for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> MEDICAL SCIENCES (Total: 7249 journals)
    - ALLERGOLOGY AND IMMUNOLOGY (196 journals)
    - ANAESTHESIOLOGY (105 journals)
    - CARDIOVASCULAR DISEASES (308 journals)
    - CHIROPRACTIC, HOMEOPATHY, OSTEOPATHY (21 journals)
    - COMMUNICABLE DISEASES, EPIDEMIOLOGY (199 journals)
    - DENTISTRY (244 journals)
    - DERMATOLOGY AND VENEREOLOGY (147 journals)
    - EMERGENCY AND INTENSIVE CRITICAL CARE (106 journals)
    - ENDOCRINOLOGY (137 journals)
    - FORENSIC SCIENCES (34 journals)
    - GASTROENTEROLOGY AND HEPATOLOGY (162 journals)
    - GERONTOLOGY AND GERIATRICS (116 journals)
    - HEMATOLOGY (139 journals)
    - HYPNOSIS (4 journals)
    - INTERNAL MEDICINE (135 journals)
    - LABORATORY AND EXPERIMENTAL MEDICINE (87 journals)
    - MEDICAL GENETICS (59 journals)
    - MEDICAL SCIENCES (1802 journals)
    - NURSES AND NURSING (292 journals)
    - OBSTETRICS AND GYNECOLOGY (175 journals)
    - ONCOLOGY (348 journals)
    - OPHTHALMOLOGY AND OPTOMETRY (121 journals)
    - ORTHOPEDICS AND TRAUMATOLOGY (145 journals)
    - OTORHINOLARYNGOLOGY (73 journals)
    - PATHOLOGY (96 journals)
    - PEDIATRICS (242 journals)
    - PHYSICAL MEDICINE AND REHABILITATION (140 journals)
    - PSYCHIATRY AND NEUROLOGY (736 journals)
    - RADIOLOGY AND NUCLEAR MEDICINE (180 journals)
    - RESPIRATORY DISEASES (90 journals)
    - RHEUMATOLOGY (63 journals)
    - SPORTS MEDICINE (68 journals)
    - SURGERY (347 journals)
    - UROLOGY, NEPHROLOGY AND ANDROLOGY (132 journals)

MEDICAL SCIENCES (1802 journals)                  1 2 3 4 5 6 7 8 | Last

Showing 1 - 200 of 3562 Journals sorted alphabetically
16 de Abril     Open Access  
AADE in Practice     Hybrid Journal   (Followers: 4)
ABCS Health Sciences     Open Access   (Followers: 1)
Abia State University Medical Students' Association Journal     Full-text available via subscription  
ACIMED     Open Access   (Followers: 1)
ACS Medicinal Chemistry Letters     Full-text available via subscription   (Followers: 39)
Acta Bio Medica     Full-text available via subscription   (Followers: 2)
Acta Bioethica     Open Access   (Followers: 1)
Acta Bioquimica Clinica Latinoamericana     Open Access   (Followers: 1)
Acta Facultatis Medicae Naissensis     Open Access  
Acta Informatica Medica     Open Access   (Followers: 1)
Acta Medica Bulgarica     Open Access  
Acta Medica Colombiana     Open Access   (Followers: 1)
Acta Médica Costarricense     Open Access   (Followers: 2)
Acta Medica Indonesiana     Open Access  
Acta medica Lituanica     Open Access  
Acta Medica Marisiensis     Open Access  
Acta Medica Martiniana     Open Access  
Acta Medica Nagasakiensia     Open Access  
Acta Medica Peruana     Open Access   (Followers: 2)
Acta Médica Portuguesa     Open Access  
Acta Medica Saliniana     Open Access  
Acta Scientiarum. Health Sciences     Open Access  
Acupuncture & Electro-Therapeutics Research     Full-text available via subscription   (Followers: 2)
Addiction Science & Clinical Practice     Open Access   (Followers: 7)
Addictive Behaviors Reports     Open Access   (Followers: 6)
Advanced Health Care Technologies     Open Access   (Followers: 4)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 7)
Advances in Bioscience and Clinical Medicine     Open Access   (Followers: 5)
Advances in Clinical Chemistry     Full-text available via subscription   (Followers: 29)
Advances in Life Course Research     Hybrid Journal   (Followers: 8)
Advances in Lipobiology     Full-text available via subscription   (Followers: 2)
Advances in Medical Education and Practice     Open Access   (Followers: 26)
Advances in Medical Sciences     Hybrid Journal   (Followers: 6)
Advances in Medicinal Chemistry     Full-text available via subscription   (Followers: 5)
Advances in Medicine     Open Access   (Followers: 2)
Advances in Microbial Physiology     Full-text available via subscription   (Followers: 4)
Advances in Molecular Oncology     Open Access   (Followers: 1)
Advances in Molecular Toxicology     Full-text available via subscription   (Followers: 8)
Advances in Parkinson's Disease     Open Access  
Advances in Phytomedicine     Full-text available via subscription  
Advances in Preventive Medicine     Open Access   (Followers: 6)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 20)
Advances in Therapy     Hybrid Journal   (Followers: 5)
Advances in Veterinary Science and Comparative Medicine     Full-text available via subscription   (Followers: 13)
Advances in Virus Research     Full-text available via subscription   (Followers: 5)
Advances in Wound Care     Hybrid Journal   (Followers: 10)
African Health Sciences     Open Access   (Followers: 2)
African Journal of Biomedical Research     Open Access  
African Journal of Clinical and Experimental Microbiology     Open Access   (Followers: 1)
African Journal of Laboratory Medicine     Open Access   (Followers: 2)
African Journal of Medical and Health Sciences     Open Access   (Followers: 2)
African Journal of Trauma     Open Access  
Afrimedic Journal     Open Access   (Followers: 2)
Aggiornamenti CIO     Hybrid Journal   (Followers: 1)
AIDS Research and Human Retroviruses     Hybrid Journal   (Followers: 8)
AJOB Primary Research     Partially Free   (Followers: 3)
Aktuelle Ernährungsmedizin     Hybrid Journal   (Followers: 4)
Al-Azhar Assiut Medical Journal     Open Access  
Alexandria Journal of Medicine     Open Access   (Followers: 1)
Allgemeine Homöopathische Zeitung     Hybrid Journal   (Followers: 2)
Alpha Omegan     Full-text available via subscription  
ALTEX : Alternatives to Animal Experimentation     Open Access   (Followers: 3)
American Journal of Biomedical Engineering     Open Access   (Followers: 11)
American Journal of Biomedical Research     Open Access   (Followers: 2)
American Journal of Biomedicine     Full-text available via subscription   (Followers: 6)
American Journal of Chinese Medicine, The     Hybrid Journal   (Followers: 5)
American Journal of Clinical Medicine Research     Open Access   (Followers: 5)
American Journal of Family Therapy     Hybrid Journal   (Followers: 11)
American Journal of Law & Medicine     Full-text available via subscription   (Followers: 12)
American Journal of Lifestyle Medicine     Hybrid Journal   (Followers: 5)
American Journal of Managed Care     Full-text available via subscription   (Followers: 11)
American Journal of Medical Case Reports     Open Access   (Followers: 1)
American Journal of Medical Sciences and Medicine     Open Access   (Followers: 1)
American Journal of Medicine     Hybrid Journal   (Followers: 46)
American Journal of Medicine and Medical Sciences     Open Access   (Followers: 1)
American Journal of Medicine Studies     Open Access  
American Journal of Medicine Supplements     Full-text available via subscription   (Followers: 3)
American Journal of the Medical Sciences     Hybrid Journal   (Followers: 12)
American Journal on Addictions     Hybrid Journal   (Followers: 9)
American Medical Journal     Open Access   (Followers: 4)
American medical news     Free   (Followers: 3)
American Medical Writers Association Journal     Full-text available via subscription   (Followers: 2)
Amyloid: The Journal of Protein Folding Disorders     Hybrid Journal   (Followers: 4)
Anales de la Facultad de Medicina     Open Access  
Anales de la Facultad de Medicina, Universidad de la República, Uruguay     Open Access  
Anales del Sistema Sanitario de Navarra     Open Access   (Followers: 1)
Analgesia & Resuscitation : Current Research     Hybrid Journal   (Followers: 3)
Anatomical Science International     Hybrid Journal   (Followers: 2)
Anatomical Sciences Education     Hybrid Journal   (Followers: 1)
Anatomy Research International     Open Access   (Followers: 2)
Angewandte Schmerztherapie und Palliativmedizin     Hybrid Journal  
Angiogenesis     Hybrid Journal   (Followers: 3)
Annales de Pathologie     Full-text available via subscription  
Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale     Full-text available via subscription   (Followers: 3)
Annals of African Medicine     Open Access   (Followers: 1)
Annals of Anatomy - Anatomischer Anzeiger     Hybrid Journal   (Followers: 2)
Annals of Bioanthropology     Open Access   (Followers: 3)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 18)
Annals of Biomedical Sciences     Full-text available via subscription   (Followers: 3)
Annals of Clinical Microbiology and Antimicrobials     Open Access   (Followers: 8)
Annals of Family Medicine     Open Access   (Followers: 13)
Annals of Fundeni Hospital     Open Access   (Followers: 1)
Annals of Ibadan Postgraduate Medicine     Open Access  
Annals of Medical and Health Sciences Research     Open Access   (Followers: 7)
Annals of Medicine     Hybrid Journal   (Followers: 12)
Annals of Medicine and Surgery     Open Access   (Followers: 5)
Annals of Microbiology     Hybrid Journal   (Followers: 10)
Annals of Nigerian Medicine     Open Access   (Followers: 1)
Annals of Saudi Medicine     Open Access  
Annals of the New York Academy of Sciences     Hybrid Journal   (Followers: 5)
Annals of The Royal College of Surgeons of England     Full-text available via subscription   (Followers: 3)
Annual Reports in Medicinal Chemistry     Full-text available via subscription   (Followers: 7)
Annual Reports on NMR Spectroscopy     Full-text available via subscription   (Followers: 4)
Annual Review of Medicine     Full-text available via subscription   (Followers: 18)
Anthropological Review     Open Access   (Followers: 24)
Anthropologie et santé     Open Access   (Followers: 5)
Antibiotics     Open Access   (Followers: 9)
Antibodies     Open Access   (Followers: 2)
Antibody Technology Journal     Open Access   (Followers: 1)
Anuradhapura Medical Journal     Open Access  
Anwer Khan Modern Medical College Journal     Open Access   (Followers: 2)
Apmis     Hybrid Journal   (Followers: 1)
Apparence(s)     Open Access   (Followers: 1)
Applied Clinical Informatics     Hybrid Journal   (Followers: 2)
Applied Medical Informatics     Open Access   (Followers: 11)
Arab Journal of Nephrology and Transplantation     Open Access   (Followers: 1)
Arak Medical University Journal     Open Access  
Archive of Clinical Medicine     Open Access   (Followers: 1)
Archive of Community Health     Open Access  
Archives of Biomedical Sciences     Open Access   (Followers: 7)
Archives of Medical and Biomedical Research     Open Access   (Followers: 3)
Archives of Medical Laboratory Sciences     Open Access   (Followers: 1)
Archives of Medicine and Health Sciences     Open Access   (Followers: 3)
Archives of Trauma Research     Open Access   (Followers: 2)
Archivos de Medicina (Manizales)     Open Access  
ArgoSpine News & Journal     Hybrid Journal  
Arquivos Brasileiros de Oftalmologia     Open Access  
Arquivos de Ciências da Saúde     Open Access  
Arquivos de Medicina     Open Access  
ARS Medica Tomitana     Open Access   (Followers: 1)
Art Therapy: Journal of the American Art Therapy Association     Full-text available via subscription   (Followers: 10)
Arterial Hypertension     Open Access  
Artificial Intelligence in Medicine     Hybrid Journal   (Followers: 12)
Artificial Organs     Hybrid Journal   (Followers: 1)
Asia Pacific Family Medicine     Open Access  
Asia Pacific Journal of Clinical Nutrition     Full-text available via subscription   (Followers: 9)
Asia Pacific Journal of Clinical Trials : Nervous System Diseases     Open Access  
Asian Bioethics Review     Full-text available via subscription   (Followers: 2)
Asian Journal of Cell Biology     Open Access   (Followers: 6)
Asian Journal of Health     Open Access   (Followers: 3)
Asian Journal of Medical and Biological Research     Open Access   (Followers: 2)
Asian Journal of Medical and Pharmaceutical Researches     Open Access   (Followers: 1)
Asian Journal of Medical Sciences     Open Access   (Followers: 1)
Asian Journal of Scientific Research     Open Access   (Followers: 2)
Asian Journal of Transfusion Science     Open Access   (Followers: 2)
Asian Medicine     Hybrid Journal   (Followers: 4)
ASPIRATOR : Journal of Vector-borne Disease Studies     Open Access  
Astrocyte     Open Access  
Atención Familiar     Open Access  
Atención Primaria     Open Access   (Followers: 1)
Audiology - Communication Research     Open Access   (Followers: 8)
Auris Nasus Larynx     Full-text available via subscription  
Australian Coeliac     Full-text available via subscription   (Followers: 2)
Australian Family Physician     Full-text available via subscription   (Followers: 3)
Australian Journal of Medical Science     Full-text available via subscription   (Followers: 1)
Autopsy and Case Reports     Open Access  
Aviation, Space, and Environmental Medicine     Full-text available via subscription   (Followers: 10)
Avicenna     Open Access   (Followers: 2)
Avicenna Journal of Medicine     Open Access   (Followers: 1)
Bangabandhu Sheikh Mujib Medical University Journal     Open Access   (Followers: 1)
Bangladesh Journal of Anatomy     Open Access   (Followers: 1)
Bangladesh Journal of Bioethics     Open Access  
Bangladesh Journal of Medical Biochemistry     Open Access   (Followers: 3)
Bangladesh Journal of Medical Education     Open Access   (Followers: 2)
Bangladesh Journal of Medical Microbiology     Open Access   (Followers: 3)
Bangladesh Journal of Medical Physics     Open Access  
Bangladesh Journal of Medical Science     Open Access  
Bangladesh Journal of Medicine     Open Access   (Followers: 1)
Bangladesh Journal of Physiology and Pharmacology     Open Access  
Bangladesh Journal of Scientific Research     Open Access   (Followers: 2)
Bangladesh Medical Journal     Open Access  
Bangladesh Medical Journal Khulna     Open Access  
Bangladesh Medical Research Council Bulletin     Open Access  
Basal Ganglia     Hybrid Journal  
Basic Sciences of Medicine     Open Access   (Followers: 2)
BBA Clinical     Open Access  
BC Medical Journal     Free  
Benha Medical Journal     Open Access  
Bijblijven     Hybrid Journal  
Bijzijn     Hybrid Journal   (Followers: 2)
Bijzijn XL     Hybrid Journal   (Followers: 1)
Bio-Algorithms and Med-Systems     Hybrid Journal   (Followers: 1)
BioDiscovery     Open Access   (Followers: 2)
Bioelectromagnetics     Hybrid Journal   (Followers: 1)
Bioengineering & Translational Medicine     Open Access  
Bioethics     Hybrid Journal   (Followers: 14)
Bioethics Research Notes     Full-text available via subscription   (Followers: 14)
Biologics in Therapy     Open Access  
Biology of Sex Differences     Open Access   (Followers: 3)

        1 2 3 4 5 6 7 8 | Last

Journal Cover Annual Reports on NMR Spectroscopy
  [SJR: 0.627]   [H-I: 31]   [4 followers]  Follow
    
   Full-text available via subscription Subscription journal
   ISSN (Print) 0066-4103
   Published by Elsevier Homepage  [3049 journals]
  • Chapter One Solid-State NMR Studies of Lithium Ion Dynamics Across
           Materials Classes
    • Authors: C. Vinod Chandran; P. Heitjans
      Pages: 1 - 102
      Abstract: Publication date: 2016
      Source:Annual Reports on NMR Spectroscopy, Volume 89
      Author(s): C. Vinod Chandran, P. Heitjans
      Solid-state nuclear magnetic resonance (NMR) spectroscopy is an excellent characterization technique to investigate the local structure and dynamics of materials. This can be exploited to elucidate properties of lithium-containing materials which are systems with very interesting ion dynamics behavior. This review presents a collection of Li solid-state NMR studies on Li dynamics in Li-containing solids reported in the scientific literature. Lithium ion conductors which find use in lithium ion batteries have been given special attention with explanations of their ion dynamic mechanisms, activation barriers, jump rates and dimensionalities of diffusion pathways. The review mainly deals with ion diffusion properties of different classes of solid materials based on their structural and chemical identities. The wide variety of materials discussed include inorganic and organic crystalline and amorphous systems. A short introduction to the NMR methods to determine the diffusion parameters is also provided along with an introduction to the basics in diffusion in solids.

      PubDate: 2017-10-29T00:00:56Z
      DOI: 10.1016/bs.arnmr.2016.03.001
      Issue No: Vol. 89 (2017)
       
  • Chapter Two Orphan Spin Polarization
    • Authors: T. Gopinath; G. Veglia
      Pages: 103 - 121
      Abstract: Publication date: 2016
      Source:Annual Reports on NMR Spectroscopy, Volume 89
      Author(s): T. Gopinath, G. Veglia
      Magic-angle spinning solid-state NMR (MAS ssNMR) spectroscopy is a powerful method for structure determination of biomacromolecules that are recalcitrant to crystallization (membrane proteins and fibrils). Relatively low sensitivity and poor resolution of protein samples require long acquisition times for multidimensional ssNMR experiments. Conventional multidimensional ssNMR pulse sequences acquire one experiment at a time, which is time consuming and often discards orphan (unused) spin operators. Here, we describe our recent progress in the development of multiple acquisition ssNMR methods for protein structure determination. A family of experiments called polarization optimized experiments (POE) was designed, in which we utilized the orphan spin operators that are discarded in classical NMR experiments to recover them and acquire simultaneously multiple 2D and 3D experiments using conventional probes and spectrometers with one receiver. Three strategies namely, DUMAS, MEIOSIS, and MAeSTOSO were used for the concatenation of various 2D and 3D pulse sequences. These methods open up new avenues for reducing the acquisition time of multidimensional experiments for biomolecular ssNMR spectroscopy.

      PubDate: 2017-10-29T00:00:56Z
      DOI: 10.1016/bs.arnmr.2016.04.003
      Issue No: Vol. 89 (2017)
       
  • Chapter Three Analytic Theory of Multiple-Quantum NMR of Quadrupolar
           Nuclei
    • Authors: G. Vinay; R. Ramachandran
      Pages: 123 - 184
      Abstract: Publication date: 2016
      Source:Annual Reports on NMR Spectroscopy, Volume 89
      Author(s): G. Vinay, R. Ramachandran
      In this review, an analytic framework based on the concept of effective Floquet Hamiltonians is presented to describe the nuances of multiple-quantum (MQ) NMR of quadrupolar nuclei in static solids. Employing spin I =3/2 as a case study, a pedagogical description of the time evolution of the coherences and populations in MQ experiments is presented through analytic expressions derived from the density operator formalism. From an experimental perspective, the conditions required for optimal implementation of the various stages involved in MQ experiments are identified and explained in terms of effective Floquet Hamiltonians. Additionally, the role of experimental parameters (such as duration of pulse, amplitude of the pulse, etc.,) in the derivation of effective Hamiltonians is discussed in detail. The analytic framework presented in the present study is quite general and is extendable to describe other quadrupolar spins in the periodic table.

      PubDate: 2017-10-29T00:00:56Z
      DOI: 10.1016/bs.arnmr.2016.04.001
      Issue No: Vol. 89 (2017)
       
  • Chapter Four Recent Advances in NMR Studies of Carbohydrates
    • Authors: S. Buda; M. Nawój; J. Mlynarski
      Pages: 185 - 223
      Abstract: Publication date: 2016
      Source:Annual Reports on NMR Spectroscopy, Volume 89
      Author(s): S. Buda, M. Nawój, J. Mlynarski
      This chapter summarizes contributions from the last 4 years (2011–15) of the application of nuclear magnetic resonance (NMR) in broadly defined carbohydrate chemistry. Both the experimental NMR methods and the theoretical calculations of NMR parameters used in the studies of carbohydrate chemistry are collected and discussed. The first part of this chapter brings an overview of the experimental technique that is commonly used in carbohydrate chemistry. Next parts present noncovalent interactions between sugar unit and protein (or other molecules). Conformational study of mono-, oligo-, and polysaccharide, mechanistic investigation, and finally molecular modeling and calculation is also reviewed.

      PubDate: 2017-10-29T00:00:56Z
      DOI: 10.1016/bs.arnmr.2016.04.002
      Issue No: Vol. 89 (2017)
       
  • Chapter One Reviewing 47/49Ti Solid-State NMR Spectroscopy
    • Authors: Bryan E.G. Lucier; Yining Huang
      Pages: 1 - 78
      Abstract: Publication date: 2016
      Source:Annual Reports on NMR Spectroscopy, Volume 88
      Author(s): Bryan E.G. Lucier, Yining Huang
      Titanium is a strong, low-density element with a diverse variety of applications in fields such as the aerospace and automotive industries, biomedical implants, electronics, solar cells, polymerization catalysts, and photocatalysts. In many instances, the local environment of Ti has a substantial influence on the physical and electronic properties of these materials. Solid-state NMR (SSNMR) is an increasingly popular non-destructive avenue for obtaining rich, detailed information regarding titanium and its surroundings. The two NMR-active isotopes of titanium, 47Ti and 49Ti, have very similar properties, which often leads to overlapping resonances and complicated SSNMR spectra. Despite these challenges, many researchers have successfully utilized 47/49Ti SSNMR experiments to gain a unique molecular-level understanding of the local electronic, magnetic, and structural environment about titanium. Ti NMR parameters are strongly correlated to distinct structural features (e.g., TiO6 octahedral distortion). This review takes the reader on a comprehensive tour of 47/49Ti SSNMR spectroscopy spanning ca. 60 publications, from the first report in 1963 to the current state of the art in 2015. We begin with an introduction to the element of titanium, its properties, isotopes, and impressive range of applications. An introduction to the relevant NMR interactions and their parameters is then provided, followed by a discussion of various pulse sequences and strategies for 47/49Ti SSNMR signal enhancement, and a breakdown of the various compounds that have been used for 47/49Ti chemical shift referencing. The main literature review is grouped according to the nature of Ti materials: Ti metal, TiH2/TiD2 and their stoichiometric derivatives, BaTiO3 and SrTiO3, the three polymorphs of TiO2 (rutile, anatase, and brookite), ATiO3-type compounds (A=metal, e.g., perovskite and ilmenite), intermetallic and binary Ti compounds, porous and layered materials, and practical applications of 47/49Ti SSNMR spectroscopy in recent times. Considering the tremendous advances in the field within the last two decades, 47/49Ti SSNMR spectroscopy shows great promise for routine, detailed characterization of Ti alloys, compounds, and nanomaterials both today and in the future.

      PubDate: 2017-10-29T00:00:56Z
      DOI: 10.1016/bs.arnmr.2015.10.001
      Issue No: Vol. 88 (2017)
       
  • Chapter Two Advances in 27Al MAS NMR Studies of Geopolymers
    • Authors: Jiri Brus; Sabina Abbrent; Libor Kobera; Martina Urbanova; Pavel Cuba
      Pages: 79 - 147
      Abstract: Publication date: 2016
      Source:Annual Reports on NMR Spectroscopy, Volume 88
      Author(s): Jiri Brus, Sabina Abbrent, Libor Kobera, Martina Urbanova, Pavel Cuba
      Geopolymers have received considerable attention for their low cost, excellent mechanical and physical properties, low energy consumption, and reduced greenhouse emissions during manufacture. A typical application of geopolymers is their replacement of Portland cement as a building material. However, geopolymers have even greater application potential as regenerable catalysts, membranes, and storage materials for toxic chemicals, as well as photoactive composites. The structural characterization of these aluminosilicates, however, continues to be a challenge. Section 1 of the presented work provides a brief history, the typical applications, and conventional as well as advanced routes of synthesis of geopolymers, while discussing the issue of current problems with their structure elucidation. In Section 2, the basic principles of 27Al magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy as a tool for the structural characterization of geopolymers are introduced, while Section 3 summarizes advanced multidimensional and multinuclear techniques of 27Al MAS NMR spectroscopy. Sections 4 and 5 feature recent applications and show future methodological prospects for possible 27Al solid-state NMR approaches to geopolymers.

      PubDate: 2017-10-29T00:00:56Z
      DOI: 10.1016/bs.arnmr.2015.11.001
      Issue No: Vol. 88 (2017)
       
  • Chapter Three Applications of NMR Techniques in the Development and
           Operation of Proton Exchange Membrane Fuel Cells
    • Authors: Liuming Yan; Yidong Hu; Xiaoming Zhang; Baohua Yue
      Pages: 149 - 213
      Abstract: Publication date: 2016
      Source:Annual Reports on NMR Spectroscopy, Volume 88
      Author(s): Liuming Yan, Yidong Hu, Xiaoming Zhang, Baohua Yue
      The application of nuclear magnetic resonance (NMR) techniques, including solution-state NMR, solid-state magic angle spinning NMR, pulsed field gradient NMR, relaxometry, and magnetic resonance imaging in the development of proton exchange membrane fuel cells and direct methanol fuel cells, especially the proton-conducting materials and electrocatalysts, is reviewed.

      PubDate: 2017-10-29T00:00:56Z
      DOI: 10.1016/bs.arnmr.2015.11.003
      Issue No: Vol. 88 (2017)
       
  • Chapter Four Recent NMR Studies of Ionic Liquids
    • Authors: Krishnan Damodaran
      Pages: 215 - 244
      Abstract: Publication date: 2016
      Source:Annual Reports on NMR Spectroscopy, Volume 88
      Author(s): Krishnan Damodaran
      This review presents recent developments in the application of nuclear magnetic resonance (NMR) spectroscopy to study ionic liquids. In addition to routine structural characterization of synthesized ionic liquids, availability of multitude of advanced NMR techniques enables researchers to probe the structure and dynamics of these materials. Also most of the ionic liquids contain a host of NMR-active nuclei that are perfectly suitable for multinuclear NMR experiments. This review focuses on the application of NMR techniques, such as pulsed field gradient, relaxometry, nuclear Overhauser effect, electrophoretic NMR, and other novel experiments designed to investigate pure ionic liquids and the interaction of ionic liquids with various salts and solutes.

      PubDate: 2017-10-29T00:00:56Z
      DOI: 10.1016/bs.arnmr.2015.11.002
      Issue No: Vol. 88 (2017)
       
  • Chapter Five Recent Solid-State 13C NMR Studies of Liquid Crystals
    • Authors: Kazuhiko Yamada
      Pages: 245 - 305
      Abstract: Publication date: 2016
      Source:Annual Reports on NMR Spectroscopy, Volume 88
      Author(s): Kazuhiko Yamada
      Solid-state nuclear magnetic resonance (NMR) is very often an invaluable complement to X-ray diffraction methods for the characterization of liquid crystals (LCs). For example, alignment-induced shift (AIS) becomes an important physical quantity for understanding of molecular dynamics of LC molecules when they are aligned to the external magnetic fields. In this review, theoretical aspect AIS is given, and three examples of applications of solid-state 13C NMR to LC systems including the relationship between helical twisting power in cholesteric LCs and the strength of external magnetic fields, determination of n-director direction in a low bend-angle banana LC compound by AIS, and a structural analysis of a classic banana LC using 13C chemical shielding tensor components are described.

      PubDate: 2017-10-29T00:00:56Z
      DOI: 10.1016/bs.arnmr.2016.01.001
      Issue No: Vol. 88 (2017)
       
  • Chapter Six A Toolbox of Solid-State NMR Experiments for the
           Characterization of Soft Organic Nanomaterials
    • Authors: Lasse Arnt Straasø; Qasim Saleem; Michael Ryan Hansen
      Pages: 307 - 383
      Abstract: Publication date: 2016
      Source:Annual Reports on NMR Spectroscopy, Volume 88
      Author(s): Lasse Arnt Straasø, Qasim Saleem, Michael Ryan Hansen
      Determining how organic molecules self-assemble into a solid material is a challenging and demanding task if a single crystal of the material cannot be produced. Solid-state NMR spectroscopy offers access to such molecular details via an appropriate selection of techniques. This report gives a selected overview of 1D and 2D solid-state NMR techniques for elucidating the structure of soft organic solids. We focus on how the solid-state NMR techniques are designed from the perspective of the different nuclear interactions, using average Hamiltonian theory and product operators. We also introduce recent methods for quantification and reduction of experimental artifacts. Finally, we highlight how the solid-state NMR techniques can be applied to soft organic materials by reviewing recent applications to semicrystalline polymers, π-conjugated polymers, natural silk, and graphene-related materials.

      PubDate: 2017-10-29T00:00:56Z
      DOI: 10.1016/bs.arnmr.2015.12.001
      Issue No: Vol. 88 (2017)
       
  • NMR Studies of Organic Aerosols
    • Authors: Regina M.B.O. Duarte; João T.V. Matos; Andreia S. Paula; Sónia P. Lopes; Guilherme Pereira; Pérola Vasconcellos; Adriana Gioda; Renato Carreira; Artur M.S. Silva; Armando C. Duarte; Patricia Smichowski; Nestor Rojas; Odon Sanchez-Ccoyllo
      Pages: 513 - 525
      Abstract: Publication date: Available online 26 May 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): Regina M.B.O. Duarte, Armando C. Duarte
      Organic aerosols (OAs) composition in the atmosphere is highly complex and strongly influenced by a panoply of sources and different formation processes. Although OAs have been extensively studied in urban, rural, and marine environments, their complexity is still a major obstacle to an improved understanding on how OAs affect the climate and human health. Nuclear magnetic resonance (NMR) spectroscopy has become one of the leading analytical approaches for the characterization of OAs and has gained importance in atmospheric chemistry sciences. This review highlights both solid-state and one- and two-dimensional solution-state NMR spectroscopy as unmatched tools for nontarget structural elucidation of atmospheric OAs. This work aims to demonstrate various applications of NMR in OAs studies, ranging from OAs source apportionment in field studies to investigation of secondary OAs composition in laboratory experiments. The limitations, weaknesses, and major challenges ahead on the application of NMR tools for OAs research are also overviewed.

      PubDate: 2017-05-27T21:55:30Z
      DOI: 10.1016/j.envpol.2017.05.011
      Issue No: Vol. 227 (2017)
       
  • At Its Extremes: NMR at Giga-Pascal Pressures
    • Authors: Thomas Meier
      Abstract: Publication date: Available online 26 October 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): Thomas Meier
      Implementation of nuclear magnetic resonance in high pressure vessels is among the most demanding technological endeavours of the field, owing to inherently low signal amplitudes, low sensitivities of the resonator set-ups, and samples which are both difficult to handle and to access in the finished experimental set-up. The following chapter presents a review of the basic principles of generating pressures in excess of 1GPa (= 10.000atm), followed by a summary of suitable NMR resonators. Additionally, recent high pressure experiments on correlated and uncorrelated electronic system at pressures as high as 30GPa will be covered.

      PubDate: 2017-10-29T00:00:56Z
      DOI: 10.1016/bs.arnmr.2017.08.004
       
  • Progress in Our Understanding of 19F Chemical Shifts
    • Authors: Jayangika N. Dahanayake; Chandana Kasireddy; Joseph P. Karnes; Rajni Verma; Ryan M. Steinert; Derek Hildebrandt; Olivia A. Hull; Jonathan M. Ellis; Katie R. Mitchell-Koch
      Abstract: Publication date: Available online 16 October 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): Jayangika N. Dahanayake, Chandana Kasireddy, Joseph P. Karnes, Rajni Verma, Ryan M. Steinert, Derek Hildebrandt, Olivia A. Hull, Jonathan M. Ellis, Katie R. Mitchell-Koch
      Fluorine NMR spectroscopy has diverse applications, including characterization of chemical reaction mechanisms, protein structure–function studies, and solid-state NMR characterization of crystalline, amorphous, and soft materials. Computational methods have aided in assigning and interpreting chemical shifts, with wide use in solid-state NMR spectroscopy. Work to understand fluorine chemical shifts has been aided by computational methods. So-called “normal” chemical shift behaviour can be understood to arise from ground-state electron density, in which diamagnetic or Lamb shielding dominates. Meanwhile, electronic structure methods indicate that many instances of “reverse” chemical shift behaviour can be understood to be dominated by paramagnetic shielding effects, which arise from the coupling of occupied and unoccupied molecular orbitals in the presence of a magnetic field. Calculations using natural chemical shielding analysis are used to delineate contributions from diamagnetic and paramagnetic shielding of fluorine nuclei in a set of aromatic molecules and aliphatic compounds, some of which exhibit reverse chemical shift behaviour. An overview of recent advances to assign and interpret chemical shifts in complex environments is presented.

      PubDate: 2017-10-21T18:21:42Z
      DOI: 10.1016/bs.arnmr.2017.08.002
       
  • Perspective on the Hyperpolarisation Technique Signal Amplification by
           Reversible Exchange (SABRE) in NMR Spectroscopy and MR Imaging
    • Authors: Thomas B.R. Robertson; Ryan E. Mewis
      Abstract: Publication date: Available online 16 October 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): Thomas B.R. Robertson, Ryan E. Mewis
      Signal amplification by reversible exchange (SABRE) is a para-hydrogen-based technique that utilises a metal complex, normally centred on iridium, to propagate polarisation from para-hydrogen-derived hydride ligands to spin-½ nuclei located in a bound substrate. To date, substrates possessing 1H, 13C, 15N, 19F, 31P, 29Si, and 119Sn nuclei have been polarised by this technique. The exact positioning of these nuclei has a direct bearing on the enhancement observed and so substrates must be chosen or synthesised with care in order to maximise polarisation transfer, and hence the resulting enhancement. The chemical composition of the metal complex must be similarly appraised, as the exchange rate of substrates and para-hydrogen is implicated heavily in efficient polarisation transfer. The nature of the polarisation transfer, whether homogenous or heterogeneous, is another important facet to consider here, as is conducting SABRE in water-based systems. This review discusses the physical and theoretical aspects of the SABRE experiment, as well as the applications of the SABRE technique, namely, the detection of analytes at concentrations far below what would be possible with conventional NMR techniques and the collection of hyperpolarised magnetic resonance images. Advances relating to utilising singlet states for SABRE, pulse sequence design and the nature of the polarisation transfer mechanism are also discussed, and the implications for future SABRE-based discoveries highlighted.

      PubDate: 2017-10-21T18:21:42Z
      DOI: 10.1016/bs.arnmr.2017.08.001
       
  • Ultrafast 2D NMR: Methods and Applications
    • Authors: Boris Gouilleux; Laetitia Rouger; Patrick Giraudeau
      Abstract: Publication date: Available online 16 October 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): Boris Gouilleux, Laetitia Rouger, Patrick Giraudeau
      Multidimensional NMR (nD NMR) has become one of the most powerful spectroscopic tools to deliver diverse structural and functional insights into organic and biomolecules as well as on raw materials. A long-standing concern of nD NMR is related to its long experiment duration, arising from the need to sample the indirect dimension(s) in a multistep fashion. For decades, the NMR community has been developing numerous strategies to speed up nD NMR experiments and therefore extend their scope of applications. Among them is the ultrafast (UF) NMR methodology, capable of delivering arbitrary homo- or heteronuclear multidimensional spectra in a single scan. Since the initial concept was published in 2002, the performance of this subsecond 2D NMR approach has been greatly improved so that UF NMR is nowadays a relevant analytical tool used in broad variety of situations whereby the experiment duration is crucial. Following a description of the principles of UF NMR, the present review aims at emphasizing the numerous methodological developments that this approach has undergone so far in 2017. Thereafter, the high versatility of UF NMR is highlighted through the review of the applications that have been reported in a variety of settings and disciplines, in isotropic as well as anisotropic media.

      PubDate: 2017-10-21T18:21:42Z
      DOI: 10.1016/bs.arnmr.2017.08.003
       
  • Recent Advances in 11B Solid-State Nuclear Magnetic Resonance Spectroscopy
           of Crystalline Solids
    • Authors: Ying-Tung Angel Wong; David L. Bryce
      Abstract: Publication date: Available online 16 October 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): Ying-Tung Angel Wong, David L. Bryce
      We review the progress made in 11B solid-state nuclear magnetic resonance (SSNMR) spectroscopy of crystalline materials over the past 20 years, with a focus on the applications of 11B NMR observables in providing electronic and structural information. A brief description of some of the common SSNMR methods for measuring 11B chemical shift (CS) tensor parameters, electric field gradient (EFG) tensor parameters, and indirect spin–spin (J) coupling constants is first provided. Recent 11B SSNMR studies on crystalline boron systems, such as diboron compounds, boronic esters and acids, borates, and boron-containing Lewis acid/base adducts, are then summarized, and the corresponding experimentally obtained 11B NMR parameters are presented. In general, data from studies that only report isotropic CSs are not tabulated. Our survey highlights the ability of 11B SSNMR spectroscopy to provide an abundance of diverse chemical information, ranging from the coordination environment of the boron, to ligand identity, bond strengths, bond orders and bond angles, and the potential of this technique to characterize inorganic and organic crystalline solids. Owing to the sensitivity of 11B SSNMR spectroscopy to chemical structures and the suitability of the 11B nuclide for high-resolution techniques such as MQMAS and DOR, we anticipate that 11B SSNMR spectroscopy will continue to evolve as an indispensable tool for solid-state characterization of boron-containing systems and for the advancement of various fields, such as NMR crystallography, the synthesis of novel boron reagents, and the development of boron-based hydrogen storage materials.

      PubDate: 2017-10-21T18:21:42Z
      DOI: 10.1016/bs.arnmr.2017.08.005
       
  • Recent NMR Studies of Thermoelectric Materials
    • Authors: Ali A. Sirusi; Joseph H. Ross
      Abstract: Publication date: Available online 16 June 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): Ali A. Sirusi, Joseph H. Ross
      Thermoelectric materials can directly convert heat to electricity and are expected to lead to new devices to harvest waste heat for energy efficiency as well as new cooling technologies. Optimization of these properties requires tailoring vibrational properties as well as the entropy carried by electrical charges and spins. NMR measurements have been important for understanding these processes, providing a measure of anharmonic “rattling” phonon behavior, local fluctuations in charge carrier and magnetic properties, and atomic-scale symmetries and distortions within these materials. Here we report recent NMR results focusing on inorganic clathrates, skutterudites, oxides, noble metal chalcogenides, complex tellurides, and half-Heusler compounds in which high thermoelectric efficiencies have been reported.

      PubDate: 2017-08-04T10:41:15Z
      DOI: 10.1016/bs.arnmr.2017.04.002
       
  • Applications of Solid-State 43Ca Nuclear Magnetic Resonance:
           Superconductors, Glasses, Biomaterials, and NMR Crystallography
    • Authors: Cory M. Widdifield
      Abstract: Publication date: Available online 10 July 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): Cory M. Widdifield
      The application of 43Ca solid-state nuclear magnetic resonance (SSNMR) experiments to probe various materials is reviewed. Methods used to obtain high-quality 43Ca SSNMR spectra, and the types of information which can be gained by recording 43Ca NMR spectra, are outlined. Substantial discussion is provided in relation to the classes of materials which have already been studied, at least in part, by 43Ca SSNMR. This includes, but is not limited to, superconductors, binary and ternary calcium-containing inorganics (and hydrates thereof), silicates, glasses, cements, concretes, clays, phosphates, bones, teeth, calcium-containing organics, and biomaterials. Studies that include the computation of calcium NMR parameters using quantum chemistry methods are discussed in detail, which leads naturally to accounts pertaining to NMR crystallography. This review concludes with brief speculations on the future of 43Ca SSNMR.

      PubDate: 2017-07-19T08:27:27Z
      DOI: 10.1016/bs.arnmr.2017.04.006
       
  • Nonlinear Effects in NMR
    • Authors: Matthias Bechmann; Norbert Müller
      Abstract: Publication date: Available online 23 June 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): Matthias Bechmann, Norbert Müller
      Analytical applications of NMR exploit the widely assumed linearity of the NMR response with respect to the spin concentration. Deviations of this linearity are undesired and in this review some current approaches to tackle this problem are given. However, from a physics point of view, the nonlinearity is a more complex affair. Indeed, NMR as a primary representative of coherent spectroscopy can be viewed as an inherently nonlinear method, in particular with respect to the excitation amplitude. Even excluding this intrinsic property, amplitude response is not always found to be linear and several distinct fundamental nonlinearity or nonadditivity effects can be caused by spin interactions, which can either be internal to the specimen, or owed to feedback from the observation electronics as summarized here with references to the latest literature. Ways to avoid nonlinear response for quantitative NMR applications are summarized briefly.

      PubDate: 2017-06-29T10:47:28Z
      DOI: 10.1016/bs.arnmr.2017.04.005
       
  • Solid-State NMR Spectroscopy: The Magic Wand to View Bone at Nanoscopic
           Resolution
    • Authors: Kamal H. Mroue; Akhila Viswan; Neeraj Sinha; Ayyalusamy Ramamoorthy
      Abstract: Publication date: Available online 7 June 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): Kamal H. Mroue, Akhila Viswan, Neeraj Sinha, Ayyalusamy Ramamoorthy
      The unique potential of solid-state NMR (SSNMR) spectroscopy to provide atomistic-scale piercing insights into the structure and dynamics of complex biomaterials, such as the extracellular matrix of bone and related connective tissues, has been well demonstrated over the past several years. With its highly complex hierarchical architecture, bone indeed represents a significant challenge to structural studies using many conventional analytical and biophysical techniques. Recent instrumental and technological advances have considerably improved the sensitivity and resolution in multidimensional magic-angle spinning SSNMR experiments and have made it possible to obtain key high-resolution information, that are otherwise unobtainable by conventional microscopic and diffraction studies, from insoluble and amorphous heterogeneous materials of biological importance such as bone. In this review, we briefly present recent and continuing advances in the area of SSNMR of bone and related connective tissues like cartilage, by summarizing a selected ensemble of key SSNMR applications that highlight the potential with which this technique has contributed to our growing understanding of the complex structures and dynamics of these materials.

      PubDate: 2017-06-12T09:46:20Z
      DOI: 10.1016/bs.arnmr.2017.04.004
       
  • The DEPT Experiment and Some of Its Useful Variants
    • Authors: Hedvika Primasova; Peter Bigler; Julien Furrer
      Abstract: Publication date: Available online 1 June 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): Hedvika Primasova, Peter Bigler, Julien Furrer
      The DEPT (distortionless enhancement by polarization transfer) experiment, proposed in 1982, has revolutionized NMR spectroscopy for signal assignment, particularly for obtaining information with respect to, e.g., the type (multiplicity) and the number of Cq, CH, CH2, and CH3 in the investigated molecule and for calculating corresponding carbon type-specific subspectra (spectral editing). In this chapter, we have explored various DEPT pulse sequences and have discussed how the pulse sequence elements cooperate and contribute to the final shape and appearance of the observed signals. In addition, we have compared the results with other experiments designed for the determination of multiplicities like the spin echo (SE)-based experiments SEFT, APT, and SEMUT, and the experiments where the signal intensity is enhanced by heteronuclear polarization transfer such as the INEPT-based experiments INEPT and PENDANT, and the DEPT-based experiments DEPT, POMMIE, and DEPTQ. After a short introduction, this chapter, with the aid of product operator formalism, provides a comprehensive description of these experiments. Building from basic principles, the DEPTQ variant, for including the signals of quaternary carbons, the ACCORDEPT, for equalizing intensities in case of a wide range of heteronuclear coupling constants, and the QDEPT and QDEPT+ sequences, for obtaining quantitative DEPT data are explained in detail.

      PubDate: 2017-06-07T09:29:22Z
      DOI: 10.1016/bs.arnmr.2017.04.001
       
  • MRI Studies of Plastic Crystals
    • Authors: K. Romanenko
      Abstract: Publication date: Available online 9 February 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): K. Romanenko
      Over three decades ago, plastic crystals were proposed as a solid-state alternative to conventional liquid electrolytes. Particular attention has been later drawn to organic ionic plastic crystals (OIPCs) and OIPC-based electrolytes. These ionic solids exhibit crucial characteristics of a safe electrolyte material such as nonflammability, nonvolatility, electrochemical stability, and plasticity. Versatility of ionic pairs available to date and ongoing research on molecular design will provide OIPCs for specific operating conditions within a broad range of electrochemical applications. Single-point ramped imaging with T 1 enhancement (SPRITE), an MRI method known for its capability to visualize solids, has played a key role in the discovery of several novel phenomena inherent in OIPCs. This chapter is an overview of these solid-state MRI studies. SPRITE imaging of polycrystalline morphology revealed a striking T 2 * contrast anisotropy and shed light on molecular dynamics in solid phases of plastic crystals. These observations suggest the possibility of macroscopically anisotropic ion conduction supported by impedance spectroscopy and in situ MRI experiments. MRI studies of operating electrochemical cells have led to a breakthrough in understanding the function of doped plastic crystals. The discovered hybrid solid–liquid property of OIPC electrolytes is the key for their successful commercialization.

      PubDate: 2017-02-10T08:20:40Z
      DOI: 10.1016/bs.arnmr.2016.12.002
       
  • Magnetic Resonance Imaging Studies of the Spatial Distribution of Charge
           Carriers
    • Authors: K. Borzutzki; G. Brunklaus
      Abstract: Publication date: Available online 6 February 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): K. Borzutzki, G. Brunklaus
      Charge carriers are an essential component of electrochemical devices or participants in redox processes and govern the achievable properties or performance of the considered materials. Since well-defined structural features of active components including the explicit coordination sphere of charge carriers typically exists at rather locale scale, the application of methods that require long-range order reflecting crystalline lattices such as X-ray diffraction is limited. In this context, magnetic resonance imaging (MRI) constitutes a highly viable option as MRI (or more general NMR) is element selective, hence, charge carrier specific and able to tolerate ill-defined structural arrangements. A skillful combination of available MRI methods allows for monitoring of electrochemical processes with sufficient spatial and temporal resolution, and their recent applications in the field of batteries and other redox chemistry are concisely summarized and discussed in this review.

      PubDate: 2017-02-10T08:20:40Z
      DOI: 10.1016/bs.arnmr.2016.12.003
       
  • Novel Synthetic As Well As Natural Auxiliaries With a Blend of NMR
           Methodological Developments for Chiral Analysis in Isotropic Media
    • Authors: Sandeep K. Mishra; Sachin R. Chaudhari; A. Lakshmipriya; Indrani Pal; N. Lokesh; N. Suryaprakash
      Abstract: Publication date: Available online 24 January 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): Sandeep K. Mishra, Sachin R. Chaudhari, A. Lakshmipriya, Indrani Pal, N. Lokesh, N. Suryaprakash
      Chiral auxiliaries are routinely employed in the NMR spectroscopic discrimination of enantiomers in isotropic solutions. Most of the times the presence of impurities, superposition of peaks, enormous line broadening, and complex multiplicity pattern limit the NMR spectroscopic discrimination of enantiomers and determination of their composition. There are a few approaches to unravel the overlap of peaks. A simple approach is to utilize appropriate chiral auxiliary, which induces a large chemical shift difference between the discriminated peaks (Δδ) R/S , and minimize or unravel the overlap of peaks. In this direction, several new chiral auxiliaries and new chiral differentiation protocols have been introduced, which are both synthetic and naturally occurring molecules. An alternate spectroscopic approach is to design NMR experiments to circumvent inherent problems, viz., enhancing the spectral resolution, separation of the superimposed spectra of enantiomers, and reduction of the spectral complexity. A large number of NMR experiments, such as two-dimensional selective F 1 decoupling, RES-TOCSY, multiple quantum detection, frequency-selective homodecoupling, band-selective homodecoupling, and broadband homodecoupling called as pure shift NMR, to cite a few, are available for such a purpose. Many of these techniques have simplified the chiral analysis for molecules containing diverse functional groups in the presence of suitable chiral auxiliaries. The present chapter summarizes the work carried out in the authors’ laboratory on chiral analysis. This includes the recently introduced new chiral auxiliaries, which are either synthesizable or natural products. They could be either derivatizing agents or solvating agents or the developed three-component protocols, in addition to new NMR experimental methodologies.

      PubDate: 2017-01-29T08:11:07Z
      DOI: 10.1016/bs.arnmr.2016.12.001
       
  • NMR Relaxation in Dendrimers
    • Authors: D.A. Markelov; M. Dolgushev; E. Lähderanta
      Abstract: Publication date: Available online 9 January 2017
      Source:Annual Reports on NMR Spectroscopy
      Author(s): D.A. Markelov, M. Dolgushev, E. Lähderanta
      This review focuses on recent advances in the theory of local orientational mobility in dendrimers that reveals in the NMR relaxation. In particular, we summarize recent results of analytic theory, computer simulations, and NMR relaxation experiments. The analytic theory provides basic means for the analysis of the simulations and experiments by predicting the existence of two dominating processes: overall branch relaxation and local vibrations. On the other hand, the results of simulations and experiments complete the picture by a third process of rotation of the dendrimer as a whole. The NMR relaxation reveals a fundamental importance of the local constraints on segments’ orientations. Remarkably, the model, in which such constraints are absent, overestimates local vibrations making the NMR relaxation rate functions for segments that have different topological location in the dendrimer to be practically indistinguishable. Inclusion of the bending rigidity fixes this flaw by endorsing the process of overall branch relaxation. This leads to a correct recognition of the slower mobility of the segments that are located closer to the dendrimer's core. The crucial role of the local constraints for the NMR relaxation functions is supported by a series of experiments and simulations.

      PubDate: 2017-01-15T07:52:15Z
      DOI: 10.1016/bs.arnmr.2016.11.001
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.226.132.197
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016