for Journals by Title or ISSN
for Articles by Keywords
help

Publisher: Springer-Verlag   (Total: 2336 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

The end of the list has been reached or no journals were found for your choice.
Journal Cover Journal of Material Cycles and Waste Management
  [SJR: 0.449]   [H-I: 22]   [3 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1611-8227 - ISSN (Online) 1438-4957
   Published by Springer-Verlag Homepage  [2336 journals]
  • Sb release characteristics of the solid waste produced in antimony mining
           smelting process
    • Authors: Bozhi Ren; Yalin Zhou; Hongpu Ma; Renjian Deng; Peng Zhang; Baolin Hou
      Abstract: Abstract Sb release characteristics of blast furnace slag, mining waste rock and tailing sand were investigated in static immersion and dynamic leaching test. These three kinds of waste samples were collected from the antimony mine in Lengshuijiang, China, produced in mining smelting process. Effects of solid/liquid ratio, sample size and pH of leaching solution on Sb release characteristics were inspected based on the analysis of scanning electron microscope, pH and EC of leachate. The optimal parameters for Sb leaching of each sample were analyzed. For blast furnace slag and mining waste rock, Sb release contents increased along with the decline of solid/liquid ratio. The maximum accumulative release contents were 42.13, 34.26 mg/kg at the solid/liquid ratio of 1:20. While Sb release content for tailing sand decreased first and then increased with the reduction of solid/liquid ratio. When the solid/liquid ratio was 1:5, the accumulative Sb release content reached the most (24.30 mg/kg). Sb release content of mining waste rock increased with the drop of leaching solution pH, with the highest accumulative release content of 26.01 mg/kg at pH 2.0. Sb release contents of blast furnace slag and tailing sand showed positive correlation with the variation of leaching solution pH. The maximum accumulative release contents of these two samples were 215.91 and 147.83 mg/kg, respectively, when leaching solution pH was 7.0. In summary, Sb release capacity of the three samples in descending order was tailing sand, blast furnace slag and mining waste rock. pH and EC of the leachate in dynamic test varied independently with the initial pH of leaching solution while showing close relationship with mineral hydrolysis in the waste.
      PubDate: 2016-11-30
      DOI: 10.1007/s10163-016-0562-4
       
  • Evaluation of thermally treated asbestos based on fiber number
           concentration determined by transmission electron microscopy
    • Authors: Takashi Yamamoto; Akiko Kida; Yukio Noma; Atsushi Terazono; Shin-ichi Sakai
      Abstract: Abstract Appropriate treatment of asbestos waste is a significant problem. In Japan, inertization of asbestos-containing waste by novel techniques approved by the Ministry of the Environment is now promoted. A quantitative method of testing with high sensitivity to the asbestos levels present in the inertization products is required for the approval process, but many testing methods are only qualitative. Thus, we have developed an evaluation method for asbestos in inertized products, consisting of the extraction of fibers from inertized products and determination of fiber number concentration by transmission electron microscopy. We adopted this testing method to evaluate thermally treated asbestos. It was found that fiber number concentrations of thermally treated asbestos decreased with increased treatment temperature, and were below the environmental level (102 Mf/g) at more than 1000 °C for chrysotile and crocidolite and more than 1400 °C for amosite and other amphibole forms of asbestos.
      PubDate: 2016-11-30
      DOI: 10.1007/s10163-016-0564-2
       
  • A short review on hydrothermal liquefaction of livestock manure and a
           chance for Korea to advance swine manure to bio-oil technology
    • Authors: Mohammad Nazrul Islam; Jeong-Hun Park
      Abstract: Abstract Due to the abundant supply and suitable physicochemical characteristics of livestock manure, it may be a useful biomass to produce biofuels, such as “bio-oil.” Hydrothermal liquefaction is a promising method for converting such wet biomasses into a liquid fuels and has attracted attention worldwide. In this review, the current state of research on the hydrothermal liquefaction of livestock manure biomasses is summarized. The effect of operating parameters on the yield of bio-oil is also reviewed. The fundamental characteristics of raw manure biomasses and converted oils are outlined and discussed in the paper. To reduce the use of fossil fuel and nuclear energy, the South Korean government has pledged to increase renewable energy. Based on findings from a literature review, it can be concluded that there is a chance for Korea to advance bio-oil production from the abundant and tremendous energy potential of swine manure by a hydrothermal liquefaction process.
      PubDate: 2016-11-28
      DOI: 10.1007/s10163-016-0566-0
       
  • Distribution of inorganic bromine and metals during co-combustion of
           polycarbonate (BrPC) and high-impact polystyrene (BrHIPS) wastes
           containing brominated flame retardants (BFRs) with metallurgical dust
    • Authors: Mariusz Grabda; Sylwia Oleszek; Etsuro Shibata; Takashi Nakamura
      Abstract: Abstract This study focused on the thermal degradation of polycarbonate (BrPC) and high-impact polystyrene (BrHIPS), containing different brominated flame retardants. The evolved inorganic bromine was utilized for the separation of metals present in electric arc furnace dust (EAFD). The thermal degradation of BrPC generated inorganic gaseous HBr (69%) and condensable Br2 (31%). The bromine evolved from BrHIPS was detected almost entirely in a condensed phase as SbBr3. When mixed with EAFD, the evolved inorganic bromine reacted immediately with the metallic components of zinc and lead, but not with iron. The best bromination efficiencies were obtained during the isothermal heating (80 min at 550 °C) of the mixtures at mass ratios of 6:1 and 9:1 w/w under oxidizing conditions. The achieved brominating rates reached 78 and 81% for zinc and 90 and 94% for lead in 6:1 and 9:1 BrPC:EAFD, respectively, and 47 and 65% for zinc and 67 and 63% for lead in 6:1 and 9:1 BrHIPS:EAFD, respectively. The oxidizing condition favored complete vaporization of the formed bromides.
      PubDate: 2016-11-28
      DOI: 10.1007/s10163-016-0565-1
       
  • Conversion of CCA-treated wood to ethanol: a method to reduce leaching of
           metals from disposed treated wood prior to disposal
    • Authors: Azita H. Moghaddam; Catherine N. Mulligan
      Abstract: Abstract The objective of this paper is to evaluate the feasibility of producing ethanol from CCA-treated wood that is highly leachable. Following the initial tests, CCA-treated wood was hydrolysed and fermented and the results showed not only that ethanol was produced during the fermentation process but that metals were taken up by the yeast. Toxicity characteristic leaching procedure tests of the hydrolysed wood leached less than 4 mg/L of As while minimal amounts of Cr and Cu remained in the hydrolysed wood which makes landfilling of hydrolysed wood acceptable and less hazardous. A slightly lower amount of ethanol from CCA-treated than untreated wood was produced (6 and 7 g/L, respectively). In general, it suggests that production of ethanol as a source of energy from a hazardous waste (CCA-treated wood) is feasible.
      PubDate: 2016-11-17
      DOI: 10.1007/s10163-016-0561-5
       
  • Effects of acclimated sludge used as seeding material in the start-up of
           anaerobic digestion of glycerol
    • Authors: Juan Vásquez; Kiyohiko Nakasaki
      Abstract: Abstract Methods for improving the anaerobic digestion of glycerol (propane-1,2,3-triol) were investigated, particularly the effects of using acclimated sludge as seeding material during start-up. Glycerol was supplied to the anaerobic digester at an organic loading rate of 2.5 g-COD L−1 day−1. Four experimental runs were carried out with varying mixing ratios of acclimated sludge to unacclimated sludge (0, 10, 20, and 33%). Calculations were performed by employing a numerical model, whose parameters were determined by experimental measurements. Methane production rate (MPR) for all runs attained similar stable values around 21.4 mmol L−1 day−1, though more time was required for attaining stable state of methane production with lower mixing ratios of acclimated sludge. The initial MPR calculated was proportional to the mixing ratio of acclimated sludge. Furthermore, molecular biological methods showed that the types of microorganisms observed in all runs were similar. These results indicate that the seeding with different mixing ratios of acclimated sludge did not affect the microbial consortia in the anaerobic digestion approaching stable state, but did affect the cell density of the useful microorganisms at the start of methane fermentation. Consequently, it was confirmed that at a higher mixing ratio of acclimated sludge, the start of methane production became more vigorous.
      PubDate: 2016-11-14
      DOI: 10.1007/s10163-016-0560-6
       
  • Hydrometallurgical recycling of cobalt from zinc plants residue
    • Authors: Pedram Ashtari; Parviz Pourghahramani
      Abstract: Abstract A large amount of hot filter cake (HFC) is annually generated in Iranian zinc plants. It contains 1% zinc, 16–30% manganese, 5–25% calcium and 1–4.5% cobalt. Usually, zinc is selectively leached by an alkaline medium and its residue is known as alkaline leached HFC (ALHFC). In the present study, the possibility of cobalt extraction from ALHFC was investigated using a creative hydrometallurgical process. At the first stage, zinc and cadmium were selectively removed with sulfuric acid. At the second stage, it was deeply focused on the possibility of selective reductive leaching of cobalt by H2O2 as a reductant in the presence of manganese. As results, several differences were found between the mechanism of cobalt and manganese leaching. Accordingly, cobalt leaching was more affected by acid concentration and manganese leaching was more affected by reductant concentration. Consequently, with manipulating these important parameters, it was made possible to selectively separate cobalt from manganese. Based on the obtained results, 90.9% of cobalt and only 10.04% of manganese were leached with 1% of H2O2. At the third stage, pregnant cobalt solution was successfully purified through a solvent extraction process with D2EHPA. Finally, cobalt hydroxide as our final product with a purity of more than 99% was precipitated from the pure pregnant solution at 70 °C.
      PubDate: 2016-11-14
      DOI: 10.1007/s10163-016-0558-0
       
  • Analysis of branched-chain fatty acids in humic substances as indices for
           compost maturity by pyrolysis–gas chromatography/mass spectrometry with
           tetramethylammonium hydroxide (TMAH-py–GC/MS)
    • Authors: Masami Fukushima; Xuefei Tu; Apichaya Aneksampant; Atsushi Tanaka
      Abstract: Abstract Parameters that affect the degree of humification for humic substances (HSs) are deeply related to the maturity of the compost. In general, the matured composts contain HSs with a higher degree of humification. In addition, microbial activities during composting are also one of the indices for compost maturation. Branched-chain fatty acids are metabolites as the result of microbial activities in a soil environment. Such branched-chain fatty acids, regarded as humic precursors, are incorporated into HSs during the composting process. To determine whether branched-chain fatty acids in HSs can be used as biomarkers during composting processes or not, HSs were extracted from three types of composts with the different maturation, and the branched-chain fatty acids in the HSs were analyzed by pyrolysis–gas chromatography/mass spectrometry with tetramethylammonium hydroxide (TMAH-py–GC/MS). HSs with a higher degree of humification (higher aromaticity and lower molecular weight) contained higher levels of branched-chain fatty acids. These results show that branched-chain fatty acids in HSs from matured compost samples can be used as biomarkers, which indicate the history of microbial activities during overall composting process.
      PubDate: 2016-11-04
      DOI: 10.1007/s10163-016-0559-z
       
  • Development of nutrient cycle through agricultural activities of a rural
           area in the North of Vietnam
    • Authors: Do Thu Nga; Ta Thi Thao; Vu Van Tu; Pham Duc Phuc; Hung Nguyen-Viet
      Abstract: Abstract Material flow analysis (MFA) has been applied to assess the environmental impact of human activities on nutrient flows at the commune scale. This paper reports the assessment of human excreta and animal manure as a nutrient source for paddy fields and fishponds in Hoang Tay commune, Ha Nam province, Vietnam. The quality of MFA model was confirmed through modified uncertainty analysis, then was used to originally quantify and visualize the interlinks of livestock with the environmental sanitation and agricultural system in terms of nutrients. Currently, half of the pig manure was collected to the biogas, and the remainders were freely discharged to the commune’s drainage system (25%) or directly reused in the paddy fields (25%). While wastewater in the drainage system was the biggest source of nitrogen (contributed 46%), paddy field was the biggest source of phosphorous (contributed 55%) discharged to the Nhue River, totaling 57 ± 9 ton N and 29 ± 6 ton P, annually. Consequently, mitigation measures for nutrient resource management were proposed, and reducing half of chemical fertilizers applied and reusing all excreta and manure in the paddy fields were the most effective option.
      PubDate: 2016-11-01
      DOI: 10.1007/s10163-016-0557-1
       
  • Investigation on thermal dechlorination and catalytic pyrolysis in a
           continuous process for liquid fuel recovery from mixed plastic wastes
    • Authors: Junxi Lei; Guoan Yuan; Piyarat Weerachanchai; Shao Wee Lee; Kaixin Li; Jing-Yuan Wang; Yanhui Yang
      Abstract: Abstract A continuous system (feeding rate >1 kg/h) consisting of thermal dechlorination pre-treatment and catalytic pyrolysis with Fe-restructured clay (Fe-RC) catalyst was developed for feedstock recycling of PVC-containing mixed plastic waste. The vented screw conveyor which was specially designed for continuous dechlorination was able to achieve dechlorination efficiency of over 90 % with a feedstock retention time longer than 35.5 min. The chlorine content of the pyrolytic oil obtained after dechlorination was in the range of 6.08–39.50 ppm, which meet the specification for reclamation pyrolytic oil in Japan. Fe-RC was found to significantly improve the yield of pyrolytic oil (achieved to 83.73 wt%) at the optimized pyrolysis temperature of 450 °C and catalyst dosage of 60 g. With the optimized parameters, Fe-RC showed high selectivity for the C9–C12 and C13–C19 oil fraction, which are the major constituents of kerosene and diesel fuel, demonstrating that this catalyst can be applied in the pyrolysis of mixed plastic wastes for the production of kerosene and diesel fuel. Overall, the continuous process exhibited high stability and consistently high-oil yield upon reaching steady state, indicating its potential up-scaling application in the industry.
      PubDate: 2016-10-22
      DOI: 10.1007/s10163-016-0555-3
       
  • Effect of substrate feeding frequencies on the methane production and
           microbial communities of laboratory-scale anaerobic digestion reactors
    • Authors: Zheng Hua Piao; Jongkeun Lee; Jae Young Kim
      Abstract: Abstract Even though full-scale digesters have been designed based on laboratory-scale tests, the substrate feeding modes of laboratory-scale tests might be different from those of full-scale digesters. The effect of substrate feeding frequencies on the performance and microbial community of laboratory-scale anaerobic digestion reactors was investigated. Feeding frequencies of twice a day, once a day, and every two days were tested in three 2-L reactors with an organic loading rate of 0.5 g-glucose/L/day under mesophilic condition. According to the results of this study, all the reactors showed similar methane production rates and SCOD removal efficiencies after sufficient time of acclimation, but frequently feeding promoted more stable digestion. Although there was no significant difference in microbial diversities from pyrosequencing analyses, the changes of archaeal community composition were observed. The decrease in feeding frequency appeared to cause shifts from acetoclastic methanogens affiliated with Methanosaeta to H2-utilizing methanogens. The increase of Methanosaeta at a frequently feeding might contribute to the stability of reactor operation. Since this study uses glucose as the substrate, there is still possibility of different results for more complex substrates, such as sludge, food waste, etc.
      PubDate: 2016-10-17
      DOI: 10.1007/s10163-016-0556-2
       
  • Removal of cyclic volatile methylsiloxanes in effluents from treated
           landfill leachate by electrochemical oxidation
    • Authors: Chunhui Zhang; Minying Jin; Jiawei Tang; Xiangyu Gao
      Abstract: Abstract An electrochemical oxidation reactor was used for advanced treatment of cyclic volatile methylsiloxanes using stainless steel plates as anode and cathode electrode. Several key factors were studied to optimize the electrochemical oxidation process. During the electrochemical oxidation process, the removal efficiencies of D5 (decamethylcyclopentasiloxane) increased with the reaction time and applied current densities. At the optimal operating parameters including plate distance of 1.0 cm, electrode plate amounts of 4 pairs, current density of 20 mA/cm2 and reaction time of 30 min, the removal efficiencies of D4 (octamethylcyclotetrasiloxane), D5 (decamethylcyclopentasiloxane), and D6 (dodecamethylcyclohexasiloxane) can reach 100, 82.1, and 72.5 %, respectively.
      PubDate: 2016-10-08
      DOI: 10.1007/s10163-016-0554-4
       
  • Polychlorinated biphenyls (PCBs) and halogenated flame retardants (HFRs)
           in multi-matrices from an electronic waste (e-waste) recycling site in
           Northern China
    • Authors: Wen-Jun Hong; Hongliang Jia; Yongsheng Ding; Wen-Long Li; Yi-Fan Li
      Abstract: Abstract The present study investigated the occurrence of polychlorinated biphenyls (PCBs) and halogenated flame retardants (HFRs) in soil, water, reed, air and dust samples collected from the e-waste recycling region in Ziya Town, Northern China. The results showed that the concentrations of PCBs reached relative high level in environmental matrices in the study area. HFRs including polybrominated diphenyl ethers (PBDEs), dechlorane plus (DP), allyl 2,4,6-tribromophenyl ether (ATE), tetrabromoethylcyclohexane (TBECH), pentabromotoluene (PBT), pentabromoethylbenzene (PBEB), 2,3-dibromopropyl 2,4,6-tribromophenyl ether (DPTE), 1,2-bis-(2,4,6-tribromophenoxy) ethane (BTBPE) and so on were also widely detected in multi-matrices. Long-range atmospheric transport (LRAT) potentials of non-BDE HFRs were assessed to address the LRAR abilities of these compounds. Analysis of soil–air exchange of PCBs and HFRs showed that soil acted as a secondary source to the atmosphere only for a few low molecular weight compounds, while the direction of the flux of most detected chemicals was from air to soil.
      PubDate: 2016-10-06
      DOI: 10.1007/s10163-016-0550-8
       
  • Characterizations of temperature effects on sintered ceramics manufactured
           with waste foundry sand and clay
    • Abstract: Abstract The objects of this study were to use waste foundry sand (WFS) to manufacture reclaimed resource tiles and to determine the effects of different kiln temperatures on the properties of the reclaimed WFS tiles. In this study, clay was replaced with 0 or 15 % WFS to manufacture tile specimens. Four different kiln temperatures (1000, 1050, 1100, and 1150 °C) were used in this study for the manufacture of tile specimens. The test results showed that using 15 % WFS in the tile specimens allowed the kiln temperature to be lowered by 50 °C. This temperature reduction is helpful for reducing costs and energy consumption and carbon reduction. Moreover, when the kiln temperature increased from 1000 to 1100 °C and the specimens were placed in acidic and alkaline solutions, the weight loss of the tile specimens containing 15 % WFS was half that of the specimens containing 0 % WFS. The acid-alkali resistance of the tile specimens containing 15 % WFS was also improved. This result suggested that the WFS replacement and kiln temperature affected the properties of the tile specimens.
      PubDate: 2016-10-05
      DOI: 10.1007/s10163-016-0553-5
       
  • Effect of technology development on potential environmental impacts from
           heavy metals in waste smartphones
    • Abstract: Abstract Technology development has brought beneficial changes in the functions of smartphones but has the potential to impact the environment due to the high generation of waste smartphones. Thus, this study evaluates and compares environmental impact potentials from metals in waste smartphones to figure out the effect of smartphone model replacements on hazardous waste, resource depletion, and toxicity potentials. The total threshold limit concentration (TTLC) analysis is used to determine whether the waste smartphones would be classified as hazardous waste, and the life-cycle impact assessment methods are used to evaluate resource depletion, cancer, non-cancer, and ecotoxicity potentials. The TTLC results showed that the smartphone technology development did not reduce hazardous waste potentials. The life-cycle impact assessment results showed that the technology development overall reduced resource depletion potential but increased toxicity potential. In addition, priority metals contributing to the potentials were identified to effectively manage their environmental impacts. This study can provide fundamental information for smartphone manufacturers, waste smartphone recyclers and disposers, and e-waste policymakers to circulate resources and to prevent environmental pollutions from hazardous and toxic materials.
      PubDate: 2016-10-05
      DOI: 10.1007/s10163-016-0548-2
       
  • Analysis of recycling structures for e-waste in Vietnam
    • Abstract: Abstract E-waste management in Vietnam poses real challenges such as the lack of specific e-waste legislation, the strong involvement of “craft villages” and the missing of monitoring data. Many issues (e.g., pollution level, generated waste, health of workers and resident living at recycling sites) lead to the limited access to these craft villages. Thus, there is no comprehensive picture on e-waste management in Vietnam available today. This research focuses on the current situation of e-waste management. Sources of e-waste, collection and treatment in Vietnam are investigated by utilizing most available sources of information (published journals, unpublished works from projects and reports from institutes, ministry) together with the interviewed data from experts, collectors, workers and especially, biggest traders in the field. Based on this information, the processes applied in Vietnam, both in the formal and informal sector, have been analyzed systematically in terms of inputs, outputs, potential emissions and related risks for workers. From these aspects, a comparison in terms of legal frameworks, collection and treatment at both formal and informal sector between Vietnam and other countries in Asian region was undertaken. Thus, major challenges of e-waste management and relatively comprehensive image of e-waste management and treatment in Vietnam have been identified.
      PubDate: 2016-10-04
      DOI: 10.1007/s10163-016-0549-1
       
  • Examination of the influence of dissolved halite (NaCl) on the leaching of
           lead (Pb) from cement-based solidified wastes
    • Abstract: Abstract The leaching of lead from cement-based solidified waste forms mixed at different water/cement ratios was studied by conducting equilibrium and semi-dynamic leaching tests using deionized water and sodium chloride solutions. The results suggest that leaching of the primary constituents of the cement (calcium, silicon and sulfate) is controlled by solubility equilibria, with increased leaching into chloride solutions due to ionic strength effects. The original porosity of the waste forms increased with water/cement ratio and chloride solutions further increased it as a result of decalcification. Lead leaching was generally low, and appears to be a transport-controlled process, such that leaching correlates positively with porosity.
      PubDate: 2016-10-03
      DOI: 10.1007/s10163-016-0552-6
       
  • Current and future solid waste management system in Northern Viet Nam with
           focus on Ha Noi: climate change effects and landfill management
    • Abstract: Abstract The contribution investigates the solid waste management system in Ha Noi under consideration of the interrelation between climate change effects and landfill management by means of a cause-and-effect-analysis as well as water balances using the HELP 3.95 model and gas emission data, followed by a Strength, Weakness, Opportunities, Threats (SWOT) analysis. Even landfills are sources of methane (CH4) emissions they are also impacted by climate change. The main effects on landfill sites are the change of climatic conditions, namely the regional water balance, extreme precipitation and storm events. The results of the water balance model results show that a geomembrane surface sealing can reduce the leachate formation significantly, a fact that is also valid for the climate change scenario with higher precipitation. The risk of flooding and erosion at the landfill sites increases, which will require a customized water management. In parallel landfill gas offers the opportunity for recovery of Greenhouse Gases (GHG) and the generation of renewable energy. Some further management options are wind turbines, photovoltaic systems or biomass for biogas conversion, which was grown on closed landfill sites. The inclusion of climate friendly management options of closed landfills in a “Good Landfill Aftercare Practice” is recommended.
      PubDate: 2016-10-03
      DOI: 10.1007/s10163-016-0551-7
       
  • Preparation, sintering behavior, and expansion performance of ceramsite
           filter media from dewatered sewage sludge, coal fly ash, and river
           sediment
    • Authors: Tianpeng Li; Tingting Sun; Dengxin Li
      Abstract: Abstract The main aim of this study is to assess the preparation, sintering behavior, and expansion performance of ceramsite filter media (CFM) from dewatered sewage sludge, coal fly ash, and river sediment without using any natural resources. The results showed that the investigated physical properties of lab made CFM met with the China’s industrial standard of CJ/T 299-2008 and the concentration of heavy metals in the lixivium was lower than the threshold of GB 5085.3-2007. During the sintering process, the relationships between ignition loss rate, expansion rate, and sintering temperature could be well described simultaneously by the 3-order polynomial fitting curve, with high correlation coefficient values (R 2 > 0.999). The fitting curves of the ignition loss rate and expansion rate had one peak and one valley, respectively, and their cut-off point that is the sintering temperatures were the same (700 °C). The whole sintering process could be divided into two stages. The ignition loss rate was gradually increased in both the stages. At the same time, the expansion rate was decreased in the first stage and then increased in the second stage. The significance of this work is to pursue the concept of sustainable development.
      PubDate: 2016-09-29
      DOI: 10.1007/s10163-016-0547-3
       
  • Processing plastics from ASR/ESR waste: separation of poly vinyl chloride
           (PVC) by froth flotation after microwave-assisted surface modification
    • Authors: Srinivasa Reddy Mallampati; Chi-Hyeon Lee; Min Hee Park; Byeong-Kyu Lee
      Abstract: Abstract The feasibility of the selective surface hydrophilization of poly vinyl chloride (PVC) using microwave treatment to facilitate the separation of PVC via froth flotation from automobile shredder residue (ASR) and electronic waste shredder residue (ESR) was evaluated. In the presence of powder-activated carbon (PAC), 60-s microwave treatment selectively enhanced the hydrophilicity of the PVC surface (i.e., the PVC contact angle decreased from 86.8° to 69.9°). The scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results are consistent with increased hydrophilic functional groups (i.e., ether, hydroxyl, and carboxyl), amounting to significant changes in the morphology and roughness of the PVC surface after treatment. After only 60 s of microwave treatment, 20 % of the PVC was separated in virgin and ASR/ESR plastics with 33 and 29 % purity, respectively, as settled fractions by froth flotation at a 150 rpm mixing speed. The microwave treatment with the addition of PAC had a synergetic effect with the froth flotation, which brought about 100 and 90 % selective separation of PVC from the other virgin and ASR/ESR plastics, with 91 and 82 % purity. The use of the combined froth flotation and microwave treatments is an effective technology for separating PVC from hazardous waste plastics.
      PubDate: 2016-09-27
      DOI: 10.1007/s10163-016-0546-4
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.146.177.118
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016