Subjects -> MEDICAL SCIENCES (Total: 8669 journals)
    - ANAESTHESIOLOGY (120 journals)
    - CARDIOVASCULAR DISEASES (338 journals)
    - DENTISTRY (294 journals)
    - ENDOCRINOLOGY (151 journals)
    - FORENSIC SCIENCES (42 journals)
    - HEMATOLOGY (157 journals)
    - HYPNOSIS (4 journals)
    - INTERNAL MEDICINE (176 journals)
    - MEDICAL GENETICS (58 journals)
    - MEDICAL SCIENCES (2406 journals)
    - NURSES AND NURSING (367 journals)
    - OBSTETRICS AND GYNECOLOGY (207 journals)
    - ONCOLOGY (385 journals)
    - OTORHINOLARYNGOLOGY (83 journals)
    - PATHOLOGY (100 journals)
    - PEDIATRICS (275 journals)
    - PSYCHIATRY AND NEUROLOGY (833 journals)
    - RESPIRATORY DISEASES (104 journals)
    - RHEUMATOLOGY (79 journals)
    - SPORTS MEDICINE (81 journals)
    - SURGERY (406 journals)

MEDICAL SCIENCES (2406 journals)                  1 2 3 4 5 6 7 8 | Last

Showing 1 - 200 of 3562 Journals sorted alphabetically
16 de Abril     Open Access   (Followers: 4)
3D Printing in Medicine     Open Access   (Followers: 5)
4 open     Open Access  
AADE in Practice     Hybrid Journal   (Followers: 6)
AAS Open Research     Open Access   (Followers: 2)
ABCS Health Sciences     Open Access   (Followers: 8)
Abia State University Medical Students' Association Journal     Full-text available via subscription   (Followers: 3)
AboutOpen     Open Access  
ACIMED     Open Access   (Followers: 1)
ACS Medicinal Chemistry Letters     Hybrid Journal   (Followers: 48)
Acta Bio Medica     Full-text available via subscription   (Followers: 2)
Acta Bioethica     Open Access  
Acta Bioquimica Clinica Latinoamericana     Open Access   (Followers: 1)
Acta Científica Estudiantil     Open Access  
Acta Facultatis Medicae Naissensis     Open Access   (Followers: 1)
Acta Herediana     Open Access  
Acta Informatica Medica     Open Access   (Followers: 2)
Acta Medica (Hradec Králové)     Open Access  
Acta Medica Bulgarica     Open Access  
Acta Medica Colombiana     Open Access   (Followers: 1)
Acta Médica Costarricense     Open Access   (Followers: 2)
Acta Medica Indonesiana     Open Access  
Acta Medica International     Open Access  
Acta medica Lituanica     Open Access  
Acta Medica Marisiensis     Open Access   (Followers: 1)
Acta Medica Martiniana     Open Access  
Acta Medica Nagasakiensia     Open Access   (Followers: 1)
Acta Medica Peruana     Open Access   (Followers: 2)
Acta Médica Portuguesa     Open Access  
Acta Medica Saliniana     Open Access  
Acta Scientiarum. Health Sciences     Open Access   (Followers: 3)
Acupuncture & Electro-Therapeutics Research     Full-text available via subscription   (Followers: 7)
Acupuncture and Natural Medicine     Open Access  
Addiction Science & Clinical Practice     Open Access   (Followers: 8)
Addictive Behaviors Reports     Open Access   (Followers: 9)
Adıyaman Üniversitesi Sağlık Bilimleri Dergisi / Health Sciences Journal of Adıyaman University     Open Access   (Followers: 1)
Adnan Menderes Üniversitesi Sağlık Bilimleri Fakültesi Dergisi     Open Access   (Followers: 1)
Advanced Biomedical Research     Open Access  
Advanced Health Care Technologies     Open Access   (Followers: 10)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 9)
Advanced Therapeutics     Hybrid Journal   (Followers: 1)
Advances in Bioscience and Clinical Medicine     Open Access   (Followers: 8)
Advances in Cell and Gene Therapy     Hybrid Journal   (Followers: 2)
Advances in Clinical Chemistry     Full-text available via subscription   (Followers: 27)
Advances in Clinical Radiology     Full-text available via subscription   (Followers: 2)
Advances in Life Course Research     Hybrid Journal   (Followers: 12)
Advances in Lipobiology     Full-text available via subscription   (Followers: 2)
Advances in Medical Education and Practice     Open Access   (Followers: 32)
Advances in Medical Ethics     Open Access   (Followers: 1)
Advances in Medical Research     Open Access   (Followers: 2)
Advances in Medical Sciences     Hybrid Journal   (Followers: 9)
Advances in Medicinal Chemistry     Full-text available via subscription   (Followers: 6)
Advances in Medicine     Open Access   (Followers: 3)
Advances in Microbial Physiology     Full-text available via subscription   (Followers: 5)
Advances in Molecular Oncology     Open Access   (Followers: 2)
Advances in Molecular Toxicology     Full-text available via subscription   (Followers: 7)
Advances in Parkinson's Disease     Open Access   (Followers: 1)
Advances in Phytomedicine     Full-text available via subscription  
Advances in Preventive Medicine     Open Access   (Followers: 6)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 20)
Advances in Regenerative Medicine     Open Access   (Followers: 4)
Advances in Skeletal Muscle Function Assessment     Open Access  
Advances in Therapy     Hybrid Journal   (Followers: 5)
Advances in Traditional Medicine     Hybrid Journal   (Followers: 4)
Advances in Veterinary Science and Comparative Medicine     Full-text available via subscription   (Followers: 15)
Advances in Virus Research     Full-text available via subscription   (Followers: 6)
Advances in Wound Care     Hybrid Journal   (Followers: 14)
Aerospace Medicine and Human Performance     Full-text available via subscription   (Followers: 13)
African Health Sciences     Open Access   (Followers: 5)
African Journal of Biomedical Research     Open Access   (Followers: 1)
African Journal of Clinical and Experimental Microbiology     Open Access   (Followers: 4)
African Journal of Laboratory Medicine     Open Access   (Followers: 2)
African Journal of Medical and Health Sciences     Open Access   (Followers: 3)
African Journal of Thoracic and Critical Care Medicine     Open Access  
African Journal of Trauma     Open Access   (Followers: 1)
Afrimedic Journal     Open Access   (Followers: 3)
Aggiornamenti CIO     Hybrid Journal   (Followers: 1)
AIDS Research and Human Retroviruses     Hybrid Journal   (Followers: 9)
AJOB Empirical Bioethics     Hybrid Journal   (Followers: 3)
AJSP: Reviews & Reports     Hybrid Journal   (Followers: 1)
Aktuelle Ernährungsmedizin     Hybrid Journal   (Followers: 5)
Al-Azhar Assiut Medical Journal     Open Access   (Followers: 2)
Al-Qadisiah Medical Journal     Open Access   (Followers: 1)
Alerta : Revista Científica del Instituto Nacional de Salud     Open Access  
Alexandria Journal of Medicine     Open Access   (Followers: 1)
Allgemeine Homöopathische Zeitung     Hybrid Journal   (Followers: 3)
Alpha Omegan     Full-text available via subscription  
ALTEX : Alternatives to Animal Experimentation     Open Access   (Followers: 2)
Althea Medical Journal     Open Access   (Followers: 2)
American Journal of Biomedical Engineering     Open Access   (Followers: 15)
American Journal of Biomedical Research     Open Access   (Followers: 2)
American Journal of Biomedicine     Full-text available via subscription   (Followers: 7)
American Journal of Chinese Medicine, The     Hybrid Journal   (Followers: 4)
American Journal of Clinical Medicine Research     Open Access   (Followers: 8)
American Journal of Family Therapy     Hybrid Journal   (Followers: 11)
American Journal of Law & Medicine     Full-text available via subscription   (Followers: 12)
American Journal of Lifestyle Medicine     Hybrid Journal   (Followers: 6)
American Journal of Managed Care     Full-text available via subscription   (Followers: 13)
American Journal of Medical Case Reports     Open Access   (Followers: 2)
American Journal of Medical Sciences and Medicine     Open Access   (Followers: 5)
American Journal of Medicine     Hybrid Journal   (Followers: 50)
American Journal of Medicine and Medical Sciences     Open Access   (Followers: 1)
American Journal of Medicine Studies     Open Access   (Followers: 3)
American Journal of Medicine Supplements     Full-text available via subscription   (Followers: 3)
American Journal of the Medical Sciences     Hybrid Journal   (Followers: 12)
American Journal on Addictions     Hybrid Journal   (Followers: 11)
American medical news     Free   (Followers: 3)
American Medical Writers Association Journal     Full-text available via subscription   (Followers: 6)
Amyloid: The Journal of Protein Folding Disorders     Hybrid Journal   (Followers: 5)
Anales de la Facultad de Medicina     Open Access  
Anales de la Facultad de Medicina, Universidad de la República, Uruguay     Open Access  
Anales del Sistema Sanitario de Navarra     Open Access   (Followers: 1)
Analgesia & Resuscitation : Current Research     Hybrid Journal   (Followers: 6)
Anatolian Clinic the Journal of Medical Sciences     Open Access  
Anatomica Medical Journal     Open Access  
Anatomical Science International     Hybrid Journal   (Followers: 3)
Anatomical Sciences Education     Hybrid Journal   (Followers: 2)
Anatomy     Open Access   (Followers: 3)
Anatomy Research International     Open Access   (Followers: 4)
Angewandte Schmerztherapie und Palliativmedizin     Hybrid Journal  
Angiogenesis     Hybrid Journal   (Followers: 3)
Ankara Medical Journal     Open Access   (Followers: 2)
Ankara Üniversitesi Tıp Fakültesi Mecmuası     Open Access  
Annales de Pathologie     Full-text available via subscription  
Annales des Sciences de la Santé     Open Access  
Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale     Full-text available via subscription   (Followers: 3)
Annals of African Medicine     Open Access   (Followers: 2)
Annals of Anatomy - Anatomischer Anzeiger     Hybrid Journal   (Followers: 3)
Annals of Bioanthropology     Open Access   (Followers: 5)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 19)
Annals of Biomedical Sciences     Full-text available via subscription   (Followers: 4)
Annals of Clinical Hypertension     Open Access  
Annals of Clinical Microbiology and Antimicrobials     Open Access   (Followers: 15)
Annals of Family Medicine     Open Access   (Followers: 17)
Annals of Health Research     Open Access   (Followers: 1)
Annals of Ibadan Postgraduate Medicine     Open Access  
Annals of Medical and Health Sciences Research     Open Access   (Followers: 7)
Annals of Medicine     Hybrid Journal   (Followers: 12)
Annals of Medicine and Surgery     Open Access   (Followers: 7)
Annals of Medicine and Surgery Case Reports     Open Access   (Followers: 1)
Annals of Medicine and Surgery Protocols     Open Access   (Followers: 1)
Annals of Microbiology     Hybrid Journal   (Followers: 13)
Annals of Musculoskeletal Medicine     Open Access   (Followers: 2)
Annals of Nigerian Medicine     Open Access   (Followers: 1)
Annals of Rehabilitation Medicine     Open Access  
Annals of Saudi Medicine     Open Access  
Annals of the College of Medicine, Mosul     Open Access   (Followers: 1)
Annals of the New York Academy of Sciences     Hybrid Journal   (Followers: 5)
Annals of The Royal College of Surgeons of England     Full-text available via subscription   (Followers: 3)
Annals of the RussianAacademy of Medical Sciences     Open Access   (Followers: 1)
Annual Reports in Medicinal Chemistry     Full-text available via subscription   (Followers: 7)
Annual Reports on NMR Spectroscopy     Full-text available via subscription   (Followers: 5)
Annual Review of Medicine     Full-text available via subscription   (Followers: 18)
Anthropological Review     Open Access   (Followers: 23)
Anthropologie et santé     Open Access   (Followers: 5)
Antibiotics     Open Access   (Followers: 9)
Antibodies     Open Access   (Followers: 2)
Antibody Reports     Open Access   (Followers: 1)
Antibody Technology Journal     Open Access   (Followers: 1)
Antibody Therapeutics     Open Access   (Followers: 1)
Anuradhapura Medical Journal     Open Access  
Anwer Khan Modern Medical College Journal     Open Access   (Followers: 2)
Apmis     Hybrid Journal   (Followers: 2)
Apparence(s)     Open Access   (Followers: 1)
Applied Clinical Informatics     Hybrid Journal   (Followers: 4)
Applied Clinical Research, Clinical Trials and Regulatory Affairs     Hybrid Journal   (Followers: 2)
Applied Medical Informatics     Open Access   (Followers: 14)
Arab Journal of Nephrology and Transplantation     Open Access   (Followers: 1)
Arabian Journal of Scientific Research / المجلة العربية للبحث العلمي     Open Access   (Followers: 1)
Archive of Biomedical Science and Engineering     Open Access   (Followers: 1)
Archive of Clinical Medicine     Open Access   (Followers: 1)
Archive of Community Health     Open Access   (Followers: 1)
Archives Medical Review Journal / Arşiv Kaynak Tarama Dergisi     Open Access  
Archives of Asthma, Allergy and Immunology     Open Access  
Archives of Clinical Hypertension     Open Access   (Followers: 2)
Archives of Medical and Biomedical Research     Open Access   (Followers: 3)
Archives of Medical Laboratory Sciences     Open Access   (Followers: 1)
Archives of Medicine and Health Sciences     Open Access   (Followers: 5)
Archives of Medicine and Surgery     Open Access   (Followers: 1)
Archives of Organ Transplantation     Open Access   (Followers: 2)
Archives of Preventive Medicine     Open Access   (Followers: 3)
Archives of Pulmonology and Respiratory Care     Open Access   (Followers: 2)
Archives of Renal Diseases and Management     Open Access   (Followers: 2)
Archives of Trauma Research     Open Access   (Followers: 4)
Archivos de Medicina (Manizales)     Open Access   (Followers: 1)
ArgoSpine News & Journal     Hybrid Journal  
Arquivos Brasileiros de Oftalmologia     Open Access   (Followers: 1)
Arquivos de Ciências da Saúde     Open Access  
Arquivos de Medicina     Open Access   (Followers: 1)
Ars Medica : Revista de Ciencias Médicas     Open Access  
ARS Medica Tomitana     Open Access   (Followers: 1)
Art Therapy: Journal of the American Art Therapy Association     Hybrid Journal   (Followers: 19)
Arterial Hypertension     Open Access   (Followers: 1)
Artificial Intelligence in Medicine     Hybrid Journal   (Followers: 19)
Artificial Organs     Hybrid Journal   (Followers: 1)
ASHA Leader     Open Access   (Followers: 5)
Asia Pacific Family Medicine Journal     Open Access   (Followers: 4)
Asia Pacific Journal of Clinical Nutrition     Full-text available via subscription   (Followers: 13)
Asia Pacific Journal of Clinical Trials : Nervous System Diseases     Open Access   (Followers: 1)
Asian Bioethics Review     Full-text available via subscription   (Followers: 4)

        1 2 3 4 5 6 7 8 | Last

Similar Journals
Journal Cover
Advances in Protein Chemistry and Structural Biology
Journal Prestige (SJR): 0.791
Citation Impact (citeScore): 2
Number of Followers: 20  
  Full-text available via subscription Subscription journal
ISSN (Online) 1876-1623
Published by Elsevier Homepage  [3203 journals]
  • Catalytic activity regulation through post-translational modification: the
           expanding universe of protein diversity
    • Abstract: Publication date: Available online 27 June 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Michael Kokkinidis, Nicholas M. Glykos, Vasiliki E. Fadouloglou
  • Structure, catalytic mechanism, posttranslational lysine carbamylation,
           and inhibition of dihydropyrimidinases
    • Abstract: Publication date: Available online 27 June 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Cheng-Yang Huang
  • Mapping enzyme-substrate interactions: its potential to study the
           mechanism of enzymes
    • Abstract: Publication date: Available online 27 June 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Sergi Roda, Gerard Santiago, Victor Guallar
  • How to make an undruggable enzyme druggable: lessons from ras proteins
    • Abstract: Publication date: Available online 27 June 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Abdallah Sayyed-Ahmad, Alemayehu A. Gorfe
  • In silico tools to study molecular targets of neglected diseases:
           inhibition of TcSir2rp3, an epigenetic enzyme of Trypanosoma cruzi
    • Abstract: Publication date: Available online 25 June 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Edgar López-López, Carolina Barrientos-Salcedo, Fernando D. Prieto-Martínez, José L. Medina-Franco
  • Advances in Protein Chemistry and Structural Biology
    • Abstract: Publication date: 2020Source: Advances in Protein Chemistry and Structural Biology, Volume 121Author(s):
  • Advances in Protein Chemistry and Structural Biology
    • Abstract: Publication date: 2020Source: Advances in Protein Chemistry and Structural Biology, Volume 120Author(s):
  • The impact of microRNAs on alterations of gene regulatory networks in
           allergic diseases
    • Abstract: Publication date: Available online 12 February 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Indoumady Baskara-Yhuellou, Jörg TostAbstractAllergic diseases including asthma are worldwide on the rise and contribute significantly to health expenditures. Allergic diseases are prototypic diseases with a strong gene by environment interaction component and epigenetic mechanisms might mediate the effects of the environment on the disease phenotype. MicroRNAs, small non-coding RNAs (miRNAs), regulate gene expression post-transcriptionally. Functional single-stranded miRNAs are generated in multiple steps of enzymatic processing from their precursors and mature miRNAs are included into the RNA-induced silencing complex (RISC). They imperfectly base-pair with the 3′UTR region of targeted genes leading to translational repression or mRNA decay. The cellular context and microenvironment as well the isoform of the mRNA control the dynamics and complexity of the regulatory circuits induced by miRNAs that regulate cell fate decisions and function. MiR-21, miR-146a/b and miR-155 are among the best understood miRNAs of the immune system and implicated in different diseases including allergic diseases. MiRNAs are implicated in the induction of the allergy reinforcing the Th2 phenotype (miR-19a, miR-24, miR-27), while other miRNAs promote regulatory T cells associated with allergen tolerance or unresponsiveness. In the current chapter we describe in detail the biogenesis and regulatory function of miRNAs and summarize current knowledge on miRNAs in allergic diseases and allergy relevant cell fate decisions focusing mainly on immune cells. Furthermore, we evoke the principles of regulatory loops and feedback mechanisms involving miRNAs on examples with relevance for allergic diseases. Finally, we show the potential of miRNAs and exosomes containing miRNAs present in several biological fluids that can be exploited with non-invasive procedures for diagnostic and potentially therapeutic purposes.
  • Computational model to analyze and characterize the functional mutations
           of NOD2 protein causing inflammatory disorder – Blau syndrome
    • Abstract: Publication date: Available online 4 February 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): D. Thirumal Kumar, S. Udhaya Kumar, Ahmed Shaikh Nishaat Laeeque, Shivalkar Apurva Abhay, R. Bithia, R. Magesh, Maignana Kumar, Hatem Zayed, C. George Priya DossAbstractBlau syndrome (BS), which affects the eyes, skin, and joints, is an autosomal dominant genetic inflammatory disorder. BS is caused by mutations in the NOD2 gene. However, there are no direct treatments, and treatment with conventional anti-inflammatory drugs such as adrenal glucocorticoids, anti-metabolites, and biological agents such as anti-TNF and infliximab have all been attempted with varying degrees of success. In this study, we tried to identify all the reported mutations in the NOD2 protein that cause BS. Collectively, 114 missense mutations were extracted from the UniProt, ClinVar, and HGMD databases. The mutations were further subjected to pathogenic, stability, and conservation analyses. According to these computational analyses, six missense mutations (R334Q, R334W, E383G, E383K, R426H, and T605P) were found to be highly deleterious, destabilizing, and positioned in the conserved position. ADP to ATP conversion plays a crucial role in switching the closed-form of NOD2 protein to the open-form, thus activating the protein. Accordingly, the mutations in the ADP binding sites have received more attention in comparison to the mutations in the non-ADP binding positions. Interestingly, the W490L mutation is positioned in the ADP binding site and exhibits highly deleterious and destabilizing properties. Additionally, W490L was also found to be conserved, with a ConSurf score of 7. Therefore, we further performed homology modeling to determine the 3D structure of native NOD2 and the W490L mutant. Molecular docking analysis was carried out to understand the change in the interaction of ADP with the NOD2 protein. We observed that ADP had a stronger interaction with the native NOD2 protein compared to the W490L mutant. Finally, ADP complexed with native NOD2 and W490L mutant were subjected to molecular dynamics simulations, and the trajectories were analyzed. In the simulations, we observed decreased deviation and fluctuations in native NOD2, whereas decreased compactness and inter- and intramolecular hydrogen bonds were observed in the W490L mutant. This study is expected to serve as a platform for developing targeted drug therapy for BS.
  • Comprehensive in silico screening and molecular dynamics studies of
           missense mutations in Sjogren-Larsson syndrome associated with the ALDH3A2
    • Abstract: Publication date: Available online 4 February 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): S. Udhaya Kumar, D. Thirumal Kumar, Pinky D. Mandal, Srivarshini Sankar, Rishin Haldar, Balu Kamaraj, Charles Emmanuel Jebaraj Walter, R. Siva, C. George Priya Doss, Hatem ZayedAbstractSjögren–Larsson syndrome (SLS) is an autoimmune disorder inherited in an autosomal recessive pattern. To date, 80 missense mutations have been identified in association with the Aldehyde Dehydrogenase 3 Family Member A2 (ALDH3A2) gene causing SLS. Disruption of the function of ALDH3A2 leads to excessive accumulation of fat in the cells, which interferes with the normal function of protective membranes or materials that are necessary for the body to function normally. We retrieved 54 missense mutations in the ALDH3A2 from the OMIM, UniProt, dbSNP, and HGMD databases that are known to cause SLS. These mutations were examined with various in silico stability tools, which predicted that the mutations p.S308N and p.R423H that are located at the protein-protein interaction domains are the most destabilizing. Furthermore, to determine the atomistic-level differences within the protein-protein interactions owing to mutations, we performed macromolecular simulation (MMS) using GROMACS to validate the motion patterns and dynamic behavior of the biological system. We found that both mutations (p.S380N and p.R423H) had significant effects on the protein-protein interaction and disrupted the dimeric interactions. The computational pipeline provided in this study helps to elucidate the potential structural and functional differences between the ALDH3A2 native and mutant homodimeric proteins, and will pave the way for drug discovery against specific targets in the SLS patients.
  • Protein-protein interactions: a structural view of inhibition strategies
           and the IL-23/IL-17 axis
    • Abstract: Publication date: Available online 24 January 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Samantha J. Allen, Kevin J. LumbAbstractProtein-protein interactions are central to biology and provide opportunities to modulate disease with small-molecule or protein therapeutics. Recent developments in the understanding of the tractability of protein-protein interactions are discussed with a focus on the ligandable nature of protein-protein interaction surfaces. General principles of inhibiting protein-protein interactions are illustrated with structural biology examples from six members of the IL-23/IL-17 signaling family (IL-1, IL-6, IL-17, IL-23 RORγT and TNFα). These examples illustrate the different approaches to discover protein-protein interaction inhibitors on a target-specific basis that has proven fruitful in terms of discovering both small molecule and biologic based protein-protein interaction inhibitors.
  • Expression of placental glucose transporter proteins in pregnancies
           complicated by fetal growth disorders
    • Abstract: Publication date: Available online 22 January 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Paweł Jan Stanirowski, Michał Lipa, Dorota Bomba-Opoń, Mirosław WielgośAbstractDuring pregnancy fetal growth disorders, including fetal macrosomia and fetal growth restriction (FGR) are associated with numerous maternal-fetal complications, as well as due to the adverse effect of the intrauterine environment lead to an increased morbidity in adult life. Accumulating evidence suggests that occurrence of fetal macrosomia or FGR, may be associated with alterations in the transfer of nutrients across the placenta, in particular of glucose. The placental expression and activity of specific GLUT transporters are the main regulatory factors in the process of maternal-fetal glucose exchange. This review article summarizes the results of previous studies on the expression of GLUT transporters in the placenta, concentrating on human pregnancies complicated by intrauterine fetal growth disorders. Characteristics of each transporter protein found in the placenta is presented, alterations in the location and expression of GLUT isoforms observed in individual placental compartments are described, and the factors regulating the expression of selected GLUT proteins are examined. Based on the above data, the potential function of each GLUT isoform in the maternal-fetal glucose transfer is determined. Further on, a detailed analysis of changes in the expression of glucose transporters in pregnancies complicated by fetal growth disorders is given, and significance of these modifications for the pathogenesis of fetal macrosomia and FGR is discussed. In the final part novel interventional approaches that might reduce the risk associated with abnormalities of intrauterine fetal growth through modifications of placental GLUT-mediated glucose transfer are explored.
  • Tracking the functional meaning of the human oral-microbiome
           protein-protein interactions
    • Abstract: Publication date: Available online 16 January 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Nuno Rosa, Bruno Campos, Ana Cristina Esteves, Ana Sofia Duarte, Maria José Correia, Raquel M. Silva, Marlene BarrosAbstractThe interactome – the network of protein-protein interactions (PPIs) within a cell or organism – is technically difficult to assess. Bioinformatic tools can, not only, identify potential PPIs that can be later experimentally validated, but also be used to assign functional meaning to PPIs.Saliva's potential as a non-invasive diagnostic fluid is currently being explored by several research groups. But, in order to fully attain its potential, it is necessary to achieve the full characterization of the mechanisms that take place within this ecosystem.The onset of omics technologies, and specifically of proteomics, delivered a huge set of data that is largely underexplored. Quantitative information relative to proteins within a given context (for example a given disease) can be used by computational algorithms to generate information regarding PPIs. These PPIs can be further analyzed concerning their functional meaning and used to identify potential biomarkers, therapeutic targets, defense and pathogenicity mechanisms.We describe a computational pipeline that can be used to identify and analyze PPIs between human and microbial proteins. The pipeline was tested within the scenario of human PPIs of systemic (Zika Virus infection) and of oral conditions (Periodontal disease) and also in the context of microbial interactions (Candida-Streptococcus) and showed to successfully predict functionally relevant PPIs.The pipeline can be applied to different scientific areas, such as pharmacological research, since a functional meaningful PPI network can provide insights on potential drug targets, and even new uses for existing drugs on the market.
  • Computational approaches for identifying potential inhibitors on targeting
           protein interactions in drug discovery
    • Abstract: Publication date: Available online 13 January 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Vishnupriya Kanakaveti, Anusuya Shanmugam, C. Ramakrishnan, P. Anoosha, R. Sakthivel, S.K. Rayala, M. Michael GromihaAbstractIn the era of big data, the interplay of artificial and human intelligence is the demanding job to address the concerns involving exchange of decisions between both sides. Drug discovery is one of the key sources of the big data, which involves synergy among various computational methods to achieve a clinical success. Rightful acquisition, mining and analysis of the data related to ligand and targets are crucial to accomplish reliable outcomes in the entire process. Novel designing and screening tactics are necessary to substantiate a potent and efficient lead compounds. Such methods are emphasized and portrayed in the current review targeting protein-ligand and protein-protein interactions involved in various diseases with potential applications.
  • Roles of Porphyromonas gingivalis and its virulence factors in
    • Abstract: Publication date: Available online 10 January 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Weizhe Xu, Wei Zhou, Huizhi Wang, Shuang LiangAbstractPeriodontitis is an infection-driven inflammatory disease, which is characterized by gingival inflammation and bone loss. Periodontitis is associated with various systemic diseases, including cardiovascular, respiratory, musculoskeletal, and reproductive system related abnormalities. Recent theory attributes the pathogenesis of periodontitis to oral microbial dysbiosis, in which Porphyromonas gingivalis acts as a critical agent by disrupting host immune homeostasis. Lipopolysaccharide, proteases, fimbriae, and some other virulence factors are among the strategies exploited by P. gingivalis to promote the bacterial colonization and facilitate the outgrowth of the surrounding microbial community. Virulence factors promote the coaggregation of P. gingivalis with other bacteria and the formation of dental biofilm. These virulence factors also modulate a variety of host immune components and subvert the immune response to evade bacterial clearance or induce an inflammatory environment. In this chapter, our focus is to discuss the virulence factors of periodontal pathogens, especially P. gingivalis, and their roles in regulating immune responses during periodontitis progression.
  • Autophagy proteins and its homeostasis in cellular environment
    • Abstract: Publication date: Available online 10 January 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Vrushali Guhe, Bhavnita Soni, Prajakta Ingale, Shailza SinghAbstractAutophagy is a self-destructing mechanism of cell via lysosomal degradation, which helps to degrade/destroy hazardous substances, proteins, degenerating organelles and recycling nutrients. It plays an important role is cellular homeostasis and regulates internal environment of cell, moreover, when needed causes non-apoptotic programmed death of cell. Autophagy has been observed as one of the major factors in parasite clearance in leishmaniasis. Being an intra-cellular pathogen, the cell mediated response is the only alternative for adaptive immunity against Leishmania in host. Pro-inflammatory cytokines IL12 and TNFα generate Th2 response which helps in active phagocytosis of parasite whereas an anti-inflammatory cytokine like IL10 mediate parasite promotion by blocking autophagic pathways and inhibiting phagocytic actions. In the present chapter, through systems biology approach, we are trying to decipher the role of pro-inflammatory and anti-inflammatory cytokine in autophagy during leishmanial infection. TLR2/6 mediated signaling stimulated by LPG produces many pro-inflammatory cytokines like IL12, TNFα and IL6 etc. Among them TNFα, causes the activation of PI3P through a series of events, which results in activation of autophagic machinery, whereas, IL10 through ATG9 and mTOR activation, inhibits autophagy. The mathematical modeling of these pathways shows that, ATG9-PI3P act as a negative feedback loop in autophagic machinery of leishmaniasis.
  • Role of protein-protein interactions in allosteric drug design for DNA
    • Abstract: Publication date: Available online 10 January 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Zhongjie Liang, Yu Zhu, Xingyi Liu, Guang HuAbstractDNA methyltransferases (DNMTs) not only play key roles in epigenetic gene regulation, but also serve as emerging targets for several diseases, especially for cancers. Due to the multi-domains of DNMT structures, targeting allosteric sites of protein-protein interactions (PPIs) is becoming an attractive strategy in epigenetic drug discovery. This chapter aims to review the major contemporary approaches utilized for the drug discovery based on PPIs in different dimensions, from the enumeration of allosteric mechanism to the identification of allosteric pockets. These include the construction of protein structure networks (PSNs) based on molecular dynamics (MD) simulations, performing elastic network models (ENMs) and perturbation response scanning (PRS) calculation, the sequence-based conservation and coupling analysis, and the allosteric pockets identification. Furthermore, we complement this methodology by highlighting the role of computational approaches in promising practical applications for the computer-aided drug design, with special focus on two DNMTs, namely, DNMT1 and DNMT3A.
  • Structural sequence evolution and computational modeling approaches of the
           complement system in leishmaniasis
    • Abstract: Publication date: Available online 10 January 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Prajakta Ingale, Ritika Kabra, Shailza SinghAbstractThe complement system is one of the first barriers and consists of well-balanced cascades of reactions which generates anaphylatoxins such as C5a and C3a. A G-protein coupled receptor C5a anaphylatoxin chemotactic receptor 1 (C5AR1, also known as CD88) is the receptor for C5a which is present on cells of myeloid origin. Owing to difficulty in obtaining crystal structures of GPCRs in either inactive or active state, accurate structural modeling is still highly desirable for the majority of GPCRs. In an attempt to dissect the conformational changes associated with GPCR activation, computational modeling approaches is being pursued in this paper along with the evolutionary divergence to deal with the structural variability.
  • Sphingolipids as mediators of inflammation and novel therapeutic target in
           inflammatory bowel disease
    • Abstract: Publication date: Available online 8 January 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Olga A. Sukocheva, Elena Lukina, Eileen McGowan, Anupam BishayeeAbstractMorbidity of inflammatory gastrointestinal (GI) diseases continues to grow resulting in worsen quality of life and increased burden on public medical systems. Complex and heterogenous illnesses, inflammatory bowel diseases (IBDs) encompass several inflammation -associated pathologies including Crohn's disease and ulcerative colitis. IBD is often initiated by a complex interplay between host genetic and environmental factors, lifestyle and diet, and intestinal bacterial components. IBD inflammatory signature was linked to the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) signaling pathway that is currently targeted by IBD therapies. Sphingolipid signaling was identified as one of the key mediators and regulators of pro-inflammatory conditions, and, specifically, TNF-α related signaling. All GI tissues and circulating immune/blood cells contain activated sphingolipid-metabolizing enzymes, including sphingosine kinases (SphK1 and SphK2) that generate sphingosine-1-phosphate (S1P), a bioactive lipid and ligand for five G-protein coupled membrane S1P receptors (S1PRs). Numerous normal and pathogenic inflammatory responses are mediated by SphK/S1P/S1PRs signaling axis including lymphocyte trafficking and activation of cytokine signaling machinery. SphK1/S1P/S1PRs axis has recently been defined as a target for the treatment of GI diseases including IBD/colitis. Several SphK1 inhibitors and S1PRs antagonists have been developed as novel anti-inflammatory agents. In this review, we discuss the mechanisms of SphK/S1P signaling in inflammation-linked GI disorders. The potential role of SphK/S1PRs inhibitors in the prevention and treatment of IBD/colitis is critically evaluated.
  • Targeting FOXP3 complex ensemble in drug discovery
    • Abstract: Publication date: Available online 7 January 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Jingyao Huang, Shuoyang Wang, Yuxin Jia, Yujia Zhang, Xueyu Dai, Bin LiAbstractForkhead Box P3 (FOXP3) is a key transcriptional regulator of regulatory T cells (Tregs), especially for its function of immune suppression. The special immune suppression function of Tregs plays an important role in maintaining immune homeostasis, and is related to several diseases including cancer, and autoimmune diseases. At the same time, FOXP3 takes a place in a large transcriptional complex, whose stability and functions can be controlled by various post-translational modification. More and more researches have suggested that targeting FOXP3 or its partners might be a feasible solution to immunotherapy. In this review, we focus on the transcription factor FOXP3 in Tregs, Treg functions in diseases and the FOXP3 targets.
  • Disease modifying drugs for rheumatological diseases: a brief history of
    • Abstract: Publication date: Available online 7 January 2020Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Joanna L. Giles, Oktawia J. Polak, John LandonAbstractThe rheumatological diseases are a group of chronic, painful, degenerative and debilitating conditions with an increasing prevalence across the globe. The pathogenesis of these disorders is complex, overlapping and not fully understood. As such, it is difficult and time consuming to achieve correct diagnosis and complete remission for an individual patient.In this review we describe the most common forms of inflammatory arthritis and discuss how the management and treatment options for these rheumatic diseases have developed over time. We outline the successes and the limitations of current treatment regimens and discuss the economic burden of the current options.With advancements in understanding of disease mechanisms, we discuss the importance of the biologics revolution in the context of rheumatological disease and how the development of biosimilars and small molecule inhibitors will impact current treatment options in order to alleviate some of the cost burden of biological therapies.The ideal treatment strategy for the future would involve personalized and predictive medicine where by treatments can be tailored to an individual patient's needs in order to achieve fast and successful remission with no adverse events.
  • Protein-protein complexes as targets for drug discovery against infectious
    • Abstract: Publication date: Available online 18 December 2019Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Yusuf Akhter, Razak HussainAbstractAntibiotics are therapeutic agents against bacterial infections, however, the emergence of multiple and extremely drug-resistant microbes (Multi-Drug Resistant and Extremely Drug-Resistant) are compromising the effectiveness of the currently available treatment options. The drug resistance is not a novel crisis, the current pace of drug discovery has failed to compete with the growth of MDR and XDR pathogenic strains and therefore, it is highly central to find out novel antimicrobial drugs with unique mechanisms of action which may reduce the burden of MDR and XDR pathogenic strains. Protein-protein interactions (PPIs) are involved in a countless of the physiological and cellular phenomena and have become an attractive target to treat the diseases. Therefore, targeting PPIs in infectious agents may offer a completely novel strategy of intervention to develop anti-infective drugs that may combat the ever-increasing rate of drug resistant strains. This chapter describes how small molecule candidate inhibitors that are capable of disrupting the PPIs in pathogenic microbes and it could be an alternative lead discovery strategy to obtain novel antibiotics. Over the last three decades, there has been increasing efforts focused on the manipulation of PPIs in order to develop novel therapeutic interventions. The diversity and complexity of such a complex and highly dynamic systems pose many challenges in targeting PPIs by drug-like molecules with necessary selectivity and potency. Traditional and novel drug discovery strategies have provided tools for designing and assessing PPI inhibitors against infectious diseases.
  • Targeting arrestin interactions with its partners for therapeutic purposes
    • Abstract: Publication date: Available online 18 December 2019Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Vsevolod V. Gurevich, Eugenia V. GurevichAbstractMost vertebrates express four arrestin subtypes: two visual ones in photoreceptor cells and two non-visuals expressed ubiquitously. The latter two interact with hundreds of G protein-coupled receptors, certain receptors of other types, and numerous non-receptor partners. Arrestins have no enzymatic activity and work by interacting with other proteins, often assembling multi-protein signaling complexes. Arrestin binding to every partner affects cell signaling, including pathways regulating cell survival, proliferation, and death. Thus, targeting individual arrestin interactions has therapeutic potential. This requires precise identification of protein-protein interaction sites of both participants and the choice of the side of each interaction which would be most advantageous to target. The interfaces involved in each interaction can be disrupted by small molecule therapeutics, as well as by carefully selected peptides of the other partner that do not participate in the interactions that should not be targeted.
  • Cyclin-dependent kinase inhibition: an opportunity to target
           protein-protein interactions
    • Abstract: Publication date: Available online 18 December 2019Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Mark A. KleinAbstractCyclin-dependent kinases (CDKs) play an integral part in cellular activities. To date, most of the activities have been evaluated in the cell cycle and transcription. Several diseases are affected by abnormalities in CDKs, related-pathways, or proteins that regulate CDK activity. CDKs are primarily dependent on activation by binding other proteins, namely Cyclins. In addition, phosphorylation of key CDK residues also plays a major part in CDK activity. To date, the most successful drugs have been developed against CDK4 and CDK6 and are FDA approved for use in advanced breast cancer. However, this is likely only a small fraction of the potential for targeting CDKs as a strategy against cancer and other diseases. Based on the extensive protein-protein interactions made by CDKs with other proteins (Cyclins and others), there are numerous possibilities for targeting strategies against protein-protein interactions. Here we describe the predominant roles of CDKs in the cell, key interacting proteins, significant 3-dimensional structural characteristics, and summarize the work-to-date in inhibition of CDKs.
  • Latest trends in structure based drug design with protein targets
    • Abstract: Publication date: Available online 18 December 2019Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Angshuman BagchiAbstractStructure based drug designing is an important endeavor in the field of structural bioinformatics. Previously the entire process was dependent on the wet-lab experiments to build libraries of ligand molecules. And the molecules used to be tested to determine their binding efficacies with protein target. However, the entire process is very lengthy and above all highly expensive. With the advent of supercomputers and increasing computational powers, the search process for finding suitable ligand molecules against target proteins have become more streamlined and cost-effective. Now the entire ligand search process is performed in-silico with the help of the techniques of virtual screening, molecular docking simulations and molecular dynamics studies. In the present chapter, a brief overview of the computational techniques involved in structure based drug designing is presented with a special emphasis on the thermodynamic principles behind the molecular interactions.
  • Atherosclerosis: orchestrating cells and biomolecules involved in its
           activation and inhibition
    • Abstract: Publication date: Available online 18 December 2019Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Ashok Munjal, Rekha KhandiaAbstractThe term atherosclerosis refers to the condition of deposition of lipids and other substances in and on the artery walls, called as plaque that restricts the normal blood flow. The plaque may be stable or unstable in nature. Unstable plaque can burst and trigger clot formation adding further adversities. The process of plaque formation involves various stages including fatty streak, intermediate or fibro-fatty lesion and advanced lesion. The cells participating in the formation of atherosclerotic plaque include endothelial cells, vascular smooth muscle cells (VSMC), monocytes, monocytes derived macrophages, macrophages and dendritic cells and regulatory T cells (TREG). The role of a variety of cytokines and chemokines have been studied which either help in progression of atherosclerotic plaque or vice versa. The cytokines involved in atherosclerotic plaque formation include IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, IL-18, IL-20, IL-25, IL-27, IL-33, IL-37, TNF-α, TGF-β and IFN-γ; whereas amongst the chemokines (family of small cytokines) are CCL2, CCL3, CXCL4, CCL5, CXCL1, CX3CL1, CCL17, CXCL8, CXCL10, CCL20, CCL19 and CCL21 and macrophage migration-inhibitory factor. These are involved in the atherosclerosis advancements, whereas the chemokine CXCL12 is play atheroprotective roles. Apart this, contradictory functions have been documented for few other chemokines such as CXCL16. Since the cytokines and chemokines are amongst the key molecules involved in orchestrating the atherosclerosis advancements, targeting them might be an effective strategy to encumber the atherosclerotic progression. Blockage of cytokines and chemokines via the means of broad-spectrum inhibitors, neutralizing antibodies, usage of decoy receptors or RNA interference have been proved to be useful intervention against atherosclerosis.
  • Dietary plant flavonoids in prevention of obesity and diabetes
    • Abstract: Publication date: Available online 12 December 2019Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Biswanath Dinda, Manikarna Dinda, Arup Roy, Subhajit DindaAbstractObesity and diabetes are the most prevailing chronic metabolic diseases worldwide from mainly lipid and glucose metabolic dysfunctions and their incidence is increasing at an alarming high rate. Obesity is characterized by excess fat accumulation in WAT and liver and is the central player of insulin resistance in the peripheral tissues from chronic inflammation, lipotoxicity and gut dysbiosis, and plays a key role for development of type 2 diabetes (T2DM) and vascular diseases. Diabetes mellitus, known as diabetes, is chiefly characterized by hyperglycaemia from impaired insulin secretion and insulin resistance. Several identified mutant genes in insulin secretion and resistance and various environmental factors are considered responsible for the onset of this disease. Currently available oral synthetic drugs, biguanides, incretin mimetic, GLP-1R and PPAR agonists and DPP-4 inhibitors for management of obesity and diabetes have several adverse effects in patients on long-term use. Emerging evidence supports the efficacy of dietary plant flavonoids in prevention and attenuation of obesity and diabetes by the protection and proliferation of pancreatic beta-cells and improvement of their insulin secretory function via activation of cAMP/PKA signaling pathway as well as in the improvement of insulin sensitivity in the peripheral metabolic tisssues for glucose uptake and utilization via inhibition of inflammation, lipotoxicity and oxidative stress. These flavonoids improve GLUT-4 expression and translocation to plasma membrane by activation of insulin-sensitive PI3K/Akt signaling and insulin-independent AMPK, SIRT-1 and MOR activation pathways for regulation of glucose homeostasis, and improve fat oxidation and reduce lipid synthesis by regulation of related genes for lipid homeostasis in the body of obese diabetic animals. In this chapter, we have highlighted all these beneficial anti-obesity and antidiabetic potentials of some dietary plant flavonoids along with their molecular actions, bioavailability and pharmacokinetics. In addition, the present understanding and management of obesity and diabetes are also focused.
  • The expanding pathways of autoinflammation: a lesson from the first 100
           genes related to autoinflammatory manifestations
    • Abstract: Publication date: Available online 12 December 2019Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Riccardo Papa, Paolo Picco, Marco GattornoAbstractAutoInflammatory Diseases (AIDs) are a group of innate immune system disorders characterized by sterile inflammation without evidence of pathogenic autoantibodies or auto-reactive T lymphocytes. An expanding spectrum of genes and molecular pathways are associated with AIDs.Inflammasomopathies are secondary to dysregulation of multi-protein complexes, called inflammasomes, leading to an excessive maturation and secretion of IL1β and IL18. Patients present with persistent or recurrent systemic inflammation, abdominal and chest pain, skin rashes and are sensible to IL1 inhibitors.Unfolded proteins response causes a small number of AIDs that we propose to call immuno-proteinopathies, characterized by recurrent fevers and deep tissues inflammation.Other inflammatory conditions can occur in case of abnormalities of actin polymerization and the term of immuno-actinopathies is proposed.Generalized pustular psoriasis is a marker of autoinflammation mainly affecting the keratinocytes. Specific treatment targeting the p40 subunit of IL12 and IL23 or IL-17 are usually effective.Granulomatous inflammation characterizes AIDs related to NOD2 signaling defects.Defects in the ubiquitin-proteasome system cause a group of relopathies and some interferonopathies related to defect of the proteasome function (CANDLE syndrome).Gain of function of proteins regulating the production of type I interferons lead to severe inflammatory conditions, called interferonopathies. The JAK/STAT inhibitors are usually effective in these latter conditions.In conclusions, the identification of the main intracellular pathways involved in rare monogenic AIDs allows not only the proper classification of different conditions, but also highlight a pivotal role of possible novel therapeutic targets for the future.
  • Physicochemical determinants of antibody-protein interactions
    • Abstract: Publication date: Available online 19 November 2019Source: Advances in Protein Chemistry and Structural BiologyAuthor(s): Murat Karadag, Merve Arslan, Nazli Eda Kaleli, Sibel KalyoncuAbstractAntibodies are specialized proteins generated by immune system for high specificity and affinity binding to target antigens. Because of their essential roles in immune system, antibodies have been successfully developed and engineered as biopharmaceuticals for treatment of various diseases. Analysis of antibody-protein interactions is always required to get detailed information on effectivity of such antibody-based therapeutics. Although physicochemical rules cannot be generalized for every antibody-protein interaction, there are some features which should be taken into account during antibody development and engineering efforts. In this chapter, physicochemical analysis of antibody paratope-protein epitope interactions will be discussed to highlight important characteristics. First, paratope and non-paratope regions of antibodies will be described and important roles of these regions on binding and biophysical features of antibodies will be discussed. Then, general features of epitope regions of protein antigens will be introduced along with several computational/experimental tools to identify them. Lastly, a rising star of antibody biopharmaceuticals, nanobodies, will be described to show importance of next-generation antibody fragment based biopharmaceuticals in drug development.
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-