Subjects -> MEDICAL SCIENCES (Total: 8697 journals)
    - ANAESTHESIOLOGY (121 journals)
    - CARDIOVASCULAR DISEASES (338 journals)
    - DENTISTRY (294 journals)
    - ENDOCRINOLOGY (151 journals)
    - FORENSIC SCIENCES (42 journals)
    - HEMATOLOGY (158 journals)
    - HYPNOSIS (4 journals)
    - INTERNAL MEDICINE (178 journals)
    - MEDICAL GENETICS (58 journals)
    - MEDICAL SCIENCES (2419 journals)
    - NURSES AND NURSING (371 journals)
    - OBSTETRICS AND GYNECOLOGY (208 journals)
    - ONCOLOGY (386 journals)
    - OTORHINOLARYNGOLOGY (83 journals)
    - PATHOLOGY (100 journals)
    - PEDIATRICS (275 journals)
    - PSYCHIATRY AND NEUROLOGY (833 journals)
    - RESPIRATORY DISEASES (105 journals)
    - RHEUMATOLOGY (79 journals)
    - SPORTS MEDICINE (81 journals)
    - SURGERY (406 journals)

MEDICAL SCIENCES (2419 journals)                  1 2 3 4 5 6 7 8 | Last

Showing 1 - 200 of 3562 Journals sorted alphabetically
16 de Abril     Open Access   (Followers: 3)
3D Printing in Medicine     Open Access   (Followers: 5)
4 open     Open Access  
AADE in Practice     Hybrid Journal   (Followers: 6)
AAS Open Research     Open Access   (Followers: 2)
ABCS Health Sciences     Open Access   (Followers: 8)
Abia State University Medical Students' Association Journal     Full-text available via subscription   (Followers: 3)
AboutOpen     Open Access  
ACIMED     Open Access   (Followers: 1)
ACS Medicinal Chemistry Letters     Hybrid Journal   (Followers: 50)
Acta Bio Medica     Full-text available via subscription   (Followers: 2)
Acta Bioethica     Open Access  
Acta Bioquimica Clinica Latinoamericana     Open Access   (Followers: 1)
Acta Científica Estudiantil     Open Access  
Acta Facultatis Medicae Naissensis     Open Access   (Followers: 1)
Acta Herediana     Open Access  
Acta Informatica Medica     Open Access   (Followers: 2)
Acta Medica (Hradec Králové)     Open Access  
Acta Medica Bulgarica     Open Access  
Acta Medica Colombiana     Open Access   (Followers: 1)
Acta Médica Costarricense     Open Access   (Followers: 2)
Acta Medica Indonesiana     Open Access  
Acta Medica International     Open Access  
Acta medica Lituanica     Open Access   (Followers: 1)
Acta Medica Marisiensis     Open Access   (Followers: 1)
Acta Medica Martiniana     Open Access  
Acta Medica Nagasakiensia     Open Access   (Followers: 1)
Acta Medica Peruana     Open Access   (Followers: 2)
Acta Médica Portuguesa     Open Access  
Acta Medica Saliniana     Open Access  
Acta Scientiarum. Health Sciences     Open Access   (Followers: 3)
Acupuncture & Electro-Therapeutics Research     Full-text available via subscription   (Followers: 8)
Acupuncture and Natural Medicine     Open Access  
Addiction Science & Clinical Practice     Open Access   (Followers: 9)
Addictive Behaviors Reports     Open Access   (Followers: 9)
Adıyaman Üniversitesi Sağlık Bilimleri Dergisi / Health Sciences Journal of Adıyaman University     Open Access   (Followers: 1)
Adnan Menderes Üniversitesi Sağlık Bilimleri Fakültesi Dergisi     Open Access   (Followers: 1)
Advanced Biomedical Research     Open Access  
Advanced Health Care Technologies     Open Access   (Followers: 10)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 9)
Advanced Therapeutics     Hybrid Journal   (Followers: 1)
Advances in Bioscience and Clinical Medicine     Open Access   (Followers: 7)
Advances in Cell and Gene Therapy     Hybrid Journal   (Followers: 1)
Advances in Clinical Chemistry     Full-text available via subscription   (Followers: 27)
Advances in Clinical Radiology     Full-text available via subscription   (Followers: 3)
Advances in Life Course Research     Hybrid Journal   (Followers: 11)
Advances in Lipobiology     Full-text available via subscription   (Followers: 2)
Advances in Medical Education and Practice     Open Access   (Followers: 32)
Advances in Medical Ethics     Open Access   (Followers: 3)
Advances in Medical Research     Open Access   (Followers: 2)
Advances in Medical Sciences     Hybrid Journal   (Followers: 10)
Advances in Medicinal Chemistry     Full-text available via subscription   (Followers: 6)
Advances in Medicine     Open Access   (Followers: 3)
Advances in Microbial Physiology     Full-text available via subscription   (Followers: 5)
Advances in Molecular Oncology     Open Access   (Followers: 2)
Advances in Molecular Toxicology     Full-text available via subscription   (Followers: 7)
Advances in Parkinson's Disease     Open Access   (Followers: 2)
Advances in Phytomedicine     Full-text available via subscription   (Followers: 1)
Advances in Preventive Medicine     Open Access   (Followers: 6)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 21)
Advances in Regenerative Medicine     Open Access   (Followers: 4)
Advances in Skeletal Muscle Function Assessment     Open Access  
Advances in Therapy     Hybrid Journal   (Followers: 5)
Advances in Traditional Medicine     Hybrid Journal   (Followers: 8)
Advances in Veterinary Science and Comparative Medicine     Full-text available via subscription   (Followers: 15)
Advances in Virus Research     Full-text available via subscription   (Followers: 6)
Advances in Wound Care     Hybrid Journal   (Followers: 14)
Aerospace Medicine and Human Performance     Full-text available via subscription   (Followers: 13)
African Health Sciences     Open Access   (Followers: 5)
African Journal of Biomedical Research     Open Access   (Followers: 1)
African Journal of Clinical and Experimental Microbiology     Open Access   (Followers: 4)
African Journal of Laboratory Medicine     Open Access   (Followers: 2)
African Journal of Medical and Health Sciences     Open Access   (Followers: 3)
African Journal of Thoracic and Critical Care Medicine     Open Access  
African Journal of Trauma     Open Access   (Followers: 1)
Afrimedic Journal     Open Access   (Followers: 3)
Aggiornamenti CIO     Hybrid Journal   (Followers: 1)
AIDS Research and Human Retroviruses     Hybrid Journal   (Followers: 9)
AJOB Empirical Bioethics     Hybrid Journal   (Followers: 3)
AJSP: Reviews & Reports     Hybrid Journal   (Followers: 1)
Aktuelle Ernährungsmedizin     Hybrid Journal   (Followers: 6)
Al-Azhar Assiut Medical Journal     Open Access   (Followers: 2)
Al-Qadisiah Medical Journal     Open Access   (Followers: 1)
Alerta : Revista Científica del Instituto Nacional de Salud     Open Access  
Alexandria Journal of Medicine     Open Access   (Followers: 1)
Allgemeine Homöopathische Zeitung     Hybrid Journal   (Followers: 3)
Alpha Omegan     Full-text available via subscription  
ALTEX : Alternatives to Animal Experimentation     Open Access   (Followers: 2)
Althea Medical Journal     Open Access   (Followers: 2)
American Journal of Biomedical Engineering     Open Access   (Followers: 15)
American Journal of Biomedical Research     Open Access   (Followers: 2)
American Journal of Biomedicine     Full-text available via subscription   (Followers: 7)
American Journal of Chinese Medicine, The     Hybrid Journal   (Followers: 4)
American Journal of Clinical Medicine Research     Open Access   (Followers: 8)
American Journal of Family Therapy     Hybrid Journal   (Followers: 10)
American Journal of Law & Medicine     Full-text available via subscription   (Followers: 12)
American Journal of Lifestyle Medicine     Hybrid Journal   (Followers: 7)
American Journal of Managed Care     Full-text available via subscription   (Followers: 13)
American Journal of Medical Case Reports     Open Access   (Followers: 3)
American Journal of Medical Sciences and Medicine     Open Access   (Followers: 5)
American Journal of Medicine     Hybrid Journal   (Followers: 50)
American Journal of Medicine and Medical Sciences     Open Access   (Followers: 1)
American Journal of Medicine Studies     Open Access   (Followers: 3)
American Journal of Medicine Supplements     Full-text available via subscription   (Followers: 3)
American Journal of the Medical Sciences     Hybrid Journal   (Followers: 12)
American Journal on Addictions     Hybrid Journal   (Followers: 11)
American medical news     Free   (Followers: 3)
American Medical Writers Association Journal     Full-text available via subscription   (Followers: 6)
Amyloid: The Journal of Protein Folding Disorders     Hybrid Journal   (Followers: 5)
Anales de la Facultad de Medicina     Open Access  
Anales de la Facultad de Medicina, Universidad de la República, Uruguay     Open Access  
Anales del Sistema Sanitario de Navarra     Open Access   (Followers: 1)
Analgesia & Resuscitation : Current Research     Hybrid Journal   (Followers: 7)
Anatolian Clinic the Journal of Medical Sciences     Open Access  
Anatomica Medical Journal     Open Access  
Anatomical Science International     Hybrid Journal   (Followers: 3)
Anatomical Sciences Education     Hybrid Journal   (Followers: 2)
Anatomy     Open Access   (Followers: 3)
Anatomy Research International     Open Access   (Followers: 4)
Androgens : Clinical Research and Therapeutics     Open Access  
Angewandte Schmerztherapie und Palliativmedizin     Hybrid Journal  
Angiogenesis     Hybrid Journal   (Followers: 3)
Ankara Medical Journal     Open Access   (Followers: 2)
Ankara Üniversitesi Tıp Fakültesi Mecmuası     Open Access  
Annales de Pathologie     Full-text available via subscription  
Annales des Sciences de la Santé     Open Access  
Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale     Full-text available via subscription   (Followers: 3)
Annals of African Medicine     Open Access   (Followers: 2)
Annals of Anatomy - Anatomischer Anzeiger     Hybrid Journal   (Followers: 3)
Annals of Bioanthropology     Open Access   (Followers: 5)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 19)
Annals of Biomedical Sciences     Full-text available via subscription   (Followers: 4)
Annals of Clinical Hypertension     Open Access  
Annals of Clinical Microbiology and Antimicrobials     Open Access   (Followers: 15)
Annals of Family Medicine     Open Access   (Followers: 18)
Annals of Health Research     Open Access   (Followers: 1)
Annals of Ibadan Postgraduate Medicine     Open Access  
Annals of Medical and Health Sciences Research     Open Access   (Followers: 7)
Annals of Medicine     Hybrid Journal   (Followers: 12)
Annals of Medicine and Surgery     Open Access   (Followers: 7)
Annals of Medicine and Surgery Case Reports     Open Access   (Followers: 1)
Annals of Medicine and Surgery Protocols     Open Access   (Followers: 1)
Annals of Microbiology     Hybrid Journal   (Followers: 13)
Annals of Musculoskeletal Medicine     Open Access   (Followers: 2)
Annals of Nigerian Medicine     Open Access   (Followers: 1)
Annals of Rehabilitation Medicine     Open Access   (Followers: 1)
Annals of Saudi Medicine     Open Access  
Annals of the College of Medicine, Mosul     Open Access   (Followers: 1)
Annals of the New York Academy of Sciences     Hybrid Journal   (Followers: 5)
Annals of The Royal College of Surgeons of England     Full-text available via subscription   (Followers: 3)
Annals of the RussianAacademy of Medical Sciences     Open Access   (Followers: 1)
Annual Reports in Medicinal Chemistry     Full-text available via subscription   (Followers: 7)
Annual Reports on NMR Spectroscopy     Full-text available via subscription   (Followers: 5)
Annual Review of Medicine     Full-text available via subscription   (Followers: 18)
Anthropological Review     Open Access   (Followers: 25)
Anthropologie et santé     Open Access   (Followers: 5)
Antibiotics     Open Access   (Followers: 9)
Antibodies     Open Access   (Followers: 2)
Antibody Reports     Open Access   (Followers: 1)
Antibody Technology Journal     Open Access   (Followers: 1)
Antibody Therapeutics     Open Access   (Followers: 1)
Anuradhapura Medical Journal     Open Access  
Anwer Khan Modern Medical College Journal     Open Access   (Followers: 2)
Apmis     Hybrid Journal   (Followers: 2)
Apparence(s)     Open Access   (Followers: 1)
Applied Clinical Informatics     Hybrid Journal   (Followers: 5)
Applied Clinical Research, Clinical Trials and Regulatory Affairs     Hybrid Journal   (Followers: 2)
Applied Medical Informatics     Open Access   (Followers: 14)
Arab Journal of Nephrology and Transplantation     Open Access   (Followers: 1)
Arabian Journal of Scientific Research / المجلة العربية للبحث العلمي     Open Access   (Followers: 1)
Archive of Biomedical Science and Engineering     Open Access   (Followers: 1)
Archive of Clinical Medicine     Open Access   (Followers: 1)
Archive of Community Health     Open Access   (Followers: 1)
Archives Medical Review Journal / Arşiv Kaynak Tarama Dergisi     Open Access  
Archives of Asthma, Allergy and Immunology     Open Access  
Archives of Clinical Hypertension     Open Access   (Followers: 2)
Archives of Medical and Biomedical Research     Open Access   (Followers: 3)
Archives of Medical Laboratory Sciences     Open Access   (Followers: 1)
Archives of Medicine and Health Sciences     Open Access   (Followers: 5)
Archives of Medicine and Surgery     Open Access   (Followers: 1)
Archives of Organ Transplantation     Open Access   (Followers: 2)
Archives of Preventive Medicine     Open Access   (Followers: 3)
Archives of Pulmonology and Respiratory Care     Open Access   (Followers: 2)
Archives of Renal Diseases and Management     Open Access   (Followers: 2)
Archives of Trauma Research     Open Access   (Followers: 4)
Archivos de Medicina (Manizales)     Open Access   (Followers: 1)
ArgoSpine News & Journal     Hybrid Journal  
Arquivos Brasileiros de Oftalmologia     Open Access   (Followers: 1)
Arquivos de Ciências da Saúde     Open Access  
Arquivos de Medicina     Open Access   (Followers: 1)
Ars Medica : Revista de Ciencias Médicas     Open Access  
ARS Medica Tomitana     Open Access   (Followers: 1)
Art Therapy: Journal of the American Art Therapy Association     Hybrid Journal   (Followers: 19)
Arterial Hypertension     Open Access   (Followers: 1)
Artificial Intelligence in Medicine     Hybrid Journal   (Followers: 20)
Artificial Organs     Hybrid Journal   (Followers: 1)
ASHA Leader     Open Access   (Followers: 6)
Asia Pacific Family Medicine Journal     Open Access   (Followers: 4)
Asia Pacific Journal of Clinical Nutrition     Full-text available via subscription   (Followers: 13)
Asia Pacific Journal of Clinical Trials : Nervous System Diseases     Open Access   (Followers: 1)

        1 2 3 4 5 6 7 8 | Last

Similar Journals
Journal Cover
Advances in Microbial Physiology
Journal Prestige (SJR): 1.158
Citation Impact (citeScore): 3
Number of Followers: 5  
  Full-text available via subscription Subscription journal
ISSN (Print) 0065-2911
Published by Elsevier Homepage  [3201 journals]
  • The function, biogenesis and regulation of the electron transport chains
           in Campylobacter jejuni: new insights into the bioenergetics of a major
           food-borne pathogen
    • Abstract: Publication date: Available online 8 March 2019Source: Advances in Microbial PhysiologyAuthor(s): Aidan J. Taylor, David J. KellyAbstractCampylobacter jejuni is a zoonotic Epsilonproteobacterium that grows in the gastrointestinal tract of birds and mammals, and is the most frequent cause of food-borne bacterial gastroenteritis worldwide. As an oxygen-sensitive microaerophile, C. jejuni has to survive high environmental oxygen tensions, adapt to oxygen limitation in the host intestine and resist host oxidative attack. Despite its small genome size, C. jejuni is a versatile and metabolically active pathogen, with a complex and highly branched set of respiratory chains allowing the use of a wide range of electron donors and alternative electron acceptors in addition to oxygen, including fumarate, nitrate, nitrite, tetrathionate and N- or S-oxides. Several novel enzymes participate in these electron transport chains, including a tungsten containing formate dehydrogenase, a Complex I that uses flavodoxin and not NADH, a periplasmic facing fumarate reductase and a cytochrome c tetrathionate reductase. This review presents an updated description of the composition and bioenergetics of these various respiratory chains as they are currently understood, including recent work that gives new insights into energy conservation during electron transport to various alternative electron acceptors. The regulation of synthesis and assembly of the electron transport chains is also discussed. A deeper appreciation of the unique features of the respiratory systems of C. jejuni may be helpful in informing strategies to control this important pathogen.
  • Regulation of organohalide respiration
    • Abstract: Publication date: Available online 4 March 2019Source: Advances in Microbial PhysiologyAuthor(s): Julien Maillard, Mathilde Stéphanie WilleminAbstractOrganohalide respiration (OHR) is an anaerobic metabolism by which bacteria conserve energy with the use of halogenated compounds as terminal electron acceptors. Genes involved in OHR are organized in reductive dehalogenase (rdh) gene clusters and can be found in relatively high copy numbers in the genomes of organohalide-respiring bacteria (OHRB). The minimal rdh gene set is composed by rdhA and rdhB, encoding the catalytic enzyme involved in reductive dehalogenation and its putative membrane anchor, respectively. In this chapter, we present the major findings concerning the regulatory strategies developed by OHRB to control the expression of the rdh gene clusters. The first section focuses on the description of regulation patterns obtained from targeted transcriptional analyses, and from transcriptomic and proteomic studies, while the second section offers a detailed overview of the biochemically characterized OHR regulatory proteins identified so far. Depending on OHRB, transcriptional regulators belonging to three different protein families are found in the direct vicinity of rdh gene clusters, suggesting that they activate the transcription of their cognate gene cluster. In this chapter, strong emphasis was laid on the family of CRP/FNR-type RdhK regulators which belong to members of the genera Dehalobacter and Desulfitobacterium. Whereas only chlorophenols have been identified as effectors for RdhK regulators, the protein sequence diversity suggests a broader organohalide spectrum. Thus, effector identification of new regulators offers a promising alternative to elucidate the substrates of yet uncharacterized reductive dehalogenases. Future work investigating the possible cross-talk between OHR regulators and their possible use as biosensors is discussed.
  • Stress-induced adaptive morphogenesis in bacteria
    • Abstract: Publication date: Available online 4 March 2019Source: Advances in Microbial PhysiologyAuthor(s): Eveline Ultee, Karina Ramijan, Remus T. Dame, Ariane Briegel, Dennis ClaessenAbstractBacteria thrive in virtually all environments. Like all other living organisms, bacteria may encounter various types of stresses, to which cells need to adapt. In this chapter, we describe how cells cope with stressful conditions and how this may lead to dramatic morphological changes. These changes may not only allow harmless cells to withstand environmental insults but can also benefit pathogenic bacteria by enabling them to escape from the immune system and the activity of antibiotics. A better understanding of stress-induced morphogenesis will help us to develop new approaches to combat such harmful pathogens.
  • Bioenergetic aspects of archaeal and bacterial hydrogen metabolism
    • Abstract: Publication date: Available online 28 February 2019Source: Advances in Microbial PhysiologyAuthor(s): Constanze PinskeAbstractHydrogenases are metal-containing biocatalysts that reversibly convert protons and electrons to hydrogen gas. This reaction can contribute in different ways to the generation of the proton motive force (PMF) of a cell. One means of PMF generation involves reduction of protons on the inside of the cytoplasmic membrane, releasing H2 gas, which being without charge is freely diffusible across the cytoplasmic membrane, where it can be re-oxidized to release protons. A second route of PMF generation couples transfer of electrons derived from H2 oxidation to quinone reduction and concomitant proton uptake at the membrane-bound heme cofactor. This redox-loop mechanism, as originally formulated by Mitchell, requires a second, catalytically distinct, enzyme complex to re-oxidize quinol and release the protons outside the cell. A third way of generating PMF is also by electron transfer to quinones but on the outside of the membrane while directly drawing protons through the entire membrane. The cofactor-less membrane subunits involved are proposed to operate by a conformational mechanism (redox-linked proton pump). Finally, PMF can be generated through an electron bifurcation mechanism, whereby an exergonic reaction is tightly coupled with an endergonic reaction. In all cases the protons can be channelled back inside through a F1F0-ATPase to convert the ‘energy’ stored in the PMF into the universal cellular energy currency, ATP. New and exciting discoveries employing these mechanisms have recently been made on the bioenergetics of hydrogenases, which will be discussed here and placed in the context of their contribution to energy conservation.
  • Formate hydrogenlyase: a group 4 [NiFe]-hydrogenase in tandem with a
           formate dehydrogenase
    • Abstract: Publication date: Available online 28 February 2019Source: Advances in Microbial PhysiologyAuthor(s): Alexander J. Finney, Frank SargentAbstractHydrogenase enzymes are currently under the international research spotlight due to emphasis on biologically produced hydrogen as one potential energy carrier to relinquish the requirement for ‘fossil fuel’ derived energy. Three major classes of hydrogenase exist in microbes all able to catalyze the reversible oxidation of dihydrogen to protons and electrons. These classes are defined by their active site metal content: [NiFe]-; [FeFe]- and [Fe]-hydrogenases. Of these the [NiFe]-hydrogenases have links to ancient forms of metabolism, utilizing hydrogen as the original source of reductant on Earth. This review progresses to highlight the Group 4 [NiFe]-hydrogenase enzymes that preferentially generate hydrogen exploiting various partner enzymes or ferredoxin, while in some cases translocating ions across biological membranes. Specific focus is paid to Group 4A, the Formate hydrogenlyase complexes. These are the combination of a six or nine subunit [NiFe]-hydrogenase with a soluble formate dehydrogenase to derived electrons from formate oxidation for proton reduction. The incidence, physiology, structure and biotechnological application of these complexes will be explored with attention on Escherichia coli Formate Hydrogenlyase-1 (FHL-1).
  • Chapter Six - Anaerobic Bacterial Response to Nitrosative Stress
    • Abstract: Publication date: 2018Source: Advances in Microbial Physiology, Volume 72Author(s): Jeffrey A. ColeAbstractThis chapter provides an overview of current knowledge of how anaerobic bacteria protect themselves against nitrosative stress. Nitric oxide (NO) is the primary source of this stress. Aerobically its removal is an oxidative process, whereas reduction is required anaerobically. Mechanisms required to protect aerobic and anaerobic bacteria are therefore different. Several themes recur in the review. First, how gene expression is regulated often provides clues to the physiological function of the gene products. Second, the physiological significance of reports based upon experiments under extreme conditions that bacteria do not encounter in their natural environment requires reassessment. Third, responses to the primary source of stress need to be distinguished from secondary consequences of chemical damage due to failure of repair mechanisms to cope with extreme conditions. NO is generated by many mechanisms, some of which remain undefined. An example is the recent demonstration that the hybrid cluster protein combines with YtfE (or RIC protein, for repair of iron centres damaged by nitrosative stress) in a new pathway to repair key iron–sulphur proteins damaged by nitrosative stress. The functions of many genes expressed in response to nitrosative stress remain either controversial or are completely unknown. The concentration of NO that accumulates in the bacterial cytoplasm is essentially unknown, so dogmatic statements cannot be made that damage to transcription factors (Fur, FNR, SoxRS, MelR, OxyR) occurs naturally as part of a physiologically relevant signalling mechanism. Such doubts can be resolved by simple experiments to meet six proposed criteria.
  • Chapter Five - Emerging Roles of Nitric Oxide Synthase in Bacterial
    • Abstract: Publication date: 2018Source: Advances in Microbial Physiology, Volume 72Author(s): Elizabeth H. Hutfless, Sujata S. Chaudhari, Vinai C. ThomasAbstractNitric oxide (NO) is a potent inhibitor of diverse cellular processes in bacteria. Therefore, it was surprising to discover that several bacterial species, primarily Gram-positive organisms, harboured a gene encoding nitric oxide synthase (NOS). Recent attempts to characterize bacterial NOS (bNOS) have resulted in the discovery of structural features that may allow it to function as a NO dioxygenase and produce nitrate in addition to NO. Consistent with this characterization, investigations into the biological function of bNOS have also emphasized a role for NOS-dependent nitrate and nitrite production in aerobic and microaerobic respiration. In this review, we aim to compare, contrast, and summarize the structure, biochemistry, and biological role of bNOS with mammalian NOS and discuss how recent advances in our understanding of bNOS have enabled efforts at designing inhibitors against it.
  • Chapter Four - Nitric Oxide, an Old Molecule With Noble Functions in
           Pseudomonas aeruginosa Biology
    • Abstract: Publication date: 2018Source: Advances in Microbial Physiology, Volume 72Author(s): Masanori Toyofuku, Sang-Sun YoonAbstractPseudomonas aeruginosa, a Gram-negative bacterium, is characterized by its versatility that enables persistent survival under adverse conditions. It can grow on diverse energy sources and readily acquire resistance to antimicrobial agents. As an opportunistic human pathogen, it also causes chronic infections inside the anaerobic mucus airways of cystic fibrosis patients. As a strict respirer, P. aeruginosa can grow by anaerobic nitrate (NO3−) respiration. Nitric oxide (NO) produced as an intermediate during anaerobic respiration exerts many important effects on the biological characteristics of P. aeruginosa. This review provides information regarding (i) how P. aeruginosa grows by anaerobic respiration, (ii) mechanisms by which NO is produced under such growth, and (iii) bacterial adaptation to NO. We also review the clinical relevance of NO in the fitness of P. aeruginosa and the use of NO as a potential therapeutic for treating P. aeruginosa infection.
  • Chapter Four - Novel Antibacterials: Alternatives to Traditional
    • Abstract: Publication date: 2018Source: Advances in Microbial Physiology, Volume 73Author(s): Jonathan W. Betts, Michael Hornsey, Roberto M. La RagioneAbstractWith the advent of the global antimicrobial resistance (AMR) crisis, our arsenal of effective antibiotics is diminishing. The widespread use and misuse of antibiotics in human and veterinary medicine, compounded by the lack of novel classes of antibiotic in the pharmaceutical pipeline, has left a hole in our antibiotic armamentarium. Thus, alternatives to traditional antibiotics are being investigated, including two major groups of antibacterial agents, which have been extensively studied, phytochemicals and metals. Within these groups, there are several subclasses of compound/elements, including polyphenols and metal nanoparticles, which could be used to complement traditional antibiotics, either to increase their potency or extend their spectrum of activity. Alone or in combination, these antibacterial agents have been shown to be effective against a vast array of human and animal bacterial pathogens, including those resistant to licensed antibacterials. These alternative antibacterial agents could be a key element in our fight against AMR and provide desperately needed options, to veterinary and medical clinicians alike.
  • Chapter Two - Nitric Oxide Signalling in Yeast
    • Abstract: Publication date: 2018Source: Advances in Microbial Physiology, Volume 72Author(s): Rika I. Astuti, Ryo Nasuno, Hiroshi TakagiAbstractNitric oxide (NO) is a cellular signalling molecule widely conserved among organisms, including microorganisms such as bacteria, yeasts, and fungi, and higher eukaryotes such as plants and mammals. NO is mainly produced by the activities of NO synthase (NOS) or nitrite reductase (NIR). There are several NO detoxification systems, including NO dioxygenase (NOD) and S-nitrosoglutathione reductase (GSNOR). NO homeostasis, based on the balance between NO synthesis and degradation, is important for regulating its physiological functions, since an excess of NO causes nitrosative stress due to the high reactivity of NO and NO-derived compounds. In yeast, NO may be involved in stress responses, but the role of NO and the mechanism underlying NO signalling are poorly understood due to the lack of mammalian NOS orthologs in the yeast genome. NOS and NIR activities have been observed in yeast cells, but the gene-encoding NOS and the mechanism by which NO production is catalysed by NIR remain unclear. On the other hand, yeast cells employ NOD and GSNOR to maintain intracellular redox balance following endogenous NO production, treatment with exogenous NO, or exposure to environmental stresses. This article reviews NO metabolism (synthesis, degradation) and its regulation in yeast. The physiological roles of NO in yeast, including the oxidative stress response, are also discussed. Such investigations into NO signalling are essential for understanding how NO modulates the genetics and physiology of yeast. In addition to being responsible for the pathology and pharmacology of various degenerative diseases, NO signalling may be a potential target for the construction and engineering of industrial yeast strains.
  • Chapter One - Reactive Cysteine Persulphides: Occurrence, Biosynthesis,
    • Abstract: Publication date: 2018Source: Advances in Microbial Physiology, Volume 72Author(s): Tomohiro Sawa, Katsuhiko Ono, Hiroyasu Tsutsuki, Tianli Zhang, Tomoaki Ida, Motohiro Nishida, Takaaki AkaikeAbstractCysteine hydropersulphide (CysSSH) is a cysteine derivative having one additional sulphur atom bound to a cysteinyl thiol group. Recent advances in the development of analytical methods for detection and quantification of persulphides and polysulphides have revealed the biological presence, in both prokaryotes and eukaryotes, of hydropersulphides in diverse forms such as CysSSH, homocysteine hydropersulphide, glutathione hydropersulphide, bacillithiol hydropersulphide, coenzyme A hydropersulphide, and protein hydropersulphides. Owing to the chemical reactivity of the persulphide moiety, biological systems utilize persulphides as important intermediates in the synthesis of various sulphur-containing biomolecules. Accumulating evidence has revealed another important feature of persulphides: their potent reducing activity, which implies that they are implicated in the regulation of redox signalling and antioxidant functions. In this chapter, we discuss the biological occurrence and possible biosynthetic mechanisms of CysSSH and related persulphides, and we include descriptions of recent advances in the analytical methods that have been used to detect and quantitate persulphide species. We also discuss the antioxidant activity of persulphide species that contributes to protecting cells from reactive oxygen species-associated damage, and we examine the signalling roles of CysSSH in bacteria.
  • Chapter Five - Biotechnological Applications of Bioactive Peptides From
           Marine Sources
    • Abstract: Publication date: 2018Source: Advances in Microbial Physiology, Volume 73Author(s): Daniela Giordano, Maria Costantini, Daniela Coppola, Chiara Lauritano, Laura Núñez Pons, Nadia Ruocco, Guido di Prisco, Adrianna Ianora, Cinzia VerdeAbstractThis review is an overview on marine bioactive peptides with promising activities for the development of alternative drugs to fight human pathologies. In particular, we focus on potentially prolific producers of peptides in microorganisms, including sponge-associated bacteria and marine photoautotrophs such as microalgae and cyanobacteria. Microorganisms are still poorly explored for drug discovery, even if they are highly metabolically plastic and potentially amenable to culturing. This offers the possibility of obtaining a continuous source of bioactive compounds to satisfy the challenging demands of pharmaceutical industries. This review targets peptides because of the variety of potent biological activities demonstrated by these molecules, including antiviral, antimicrobial, antifungal, antioxidant, anticoagulant, antihypertensive, anticancer, antidiabetic, antiobesity, and calcium-binding bioactivities. Several of these peptides have already gained recognition as effective drug agents in recent years. We also focus on cutting-edge omic approaches for the discovery of novel compounds for pharmacological applications. With rapid depletion of natural resources, omic technologies may be the solution to efficiently produce a vast variety of novel peptides with unique pharmacological potential.
  • Chapter Three - Antibiotic Lethality and Membrane Bioenergetics
    • Abstract: Publication date: 2018Source: Advances in Microbial Physiology, Volume 73Author(s): Martin I. Voskuil, Christopher R. Covey, Nicholas D. WalterAbstractA growing body of research suggests bacterial metabolism and membrane bioenergetics affect the lethality of a broad spectrum of antibiotics. Electrochemical gradients spanning energy-transducing membranes are the foundation of the chemiosmotic hypothesis and are essential for life; accordingly, their dysfunction appears to be a critical factor in bacterial death. Proton flux across energy-transducing membranes is central for cellular homeostasis as vectorial proton translocation generates a proton motive force used for ATP synthesis, pH homeostasis, and maintenance of solute gradients. Our recent investigations indicate that maintenance of pH homeostasis is a critical factor in antibiotic killing and suggest an imbalance in proton flux initiates disruptions in chemiosmotic gradients that lead to cell death. The complex and interconnected relationships between electron transport systems, central carbon metabolism, oxidative stress generation, pH homeostasis, and electrochemical gradients provide challenging obstacles to deciphering the roles for each of these processes in antibiotic lethality. In this chapter, we will present evidence for the pH homeostasis hypothesis of antibiotic lethality that bactericidal activity flows from disruption of cellular energetics and loss of chemiosmotic homeostasis. A holistic understanding of the interconnection of energetic processes and antibiotic activity may direct future research toward the development of more effective therapeutic interventions.
  • Chapter Two - Nitric Oxide Stress as a Metabolic Flux
    • Abstract: Publication date: 2018Source: Advances in Microbial Physiology, Volume 73Author(s): Mark P. BrynildsenAbstractNitric oxide (NO) is an antimicrobial metabolite produced by immune cells to prohibit infection. Due to its reactivity, NO has numerous reaction routes available to it in biological systems with some leading to cellular damage and others producing innocuous compounds. Pathogens have evolved resistance mechanisms toward NO, and many of these take the form of enzymes that chemically passivate the molecule. In essence, bacteria have channeled NO flux toward useful or harmless compounds, and away from pathways that damage cellular components. Pathogens devoid of detoxification enzymes have been found to have compromised survival in different infection models, which suggests that diverting flux away from NO defenses could be a viable antiinfective strategy. From this perspective, potentiation of NO stress mirrors challenges in metabolic engineering where researchers endeavor to divert flux away from endogenous pathways and toward those that produce desirable biomolecules. In this review, we cast NO stress as a metabolic flux and discuss how the tools and methodologies of metabolic engineering are well suited for analysis of this bacterial stress response. We provide examples of such interdisciplinary applications, discuss the benefits of considering NO stress from a flux perspective, as well as the pitfalls, and offer a vision for how metabolic engineering analyses can assist in deciphering the economics underlying bacterial responses to multistress conditions that are characteristic of the phagosomes of immune cells.
  • Chapter One - Host-Derived Nitric Oxide and Its Antibacterial Effects in
           the Urinary Tract
    • Abstract: Publication date: 2018Source: Advances in Microbial Physiology, Volume 73Author(s): Lovisa Svensson, Mirjana Poljakovic, Isak Demirel, Charlotte Sahlberg, Katarina PerssonAbstractUrinary tract infection (UTI) is one of the most common bacterial infections in humans, and the majority are caused by uropathogenic Escherichia coli (UPEC). The rising antibiotic resistance among UPEC and the frequent failure of antibiotics to effectively treat recurrent UTI and catheter-associated UTI motivate research on alternative ways of managing UTI. Abundant evidence indicates that the toxic radical nitric oxide (NO), formed by activation of the inducible nitric oxide synthase, plays an important role in host defence to bacterial infections, including UTI. The major source of NO production during UTI is from inflammatory cells, especially neutrophils, and from the uroepithelial cells that are known to orchestrate the innate immune response during UTI. NO and reactive nitrogen species have a wide range of antibacterial targets, including DNA, heme proteins, iron–sulfur clusters, and protein thiol groups. However, UPEC have acquired a variety of defence mechanisms for protection against NO, such as the NO-detoxifying enzyme flavohemoglobin and the NO-tolerant cytochrome bd-I respiratory oxidase. The cytotoxicity of NO-derived intermediates is nonspecific and may be detrimental to host cells, and a balanced NO production is crucial to maintain the tissue integrity of the urinary tract. In this review, we will give an overview of how NO production from host cells in the urinary tract is activated and regulated, the effect of NO on UPEC growth and colonization, and the ability of UPEC to protect themselves against NO. We also discuss the attempts that have been made to develop NO-based therapeutics for UTI treatment.
  • Chapter Three - The Inflammasome: Regulation of Nitric Oxide and
           Antimicrobial Host Defence
    • Abstract: Publication date: 2018Source: Advances in Microbial Physiology, Volume 72Author(s): Rajalaksmy A. Ramachandran, Christopher Lupfer, Hasan ZakiAbstractNitric oxide (NO) is a gaseous signalling molecule that plays diverse physiological functions including antimicrobial host defence. During microbial infection, NO is synthesized by inducible NO synthase (iNOS), which is expressed by host immune cells through the recognition of microbial pattern molecules. Therefore, sensing pathogens or their pattern molecules by pattern recognition receptors (PRRs), which are located at the cell surface, endosomal and phagosomal compartment, or in the cytosol, is key in inducing iNOS and eliciting antimicrobial host defence. A group of cytosolic PRRs is involved in inducing NO and other antimicrobial molecules by forming a molecular complex called the inflammasome. Assembled inflammasomes activate inflammatory caspases, such as caspase-1 and caspase-11, which in turn process proinflammatory cytokines IL-1β and IL-18 into their mature forms and induce pyroptotic cell death. IL-1β and IL-18 play a central role in immunity against microbial infection through activation and recruitment of immune cells, induction of inflammatory molecules, and regulation of antimicrobial mediators including NO. Interestingly, NO can also regulate inflammasome activity in an autocrine and paracrine manner. Here, we discuss molecular mechanisms of inflammasome formation and the inflammasome-mediated regulation of host defence responses during microbial infections.
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-