for Journals by Title or ISSN
for Articles by Keywords

Publisher: Springer-Verlag   (Total: 2336 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

The end of the list has been reached or no journals were found for your choice.
Journal Cover Journal of Material Cycles and Waste Management
  [SJR: 0.449]   [H-I: 22]   [3 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1611-8227 - ISSN (Online) 1438-4957
   Published by Springer-Verlag Homepage  [2336 journals]
  • Experimental study of rubber tire aggregates effect on compressive and
           dynamic load-bearing properties of cylindrical concrete specimens
    • Authors: Hossein Ataei
      Pages: 665 - 676
      Abstract: Abstract Sustainable development has become a major focus for engineers and planners as part of their collective efforts in finding, developing and integrating environmental-friendly solutions for material recycling and waste management into design and construction of civil engineering infrastructure. In the past three decades, there has been an increase in recycling and application of waste materials into the concrete to decrease costs and improve material properties of the concrete. Significant growth in automobile manufacturing industry and increased rubber tire supply for vehicles suggested the application of waste tire particles as concrete aggregates to minimize the ecological footprint of the rubber tire waste due to its recycling process difficulties. In this paper, the effect of rubber tire particles on compressive and dynamic strength of concrete specimens with different particle percentiles was tested on more than 55 cylindrical specimens. To achieve the optimal mix design properties of rubber tire concrete specimens, both fine and coarse aggregates got replaced by fine and coarse rubber particles. Introduction of rubber tire particles as coarse and fine aggregate reduces the brittleness of the concrete and provides more flexible aggregate bonding which ultimately improves the dynamic resistance of the concrete. It increases the concrete workability and provides environmental-friendly and cost-effective solutions in using recycled materials for concrete construction applications.
      PubDate: 2016-09-01
      DOI: 10.1007/s10163-015-0362-2
      Issue No: Vol. 18, No. 4 (2016)
  • The mixing and segregation characteristics of rice straw in a cylindrical
           bubbling fluidized bed
    • Authors: Jae Gyu Hwang; Hang Seok Choi; Jun Hwa Kwon
      Pages: 771 - 780
      Abstract: Abstract In the present study, an experiment was performed to investigate the mixing and segregation characteristics of standard sand and rice straw particles in a cylindrical bubbling fluidized bed. The mass ratio (rice straw/standard sand = 0.5–1.25 %) of two particles and superficial gas velocity (0.13–0.18 m/s) were changed as experimental variables. The pressure drop curve and Kramer’s equation were used to determine the minimum fluidization velocity and mixing index, respectively. In all cases, the mixing index was the lowest at U/U mf = 1.15. Based on the point of U/U mf = 1.15, the segregation region and mixing region were observed. In the segregation region, mass ratio of 0.75 % showed the lowest mixing index. At the U/U mf = 1.23 which was selected as the starting of fast pyrolysis considering residence time and the previous fast pyrolysis experiment, mass ratio of 1.25 % showed the highest mixing index which was 0.90.
      PubDate: 2016-09-01
      DOI: 10.1007/s10163-015-0384-9
      Issue No: Vol. 18, No. 4 (2016)
  • Effect of substrate feeding frequencies on the methane production and
           microbial communities of laboratory-scale anaerobic digestion reactors
    • Authors: Zheng Hua Piao; Jongkeun Lee; Jae Young Kim
      Abstract: Abstract Even though full-scale digesters have been designed based on laboratory-scale tests, the substrate feeding modes of laboratory-scale tests might be different from those of full-scale digesters. The effect of substrate feeding frequencies on the performance and microbial community of laboratory-scale anaerobic digestion reactors was investigated. Feeding frequencies of twice a day, once a day, and every two days were tested in three 2-L reactors with an organic loading rate of 0.5 g-glucose/L/day under mesophilic condition. According to the results of this study, all the reactors showed similar methane production rates and SCOD removal efficiencies after sufficient time of acclimation, but frequently feeding promoted more stable digestion. Although there was no significant difference in microbial diversities from pyrosequencing analyses, the changes of archaeal community composition were observed. The decrease in feeding frequency appeared to cause shifts from acetoclastic methanogens affiliated with Methanosaeta to H2-utilizing methanogens. The increase of Methanosaeta at a frequently feeding might contribute to the stability of reactor operation. Since this study uses glucose as the substrate, there is still possibility of different results for more complex substrates, such as sludge, food waste, etc.
      PubDate: 2016-10-17
      DOI: 10.1007/s10163-016-0556-2
  • Removal of cyclic volatile methylsiloxanes in effluents from treated
           landfill leachate by electrochemical oxidation
    • Authors: Chunhui Zhang; Minying Jin; Jiawei Tang; Xiangyu Gao
      Abstract: Abstract An electrochemical oxidation reactor was used for advanced treatment of cyclic volatile methylsiloxanes using stainless steel plates as anode and cathode electrode. Several key factors were studied to optimize the electrochemical oxidation process. During the electrochemical oxidation process, the removal efficiencies of D5 (decamethylcyclopentasiloxane) increased with the reaction time and applied current densities. At the optimal operating parameters including plate distance of 1.0 cm, electrode plate amounts of 4 pairs, current density of 20 mA/cm2 and reaction time of 30 min, the removal efficiencies of D4 (octamethylcyclotetrasiloxane), D5 (decamethylcyclopentasiloxane), and D6 (dodecamethylcyclohexasiloxane) can reach 100, 82.1, and 72.5 %, respectively.
      PubDate: 2016-10-08
      DOI: 10.1007/s10163-016-0554-4
  • Polychlorinated biphenyls (PCBs) and halogenated flame retardants (HFRs)
           in multi-matrices from an electronic waste (e-waste) recycling site in
           Northern China
    • Authors: Wen-Jun Hong; Hongliang Jia; Yongsheng Ding; Wen-Long Li; Yi-Fan Li
      Abstract: Abstract The present study investigated the occurrence of polychlorinated biphenyls (PCBs) and halogenated flame retardants (HFRs) in soil, water, reed, air and dust samples collected from the e-waste recycling region in Ziya Town, Northern China. The results showed that the concentrations of PCBs reached relative high level in environmental matrices in the study area. HFRs including polybrominated diphenyl ethers (PBDEs), dechlorane plus (DP), allyl 2,4,6-tribromophenyl ether (ATE), tetrabromoethylcyclohexane (TBECH), pentabromotoluene (PBT), pentabromoethylbenzene (PBEB), 2,3-dibromopropyl 2,4,6-tribromophenyl ether (DPTE), 1,2-bis-(2,4,6-tribromophenoxy) ethane (BTBPE) and so on were also widely detected in multi-matrices. Long-range atmospheric transport (LRAT) potentials of non-BDE HFRs were assessed to address the LRAR abilities of these compounds. Analysis of soil–air exchange of PCBs and HFRs showed that soil acted as a secondary source to the atmosphere only for a few low molecular weight compounds, while the direction of the flux of most detected chemicals was from air to soil.
      PubDate: 2016-10-06
      DOI: 10.1007/s10163-016-0550-8
  • Characterizations of temperature effects on sintered ceramics manufactured
           with waste foundry sand and clay
    • Abstract: Abstract The objects of this study were to use waste foundry sand (WFS) to manufacture reclaimed resource tiles and to determine the effects of different kiln temperatures on the properties of the reclaimed WFS tiles. In this study, clay was replaced with 0 or 15 % WFS to manufacture tile specimens. Four different kiln temperatures (1000, 1050, 1100, and 1150 °C) were used in this study for the manufacture of tile specimens. The test results showed that using 15 % WFS in the tile specimens allowed the kiln temperature to be lowered by 50 °C. This temperature reduction is helpful for reducing costs and energy consumption and carbon reduction. Moreover, when the kiln temperature increased from 1000 to 1100 °C and the specimens were placed in acidic and alkaline solutions, the weight loss of the tile specimens containing 15 % WFS was half that of the specimens containing 0 % WFS. The acid-alkali resistance of the tile specimens containing 15 % WFS was also improved. This result suggested that the WFS replacement and kiln temperature affected the properties of the tile specimens.
      PubDate: 2016-10-05
      DOI: 10.1007/s10163-016-0553-5
  • Effect of technology development on potential environmental impacts from
           heavy metals in waste smartphones
    • Abstract: Abstract Technology development has brought beneficial changes in the functions of smartphones but has the potential to impact the environment due to the high generation of waste smartphones. Thus, this study evaluates and compares environmental impact potentials from metals in waste smartphones to figure out the effect of smartphone model replacements on hazardous waste, resource depletion, and toxicity potentials. The total threshold limit concentration (TTLC) analysis is used to determine whether the waste smartphones would be classified as hazardous waste, and the life-cycle impact assessment methods are used to evaluate resource depletion, cancer, non-cancer, and ecotoxicity potentials. The TTLC results showed that the smartphone technology development did not reduce hazardous waste potentials. The life-cycle impact assessment results showed that the technology development overall reduced resource depletion potential but increased toxicity potential. In addition, priority metals contributing to the potentials were identified to effectively manage their environmental impacts. This study can provide fundamental information for smartphone manufacturers, waste smartphone recyclers and disposers, and e-waste policymakers to circulate resources and to prevent environmental pollutions from hazardous and toxic materials.
      PubDate: 2016-10-05
      DOI: 10.1007/s10163-016-0548-2
  • Analysis of recycling structures for e-waste in Vietnam
    • Abstract: Abstract E-waste management in Vietnam poses real challenges such as the lack of specific e-waste legislation, the strong involvement of “craft villages” and the missing of monitoring data. Many issues (e.g., pollution level, generated waste, health of workers and resident living at recycling sites) lead to the limited access to these craft villages. Thus, there is no comprehensive picture on e-waste management in Vietnam available today. This research focuses on the current situation of e-waste management. Sources of e-waste, collection and treatment in Vietnam are investigated by utilizing most available sources of information (published journals, unpublished works from projects and reports from institutes, ministry) together with the interviewed data from experts, collectors, workers and especially, biggest traders in the field. Based on this information, the processes applied in Vietnam, both in the formal and informal sector, have been analyzed systematically in terms of inputs, outputs, potential emissions and related risks for workers. From these aspects, a comparison in terms of legal frameworks, collection and treatment at both formal and informal sector between Vietnam and other countries in Asian region was undertaken. Thus, major challenges of e-waste management and relatively comprehensive image of e-waste management and treatment in Vietnam have been identified.
      PubDate: 2016-10-04
      DOI: 10.1007/s10163-016-0549-1
  • Examination of the influence of dissolved halite (NaCl) on the leaching of
           lead (Pb) from cement-based solidified wastes
    • Abstract: Abstract The leaching of lead from cement-based solidified waste forms mixed at different water/cement ratios was studied by conducting equilibrium and semi-dynamic leaching tests using deionized water and sodium chloride solutions. The results suggest that leaching of the primary constituents of the cement (calcium, silicon and sulfate) is controlled by solubility equilibria, with increased leaching into chloride solutions due to ionic strength effects. The original porosity of the waste forms increased with water/cement ratio and chloride solutions further increased it as a result of decalcification. Lead leaching was generally low, and appears to be a transport-controlled process, such that leaching correlates positively with porosity.
      PubDate: 2016-10-03
      DOI: 10.1007/s10163-016-0552-6
  • Current and future solid waste management system in Northern Viet Nam with
           focus on Ha Noi: climate change effects and landfill management
    • Abstract: Abstract The contribution investigates the solid waste management system in Ha Noi under consideration of the interrelation between climate change effects and landfill management by means of a cause-and-effect-analysis as well as water balances using the HELP 3.95 model and gas emission data, followed by a Strength, Weakness, Opportunities, Threats (SWOT) analysis. Even landfills are sources of methane (CH4) emissions they are also impacted by climate change. The main effects on landfill sites are the change of climatic conditions, namely the regional water balance, extreme precipitation and storm events. The results of the water balance model results show that a geomembrane surface sealing can reduce the leachate formation significantly, a fact that is also valid for the climate change scenario with higher precipitation. The risk of flooding and erosion at the landfill sites increases, which will require a customized water management. In parallel landfill gas offers the opportunity for recovery of Greenhouse Gases (GHG) and the generation of renewable energy. Some further management options are wind turbines, photovoltaic systems or biomass for biogas conversion, which was grown on closed landfill sites. The inclusion of climate friendly management options of closed landfills in a “Good Landfill Aftercare Practice” is recommended.
      PubDate: 2016-10-03
      DOI: 10.1007/s10163-016-0551-7
  • Preparation, sintering behavior, and expansion performance of ceramsite
           filter media from dewatered sewage sludge, coal fly ash, and river
    • Authors: Tianpeng Li; Tingting Sun; Dengxin Li
      Abstract: Abstract The main aim of this study is to assess the preparation, sintering behavior, and expansion performance of ceramsite filter media (CFM) from dewatered sewage sludge, coal fly ash, and river sediment without using any natural resources. The results showed that the investigated physical properties of lab made CFM met with the China’s industrial standard of CJ/T 299-2008 and the concentration of heavy metals in the lixivium was lower than the threshold of GB 5085.3-2007. During the sintering process, the relationships between ignition loss rate, expansion rate, and sintering temperature could be well described simultaneously by the 3-order polynomial fitting curve, with high correlation coefficient values (R 2 > 0.999). The fitting curves of the ignition loss rate and expansion rate had one peak and one valley, respectively, and their cut-off point that is the sintering temperatures were the same (700 °C). The whole sintering process could be divided into two stages. The ignition loss rate was gradually increased in both the stages. At the same time, the expansion rate was decreased in the first stage and then increased in the second stage. The significance of this work is to pursue the concept of sustainable development.
      PubDate: 2016-09-29
      DOI: 10.1007/s10163-016-0547-3
  • Processing plastics from ASR/ESR waste: separation of poly vinyl chloride
           (PVC) by froth flotation after microwave-assisted surface modification
    • Authors: Srinivasa Reddy Mallampati; Chi-Hyeon Lee; Min Hee Park; Byeong-Kyu Lee
      Abstract: Abstract The feasibility of the selective surface hydrophilization of poly vinyl chloride (PVC) using microwave treatment to facilitate the separation of PVC via froth flotation from automobile shredder residue (ASR) and electronic waste shredder residue (ESR) was evaluated. In the presence of powder-activated carbon (PAC), 60-s microwave treatment selectively enhanced the hydrophilicity of the PVC surface (i.e., the PVC contact angle decreased from 86.8° to 69.9°). The scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results are consistent with increased hydrophilic functional groups (i.e., ether, hydroxyl, and carboxyl), amounting to significant changes in the morphology and roughness of the PVC surface after treatment. After only 60 s of microwave treatment, 20 % of the PVC was separated in virgin and ASR/ESR plastics with 33 and 29 % purity, respectively, as settled fractions by froth flotation at a 150 rpm mixing speed. The microwave treatment with the addition of PAC had a synergetic effect with the froth flotation, which brought about 100 and 90 % selective separation of PVC from the other virgin and ASR/ESR plastics, with 91 and 82 % purity. The use of the combined froth flotation and microwave treatments is an effective technology for separating PVC from hazardous waste plastics.
      PubDate: 2016-09-27
      DOI: 10.1007/s10163-016-0546-4
  • Recycling of biodiesel fuel wastewater for use as a liquid fertilizer for
    • Authors: Jiro Kohda; Yasuhisa Nakano; Akimitsu Kugimiya; Yu Takano; Takuo Yano
      Abstract: Abstract Wastewater is discharged during washing processes in the production of biodiesel fuel (BDF) using alkaline catalysts. It can be recycled as a liquid fertilizer for hydroponics by adding essential components for plant growth. The effects of the liquid fertilizer on plant growth were investigated. Liquid fertilizer containing a smaller amount of the BDF wastewater had a similar effect on plant growth as the standard nutrient solutions. This result reveals that BDF wastewater can be recycled for use as a liquid fertilizer for hydroponics. However, fertilizer with a larger amount of the BDF wastewater showed poor and varied plant growth due to the growth of microorganisms in the contaminated wastewater. Hence, when BDF wastewater becomes contaminated during storage, sterilization is necessary to recycle it as a liquid fertilizer. Moreover, contamination during storage should be avoided for successful recycling.
      PubDate: 2016-09-23
      DOI: 10.1007/s10163-016-0545-5
  • Industrial solid waste management through the application of
           multi-criteria decision-making analysis: a case study of Shamsabad
           industrial complexes
    • Authors: Dariush Nouri; M. R. Sabour; M. GhanbarzadehLak
      Abstract: Abstract Industrial towns, as major bases of small and medium production centers, have played a major role in the industrial development of several countries. These towns have paved a way for the prosperity of economic plans and have been able to meet up with the production perspectives of investors, thereby providing the necessary fundamental services. In this regard, paying attention to proper management of waste production is quite important both in the preservation of the environment from industrial pollution and reduction of probable risks threatening the employees of industrial units located in the towns. Therefore, the present research determined the stream of the industrial waste production in Shamsabad Industrial Town, by designing four appropriate disposal scenarios according to the quality of the produced wastes, and assesses them technically, economically and environmentally using two methods of analysis: analytic hierarchical process and analytic network process. The fourth scenario, which consisted of landfilling, incineration and recycling, was ultimately selected as the best disposal scenario. Indeed, the main objective of current paper is to develop a model which could be implemented in other industrial towns, to proper management of generated wastes.
      PubDate: 2016-09-21
      DOI: 10.1007/s10163-016-0544-6
  • Life cycle assessment of solid refuse fuel production from MSW in Korea
    • Authors: Sora Yi; Yong-Chul Jang
      Abstract: Abstract Solid refuse fuel (SRF) produced from waste materials is a promising fuel that can be utilized for energy recovery in industries. This study considered both characterization and weighting modeling as life cycle assessment (LCA) results. This study aimed to analyze the flows of materials and energy and to evaluate the environmental impact of SRF plants using LCA and compared them with an incineration plant. Based on the results of material and energy flow analysis, SRF products had various energy potentials depending on the treatment method of municipal solid waste (MSW) and replaced the current fossil fuels by SRF combustion. Global impacts were mainly influenced by energy consumption, especially drying methods in the production of SRF, and affected the results of the weighting analysis. The SRF plant with a bio-drying option was evaluated as the best effective practice in the weighting analysis. The LCA results in this study indicated 0.021–9.88 points according to drying methods for SRF production and 1.38 points for incineration. In the sensitivity analysis, the environmental impact of SRF production was found to be significantly affected by the drying methods for MSW and the utilization of fossil energy. Thus, improvement of the drying options could significantly reduce the environmental impact.
      PubDate: 2016-09-16
      DOI: 10.1007/s10163-016-0541-9
  • A charge model for household waste management services: a case study of
           Tehran municipality
    • Authors: Mohammad Reza Nazari; Khalil Kalantari; Iraj Ghasemi; Mahdi Jalili Ghazizade
      Abstract: Abstract In practice, it is difficult to implement Pay-As-You-Throw charge systems based on accurate estimates of waste generation. In many cities, this is made impossible, due to lack of technical and administrative infrastructure and cultural considerations, especially in developing countries. This paper presents an alternative two-component charge model that is the combination of cost-accounting technique of Waste Management Services (WMSs) and econometric functions of waste generation. Practical and computation steps considered by the model are presented as a proposal to reform the current system of waste charge in Tehran municipality. The presented model is simple to implement and resolves some of the disadvantages of the traditional methods of waste charge systems, including insufficient revenue to cover the cost of waste management and unfairness related to social inequality.
      PubDate: 2016-09-09
      DOI: 10.1007/s10163-016-0542-8
  • BMP estimation of landfilled municipal solid waste by multivariate
           statistical methods using specific waste parameters: case study of a
           sanitary landfill in Turkey
    • Authors: Ilker Sel; Mehmet Çakmakcı; Bestamin Özkaya; Fatih Güreli
      Abstract: Abstract The main objective of this study was to determine whether methane potential of waste could be estimated more easily by a limited number of waste characterization variables. 36 samples were collected from 12 locations and 3 waste depths in order to represent almost all waste ages at the landfill. Actual remaining methane potential of all samples was determined by the biochemical methane potential (BMP) tests. The cumulative methane production of closed landfill (cLF) samples reached 75–125 mL at the end of experiment duration, while the samples from active landfill (aLF) produced in average 216–266 mL methane. The average experimental k and L 0 values of cLF and aLF were determined by non-linear regression using BMP data with first-order kinetic equation as 0.0269 day−1–30.38 mL/g dry MSW and 0.0125 day−1–102.1 mL/g dry MSW, respectively. The principal component analysis (PCA) was applied to analyze the results for cLF and aLF along with BMP results. Three PCs for the data set were extracted explaining 72.34 % variability. The best MLR model for BMP prediction was determined for seven variables (pH–Cl–TKN–NH4–TOC–LOI–Ca). R 2 and Adj. R 2 values of this best model were determined as 80.4 and 75.3 %, respectively.
      PubDate: 2016-09-08
      DOI: 10.1007/s10163-016-0543-7
  • Life cycle assessment of biodiesel fuel production from waste cooking oil
           in Okayama City
    • Authors: Jinmei Yang; Takeshi Fujiwara; Qijin Geng
      Abstract: Abstract A life cycle assessment (LCA) is performed to make clear of the actual environment impacts from conversation of waste cooking oil (WCO) to biodiesel fuel (BDF) in Okayama. A scenario analysis is carried out based on different participation rate of residents who separate WCO from general waste, corresponding to different BDF utilisation rate in transportation system. Sub scenarios complying with different gas emission standards regarding vehicles are designed as well. Afterwards, life cycle impact assessment is conducted to focus on global warming, acidification, and urban air pollution. Overall improvement of almost all kinds of life cycle inventories is significant when diesel is replaced with BDF, demonstrating that a shift from WCO-to-incineration to WCO-to-BDF is more beneficial. Under carbon neutral, compared to base scenario (S0), about 746.05 ton CO2 emission will be reduced annually in the scenario with 100 % BDF utilisation in vehicles (S4). Meanwhile, total external cost in three environmental impacts (EI) sharply reduces by 51.90 %, showing much economic sustainability in S4. Moreover, the manufacturing cost for producing one litter WCO-to-BDF is 97.32 Yen. Sensitivity analysis shows that the gas emission standard regarding vehicles had much bigger effect on EI than BDF manufacturing process in this research.
      PubDate: 2016-09-06
      DOI: 10.1007/s10163-016-0540-x
  • Gasification and reforming of biomass and waste samples by means of a
           novel catalyst
    • Authors: Katsuya Kawamoto; Baowang Lu
      Abstract: Abstract This study conducted gasification and catalytic reforming experiments with the expectation of obtaining new advantages on energy recovery and aimed for the development of an effective catalyst. Initially, the use of thermal gasification technology for waste treatment in line with waste-to-energy strategies was reviewed. Technological systems which have gasification were classified and their current status was discussed. Then, the results of gasification and reforming experiments showed that product gas with 50 % H2 or more was obtained using a Ni catalyst on a mesoporous silica–based SBA-15 support (NiO/SBA-15), which we newly developed. Experiments using wood feedstock revealed that H2 production by the catalyst was better when the NiO content was 20 % (W/W) or more than when another catalyst or the Ni catalyst with a lower Ni loading was used. Tar formation as a by-product was also well controlled by the catalyst, and use of a catalyst with 40 % NiO reduced the tar concentration to less than 0.2 g/ \( {\text{m}}^{3}_{\text{N}} \) . Experiments using a mixed feedstock of wood and RPF resulted in an increase in hydrocarbon concentration because of insufficient reforming. This finding suggests that future work is required to find a better solution to wood and RPF co-gasification.
      PubDate: 2016-07-20
      DOI: 10.1007/s10163-016-0533-9
  • Study of nitrogen oxide absorption in the calcium sulfite slurry
    • Authors: Ye Sun; Yuan Meng; Xiaoyan Guo; Tianle Zhu; Hongju Liu; Wenpei Li
      Abstract: Abstract Experiments were conducted using a bubbling reactor to investigate nitrogen oxide absorption in the calcium sulfite slurry. The effects of CaSO3 concentration, NO2/NO mole ratio and O2 concentrations on NO2 and SO2 absorption efficiencies were investigated. Five types of additives, including MgSO4, Na2SO4, FeSO4, MgSO4/Na2SO4 and FeSO4/Na2SO4, had been evaluated for enhancing NO2 absorption in CaSO3 slurry. Results showed that CaSO3 concentration had significant impact on NO2 and SO2 absorption efficiencies, and the highest absorption efficiencies of SO2 and NO2 could reach about 99.5 and 75.0 %, respectively. Furthermore, the NO2 absorption was closely related to the NO2/NO mole ratio, and the existence of NO2 in flue gas may promote NO absorption. The presence of O2 in simulated flue gas was disadvantage for NO x removal because it can oxidize sulfite to sulfate. It was worth pointing out that FeSO4/Na2SO4 was the best additive among those investigated additives, as the NO2 removal efficiency was significantly increased from 74.8 to 95.0 %. IC and in situ FTIR results suggest that the main products were NO3 − and NO2 − in liquid phase and N2O, N2O5 and HNO3 in gas phase during the CaSO3 absorption process.
      PubDate: 2016-07-11
      DOI: 10.1007/s10163-016-0526-8
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016