for Journals by Title or ISSN
for Articles by Keywords
help

Publisher: Springer-Verlag (Total: 2352 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

        1 2 3 4 5 6 7 8 | Last   [Sort by number of followers]   [Restore default list]

Showing 1 - 200 of 2352 Journals sorted alphabetically
3D Printing in Medicine     Open Access   (Followers: 2)
3D Research     Hybrid Journal   (Followers: 21, SJR: 0.222, CiteScore: 1)
4OR: A Quarterly J. of Operations Research     Hybrid Journal   (Followers: 10, SJR: 0.825, CiteScore: 1)
AAPS J.     Hybrid Journal   (Followers: 23, SJR: 1.118, CiteScore: 4)
AAPS PharmSciTech     Hybrid Journal   (Followers: 7, SJR: 0.752, CiteScore: 3)
Abdominal Imaging     Hybrid Journal   (Followers: 16, SJR: 0.866, CiteScore: 2)
Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg     Hybrid Journal   (Followers: 4, SJR: 0.439, CiteScore: 0)
Academic Psychiatry     Full-text available via subscription   (Followers: 26, SJR: 0.53, CiteScore: 1)
Academic Questions     Hybrid Journal   (Followers: 8, SJR: 0.106, CiteScore: 0)
Accreditation and Quality Assurance: J. for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 29, SJR: 0.316, CiteScore: 1)
Acoustical Physics     Hybrid Journal   (Followers: 11, SJR: 0.359, CiteScore: 1)
Acoustics Australia     Hybrid Journal   (SJR: 0.232, CiteScore: 1)
Acta Analytica     Hybrid Journal   (Followers: 7, SJR: 0.367, CiteScore: 0)
Acta Applicandae Mathematicae     Hybrid Journal   (Followers: 1, SJR: 0.675, CiteScore: 1)
Acta Biotheoretica     Hybrid Journal   (Followers: 4, SJR: 0.284, CiteScore: 1)
Acta Diabetologica     Hybrid Journal   (Followers: 19, SJR: 1.587, CiteScore: 3)
Acta Endoscopica     Hybrid Journal   (Followers: 1)
acta ethologica     Hybrid Journal   (Followers: 4, SJR: 0.769, CiteScore: 1)
Acta Geochimica     Hybrid Journal   (Followers: 7, SJR: 0.24, CiteScore: 1)
Acta Geodaetica et Geophysica     Hybrid Journal   (Followers: 3, SJR: 0.305, CiteScore: 1)
Acta Geophysica     Hybrid Journal   (Followers: 11, SJR: 0.312, CiteScore: 1)
Acta Geotechnica     Hybrid Journal   (Followers: 7, SJR: 1.588, CiteScore: 3)
Acta Informatica     Hybrid Journal   (Followers: 5, SJR: 0.517, CiteScore: 1)
Acta Mathematica     Hybrid Journal   (Followers: 13, SJR: 7.066, CiteScore: 3)
Acta Mathematica Hungarica     Hybrid Journal   (Followers: 2, SJR: 0.452, CiteScore: 1)
Acta Mathematica Sinica, English Series     Hybrid Journal   (Followers: 6, SJR: 0.379, CiteScore: 1)
Acta Mathematica Vietnamica     Hybrid Journal   (SJR: 0.27, CiteScore: 0)
Acta Mathematicae Applicatae Sinica, English Series     Hybrid Journal   (SJR: 0.208, CiteScore: 0)
Acta Mechanica     Hybrid Journal   (Followers: 21, SJR: 1.04, CiteScore: 2)
Acta Mechanica Sinica     Hybrid Journal   (Followers: 5, SJR: 0.607, CiteScore: 2)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 7, SJR: 0.576, CiteScore: 2)
Acta Meteorologica Sinica     Hybrid Journal   (Followers: 3, SJR: 0.638, CiteScore: 1)
Acta Neurochirurgica     Hybrid Journal   (Followers: 7, SJR: 0.822, CiteScore: 2)
Acta Neurologica Belgica     Hybrid Journal   (Followers: 1, SJR: 0.376, CiteScore: 1)
Acta Neuropathologica     Hybrid Journal   (Followers: 4, SJR: 7.589, CiteScore: 12)
Acta Oceanologica Sinica     Hybrid Journal   (Followers: 3, SJR: 0.334, CiteScore: 1)
Acta Physiologiae Plantarum     Hybrid Journal   (Followers: 3, SJR: 0.574, CiteScore: 2)
Acta Politica     Hybrid Journal   (Followers: 15, SJR: 0.605, CiteScore: 1)
Activitas Nervosa Superior     Hybrid Journal   (SJR: 0.147, CiteScore: 0)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 8, SJR: 0.103, CiteScore: 0)
ADHD Attention Deficit and Hyperactivity Disorders     Hybrid Journal   (Followers: 25, SJR: 0.72, CiteScore: 2)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 9)
Administration and Policy in Mental Health and Mental Health Services Research     Partially Free   (Followers: 17, SJR: 1.005, CiteScore: 2)
Adsorption     Hybrid Journal   (Followers: 4, SJR: 0.703, CiteScore: 2)
Advances in Applied Clifford Algebras     Hybrid Journal   (Followers: 4, SJR: 0.698, CiteScore: 1)
Advances in Atmospheric Sciences     Hybrid Journal   (Followers: 37, SJR: 0.956, CiteScore: 2)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 19, SJR: 0.812, CiteScore: 1)
Advances in Contraception     Hybrid Journal   (Followers: 3)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 59, SJR: 1.09, CiteScore: 1)
Advances in Gerontology     Partially Free   (Followers: 8, SJR: 0.144, CiteScore: 0)
Advances in Health Sciences Education     Hybrid Journal   (Followers: 30, SJR: 1.64, CiteScore: 2)
Advances in Manufacturing     Hybrid Journal   (Followers: 4, SJR: 0.475, CiteScore: 2)
Advances in Polymer Science     Hybrid Journal   (Followers: 45, SJR: 1.04, CiteScore: 3)
Advances in Therapy     Hybrid Journal   (Followers: 5, SJR: 1.075, CiteScore: 3)
Aegean Review of the Law of the Sea and Maritime Law     Hybrid Journal   (Followers: 6)
Aequationes Mathematicae     Hybrid Journal   (Followers: 2, SJR: 0.517, CiteScore: 1)
Aerobiologia     Hybrid Journal   (Followers: 3, SJR: 0.673, CiteScore: 2)
Aesthetic Plastic Surgery     Hybrid Journal   (Followers: 11, SJR: 0.825, CiteScore: 1)
African Archaeological Review     Hybrid Journal   (Followers: 20, SJR: 0.862, CiteScore: 1)
Afrika Matematika     Hybrid Journal   (Followers: 1, SJR: 0.235, CiteScore: 0)
AGE     Hybrid Journal   (Followers: 7)
Ageing Intl.     Hybrid Journal   (Followers: 7, SJR: 0.39, CiteScore: 1)
Aggiornamenti CIO     Hybrid Journal   (Followers: 1)
Aging Clinical and Experimental Research     Hybrid Journal   (Followers: 3, SJR: 0.67, CiteScore: 2)
Agricultural Research     Hybrid Journal   (Followers: 6, SJR: 0.276, CiteScore: 1)
Agriculture and Human Values     Hybrid Journal   (Followers: 14, SJR: 1.173, CiteScore: 3)
Agroforestry Systems     Hybrid Journal   (Followers: 20, SJR: 0.663, CiteScore: 1)
Agronomy for Sustainable Development     Hybrid Journal   (Followers: 13, SJR: 1.864, CiteScore: 6)
AI & Society     Hybrid Journal   (Followers: 9, SJR: 0.227, CiteScore: 1)
AIDS and Behavior     Hybrid Journal   (Followers: 14, SJR: 1.792, CiteScore: 3)
Air Quality, Atmosphere & Health     Hybrid Journal   (Followers: 4, SJR: 0.862, CiteScore: 3)
Akupunktur & Aurikulomedizin     Full-text available via subscription   (Followers: 1)
Algebra and Logic     Hybrid Journal   (Followers: 6, SJR: 0.531, CiteScore: 0)
Algebra Universalis     Hybrid Journal   (Followers: 2, SJR: 0.583, CiteScore: 1)
Algebras and Representation Theory     Hybrid Journal   (Followers: 1, SJR: 1.095, CiteScore: 1)
Algorithmica     Hybrid Journal   (Followers: 9, SJR: 0.56, CiteScore: 1)
Allergo J.     Full-text available via subscription   (Followers: 1, SJR: 0.234, CiteScore: 0)
Allergo J. Intl.     Hybrid Journal   (Followers: 2)
Alpine Botany     Hybrid Journal   (Followers: 5, SJR: 1.11, CiteScore: 3)
ALTEX : Alternatives to Animal Experimentation     Open Access   (Followers: 3)
AMBIO     Hybrid Journal   (Followers: 10, SJR: 1.569, CiteScore: 4)
American J. of Cardiovascular Drugs     Hybrid Journal   (Followers: 16, SJR: 0.951, CiteScore: 3)
American J. of Community Psychology     Hybrid Journal   (Followers: 29, SJR: 1.329, CiteScore: 2)
American J. of Criminal Justice     Hybrid Journal   (Followers: 9, SJR: 0.772, CiteScore: 1)
American J. of Cultural Sociology     Hybrid Journal   (Followers: 17, SJR: 0.46, CiteScore: 1)
American J. of Dance Therapy     Hybrid Journal   (Followers: 4, SJR: 0.181, CiteScore: 0)
American J. of Potato Research     Hybrid Journal   (Followers: 2, SJR: 0.611, CiteScore: 1)
American J. of Psychoanalysis     Hybrid Journal   (Followers: 21, SJR: 0.314, CiteScore: 0)
American Sociologist     Hybrid Journal   (Followers: 14, SJR: 0.35, CiteScore: 0)
Amino Acids     Hybrid Journal   (Followers: 8, SJR: 1.135, CiteScore: 3)
AMS Review     Partially Free   (Followers: 4)
Analog Integrated Circuits and Signal Processing     Hybrid Journal   (Followers: 7, SJR: 0.211, CiteScore: 1)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 5, SJR: 0.536, CiteScore: 1)
Analysis in Theory and Applications     Hybrid Journal   (Followers: 1)
Analysis of Verbal Behavior     Hybrid Journal   (Followers: 6)
Analytical and Bioanalytical Chemistry     Hybrid Journal   (Followers: 32, SJR: 0.978, CiteScore: 3)
Anatomical Science Intl.     Hybrid Journal   (Followers: 3, SJR: 0.367, CiteScore: 1)
Angewandte Schmerztherapie und Palliativmedizin     Hybrid Journal  
Angiogenesis     Hybrid Journal   (Followers: 3, SJR: 2.177, CiteScore: 5)
Animal Cognition     Hybrid Journal   (Followers: 20, SJR: 1.389, CiteScore: 3)
Annales françaises de médecine d'urgence     Hybrid Journal   (Followers: 1, SJR: 0.192, CiteScore: 0)
Annales Henri Poincaré     Hybrid Journal   (Followers: 3, SJR: 1.097, CiteScore: 2)
Annales mathématiques du Québec     Hybrid Journal   (Followers: 4, SJR: 0.438, CiteScore: 0)
Annali dell'Universita di Ferrara     Hybrid Journal   (SJR: 0.429, CiteScore: 0)
Annali di Matematica Pura ed Applicata     Hybrid Journal   (Followers: 1, SJR: 1.197, CiteScore: 1)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 17, SJR: 1.042, CiteScore: 3)
Annals of Combinatorics     Hybrid Journal   (Followers: 4, SJR: 0.932, CiteScore: 1)
Annals of Data Science     Hybrid Journal   (Followers: 12)
Annals of Dyslexia     Hybrid Journal   (Followers: 10, SJR: 0.85, CiteScore: 2)
Annals of Finance     Hybrid Journal   (Followers: 31, SJR: 0.579, CiteScore: 1)
Annals of Forest Science     Hybrid Journal   (Followers: 7, SJR: 0.986, CiteScore: 2)
Annals of Global Analysis and Geometry     Hybrid Journal   (Followers: 1, SJR: 1.228, CiteScore: 1)
Annals of Hematology     Hybrid Journal   (Followers: 15, SJR: 1.043, CiteScore: 2)
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 12, SJR: 0.413, CiteScore: 1)
Annals of Microbiology     Hybrid Journal   (Followers: 11, SJR: 0.479, CiteScore: 2)
Annals of Nuclear Medicine     Hybrid Journal   (Followers: 4, SJR: 0.687, CiteScore: 2)
Annals of Operations Research     Hybrid Journal   (Followers: 10, SJR: 0.943, CiteScore: 2)
Annals of Ophthalmology     Hybrid Journal   (Followers: 12)
Annals of Regional Science     Hybrid Journal   (Followers: 8, SJR: 0.614, CiteScore: 1)
Annals of Software Engineering     Hybrid Journal   (Followers: 13)
Annals of Solid and Structural Mechanics     Hybrid Journal   (Followers: 9, SJR: 0.239, CiteScore: 1)
Annals of Surgical Oncology     Hybrid Journal   (Followers: 15, SJR: 1.986, CiteScore: 4)
Annals of Telecommunications     Hybrid Journal   (Followers: 9, SJR: 0.223, CiteScore: 1)
Annals of the Institute of Statistical Mathematics     Hybrid Journal   (Followers: 1, SJR: 1.495, CiteScore: 1)
Antonie van Leeuwenhoek     Hybrid Journal   (Followers: 5, SJR: 0.834, CiteScore: 2)
Apidologie     Hybrid Journal   (Followers: 4, SJR: 1.22, CiteScore: 3)
APOPTOSIS     Hybrid Journal   (Followers: 9, SJR: 1.424, CiteScore: 4)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2, SJR: 0.294, CiteScore: 1)
Applications of Mathematics     Hybrid Journal   (Followers: 2, SJR: 0.602, CiteScore: 1)
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 44, SJR: 0.571, CiteScore: 2)
Applied Biochemistry and Microbiology     Hybrid Journal   (Followers: 18, SJR: 0.21, CiteScore: 1)
Applied Categorical Structures     Hybrid Journal   (Followers: 5, SJR: 0.49, CiteScore: 0)
Applied Composite Materials     Hybrid Journal   (Followers: 49, SJR: 0.58, CiteScore: 2)
Applied Entomology and Zoology     Partially Free   (Followers: 6, SJR: 0.422, CiteScore: 1)
Applied Geomatics     Hybrid Journal   (Followers: 3, SJR: 0.733, CiteScore: 3)
Applied Geophysics     Hybrid Journal   (Followers: 8, SJR: 0.488, CiteScore: 1)
Applied Intelligence     Hybrid Journal   (Followers: 13, SJR: 0.6, CiteScore: 2)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 4, SJR: 0.319, CiteScore: 1)
Applied Mathematics & Optimization     Hybrid Journal   (Followers: 8, SJR: 0.886, CiteScore: 1)
Applied Mathematics - A J. of Chinese Universities     Hybrid Journal   (SJR: 0.17, CiteScore: 0)
Applied Mathematics and Mechanics     Hybrid Journal   (Followers: 5, SJR: 0.461, CiteScore: 1)
Applied Microbiology and Biotechnology     Hybrid Journal   (Followers: 66, SJR: 1.182, CiteScore: 4)
Applied Physics A     Hybrid Journal   (Followers: 10, SJR: 0.481, CiteScore: 2)
Applied Physics B: Lasers and Optics     Hybrid Journal   (Followers: 24, SJR: 0.74, CiteScore: 2)
Applied Psychophysiology and Biofeedback     Hybrid Journal   (Followers: 8, SJR: 0.519, CiteScore: 2)
Applied Research in Quality of Life     Hybrid Journal   (Followers: 12, SJR: 0.316, CiteScore: 1)
Applied Solar Energy     Hybrid Journal   (Followers: 21, SJR: 0.225, CiteScore: 0)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 7, SJR: 0.542, CiteScore: 1)
Aquaculture Intl.     Hybrid Journal   (Followers: 26, SJR: 0.591, CiteScore: 2)
Aquarium Sciences and Conservation     Hybrid Journal   (Followers: 2)
Aquatic Ecology     Hybrid Journal   (Followers: 36, SJR: 0.656, CiteScore: 2)
Aquatic Geochemistry     Hybrid Journal   (Followers: 4, SJR: 0.591, CiteScore: 1)
Aquatic Sciences     Hybrid Journal   (Followers: 13, SJR: 1.109, CiteScore: 3)
Arabian J. for Science and Engineering     Hybrid Journal   (Followers: 5, SJR: 0.303, CiteScore: 1)
Arabian J. of Geosciences     Hybrid Journal   (Followers: 2, SJR: 0.319, CiteScore: 1)
Archaeological and Anthropological Sciences     Hybrid Journal   (Followers: 21, SJR: 1.052, CiteScore: 2)
Archaeologies     Hybrid Journal   (Followers: 12, SJR: 0.224, CiteScore: 0)
Archiv der Mathematik     Hybrid Journal   (Followers: 1, SJR: 0.725, CiteScore: 1)
Archival Science     Hybrid Journal   (Followers: 63, SJR: 0.745, CiteScore: 2)
Archive for History of Exact Sciences     Hybrid Journal   (Followers: 7, SJR: 0.186, CiteScore: 1)
Archive for Mathematical Logic     Hybrid Journal   (Followers: 3, SJR: 0.909, CiteScore: 1)
Archive for Rational Mechanics and Analysis     Hybrid Journal   (SJR: 3.93, CiteScore: 3)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 6, SJR: 0.79, CiteScore: 2)
Archives and Museum Informatics     Hybrid Journal   (Followers: 152, SJR: 0.101, CiteScore: 0)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 6, SJR: 1.41, CiteScore: 5)
Archives of Dermatological Research     Hybrid Journal   (Followers: 7, SJR: 1.006, CiteScore: 2)
Archives of Environmental Contamination and Toxicology     Hybrid Journal   (Followers: 14, SJR: 0.773, CiteScore: 2)
Archives of Gynecology and Obstetrics     Hybrid Journal   (Followers: 17, SJR: 0.956, CiteScore: 2)
Archives of Microbiology     Hybrid Journal   (Followers: 9, SJR: 0.644, CiteScore: 2)
Archives of Orthopaedic and Trauma Surgery     Hybrid Journal   (Followers: 9, SJR: 1.146, CiteScore: 2)
Archives of Osteoporosis     Hybrid Journal   (Followers: 2, SJR: 0.71, CiteScore: 2)
Archives of Sexual Behavior     Hybrid Journal   (Followers: 10, SJR: 1.493, CiteScore: 3)
Archives of Toxicology     Hybrid Journal   (Followers: 17, SJR: 1.541, CiteScore: 5)
Archives of Virology     Hybrid Journal   (Followers: 5, SJR: 0.973, CiteScore: 2)
Archives of Women's Mental Health     Hybrid Journal   (Followers: 15, SJR: 1.274, CiteScore: 3)
Archivio di Ortopedia e Reumatologia     Hybrid Journal  
Archivum Immunologiae et Therapiae Experimentalis     Hybrid Journal   (Followers: 2, SJR: 0.946, CiteScore: 3)
ArgoSpine News & J.     Hybrid Journal  
Argumentation     Hybrid Journal   (Followers: 6, SJR: 0.349, CiteScore: 1)
Arid Ecosystems     Hybrid Journal   (Followers: 2, SJR: 0.2, CiteScore: 0)
Arkiv för Matematik     Hybrid Journal   (Followers: 2, SJR: 0.766, CiteScore: 1)
Arnold Mathematical J.     Hybrid Journal   (Followers: 1, SJR: 0.355, CiteScore: 0)
Arthropod-Plant Interactions     Hybrid Journal   (Followers: 2, SJR: 0.839, CiteScore: 2)
Arthroskopie     Hybrid Journal   (Followers: 1, SJR: 0.131, CiteScore: 0)
Artificial Intelligence and Law     Hybrid Journal   (Followers: 11, SJR: 0.937, CiteScore: 2)
Artificial Intelligence Review     Hybrid Journal   (Followers: 18, SJR: 0.833, CiteScore: 4)
Artificial Life and Robotics     Hybrid Journal   (Followers: 9, SJR: 0.226, CiteScore: 0)
Asia Europe J.     Hybrid Journal   (Followers: 5, SJR: 0.504, CiteScore: 1)
Asia Pacific Education Review     Hybrid Journal   (Followers: 12, SJR: 0.479, CiteScore: 1)
Asia Pacific J. of Management     Hybrid Journal   (Followers: 16, SJR: 1.185, CiteScore: 2)
Asia-Pacific Education Researcher     Hybrid Journal   (Followers: 13, SJR: 0.353, CiteScore: 1)
Asia-Pacific Financial Markets     Hybrid Journal   (Followers: 2, SJR: 0.187, CiteScore: 0)
Asia-Pacific J. of Atmospheric Sciences     Hybrid Journal   (Followers: 19, SJR: 0.855, CiteScore: 1)
Asian Business & Management     Hybrid Journal   (Followers: 9, SJR: 0.378, CiteScore: 1)
Asian J. of Business Ethics     Hybrid Journal   (Followers: 10)
Asian J. of Criminology     Hybrid Journal   (Followers: 6, SJR: 0.543, CiteScore: 1)
AStA Advances in Statistical Analysis     Hybrid Journal   (Followers: 5, SJR: 0.548, CiteScore: 1)
AStA Wirtschafts- und Sozialstatistisches Archiv     Hybrid Journal   (Followers: 5, SJR: 0.183, CiteScore: 0)
ästhetische dermatologie & kosmetologie     Full-text available via subscription  
Astronomy and Astrophysics Review     Hybrid Journal   (Followers: 22, SJR: 3.385, CiteScore: 5)

        1 2 3 4 5 6 7 8 | Last   [Sort by number of followers]   [Restore default list]

Journal Cover
Algorithmica
Journal Prestige (SJR): 0.56
Citation Impact (citeScore): 1
Number of Followers: 9  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1432-0541 - ISSN (Online) 0178-4617
Published by Springer-Verlag Homepage  [2352 journals]
  • Foreword: Special Issue on Parameterized and Exact Computation
    • Authors: Jiong Guo; Danny Hermelin
      Pages: 419 - 420
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0529-z
      Issue No: Vol. 81, No. 2 (2019)
       
  • Subexponential-Time Algorithms for Maximum Independent Set in $$P_t$$ P t
           -Free and Broom-Free Graphs
    • Authors: Gábor Bacsó; Daniel Lokshtanov; Dániel Marx; Marcin Pilipczuk; Zsolt Tuza; Erik Jan van Leeuwen
      Pages: 421 - 438
      Abstract: In algorithmic graph theory, a classic open question is to determine the complexity of the Maximum Independent Set problem on \(P_t\) -free graphs, that is, on graphs not containing any induced path on t vertices. So far, polynomial-time algorithms are known only for \(t\le 5\) (Lokshtanov et al., in: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms, SODA 2014, Portland, OR, USA, January 5–7, 2014, pp 570–581, 2014), and an algorithm for \(t=6\) announced recently (Grzesik et al. in Polynomial-time algorithm for maximum weight independent set on \({P}_6\) -free graphs. CoRR, arXiv:1707.05491, 2017). Here we study the existence of subexponential-time algorithms for the problem: we show that for any \(t\ge 1\) , there is an algorithm for Maximum Independent Set on \(P_t\) -free graphs whose running time is subexponential in the number of vertices. Even for the weighted version MWIS, the problem is solvable in \(2^{\mathcal {O}(\sqrt{tn \log n})}\) time on \(P_t\) -free graphs. For approximation of MIS in broom-free graphs, a similar time bound is proved. Scattered Set is the generalization of Maximum Independent Set where the vertices of the solution are required to be at distance at least d from each other. We give a complete characterization of those graphs H for which d-Scattered Set on H-free graphs can be solved in time subexponential in the size of the input (that is, in the number of vertices plus the number of edges): If every component of H is a path, then d-Scattered Set on H-free graphs with n vertices and m edges can be solved in time \(2^{\mathcal {O}( V(H) \sqrt{n+m}\log (n+m))}\) , even if d is part of the input. Otherwise, assuming the Exponential-Time Hypothesis (ETH), there is no \(2^{o(n+m)}\) -time algorithm for d-Scattered Set for any fixed \(d\ge 3\) on H-free graphs with n-vertices and m-edges.
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0479-5
      Issue No: Vol. 81, No. 2 (2019)
       
  • Turbocharging Treewidth Heuristics
    • Authors: Serge Gaspers; Joachim Gudmundsson; Mitchell Jones; Julián Mestre; Stefan Rümmele
      Pages: 439 - 475
      Abstract: A widely used class of algorithms for computing tree decompositions of graphs are heuristics that compute an elimination order, i.e., a permutation of the vertex set. In this paper, we propose to turbocharge these heuristics. For a target treewidthk, suppose the heuristic has already computed a partial elimination order of width at most k, but extending it by one more vertex exceeds the target width k. At this moment of regret, we solve a subproblem which is to recompute the last c positions of the partial elimination order such that it can be extended without exceeding width k. We show that this subproblem is fixed-parameter tractable when parameterized by k and c, but it is para-NP-hard and W[1]-hard when parameterized by only k or c, respectively. Our experimental evaluation of the FPT algorithm shows that we can trade a reasonable increase of the running time for the quality of the solution.
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0499-1
      Issue No: Vol. 81, No. 2 (2019)
       
  • Backdoors for Linear Temporal Logic
    • Authors: Arne Meier; Sebastian Ordyniak; M. S. Ramanujan; Irena Schindler
      Pages: 476 - 496
      Abstract: In the present paper, we introduce the backdoor set approach into the field of temporal logic for the global fragment of linear temporal logic. We study the parameterized complexity of the satisfiability problem parameterized by the size of the backdoor. We distinguish between backdoor detection and evaluation of backdoors into the fragments of Horn and Krom formulas. Here we classify the operator fragments of globally-operators for past/future/always, and the combination of them. Detection is shown to be fixed-parameter tractable whereas the complexity of evaluation behaves differently. We show that for Krom formulas the problem is paraNP-complete. For Horn formulas, the complexity is shown to be either fixed parameter tractable or paraNP-complete depending on the considered operator fragment.
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0515-5
      Issue No: Vol. 81, No. 2 (2019)
       
  • Clifford Algebras Meet Tree Decompositions
    • Authors: Michał Włodarczyk
      Pages: 497 - 518
      Abstract: We introduce the non-commutative subset convolution—a convolution of functions useful when working with determinant-based algorithms. In order to compute it efficiently, we take advantage of Clifford algebras, a generalization of quaternions used mainly in the quantum field theory. We apply this tool to speed up algorithms counting subgraphs parameterized by the treewidth of a graph. We present an  \(O^*((2^\omega + 1)^{tw})\) -time algorithm for counting Steiner trees and an \(O^*((2^\omega + 2)^{tw})\) -time algorithm for counting Hamiltonian cycles, both of which improve the previously known upper bounds. These constitute also the best known running times of deterministic algorithms for decision versions of these problems and they match the best obtained running times for pathwidth parameterization under assumption \(\omega = 2\) .
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0489-3
      Issue No: Vol. 81, No. 2 (2019)
       
  • Randomised Enumeration of Small Witnesses Using a Decision Oracle
    • Authors: Kitty Meeks
      Pages: 519 - 540
      Abstract: Many combinatorial problems involve determining whether a universe of n elements contains a witness consisting of k elements which have some specified property. In this paper we investigate the relationship between the decision and enumeration versions of such problems: efficient methods are known for transforming a decision algorithm into a search procedure that finds a single witness, but even finding a second witness is not so straightforward in general. We show that, if the decision version of the problem can be solved in time \(f(k) \cdot poly(n)\) , there is a randomised algorithm which enumerates all witnesses in time \(e^{k + o(k)} \cdot f(k) \cdot poly(n) \cdot N\) , where N is the total number of witnesses. If the decision version of the problem is solved by a randomised algorithm which may return false negatives, then the same method allows us to output a list of witnesses in which any given witness will be included with high probability. The enumeration algorithm also gives rise to an efficient algorithm to count the total number of witnesses when this number is small.
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0404-y
      Issue No: Vol. 81, No. 2 (2019)
       
  • Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP
    • Authors: Cornelius Brand; Holger Dell; Marc Roth
      Pages: 541 - 556
      Abstract: Jaeger et al. (Math Proc Camb Philos Soc 108(1):35–53, 1990) proved a dichotomy for the complexity of evaluating the Tutte polynomial at fixed points: the evaluation is #P-hard almost everywhere, and the remaining points admit polynomial-time algorithms. Dell, Husfeldt, and Wahlén (in: ICALP 2010, vol. 6198, pp. 426–437, Springer, Berlin, Heidelberg, 2010) and Husfeldt and Taslaman (in: IPEC 2010, vol. 6478, pp. 192–203, Springer, Berlin, Heidelberg, 2010) in combination with the results of Curticapean (in: ICALP 2015, pp. 380–392, Springer, 2015), extended the #P-hardness results to tight lower bounds under the counting exponential time hypothesis #ETH, with the exception of the line \(y=1\) , which was left open. We complete the dichotomy theorem for the Tutte polynomial under #ETH by proving that the number of all acyclic subgraphs of a given n-vertex graph cannot be determined in time unless #ETH fails. Another dichotomy theorem we strengthen is the one of Creignou and Hermann (Inf Comput 125(1):1–12, 1996) for counting the number of satisfying assignments to a constraint satisfaction problem instance over the Boolean domain. We prove that the #P-hard cases cannot be solved in time unless #ETH fails. The main ingredient is to prove that the number of independent sets in bipartite graphs with n vertices cannot be computed in time unless #ETH fails. In order to prove our results, we use the block interpolation idea by Curticapean and transfer it to systems of linear equations that might not directly correspond to interpolation.
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0472-z
      Issue No: Vol. 81, No. 2 (2019)
       
  • Cutwidth: Obstructions and Algorithmic Aspects
    • Authors: Archontia C. Giannopoulou; Michał Pilipczuk; Jean-Florent Raymond; Dimitrios M. Thilikos; Marcin Wrochna
      Pages: 557 - 588
      Abstract: Cutwidth is one of the classic layout parameters for graphs. It measures how well one can order the vertices of a graph in a linear manner, so that the maximum number of edges between any prefix and its complement suffix is minimized. As graphs of cutwidth at most k are closed under taking immersions, the results of Robertson and Seymour imply that there is a finite list of minimal immersion obstructions for admitting a cut layout of width at most k. We prove that every minimal immersion obstruction for cutwidth at most k has size at most \(2^{{O}(k^3\log k)}\) . As an interesting algorithmic byproduct, we design a new fixed-parameter algorithm for computing the cutwidth of a graph that runs in time \(2^{{O}(k^2\log k)}\cdot n\) , where k is the optimum width and n is the number of vertices. While being slower by a \(\log k\) -factor in the exponent than the fastest known algorithm, given by Thilikos et al. (J Algorithms 56(1):1–24, 2005; J Algorithms 56(1):25–49, 2005), our algorithm has the advantage of being simpler and self-contained; arguably, it explains better the combinatorics of optimum-width layouts.
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0424-7
      Issue No: Vol. 81, No. 2 (2019)
       
  • The ( $$1+\lambda $$ 1 + λ ) Evolutionary Algorithm with Self-Adjusting
           Mutation Rate
    • Authors: Benjamin Doerr; Christian Gießen; Carsten Witt; Jing Yang
      Pages: 593 - 631
      Abstract: We propose a new way to self-adjust the mutation rate in population-based evolutionary algorithms in discrete search spaces. Roughly speaking, it consists of creating half the offspring with a mutation rate that is twice the current mutation rate and the other half with half the current rate. The mutation rate is then updated to the rate used in that subpopulation which contains the best offspring. We analyze how the \((1+\lambda )\) evolutionary algorithm with this self-adjusting mutation rate optimizes the OneMax test function. We prove that this dynamic version of the \((1+\lambda )\)  EA finds the optimum in an expected optimization time (number of fitness evaluations) of \(O(n\lambda /\log \lambda +n\log n)\) . This time is asymptotically smaller than the optimization time of the classic \((1+\lambda )\) EA. Previous work shows that this performance is best-possible among all \(\lambda \) -parallel mutation-based unbiased black-box algorithms. This result shows that the new way of adjusting the mutation rate can find optimal dynamic parameter values on the fly. Since our adjustment mechanism is simpler than the ones previously used for adjusting the mutation rate and does not have parameters itself, we are optimistic that it will find other applications.
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0502-x
      Issue No: Vol. 81, No. 2 (2019)
       
  • Upper Bounds on the Running Time of the Univariate Marginal Distribution
           Algorithm on OneMax
    • Authors: Carsten Witt
      Pages: 632 - 667
      Abstract: The Univariate Marginal Distribution Algorithm (UMDA) is a randomized search heuristic that builds a stochastic model of the underlying optimization problem by repeatedly sampling \(\lambda \) solutions and adjusting the model according to the best \(\mu \) samples. We present a running time analysis of the UMDA on the classical OneMax benchmark function for wide ranges of the parameters \(\mu \) and \(\lambda \) . If \(\mu \ge c\log n\) for some constant  \(c>0\) and \(\lambda =(1+\varTheta (1))\mu \) , we obtain a general bound \(O(\mu n)\) on the expected running time. This bound crucially assumes that all marginal probabilities of the algorithm are confined to the interval \([1/n,1-1/n]\) . If \(\mu \ge c' \sqrt{n}\log n\) for a constant \(c'>0\) and \(\lambda =(1+\varTheta (1))\mu \) , the behavior of the algorithm changes and the bound on the expected running time becomes \(O(\mu \sqrt{n})\) , which typically holds even if the borders on the marginal probabilities are omitted. The results supplement the recently derived lower bound \(\varOmega (\mu \sqrt{n}+n\log n)\) by Krejca and Witt (Proceedings of FOGA 2017, ACM Press, New York, pp 65–79, 2017) and turn out to be tight for the two very different choices \(\mu =c\log n\) and \(\mu =c'\sqrt{n}\log n\) . They also improve the previously best known upper bound \(O(n\log n\log \log n)\) by Dang and Lehre (Proceedings of GECCO ’15, ACM Press, New York, pp 513–518, 2015) that was established for \(\mu =c\log n\) and \(\lambda =(1+\varTheta (1))\mu \) .
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0463-0
      Issue No: Vol. 81, No. 2 (2019)
       
  • Level-Based Analysis of the Univariate Marginal Distribution Algorithm
    • Authors: Duc-Cuong Dang; Per Kristian Lehre; Phan Trung Hai Nguyen
      Pages: 668 - 702
      Abstract: Estimation of Distribution Algorithms (EDAs) are stochastic heuristics that search for optimal solutions by learning and sampling from probabilistic models. Despite their popularity in real-world applications, there is little rigorous understanding of their performance. Even for the Univariate Marginal Distribution Algorithm (UMDA)—a simple population-based EDA assuming independence between decision variables—the optimisation time on the linear problem OneMax was until recently undetermined. The incomplete theoretical understanding of EDAs is mainly due to the lack of appropriate analytical tools. We show that the recently developed level-based theorem for non-elitist populations combined with anti-concentration results yield upper bounds on the expected optimisation time of the UMDA. This approach results in the bound \(\mathcal {O}\left( n\lambda \log \lambda +n^2\right) \) on the LeadingOnes and BinVal problems for population sizes \(\lambda >\mu =\varOmega (\log n)\) , where \(\mu \) and \(\lambda \) are parameters of the algorithm. We also prove that the UMDA with population sizes \(\mu \in \mathcal {O}\left( \sqrt{n}\right) \cap \varOmega (\log n)\) optimises OneMax in expected time \(\mathcal {O}\left( \lambda n\right) \) , and for larger population sizes \(\mu =\varOmega (\sqrt{n}\log n)\) , in expected time \(\mathcal {O}\left( \lambda \sqrt{n}\right) \) . The facility and generality of our arguments suggest that this is a promising approach to derive bounds on the expected optimisation time of EDAs.
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0507-5
      Issue No: Vol. 81, No. 2 (2019)
       
  • Solving Problems with Unknown Solution Length at Almost No Extra Cost
    • Authors: Benjamin Doerr; Carola Doerr; Timo Kötzing
      Pages: 703 - 748
      Abstract: Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM, 2011) we analyze variants of the (1 + 1) evolutionary algorithm (EA) for problems with unknown solution length. For their setting, in which the solution length is sampled from a geometric distribution, we provide mutation rates that yield for both benchmark functions OneMax and LeadingOnes an expected optimization time that is of the same order as that of the (1 + 1) EA knowing the solution length. More than this, we show that almost the same run times can be achieved even if no a priori information on the solution length is available. We also regard the situation in which neither the number nor the positions of the bits with an influence on the fitness function are known. Solving an open problem from Cathabard et al. we show that, for arbitrary \(s\in {\mathbb {N}}\) , such OneMax and LeadingOnes instances can be solved, simultaneously for all \(n\in {\mathbb {N}}\) , in expected time \(O(n (\log (n))^2 \log \log (n) \ldots \log ^{(s-1)}(n) (\log ^{(s)}(n))^{1+\varepsilon })\) and \(O(n^2 \log (n) \log \log (n) \ldots \log ^{(s-1)}(n) (\log ^{(s)}(n))^{1+\varepsilon })\) , respectively; that is, in almost the same time as if n and the relevant bit positions were known. For the LeadingOnes case, we prove lower bounds of same asymptotic order of magnitude apart from the \((\log ^{(s)}(n))^{\varepsilon }\) factor. Aiming at closing this arbitrarily small remaining gap, we realize that there is no asymptotically best performance for this problem. For any algorithm solving, for all n, all instances of size n in expected time at most T(n), there is an algorithm doing the same in time \(T'(n)\) with \(T'=o(T)\) . For OneMax we show results of similar flavor.
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0477-7
      Issue No: Vol. 81, No. 2 (2019)
       
  • Running Time Analysis of the ( $$1+1$$ 1 + 1 )-EA for OneMax and
           LeadingOnes Under Bit-Wise Noise
    • Authors: Chao Qian; Chao Bian; Wu Jiang; Ke Tang
      Pages: 749 - 795
      Abstract: In many real-world optimization problems, the objective function evaluation is subject to noise, and we cannot obtain the exact objective value. Evolutionary algorithms (EAs), a type of general-purpose randomized optimization algorithm, have been shown to be able to solve noisy optimization problems well. However, previous theoretical analyses of EAs mainly focused on noise-free optimization, which makes the theoretical understanding largely insufficient for the noisy case. Meanwhile, the few existing theoretical studies under noise often considered the one-bit noise model, which flips a randomly chosen bit of a solution before evaluation; while in many realistic applications, several bits of a solution can be changed simultaneously. In this paper, we study a natural extension of one-bit noise, the bit-wise noise model, which independently flips each bit of a solution with some probability. We analyze the running time of the ( \(1+1\) )-EA solving OneMax and LeadingOnes under bit-wise noise for the first time, and derive the ranges of the noise level for polynomial and super-polynomial running time bounds. The analysis on LeadingOnes under bit-wise noise can be easily transferred to one-bit noise, and improves the previously known results. Since our analysis discloses that the ( \(1+1\) )-EA can be efficient only under low noise levels, we also study whether the sampling strategy can bring robustness to noise. We prove that using sampling can significantly increase the largest noise level allowing a polynomial running time, that is, sampling is robust to noise.
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0488-4
      Issue No: Vol. 81, No. 2 (2019)
       
  • Sorting by Swaps with Noisy Comparisons
    • Authors: Tomáš Gavenčiak; Barbara Geissmann; Johannes Lengler
      Pages: 796 - 827
      Abstract: We study sorting of permutations by random swaps if each comparison gives the wrong result with some fixed probability \(p<1/2\) . We use this process as prototype for the behaviour of randomized, comparison-based optimization heuristics in the presence of noisy comparisons. As quality measure, we compute the expected fitness of the stationary distribution. To measure the runtime, we compute the minimal number of steps after which the average fitness approximates the expected fitness of the stationary distribution. We study the process where in each round a random pair of elements at distance at most r are compared. We give theoretical results for the extreme cases \(r=1\) and \(r=n\) , and experimental results for the intermediate cases. We find a trade-off between faster convergence (for large r) and better quality of the solution after convergence (for small r).
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0429-2
      Issue No: Vol. 81, No. 2 (2019)
       
  • Reoptimization Time Analysis of Evolutionary Algorithms on Linear
           Functions Under Dynamic Uniform Constraints
    • Authors: Feng Shi; Martin Schirneck; Tobias Friedrich; Timo Kötzing; Frank Neumann
      Pages: 828 - 857
      Abstract: Rigorous runtime analysis is a major approach towards understanding evolutionary computing techniques, and in this area linear pseudo-Boolean objective functions play a central role. Having an additional linear constraint is then equivalent to the NP-hard Knapsack problem, certain classes thereof have been studied in recent works. In this article, we present a dynamic model of optimizing linear functions under uniform constraints. Starting from an optimal solution with respect to a given constraint bound, we investigate the runtimes that different evolutionary algorithms need to recompute an optimal solution when the constraint bound changes by a certain amount. The classical \((1{+}1)\)  EA and several population-based algorithms are designed for that purpose, and are shown to recompute efficiently. Furthermore, a variant of the \((1{+}(\lambda ,\lambda ) )\)  GA for the dynamic optimization problem is studied, whose performance is better when the change of the constraint bound is small.
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0451-4
      Issue No: Vol. 81, No. 2 (2019)
       
  • On the Analysis of Trajectory-Based Search Algorithms: When is it
           Beneficial to Reject Improvements'
    • Authors: Samadhi Nallaperuma; Pietro S. Oliveto; Jorge Pérez Heredia; Dirk Sudholt
      Pages: 858 - 885
      Abstract: We investigate popular trajectory-based algorithms inspired by biology and physics to answer a question of general significance: when is it beneficial to reject improvements' A distinguishing factor of SSWM (strong selection weak mutation), a popular model from population genetics, compared to the Metropolis algorithm (MA), is that the former can reject improvements, while the latter always accepts them. We investigate when one strategy outperforms the other. Since we prove that both algorithms converge to the same stationary distribution, we concentrate on identifying a class of functions inducing large mixing times, where the algorithms will outperform each other over a long period of time. The outcome of the analysis is the definition of a function where SSWM is efficient, while Metropolis requires at least exponential time. The identified function favours algorithms that prefer high quality improvements over smaller ones, revealing similarities in the optimisation strategies of SSWM and Metropolis respectively with best-improvement (BILS) and first-improvement (FILS) local search. We conclude the paper with a comparison of the performance of these algorithms and a (1, \(\lambda \) ) RLS on the identified function. The algorithm favours the steepest gradient with a probability that increases with the size of its offspring population. The results confirm that BILS excels and that the (1, \(\lambda \) ) RLS is efficient only for large enough population sizes.
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0462-1
      Issue No: Vol. 81, No. 2 (2019)
       
  • Island Models Meet Rumor Spreading
    • Authors: Benjamin Doerr; Philipp Fischbeck; Clemens Frahnow; Tobias Friedrich; Timo Kötzing; Martin Schirneck
      Pages: 886 - 915
      Abstract: Island models in evolutionary computation solve problems by a careful interplay of independently running evolutionary algorithms on the island and an exchange of good solutions between the islands. In this work, we conduct rigorous run time analyses for such island models trying to simultaneously obtain good run times and low communication effort. We improve the existing upper bounds for both measures (i) by improving the run time bounds via a careful analysis, (ii) by balancing individual computation and communication in a more appropriate manner, and (iii) by replacing the usual communicate-with-all approach with randomized rumor spreading. In the latter, each island contacts a randomly chosen neighbor. This epidemic communication paradigm is known to lead to very fast and robust information dissemination in many applications. Our results concern island models running simple \((1+1)\) evolutionary algorithms to optimize the classic test functions OneMax and LeadingOnes. We investigate binary trees, d-dimensional tori, and complete graphs as communication topologies.
      PubDate: 2019-02-01
      DOI: 10.1007/s00453-018-0445-2
      Issue No: Vol. 81, No. 2 (2019)
       
  • Optimizing a Generalized Gini Index in Stable Marriage Problems:
           NP-Hardness, Approximation and a Polynomial Time Special Case
    • Authors: Hugo Gilbert; Olivier Spanjaard
      Abstract: This paper deals with fairness in stable marriage problems. The idea studied here is to achieve fairness thanks to a Generalized Gini Index (GGI), a well-known criterion in inequality measurement, that includes both the egalitarian and utilitarian criteria as special cases. We show that determining a stable marriage optimizing a GGI criterion of agents’ disutilities is an NP-hard problem. We then provide a polynomial time 2-approximation algorithm in the general case, as well as an exact algorithm which is polynomial time in the case of a constant number of non-zero weights parametrizing the GGI criterion.
      PubDate: 2019-02-08
      DOI: 10.1007/s00453-019-00550-3
       
  • On the Complexity Landscape of Connected f -Factor Problems
    • Authors: R. Ganian; N. S. Narayanaswamy; S. Ordyniak; C. S. Rahul; M. S. Ramanujan
      Abstract: Let G be an undirected simple graph having n vertices and let \(f:V(G)\rightarrow \{0,\dots , n-1\}\) be a function. An f-factor of G is a spanning subgraph H such that \(d_H(v)=f(v)\) for every vertex \(v\in V(G)\) . The subgraph H is called a connected f-factor if, in addition, H is connected. A classical result of Tutte (Can J Math 6(1954):347–352, 1954) is the polynomial time algorithm to check whether a given graph has a specified f-factor. However, checking for the presence of a connectedf-factor is easily seen to generalize Hamiltonian Cycle and hence is \(\mathsf {NP}\) -complete. In fact, the Connected f-Factor problem remains \(\mathsf {NP}\) -complete even when we restrict f(v) to be at least \(n^{\epsilon }\) for each vertex v and constant \(0\le \epsilon <1\) ; on the other side of the spectrum of nontrivial lower bounds on f, the problem is known to be polynomial time solvable when f(v) is at least \(\frac{n}{3}\) for every vertex v. In this paper, we extend this line of work and obtain new complexity results based on restrictions on the function f. In particular, we show that when f(v) is restricted to be at least \(\frac{n}{(\log n)^c}\) , the problem can be solved in quasi-polynomial time in general and in randomized polynomial time if \(c\le 1\) . Furthermore, we show that when \(c>1\) , the problem is \(\mathsf {NP}\) -intermediate.
      PubDate: 2019-01-30
      DOI: 10.1007/s00453-019-00546-z
       
  • Preface to the Special Issue on Theory of Genetic and Evolutionary
           Computation
    • Authors: Carola Doerr; Dirk Sudholt
      PubDate: 2019-01-16
      DOI: 10.1007/s00453-018-00543-8
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 34.229.175.129
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-