Subjects -> MEDICAL SCIENCES (Total: 8665 journals)
    - ALLERGOLOGY AND IMMUNOLOGY (218 journals)
    - ANAESTHESIOLOGY (120 journals)
    - CARDIOVASCULAR DISEASES (338 journals)
    - CHIROPRACTIC, HOMEOPATHY, OSTEOPATHY (21 journals)
    - COMMUNICABLE DISEASES, EPIDEMIOLOGY (235 journals)
    - DENTISTRY (293 journals)
    - DERMATOLOGY AND VENEREOLOGY (164 journals)
    - EMERGENCY AND INTENSIVE CRITICAL CARE (124 journals)
    - ENDOCRINOLOGY (151 journals)
    - FORENSIC SCIENCES (42 journals)
    - GASTROENTEROLOGY AND HEPATOLOGY (188 journals)
    - GERONTOLOGY AND GERIATRICS (138 journals)
    - HEMATOLOGY (157 journals)
    - HYPNOSIS (4 journals)
    - INTERNAL MEDICINE (176 journals)
    - LABORATORY AND EXPERIMENTAL MEDICINE (99 journals)
    - MEDICAL GENETICS (58 journals)
    - MEDICAL SCIENCES (2403 journals)
    - NURSES AND NURSING (367 journals)
    - OBSTETRICS AND GYNECOLOGY (207 journals)
    - ONCOLOGY (385 journals)
    - OPHTHALMOLOGY AND OPTOMETRY (141 journals)
    - ORTHOPEDICS AND TRAUMATOLOGY (170 journals)
    - OTORHINOLARYNGOLOGY (83 journals)
    - PATHOLOGY (100 journals)
    - PEDIATRICS (275 journals)
    - PHYSICAL MEDICINE AND REHABILITATION (158 journals)
    - PSYCHIATRY AND NEUROLOGY (833 journals)
    - RADIOLOGY AND NUCLEAR MEDICINE (192 journals)
    - RESPIRATORY DISEASES (104 journals)
    - RHEUMATOLOGY (79 journals)
    - SPORTS MEDICINE (81 journals)
    - SURGERY (406 journals)
    - UROLOGY, NEPHROLOGY AND ANDROLOGY (155 journals)

MEDICAL SCIENCES (2403 journals)                  1 2 3 4 5 6 7 8 | Last

Showing 1 - 200 of 3562 Journals sorted alphabetically
16 de Abril     Open Access   (Followers: 4)
3D Printing in Medicine     Open Access   (Followers: 5)
4 open     Open Access  
AADE in Practice     Hybrid Journal   (Followers: 6)
AAS Open Research     Open Access   (Followers: 2)
ABCS Health Sciences     Open Access   (Followers: 8)
Abia State University Medical Students' Association Journal     Full-text available via subscription   (Followers: 3)
AboutOpen     Open Access  
ACIMED     Open Access   (Followers: 1)
ACS Medicinal Chemistry Letters     Hybrid Journal   (Followers: 48)
Acta Bio Medica     Full-text available via subscription   (Followers: 2)
Acta Bioethica     Open Access  
Acta Bioquimica Clinica Latinoamericana     Open Access   (Followers: 1)
Acta Científica Estudiantil     Open Access  
Acta Facultatis Medicae Naissensis     Open Access   (Followers: 1)
Acta Herediana     Open Access  
Acta Informatica Medica     Open Access   (Followers: 1)
Acta Medica (Hradec Králové)     Open Access  
Acta Medica Bulgarica     Open Access  
Acta Medica Colombiana     Open Access   (Followers: 1)
Acta Médica Costarricense     Open Access   (Followers: 2)
Acta Medica Indonesiana     Open Access  
Acta Medica International     Open Access  
Acta medica Lituanica     Open Access  
Acta Medica Marisiensis     Open Access  
Acta Medica Martiniana     Open Access  
Acta Medica Nagasakiensia     Open Access   (Followers: 1)
Acta Medica Peruana     Open Access   (Followers: 2)
Acta Médica Portuguesa     Open Access  
Acta Medica Saliniana     Open Access  
Acta Scientiarum. Health Sciences     Open Access   (Followers: 3)
Acupuncture & Electro-Therapeutics Research     Full-text available via subscription   (Followers: 7)
Acupuncture and Natural Medicine     Open Access  
Addiction Science & Clinical Practice     Open Access   (Followers: 8)
Addictive Behaviors Reports     Open Access   (Followers: 9)
Adıyaman Üniversitesi Sağlık Bilimleri Dergisi / Health Sciences Journal of Adıyaman University     Open Access   (Followers: 1)
Adnan Menderes Üniversitesi Sağlık Bilimleri Fakültesi Dergisi     Open Access   (Followers: 1)
Advanced Biomedical Research     Open Access  
Advanced Health Care Technologies     Open Access   (Followers: 10)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 9)
Advanced Therapeutics     Hybrid Journal   (Followers: 1)
Advances in Bioscience and Clinical Medicine     Open Access   (Followers: 8)
Advances in Cell and Gene Therapy     Hybrid Journal   (Followers: 2)
Advances in Clinical Chemistry     Full-text available via subscription   (Followers: 27)
Advances in Clinical Radiology     Full-text available via subscription   (Followers: 2)
Advances in Life Course Research     Hybrid Journal   (Followers: 12)
Advances in Lipobiology     Full-text available via subscription   (Followers: 2)
Advances in Medical Education and Practice     Open Access   (Followers: 32)
Advances in Medical Ethics     Open Access   (Followers: 1)
Advances in Medical Research     Open Access   (Followers: 2)
Advances in Medical Sciences     Hybrid Journal   (Followers: 9)
Advances in Medicinal Chemistry     Full-text available via subscription   (Followers: 6)
Advances in Medicine     Open Access   (Followers: 3)
Advances in Microbial Physiology     Full-text available via subscription   (Followers: 5)
Advances in Molecular Oncology     Open Access   (Followers: 2)
Advances in Molecular Toxicology     Full-text available via subscription   (Followers: 7)
Advances in Parkinson's Disease     Open Access   (Followers: 1)
Advances in Phytomedicine     Full-text available via subscription  
Advances in Preventive Medicine     Open Access   (Followers: 6)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 20)
Advances in Regenerative Medicine     Open Access   (Followers: 4)
Advances in Skeletal Muscle Function Assessment     Open Access  
Advances in Therapy     Hybrid Journal   (Followers: 5)
Advances in Traditional Medicine     Hybrid Journal   (Followers: 4)
Advances in Veterinary Science and Comparative Medicine     Full-text available via subscription   (Followers: 15)
Advances in Virus Research     Full-text available via subscription   (Followers: 6)
Advances in Wound Care     Hybrid Journal   (Followers: 14)
Aerospace Medicine and Human Performance     Full-text available via subscription   (Followers: 13)
African Health Sciences     Open Access   (Followers: 5)
African Journal of Biomedical Research     Open Access   (Followers: 1)
African Journal of Clinical and Experimental Microbiology     Open Access   (Followers: 4)
African Journal of Laboratory Medicine     Open Access   (Followers: 2)
African Journal of Medical and Health Sciences     Open Access   (Followers: 3)
African Journal of Thoracic and Critical Care Medicine     Open Access  
African Journal of Trauma     Open Access   (Followers: 1)
Afrimedic Journal     Open Access   (Followers: 3)
Aggiornamenti CIO     Hybrid Journal   (Followers: 1)
AIDS Research and Human Retroviruses     Hybrid Journal   (Followers: 9)
AJOB Empirical Bioethics     Hybrid Journal   (Followers: 3)
AJSP: Reviews & Reports     Hybrid Journal   (Followers: 1)
Aktuelle Ernährungsmedizin     Hybrid Journal   (Followers: 5)
Al-Azhar Assiut Medical Journal     Open Access   (Followers: 2)
Al-Qadisiah Medical Journal     Open Access   (Followers: 1)
Alerta : Revista Científica del Instituto Nacional de Salud     Open Access  
Alexandria Journal of Medicine     Open Access   (Followers: 1)
Allgemeine Homöopathische Zeitung     Hybrid Journal   (Followers: 3)
Alpha Omegan     Full-text available via subscription  
ALTEX : Alternatives to Animal Experimentation     Open Access   (Followers: 2)
Althea Medical Journal     Open Access   (Followers: 2)
American Journal of Biomedical Engineering     Open Access   (Followers: 15)
American Journal of Biomedical Research     Open Access   (Followers: 2)
American Journal of Biomedicine     Full-text available via subscription   (Followers: 7)
American Journal of Chinese Medicine, The     Hybrid Journal   (Followers: 4)
American Journal of Clinical Medicine Research     Open Access   (Followers: 8)
American Journal of Family Therapy     Hybrid Journal   (Followers: 11)
American Journal of Law & Medicine     Full-text available via subscription   (Followers: 12)
American Journal of Lifestyle Medicine     Hybrid Journal   (Followers: 6)
American Journal of Managed Care     Full-text available via subscription   (Followers: 13)
American Journal of Medical Case Reports     Open Access   (Followers: 2)
American Journal of Medical Sciences and Medicine     Open Access   (Followers: 5)
American Journal of Medicine     Hybrid Journal   (Followers: 50)
American Journal of Medicine and Medical Sciences     Open Access   (Followers: 1)
American Journal of Medicine Studies     Open Access   (Followers: 3)
American Journal of Medicine Supplements     Full-text available via subscription   (Followers: 3)
American Journal of the Medical Sciences     Hybrid Journal   (Followers: 12)
American Journal on Addictions     Hybrid Journal   (Followers: 10)
American medical news     Free   (Followers: 3)
American Medical Writers Association Journal     Full-text available via subscription   (Followers: 6)
Amyloid: The Journal of Protein Folding Disorders     Hybrid Journal   (Followers: 5)
Anales de la Facultad de Medicina     Open Access  
Anales de la Facultad de Medicina, Universidad de la República, Uruguay     Open Access  
Anales del Sistema Sanitario de Navarra     Open Access   (Followers: 1)
Analgesia & Resuscitation : Current Research     Hybrid Journal   (Followers: 6)
Anatolian Clinic the Journal of Medical Sciences     Open Access  
Anatomica Medical Journal     Open Access  
Anatomical Science International     Hybrid Journal   (Followers: 3)
Anatomical Sciences Education     Hybrid Journal   (Followers: 2)
Anatomy     Open Access   (Followers: 3)
Anatomy Research International     Open Access   (Followers: 4)
Angewandte Schmerztherapie und Palliativmedizin     Hybrid Journal  
Angiogenesis     Hybrid Journal   (Followers: 3)
Ankara Medical Journal     Open Access   (Followers: 2)
Ankara Üniversitesi Tıp Fakültesi Mecmuası     Open Access  
Annales de Pathologie     Full-text available via subscription  
Annales des Sciences de la Santé     Open Access  
Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale     Full-text available via subscription   (Followers: 3)
Annals of African Medicine     Open Access   (Followers: 2)
Annals of Anatomy - Anatomischer Anzeiger     Hybrid Journal   (Followers: 3)
Annals of Bioanthropology     Open Access   (Followers: 5)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 19)
Annals of Biomedical Sciences     Full-text available via subscription   (Followers: 4)
Annals of Clinical Hypertension     Open Access  
Annals of Clinical Microbiology and Antimicrobials     Open Access   (Followers: 15)
Annals of Family Medicine     Open Access   (Followers: 16)
Annals of Health Research     Open Access   (Followers: 1)
Annals of Ibadan Postgraduate Medicine     Open Access  
Annals of Medical and Health Sciences Research     Open Access   (Followers: 7)
Annals of Medicine     Hybrid Journal   (Followers: 12)
Annals of Medicine and Surgery     Open Access   (Followers: 7)
Annals of Medicine and Surgery Case Reports     Open Access   (Followers: 1)
Annals of Medicine and Surgery Protocols     Open Access   (Followers: 1)
Annals of Microbiology     Hybrid Journal   (Followers: 13)
Annals of Musculoskeletal Medicine     Open Access   (Followers: 2)
Annals of Nigerian Medicine     Open Access   (Followers: 1)
Annals of Rehabilitation Medicine     Open Access  
Annals of Saudi Medicine     Open Access  
Annals of the College of Medicine, Mosul     Open Access   (Followers: 1)
Annals of the New York Academy of Sciences     Hybrid Journal   (Followers: 5)
Annals of The Royal College of Surgeons of England     Full-text available via subscription   (Followers: 3)
Annals of the RussianAacademy of Medical Sciences     Open Access   (Followers: 1)
Annual Reports in Medicinal Chemistry     Full-text available via subscription   (Followers: 7)
Annual Reports on NMR Spectroscopy     Full-text available via subscription   (Followers: 5)
Annual Review of Medicine     Full-text available via subscription   (Followers: 18)
Anthropological Review     Open Access   (Followers: 23)
Anthropologie et santé     Open Access   (Followers: 5)
Antibiotics     Open Access   (Followers: 9)
Antibodies     Open Access   (Followers: 2)
Antibody Reports     Open Access   (Followers: 1)
Antibody Technology Journal     Open Access   (Followers: 1)
Antibody Therapeutics     Open Access   (Followers: 1)
Anuradhapura Medical Journal     Open Access  
Anwer Khan Modern Medical College Journal     Open Access   (Followers: 2)
Apmis     Hybrid Journal   (Followers: 2)
Apparence(s)     Open Access   (Followers: 1)
Applied Clinical Informatics     Hybrid Journal   (Followers: 4)
Applied Clinical Research, Clinical Trials and Regulatory Affairs     Hybrid Journal   (Followers: 2)
Applied Medical Informatics     Open Access   (Followers: 14)
Arab Journal of Nephrology and Transplantation     Open Access   (Followers: 1)
Arabian Journal of Scientific Research / المجلة العربية للبحث العلمي     Open Access   (Followers: 1)
Archive of Biomedical Science and Engineering     Open Access   (Followers: 1)
Archive of Clinical Medicine     Open Access   (Followers: 1)
Archive of Community Health     Open Access   (Followers: 1)
Archives Medical Review Journal / Arşiv Kaynak Tarama Dergisi     Open Access  
Archives of Asthma, Allergy and Immunology     Open Access  
Archives of Clinical Hypertension     Open Access   (Followers: 2)
Archives of Medical and Biomedical Research     Open Access   (Followers: 3)
Archives of Medical Laboratory Sciences     Open Access   (Followers: 1)
Archives of Medicine and Health Sciences     Open Access   (Followers: 5)
Archives of Medicine and Surgery     Open Access   (Followers: 1)
Archives of Organ Transplantation     Open Access   (Followers: 2)
Archives of Preventive Medicine     Open Access   (Followers: 3)
Archives of Pulmonology and Respiratory Care     Open Access   (Followers: 2)
Archives of Renal Diseases and Management     Open Access   (Followers: 2)
Archives of Trauma Research     Open Access   (Followers: 4)
Archivos de Medicina (Manizales)     Open Access   (Followers: 1)
ArgoSpine News & Journal     Hybrid Journal  
Arquivos Brasileiros de Oftalmologia     Open Access   (Followers: 1)
Arquivos de Ciências da Saúde     Open Access  
Arquivos de Medicina     Open Access   (Followers: 1)
Ars Medica : Revista de Ciencias Médicas     Open Access  
ARS Medica Tomitana     Open Access   (Followers: 1)
Art Therapy: Journal of the American Art Therapy Association     Hybrid Journal   (Followers: 19)
Arterial Hypertension     Open Access   (Followers: 1)
Artificial Intelligence in Medicine     Hybrid Journal   (Followers: 19)
Artificial Organs     Hybrid Journal   (Followers: 1)
ASHA Leader     Open Access   (Followers: 5)
Asia Pacific Family Medicine Journal     Open Access   (Followers: 4)
Asia Pacific Journal of Clinical Nutrition     Full-text available via subscription   (Followers: 13)
Asia Pacific Journal of Clinical Trials : Nervous System Diseases     Open Access   (Followers: 1)
Asian Bioethics Review     Full-text available via subscription   (Followers: 4)

        1 2 3 4 5 6 7 8 | Last

Similar Journals
Journal Cover
Annals of Biomedical Engineering
Journal Prestige (SJR): 1.042
Citation Impact (citeScore): 3
Number of Followers: 19  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1573-9686 - ISSN (Online) 0090-6964
Published by Springer-Verlag Homepage  [2626 journals]
  • ABME Special Issue Editorial: Engineering Cell Behavior
    • PubDate: 2020-07-01
       
  • Materials and Microenvironments for Engineering the Intestinal Epithelium
    • Abstract: Abstract The barrier functions of the gastrointestinal tract rely in large part on a single layer of columnar intestinal epithelial cells. These epithelial cells are mediators of intestinal homeostasis, regulating and communicating biochemical signals between underlying stromal cells and luminal cues. The development of representative in vitro models to recapitulate the gastrointestinal epithelium is crucial to understanding cell–cell interactions during intestinal homeostasis and dysfunction. Ideally, models would contain microbiota/immune cells, polarized intestinal architecture, multilayered cellular complexity, extracellular matrix, biochemical cues, and mechanical deformation. This review focuses on historical and state of the art biomaterials and substrates used in the field to establish static and fluidic models of the intestinal epithelium. A discussion of conventional adenocarcinoma colon cancer cell lines, primary intestinal epithelial cells derived from organoids, and stromal support cells such as enteric neurons, myofibroblasts, and immune cells, as well as the importance of increasing cellular complexity and future outlook is included.
      PubDate: 2020-07-01
       
  • Nanoparticle-Mediated TGF-β Release from Microribbon-Based Hydrogels
           Accelerates Stem Cell-Based Cartilage Formation In Vivo
    • Abstract: Abstract Conventional nanoporous hydrogels often lead to slow cartilage deposition by MSCs in 3D due to physical constraints and requirement for degradation. Our group has recently reported macroporous gelatin microribbon (μRB) hydrogels, which substantially accelerate MSC-based cartilage formation in vitro compared to conventional gelatin hydrogels. To facilitate translating the use of μRB-based scaffolds for supporting stem cell-based cartilage regeneration in vivo, there remains a need to develop a customize-designed drug delivery system that can be incorporated into μRB-based scaffolds. Towards this goal, here we report polydopamine-coated mesoporous silica nanoparticles (MSNs) that can be stably incorporated within the macroporous μRB scaffolds, and allow tunable release of transforming growth factor (TGF)-β3. We hypothesize that increasing concentration of polydopamine coating on MSNs will slow down TGF- β3 release, and TGF-β3 release from polydopamine-coated MSNs can enhance MSC-based cartilage formation in vitro and in vivo. We demonstrate that TGF-β3 released from MSNs enhance MSC-based cartilage regeneration in vitro to levels comparable to freshly added TGF-β3 in the medium, as shown by biochemical assays, mechanical testing, and histology. Furthermore, when implanted in vivo in a mouse subcutaneous model, only the group containing MSN-mediated TGF-β3 release supported continuous cartilage formation, whereas control group without MSN showed loss of cartilage matrix and undesirable endochondral ossification. The modular design of MSN-mediated drug delivery can be customized for delivering multiple drugs with individually optimized release kinetics, and may be applicable to enhance regeneration of other tissue types.
      PubDate: 2020-07-01
       
  • Biomaterials and Contraception: Promises and Pitfalls
    • Abstract: Abstract The present state of reproductive and sexual health around the world reveals disparities in contraceptive use and effectiveness. Unintended pregnancy and sexually transmitted infection transmission rates remain high even with current prevention methods. The 20th century saw a contraceptive revolution with biomedical innovation driving the success of new contraceptive technologies with central design concepts and materials. Current modalities can be broadly categorized according to their mode of function: reversible methods such as physical/chemical barriers or hormonal delivery devices via systemic (transdermal and subcutaneous) or localized (intrauterine and intravaginal) administration, and nonreversible sterilization procedures such as tubal ligation and vasectomy. Contraceptive biomaterials are at present dominated by well-characterized elastomers such as polydimethylsiloxane and ethylene vinyl acetate due to their favorable material properties and versatility. Contraceptives alter the normal function of cellular components in the reproductive systems to impair fertility. The purpose of this review is to highlight the bioengineering design of existing methods, explore novel adaptations, and address notable shortcomings in current contraceptive technologies.
      PubDate: 2020-07-01
       
  • Effects of Nanoparticle Properties on Kartogenin Delivery and Interactions
           with Mesenchymal Stem Cells
    • Abstract: Abstract Clinical trials with mesenchymal stem cells (MSCs) have demonstrated potential to treat osteoarthritis, a debilitating disease that affects millions. However, these therapies are often less effective due to heterogeneous MSC differentiation. Kartogenin (KGN), a synthetic small molecule that induces chondrogenesis, has recently been explored to decrease this heterogeneity. KGN has been encapsulated in nanoparticles due to its hydrophobicity. To explore the effect of nanoparticle properties on KGN and MSC interactions, here we fabricated three nanoparticle formulations that vary in hydrophobicity, size, and surface charge using nanoprecipitation: KGN-loaded poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles (hydrophobic surface, negative charge, ~ 167 nm), PLGA–poly(ethylene glycol) (PEG) nanoparticles (hydrophilic surface, positive charge, ~ 297 nm), and PLGA–PEG–hyaluronic acid (HA) nanoparticles (hydrophilic surface, negative charge, ~ 507 nm). We observed differences in KGN loading, release, and suspension stability, with the PLGA particles exhibiting ~ 50% drug loading and PLGA–PEG–HA particles releasing the most KGN. All nanoparticles were found to interact with MSCs with evidence of increased uptake in PLGA–PEG and PLGA–PEG–HA compared with surface association of PLGA particles. Over short times (~ 7 days), MSCs incubated with all KGN-loaded formulations exhibited a similar increase in sulfated glycosaminoglycans, characteristic of chondrogenic differentiation, compared with non-KGN loaded formulations.
      PubDate: 2020-07-01
       
  • Using Tools from Optogenetics to Create Light-Responsive Biomaterials:
           LOVTRAP-PEG Hydrogels for Dynamic Peptide Immobilization
    • Abstract: Abstract Hydrogel materials have become a versatile platform for in vitro cell culture due to their ability to simulate many aspects of native tissues. However, precise spatiotemporal presentation of peptides and other biomolecules has remained challenging. Here we report the use of light-sensing proteins (LSPs), more commonly used in optogenetics research, as light-activated reversible binding sites within synthetic poly(ethylene glycol) (PEG) hydrogels. We used LOVTRAP, a two component LSP system consisting of LOV2, a protein domain that can cycle reversibly between “light” and “dark” conformations in response to blue light, and a z-affibody, Zdark (Zdk), that binds the dark state of LOV2, to spatiotemporally control the presentation of a recombinant protein within PEG hydrogels. By immobilizing LOV2 within PEG gels, we were able to capture a recombinant fluorescent protein (used as a model biomolecule) containing a Zdk domain, and then release the Zdk fusion protein using blue light. Zdk was removed from LOV2-containing PEG gels using focused blue light, resulting in a 30% reduction of fluorescence compared to unexposed regions of the gel. Additionally, the reversible binding capability of LOVTRAP was observed in our system, enabling our LOV2 gels to capture and release Zdk at least three times. By adding a Zdk domain to a recombinant peptide or protein, dynamic, spatially constrained displays of non-diffusing ligands within a PEG gel could feasibly be achieved using LOV2.
      PubDate: 2020-07-01
       
  • Comparative Study of Electrospun Scaffolds Containing Native GAGs and a
           GAG Mimetic for Human Mesenchymal Stem Cell Chondrogenesis
    • Abstract: Abstract Articular cartilage has limited healing and self-repair capability. Damage to articular cartilage becomes irreversible leading to osteoarthritis, which can impact a person’s quality of life. Approximately, 5–10% of cartilage tissue is made up of sulfated glycosaminoglycans (GAGs), which sequester growth factors as well as provide structural integrity to the native cartilage tissue. This study evaluated the chondrogenic differentiation of human mesenchymal stem cells (MSCs) on gelatin-based scaffolds containing partially sulfated cellulose (pSC), a GAG mimetic derived from cellulose, in comparison to native GAGs, chondroitin sulfate-A (CS-A) and chondroitin sulfate-C (CS-C), where pSC has similarity to CS-C in terms of degree and pattern of sulfation. Scaffolds were prepared by electrospinning gelatin with pSC or the native GAGs. All scaffolds consist of fibers having average diameters of approximately 3 μm and inter-fiber spacing of approximately 30 μm and were hydrolytically stable throughout the culture. MSCs cultured on pSC containing scaffolds showed early production of sulfated GAGs and higher collagen type II to type I ratio than native GAGs. Among the native GAGs, chondrogenesis was promoted to a greater extent for CS-C in comparison to CS-A containing scaffolds, which suggests the pattern of sulfation impacts chondrogenesis. Partially sulfated cellulose could be used as a potential GAG mimic for cartilage tissue engineering applications.
      PubDate: 2020-07-01
       
  • Reporter Scaffolds for Clinically Relevant Cell Transplantation Studies
    • Abstract: Abstract There are a number of cell therapies that are either in clinical trials or moving toward clinical trials, particularly for diseases of the retina. One of the challenges with cell therapies is tracking the status of cells over time. Genetic manipulation can facilitate this, but it can limit the clinical application of the cells. There are a host of fluorophores that have been developed to assess the status of cells, but these molecules tend to be cleared rapidly from cells. There are preclinical strategies that use degradable scaffolds, and we hypothesized that these scaffolds could be used to track the state of cells during preclinical studies. In this work, we explored whether fluorophores could be delivered from simple scaffolds fabricated under extremely harsh conditions, be active upon release, and report on the cells growing on the scaffolds over time. We encapsulated CellROX® Green Reagent, and pHrodo™ Red AM in poly(lactic-co-glycolic acid) (PLGA) scaffolds, showed that they could be delivered over weeks and were still active upon release and taken up by cells. These experiments provide the foundation for using scaffolds to deliver molecules to report on cells.
      PubDate: 2020-07-01
       
  • Emerging Biomimetic Materials for Studying Tumor and Immune Cell Behavior
    • Abstract: Abstract Cancer is one of the leading causes of death both in the United States and worldwide. The dynamic microenvironment in which tumors grow consists of fibroblasts, immune cells, extracellular matrix (ECM), and cytokines that enable progression and metastasis. Novel biomaterials that mimic these complex surroundings give insight into the biological, chemical, and physical environment that cause cancer cells to metastasize and invade into other tissues. Two-dimensional (2D) cultures are useful for gaining limited information about cancer cell behavior; however, they do not accurately represent the environments that cells experience in vivo. Recent advances in the design and tunability of diverse three-dimensional (3D) biomaterials complement biological knowledge and allow for improved recapitulation of in vivo conditions. Understanding cell–ECM and cell–cell interactions that facilitate tumor survival will accelerate the design of more effective therapies. This review discusses innovative materials currently being used to study tumor and immune cell behavior and interactions, including materials that mimic the ECM composition, mechanical stiffness, and integrin binding sites of the tumor microenvironment.
      PubDate: 2020-07-01
       
  • An Engineered Biomimetic MPER Peptide Vaccine Induces Weakly HIV
           Neutralizing Antibodies in Mice
    • Abstract: Abstract A vaccine that induces broadly neutralizing antibodies (bnAbs) against the human immunodeficiency virus (HIV) would be instrumental in controlling the disease. The membrane proximal external region (MPER) peptide is an appealing antigen candidate since it is conserved and is the target of several human bnAbs, such as 2F5. We previously found that liposomes containing cobalt porphyrin-phospholipid (CoPoP) can bind to a his-tagged MPER peptide, resulting in biomimetic antigen presentation on a lipid bilayer. The present study generated various his-tagged, synthetic MPER fragments, which were bound to liposomes containing CoPoP and a synthetic monophosphoryl lipid A (MPLA) and assessed for immunogenicity in mice. MPER peptides with amino acids stretches originating from the membrane insertion point that were at least 25 amino acids in length, had greater 2F5 reactivity and induced stronger antibody responses, compared to shorter ones. Immunization with the lipid-presented MPER elicited stronger antibody responses compared to Alum and Montanide adjuvants, which could recognize recombinant gp41 and gp140 proteins that contained MPER sequences. The induced antibodies neutralized a tier 1A virus that is sensitive to neutralizing antibodies (W61D(TCLA)0.71), but not another tier 1A nor a tier 2 strain. Co-formulation of the MPER peptide with an unrelated malaria protein antigen (Pfs25) that is effectively adjuvanted with liposomes containing CoPoP and MPLA resulted in elicitation of higher MPER antibody levels, but did not improve neutralization, possibly due to interference with proper peptide presentation in the membrane. Murine hybridomas were generated that produced MPER antibodies, but they were non-neutralizing. These results do not show that bnAbs could be generated with MPER peptides and CoPoP liposomes, but do not rule out this possibility with additional improvements to the approach.
      PubDate: 2020-07-01
       
  • Developing a Multidisciplinary Approach for Engineering Stem Cell
           Organoids
    • Abstract: Abstract Recent advances in stem cell biology, synthetic biology, bioengineering, and biotechnology have included significant work leading to the development of stem cell-derived organoids. The growing popularity of organoid research and use of organoids is widely due to the fact that these three-dimensional cellular structures better model human physiology compared to traditional in vitro and in vivo methods by recapitulating many biologically relevant parameters. Organoids show great promise for a wide range of applications, such as for use in disease modeling, drug discovery, and regenerative medicine. However, many challenges associated with reproducibility and scale up still remain. Identification of the conditions which generate a robust environment that predictably promotes cellular self-assembly and organization leading to organoid formation is critical and requires a multidisciplinary approach. To accomplish this we need to identify a cellular source, engineer a matrix to stimulate cell–cell and cell–matrix interactions, and provide the biochemical and biophysical cues which mimic that of the in vivo environment. Discussion of the components needed for organoid development and formation is reviewed herein, as well as specific organoid examples and the promise of this research for the future.
      PubDate: 2020-07-01
       
  • The Convergence of Cell-Based Surface Plasmon Resonance and Biomaterials:
           The Future of Quantifying Bio-molecular Interactions—A Review
    • Abstract: Abstract Cell biology is driven by complex networks of biomolecular interactions. Characterizing the kinetic and thermodynamic properties of these interactions is crucial to understanding their role in different physiological processes. Surface plasmon resonance (SPR)-based approaches have become a key tool in quantifying biomolecular interactions, however conventional approaches require isolating the interacting components from the cellular system. Cell-based SPR approaches have recently emerged, promising to enable precise measurements of biomolecular interactions within their normal biological context. Two major approaches have been developed, offering their own advantages and limitations. These approaches currently lack a systematic exploration of ‘best practices’ like those existing for traditional SPR experiments. Toward this end, we describe the two major approaches, and identify the experimental parameters that require exploration, and discuss the experimental considerations constraining the optimization of each. In particular, we discuss the requirements of future biomaterial development needed to advance the cell-based SPR technique.
      PubDate: 2020-07-01
       
  • Emerging Concepts and Tools in Cell Mechanomemory
    • Abstract: Abstract Studying a cell’s ability to sense and respond to mechanical cues has emerged as a field unto itself over the last several decades, and this research area is now populated by engineers and biologists alike. As just one example of this cell mechanosensing, fibroblasts on soft substrates have slower growth rates, smaller spread areas, lower traction forces, and slower migration speeds compared to cells on stiff substrates. This phenomenon is not unique to fibroblasts, as these behaviors, and others, on soft substrates has been shown across a variety of cell types, and reproduced in many different labs. Thus far, the field has focused on discerning the mechanisms of cell mechanosensing through ion channels, focal adhesions and integrin-binding sites to the ECM, and the cell cytoskeleton. A relatively new concept in the field is that of mechanical memory, which refers to persistent effects of mechanical stimuli long after they have been removed from said stimulus. Here, we review this literature, provide an overview of emerging substrate fabrication approaches likely to be helpful for the field, and suggest the adaption of genetic tools for studying mechanical memory.
      PubDate: 2020-07-01
       
  • Targeted Intravenous Nanoparticle Delivery: Role of Flow and Endothelial
           Glycocalyx Integrity
    • Abstract: Abstract Therapies for atherosclerotic cardiovascular disease should target early disease stages and specific vascular sites where disease occurs. Endothelial glycocalyx (GCX) degradation compromises endothelial barrier function and increases vascular permeability. This initiates pro-atherosclerotic lipids and inflammatory cells to penetrate vessel walls, and at the same time this can be leveraged for targeted drug delivery. In prior cell culture studies, GCX degradation significantly increased endothelial cell uptake of nanoparticle vehicles that are designed for drug delivery, compared to the effects of intact GCX. The present study assessed if the cell culture findings translate to selective nanoparticle uptake in animal vessels. In mice, the left carotid artery (LCA) was partially ligated to disturb blood flow, which induces GCX degradation, endothelial dysfunction, and atherosclerosis. After ligation, the LCA vessel wall exhibited a loss of continuity of the GCX layer on the intima. 10-nm gold nanospheres (GNS) coated with polyethylene glycol (PEG) were delivered intravenously. GCX degradation in the ligated LCA correlated to increased GNS infiltration of the ligated LCA wall. This suggests that GCX dysfunction, which coincides with atherosclerosis, can indeed be targeted for enhanced drug delivery, offering a new approach in cardiovascular disease therapy.
      PubDate: 2020-07-01
       
  • Biomaterials and Culture Systems for Development of Organoid and
           Organ-on-a-Chip Models
    • Abstract: Abstract The development of novel 3D tissue culture systems has enabled the in vitro study of in vivo processes, thereby overcoming many of the limitations of previous 2D tissue culture systems. Advances in biomaterials, including the discovery of novel synthetic polymers has allowed for the generation of physiologically relevant in vitro 3D culture models. A large number of 3D culture systems, aided by novel organ-on-a-chip and bioreactor technologies have been developed to improve reproducibility and scalability of in vitro organ models. The discovery of induced pluripotent stem cells (iPSCs) and the increasing number of protocols to generate iPSC-derived cell types has allowed for the generation of novel 3D models with minimal ethical limitations. The production of iPSC-derived 3D cultures has revolutionized the field of developmental biology and in particular, the study of fetal brain development. Furthermore, physiologically relevant 3D cultures generated from PSCs or adult stem cells (ASCs) have greatly advanced in vitro disease modelling and drug discovery. This review focuses on advances in 3D culture systems over the past years to model fetal development, disease pathology and support drug discovery in vitro, with a specific focus on the enabling role of biomaterials.
      PubDate: 2020-07-01
       
  •  Extracellular Matrix-Based Biomaterials and Their Influence Upon
           Cell Behavior
    • Abstract: Abstract Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix (ECM) are commonly used for the repair and remodeling of injured tissue. The clinical outcomes associated with implantation of ECM-based materials range from unacceptable to excellent. The variable clinical results are largely due to differences in the preparation of the material, including characteristics of the source tissue, the method and efficacy of decellularization, and post-decellularization processing steps. The mechanisms by which ECM scaffolds promote constructive tissue remodeling include mechanical support, degradation and release of bioactive molecules, recruitment and differentiation of endogenous stem/progenitor cells, and modulation of the immune response toward an anti-inflammatory phenotype. The methods of ECM preparation and the impact of these methods on the quality of the final product are described herein. Examples of favorable cellular responses of immune and stem cells associated with constructive tissue remodeling of ECM bioscaffolds are described.
      PubDate: 2020-07-01
       
  • Nanoparticles for Manipulation of the Developmental Wnt, Hedgehog, and
           Notch Signaling Pathways in Cancer
    • Abstract: Abstract The Wnt, Hedgehog, and Notch signaling pathways play a crucial role in early development and the maintenance of adult tissues. When dysregulated, these developmental signaling pathways can drive the formation and progression of cancer by facilitating cell survival, proliferation, and stem-like behavior. While this makes these pathways promising targets for therapeutic intervention, their pharmacological inhibition has been challenging due to the substantial complexity that exists within each pathway and the complicated crosstalk that occurs between the pathways. Recently, several small molecule inhibitors, ribonucleic acid (RNA) molecules, and antagonistic antibodies have been developed that can suppress these signaling pathways in vitro, but many of them face systemic delivery challenges. Nanoparticle-based delivery vehicles can overcome these challenges to enhance the performance and anti-cancer effects of these therapeutic molecules. This review summarizes the mechanisms by which the Wnt, Hedgehog, and Notch signaling pathways contribute to cancer growth, and discusses various nanoparticle formulations that have been developed to deliver small molecules, RNAs, and antibodies to cancer cells to inhibit these signaling pathways and halt tumor progression. This review also outlines some of the challenges that these nanocarriers must overcome to achieve therapeutic efficacy and clinical translation.
      PubDate: 2020-07-01
       
  • A Distributed Lumped Parameter Model of Blood Flow
    • Abstract: Abstract We propose a distributed lumped parameter (DLP) modeling framework to efficiently compute blood flow and pressure in vascular domains. This is achieved by developing analytical expressions describing expected energy losses along vascular segments, including from viscous dissipation, unsteadiness, flow separation, vessel curvature and vessel bifurcations. We apply this methodology to solve for unsteady blood flow and pressure in a variety of complex 3D image-based vascular geometries, which are typically approached using computational fluid dynamics (CFD) simulations. The proposed DLP framework demonstrated consistent agreement with CFD simulations in terms of flow rate and pressure distribution, with mean errors less than 7% over a broad range of hemodynamic conditions and vascular geometries. The computational cost of the DLP framework is orders of magnitude lower than the computational cost of CFD, which opens new possibilities for hemodynamics modeling in timely decision support scenarios, and a multitude of applications of imaged-based modeling that require ensembles of numerical simulations.
      PubDate: 2020-07-01
       
  • Phototunable Viscoelasticity in Hydrogels Through Thioester Exchange
    • Abstract: Abstract Mechanical cues are delivered to resident cells by the extracellular matrix and play an important role in directing cell processes, ranging from embryonic development and cancer metastasis to stem cell differentiation. Recently, cellular responses to viscoelastic and elastic mechanical cues have been studied; however, questions remain as to how cells identify and transduce these cues differently. We present a synthetic cell culture substrate with viscoelastic properties based on thioester exchange chemistry that can be modulated in situ with the photoinitiated thiol-ene ‘click’ reaction. With this method, stress relaxation in thioester hydrogels with an average relaxation time of 740,000 s can be switched off in the presence of cells without change to the elastic modulus. NIH 3T3 fibroblasts, cultured for 48 h on viscoelastic compared to elastic thioester substrates, displayed increased cell area (660–560 μm2) and increased nuclear to cytoplasmic YAP/TAZ ratios (2.4 to 2.2) when cultured on elastic compared to viscoelastic hydrogels, respectively. Next, when the viscoelasticity was switched off after 24 h, the fibroblasts responded to this change and exhibited an average cell area of 540 μm2, and nuclear to cytoplasmic YAP/TAZ ratio of 2.1, approaching that of the control elastic gels. Phototunable viscoelastic thioester hydrogels provide a tunable materials system to investigate time-dependent cellular responses to viscoelasticity and should prove useful for understanding the dynamics of mechanoresponsive cellular pathways.
      PubDate: 2020-07-01
       
  • Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal
           Stroma Equivalent
    • Abstract: 3D bioprinting technology is a promising approach for corneal stromal tissue regeneration. In this study, gelatin methacrylate (GelMA) mixed with corneal stromal cells was used as a bioink. The visible light-based stereolithography (SLA) 3D bioprinting method was utilized to print the anatomically similar dome-shaped structure of the human corneal stroma. Two different concentrations of GelMA macromer (7.5 and 12.5%) were tested for corneal stroma bioprinting. Due to high macromer concentrations, 12.5% GelMA was stiffer than 7.5% GelMA, which made it easier to handle. In terms of water content and optical transmittance of the bioprinted scaffolds, we observed that scaffold with 12.5% GelMA concentration was closer to the native corneal stroma tissue. Subsequently, cell proliferation, gene and protein expression of human corneal stromal cells encapsulated in the bioprinted scaffolds were investigated. Cytocompatibility in 12.5% GelMA scaffolds was observed to be 81.86 and 156.11% at day 1 and 7, respectively, which were significantly higher than those in 7.5% GelMA scaffolds. Elongated corneal stromal cells were observed in 12.5% GelMA samples after 7 days, indicating the cell attachment, growth, and integration within the scaffold. The gene expression of collagen type I, lumican and keratan sulfate increased over time for the cells cultured in 12.5% GelMA scaffolds as compared to those cultured on the plastic tissue culture plate. The expression of collagen type I and lumican were also visualized using immunohistochemistry after 28 days. These findings imply that the SLA 3D bioprinting method with GelMA hydrogel bioinks is a promising approach for corneal stroma tissue biofabrication. Graphical
      PubDate: 2020-06-05
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 34.204.198.244
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-