApPPO (rApPPO) was produced in Escherichia coli. Several functional verification experiments were performed after studying the enzymatic properties. It was found that rApPPO could be stimulated by the microbial challenged larvae hemolymph and then killed bacteria in the radial diffusion assay. Furthermore, rApPPO also induced the transcription of cecropins after injected into the larvae 24 h later.
       
  • BIOPOTENCY OF SERINE PROTEASE INHIBITORS FROM COWPEA (Vigna unguiculata)
           SEEDS ON DIGESTIVE PROTEASES AND THE DEVELOPMENT OF Spodoptera littoralis
           (BOISDUVAL)
    • Abstract: Serine protease inhibitors (PIs) have been described in many plant species and are universal throughout the plant kingdom, where trypsin inhibitors is the most common type. In the present study, trypsin and chymotrypsin inhibitory activity was detected in the seed flour extracts of 13 selected cultivars/accessions of cowpea. Two cowpea cultivars, Cream7 and Buff, were found to have higher trypsin and chymotrypsin inhibitory potential compared to other tested cultivars for which they have been selected for further purification studies using ammonium sulfate fractionation and DEAE‐Sephadex A‐25 column. Cream7‐purified proteins showed two bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) corresponding to molecular mass of 17.10 and 14.90 kDa, while the purified protein from Buff cultivar showed a single band corresponding mass of 16.50 kDa. The purified inhibitors were stable at temperature below 60°C and were active at wide range of pH from 2 to 12. The kinetic analysis revealed noncompetitive type of inhibition for both inhibitors against both enzymes. The inhibitor constant (Ki) values suggested high affinity between inhibitors and enzymes. Purified inhibitors were found to have deep and negative effects on the mean larval weight, larval mortality, pupation, and mean pupal weight of Spodoptera littoralis, where Buff PI was more effective than Cream7 PI. It may be concluded that cowpea PI gene(s) could be potential insect control protein for future studies in developing insect‐resistant transgenic plants.
       
  • Editorial Board
    •  
  • Preface to the Special Issue
    •  
  • SYMBIOTIC FACTORS IN Burkholderia ESSENTIAL FOR ESTABLISHING AN
           ASSOCIATION WITH THE BEAN BUG, Riptortus pedestris
    • Abstract: Symbiotic bacteria are common in insects and intimately affect the various aspects of insect host biology. In a number of insect symbiosis models, it has been possible to elucidate the effects of the symbiont on host biology, whereas there is a limited understanding of the impact of the association on the bacterial symbiont, mainly due to the difficulty of cultivating insect symbionts in vitro. Furthermore, the molecular features that determine the establishment and persistence of the symbionts in their host (i.e., symbiotic factors) have remained elusive. However, the recently established model, the bean bug Riptortus pedestris, provides a good opportunity to study bacterial symbiotic factors at a molecular level through their cultivable symbionts. Bean bugs acquire genus Burkholderia cells from the environment and harbor them as gut symbionts in the specialized posterior midgut. The genome of the Burkholderia symbiont was sequenced, and the genomic information was used to generate genetically manipulated Burkholderia symbiont strains. Using mutant symbionts, we identified several novel symbiotic factors necessary for establishing a successful association with the host gut. In this review, these symbiotic factors are classified into three categories based on the colonization dynamics of the mutant symbiont strains: initiation, accommodation, and persistence factors. In addition, the molecular characteristics of the symbiotic factors are described. These newly identified symbiotic factors and on‐going studies of the Riptortus–Burkholderia symbiosis are expected to contribute to the understanding of the molecular cross‐talk between insects and bacterial symbionts that are of ecological and evolutionary importance.
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2014