for Journals by Title or ISSN
for Articles by Keywords

Publisher: Springer-Verlag   (Total: 2276 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  First | 3 4 5 6 7 8 9 10 | Last

Digestive Diseases and Sciences     Hybrid Journal   (Followers: 4, SJR: 1.19, h-index: 89)
Directieve therapie     Hybrid Journal  
Discrete & Computational Geometry     Hybrid Journal   (Followers: 2, SJR: 1.269, h-index: 40)
Discrete Event Dynamic Systems     Hybrid Journal   (Followers: 3, SJR: 0.42, h-index: 32)
Distributed and Parallel Databases     Hybrid Journal   (Followers: 4, SJR: 0.766, h-index: 30)
Distributed Computing     Hybrid Journal   (Followers: 2, SJR: 1.41, h-index: 31)
DNP - Der Neurologe und Psychiater     Full-text available via subscription  
Documenta Ophthalmologica     Hybrid Journal   (Followers: 2, SJR: 0.946, h-index: 40)
Doklady Biochemistry and Biophysics     Hybrid Journal   (Followers: 2, SJR: 0.2, h-index: 10)
Doklady Biological Sciences     Hybrid Journal   (SJR: 0.248, h-index: 10)
Doklady Botanical Sciences     Hybrid Journal  
Doklady Chemistry     Hybrid Journal   (SJR: 0.272, h-index: 12)
Doklady Earth Sciences     Hybrid Journal   (SJR: 0.48, h-index: 17)
Doklady Mathematics     Hybrid Journal   (SJR: 0.345, h-index: 13)
Doklady Physical Chemistry     Hybrid Journal   (SJR: 0.299, h-index: 12)
Doklady Physics     Hybrid Journal   (Followers: 1, SJR: 0.293, h-index: 17)
Douleur et Analg├ęsie     Hybrid Journal   (SJR: 0.113, h-index: 6)
Drug Delivery and Translational Research     Hybrid Journal   (Followers: 2, SJR: 0.607, h-index: 8)
Drug Safety - Case Reports     Open Access  
Drugs : Real World Outcomes     Hybrid Journal   (Followers: 1)
Dynamic Games and Applications     Hybrid Journal   (Followers: 2, SJR: 0.481, h-index: 5)
Dysphagia     Hybrid Journal   (Followers: 108, SJR: 0.822, h-index: 52)
e & i Elektrotechnik und Informationstechnik     Hybrid Journal   (Followers: 9, SJR: 0.279, h-index: 9)
e-Neuroforum     Hybrid Journal  
Early Childhood Education J.     Hybrid Journal   (Followers: 14, SJR: 0.466, h-index: 16)
Earth Science Informatics     Hybrid Journal   (Followers: 3, SJR: 0.282, h-index: 7)
Earth, Moon, and Planets     Hybrid Journal   (Followers: 7, SJR: 0.303, h-index: 29)
Earthquake Engineering and Engineering Vibration     Hybrid Journal   (Followers: 7, SJR: 0.482, h-index: 21)
Earthquake Science     Hybrid Journal   (Followers: 8, SJR: 0.418, h-index: 9)
East Asia     Hybrid Journal   (Followers: 7, SJR: 0.18, h-index: 9)
Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity     Hybrid Journal   (Followers: 11, SJR: 0.362, h-index: 27)
EcoHealth     Hybrid Journal   (Followers: 3, SJR: 0.88, h-index: 26)
Ecological Research     Hybrid Journal   (Followers: 8, SJR: 0.847, h-index: 43)
Economia e Politica Industriale     Hybrid Journal  
Economia Politica     Hybrid Journal   (SJR: 0.375, h-index: 6)
Economic Botany     Hybrid Journal   (Followers: 8, SJR: 0.527, h-index: 44)
Economic Bulletin     Hybrid Journal   (Followers: 4)
Economic Change and Restructuring     Hybrid Journal   (Followers: 1, SJR: 0.264, h-index: 9)
Economic Theory     Hybrid Journal   (Followers: 13, SJR: 2.557, h-index: 34)
Economic Theory Bulletin     Hybrid Journal   (Followers: 2)
Economics of Governance     Hybrid Journal   (Followers: 2, SJR: 0.408, h-index: 14)
Ecosystems     Hybrid Journal   (Followers: 19, SJR: 1.909, h-index: 93)
Ecotoxicology     Hybrid Journal   (Followers: 9, SJR: 1.333, h-index: 56)
Education and Information Technologies     Hybrid Journal   (Followers: 116, SJR: 0.366, h-index: 16)
Educational Assessment, Evaluation and Accountability     Hybrid Journal   (Followers: 19, SJR: 0.374, h-index: 15)
Educational Psychology Review     Hybrid Journal   (Followers: 19, SJR: 2.776, h-index: 61)
Educational Research for Policy and Practice     Hybrid Journal   (Followers: 8, SJR: 0.273, h-index: 9)
Educational Studies in Mathematics     Hybrid Journal   (Followers: 14, SJR: 0.825, h-index: 32)
Educational Technology Research and Development     Partially Free   (Followers: 104, SJR: 1.785, h-index: 52)
Electrical Engineering     Hybrid Journal   (Followers: 16, SJR: 0.336, h-index: 18)
Electrocatalysis     Hybrid Journal   (SJR: 0.883, h-index: 10)
Electronic Commerce Research     Hybrid Journal   (Followers: 3, SJR: 0.582, h-index: 16)
Electronic Markets     Hybrid Journal   (Followers: 5, SJR: 0.411, h-index: 8)
Electronic Materials Letters     Hybrid Journal   (Followers: 3, SJR: 1.407, h-index: 15)
Elemente der Mathematik     Hybrid Journal   (Followers: 1)
Emergency Radiology     Hybrid Journal   (Followers: 5, SJR: 0.678, h-index: 25)
Emission Control Science and Technology     Hybrid Journal   (Followers: 1)
Empirica     Hybrid Journal   (Followers: 3, SJR: 0.319, h-index: 16)
Empirical Economics     Hybrid Journal   (Followers: 8, SJR: 0.489, h-index: 31)
Empirical Software Engineering     Hybrid Journal   (Followers: 7, SJR: 1.285, h-index: 39)
Employee Responsibilities and Rights J.     Hybrid Journal   (Followers: 3, SJR: 0.361, h-index: 15)
Endocrine     Hybrid Journal   (Followers: 7, SJR: 0.878, h-index: 57)
Endocrine Pathology     Hybrid Journal   (Followers: 2, SJR: 0.638, h-index: 31)
Energy Efficiency     Hybrid Journal   (Followers: 14, SJR: 0.732, h-index: 14)
Energy Systems     Hybrid Journal   (Followers: 12, SJR: 1.176, h-index: 7)
Engineering With Computers     Hybrid Journal   (Followers: 5, SJR: 0.433, h-index: 30)
Entomological Review     Hybrid Journal   (Followers: 3, SJR: 0.144, h-index: 5)
Environment Systems & Decisions     Hybrid Journal   (Followers: 2)
Environment, Development and Sustainability     Hybrid Journal   (Followers: 30, SJR: 0.419, h-index: 29)
Environmental and Ecological Statistics     Hybrid Journal   (Followers: 6, SJR: 0.458, h-index: 32)
Environmental and Resource Economics     Hybrid Journal   (Followers: 17, SJR: 1.632, h-index: 54)
Environmental Biology of Fishes     Hybrid Journal   (Followers: 5, SJR: 0.725, h-index: 58)
Environmental Chemistry Letters     Hybrid Journal   (Followers: 2, SJR: 0.741, h-index: 28)
Environmental Earth Sciences     Hybrid Journal   (Followers: 13, SJR: 0.724, h-index: 63)
Environmental Economics and Policy Studies     Hybrid Journal   (Followers: 5, SJR: 0.524, h-index: 4)
Environmental Evidence     Open Access   (Followers: 1)
Environmental Fluid Mechanics     Hybrid Journal   (Followers: 3, SJR: 0.437, h-index: 24)
Environmental Geochemistry and Health     Hybrid Journal   (Followers: 3, SJR: 1.013, h-index: 36)
Environmental Geology     Hybrid Journal   (Followers: 11)
Environmental Health and Preventive Medicine     Hybrid Journal   (Followers: 3, SJR: 0.522, h-index: 19)
Environmental Management     Hybrid Journal   (Followers: 33, SJR: 0.942, h-index: 66)
Environmental Modeling & Assessment     Hybrid Journal   (Followers: 11, SJR: 0.533, h-index: 31)
Environmental Monitoring and Assessment     Hybrid Journal   (Followers: 10, SJR: 0.685, h-index: 52)
Environmental Science and Pollution Research     Hybrid Journal   (Followers: 14, SJR: 0.885, h-index: 46)
Epileptic Disorders     Hybrid Journal   (SJR: 0.608, h-index: 38)
EPJ A - Hadrons and Nuclei     Hybrid Journal   (Followers: 1, SJR: 1.287, h-index: 63)
EPJ B - Condensed Matter and Complex Systems     Hybrid Journal   (Followers: 2, SJR: 0.731, h-index: 89)
EPJ direct     Hybrid Journal  
EPJ E - Soft Matter and Biological Physics     Hybrid Journal   (Followers: 1, SJR: 0.641, h-index: 62)
EPMA J.     Open Access   (SJR: 0.284, h-index: 6)
ERA-Forum     Hybrid Journal   (Followers: 3, SJR: 0.128, h-index: 3)
Erkenntnis     Hybrid Journal   (Followers: 14, SJR: 0.621, h-index: 16)
Erwerbs-Obstbau     Hybrid Journal   (SJR: 0.206, h-index: 9)
Esophagus     Hybrid Journal   (SJR: 0.311, h-index: 10)
Estuaries and Coasts     Hybrid Journal   (Followers: 7, SJR: 1.332, h-index: 67)
Ethical Theory and Moral Practice     Hybrid Journal   (Followers: 12, SJR: 0.297, h-index: 10)
Ethics and Information Technology     Hybrid Journal   (Followers: 110, SJR: 0.484, h-index: 23)
Ethik in der Medizin     Hybrid Journal   (SJR: 0.163, h-index: 6)
Euphytica     Hybrid Journal   (Followers: 7, SJR: 0.745, h-index: 64)
Eurasian Business Review     Full-text available via subscription  

  First | 3 4 5 6 7 8 9 10 | Last

Journal Cover   Experiments in Fluids
  [SJR: 1.596]   [H-I: 69]   [9 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1432-1114 - ISSN (Online) 0723-4864
   Published by Springer-Verlag Homepage  [2276 journals]
  • Flash X-ray measurements on the shock-induced dispersal of a dense
           particle curtain
    • Abstract: Abstract The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas–solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer–Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using a load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. The bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.
      PubDate: 2015-11-23
  • Transitional flow in the wake of a moderate to large height cylindrical
           roughness element
    • Abstract: Abstract The effect of an isolated, cylindrical roughness on the stability of an airfoil boundary layer has been studied based on particle image velocimetry and hot-wire anemometry. The investigated roughness elements range from a sub-critical to a super-critical behavior with regard to the critical roughness Reynolds number. For the sub-critical case, the nonlinear disturbance growth in the near wake is governed by oblique Tollmien–Schlichting (TS) type modes. Further downstream, these disturbance modes are, however, damped with the mean flow stabilization and no dominant modes persist in the far wake. By contrast, in the transitional configuration the disturbance growth is increased, but still associated with a TS-type instability in the near-wake centerline region of the low-aspect (height-to-diameter) ratio element. That is, the disturbances in the centerline region show a similar behavior as known for 2D elements, whereas in the outer spanwise domain a Kelvin–Helmholtz (KH) type, shear-layer instability is found, as previously reported for larger aspect ratio isolated elements. With increasing height and, thereby, aspect ratio of the roughness, the KH-type instability domain extends toward the centerline and, accordingly, the TS-type instability domain decreases. For high super-critical cases, transition is already triggered in the wall-normal and spanwise shear layers upstream and around the roughness. In the immediate wake, periodic shear-layer disturbances roll up into a—for isolated elements characteristic—shedding of vortices, which was not present at the lower roughness Reynolds number cases due to the decreased aspect ratio and, thereby, different instability mechanism.
      PubDate: 2015-11-19
  • Focusing-schlieren visualization in a dual-mode scramjet
    • Abstract: Abstract Schlieren imaging is particularly suited to measuring density gradients in compressible flowfields and can be used to capture shock waves and expansion fans, as well as the turbulent structures of mixing and wake flows. Conventional schlieren imaging, however, has difficulty clearly capturing such structures in long-duration supersonic combustion test facilities. This is because the severe flow temperatures locally change the refractive index of the window glass that is being used to provide optical access. On the other hand, focusing-schlieren imaging presents the potential of reduced sensitivity to thermal distortion of the windows and to clearly capture the flow structures even during a combustion test. This reduced sensitivity is due the technique’s ability to achieve a narrow depth of focus. As part of this study, a focusing-schlieren system was developed with a depth of focus near ±5 mm and was applied to a direct-connect, continuous-flow type, supersonic combustion test facility with a stagnation temperature near 1200 K. The present system was used to successfully visualize the flowfield inside a dual-mode scramjet. The imaging system captured combustion-induced volumetric expansion of the fuel jet and an anchored bifurcated shock wave at the trailing edge of the ramp fuel injector. This is the first time successful focusing-schlieren measurements have been reported for a dual-mode scramjet.
      PubDate: 2015-11-18
  • Refractive index and solubility control of para-cymene solutions for
           index-matched fluid–structure interaction studies
    • Abstract: Abstract To deploy optical diagnostics such as particle image velocimetry or planar laser-induced fluorescence (PLIF) in complex geometries, it is beneficial to use index-matched facilities. A binary mixture of para-cymene and cinnamaldehyde provides a viable option for matching the refractive index of acrylic, a common material for scaled models and test sections. This fluid is particularly appropriate for large-scale facilities and when a low-density and low-viscosity fluid is sought, such as in fluid–structure interaction studies. This binary solution has relatively low kinematic viscosity and density; its use enables the experimentalist to select operating temperature and to increase fluorescence signal in PLIF experiments. Measurements of spectral and temperature dependence of refractive index, density, and kinematic viscosity are reported. The effect of the binary mixture on solubility control of Rhodamine 6G is also characterized.
      PubDate: 2015-11-14
  • Torsional oscillations of a sphere in a Stokes flow
    • Abstract: Abstract The results of an experimental investigation into a sphere performing torsional oscillations in a Stokes flow are presented. A novel experimental set-up was developed, which enabled the motion of the sphere to be remotely controlled through application of an oscillatory magnetic field. The response of the sphere to the applied field was characterised in terms of the viscous, magnetic and gravitational torques acting on the sphere. A mathematical model of the system was developed, and good agreement was found between experimental, numerical and theoretical results. The flow resulting from the motion of the sphere was measured, and the fluid velocity was found to have an inverse square dependence on radial distance from the sphere. The good agreement between measurements and the analytical solutions for both fluid velocity and angular displacement of the sphere indicates that the flow may be considered Stokesian, thus providing an excellent basis for experimental and theoretical characterisation of hydrodynamic interactions between multiple oscillating spheres at low Reynolds number.
      PubDate: 2015-11-12
  • The flow field in a high aspect ratio cooling duct with and without one
           heated wall
    • Abstract: Abstract The flow in a high aspect ratio generic cooling duct is described for different Reynolds numbers and for adiabatic as well as non-adiabatic conditions. The Reynolds number is varied in a range from 39,000 to 111,000. The generic cooling duct facility allows for applying a constant temperature on the duct’s lower wall, and it ensures having well-defined boundary conditions. The high-quality, optical noninvasive measurement methods, namely Particle Image Velocimetry (2C2D-PIV, i.e., two velocity components in a plane), Stereo Particle Image Velocimetry (3C2D-PIV, i.e., three velocity components in a plane) and Volumetric Particle Tracking Velocimetry (3C3D-PTV, i.e., three velocity components in a volume), are used to characterize the flow in detail. Pressure transducers are installed for measuring the pressure losses. The repeatability and the validity of the data are discussed in detail. For that purpose, modifications in the test facility and in the experimental setup as well as comparisons between the different measurement methods are given. A focus lies on the average velocity distribution and on the turbulent statistics. The longitudinal velocity profile is analyzed in detail for Reynolds number variations. Secondary flows are identified with velocities of two orders of magnitude smaller than the longitudinal velocity. Reynolds stress distributions are given for several different cases. The Reynolds number dependency of \(\overline{u'^2}\) and \(\overline{v'^2}\) is shown, and a comparison between the adiabatic and the heated case is given. \(\overline{u'^2}\) changes significantly when the lower wall heat flux is applied, whereas \(\overline{v'^2}\) and \(\overline{u'v'}\) almost stay constant.
      PubDate: 2015-11-11
  • On the transient dynamics of the wake and trajectory of free falling cones
           with various apex angles
    • Abstract: Abstract The early free fall stages of cones with a density ratio 1.18 and apex angles of \(30^{\circ }\) , \(45^{\circ }\) , \(60^{\circ }\) , and \(90^{\circ }\) were studied using a wireless 3-axis gyroscope and accelerometer to describe the cone 3D motions, while particle image velocimetry was used to capture the induced flow in the near wake. The Reynolds number based on the cones diameter and the velocity at which the cone reaches the first local velocity maximum is found to consistently set the limit between two distinctive states. Relatively rapid growth in the cone nutation and departure from the vertical axis is observed after this Re is reached. Sequences of vertical velocity, swirling strength, LES-decomposed velocity, and pressure fields show the formation and growth of a large and initially symmetric recirculation bubble at the cone base. Those also highlight the presence of a symmetric 3D vortex rollup dominating the near wake in the early stages of the fall. A shear layer develops at the edge of the wake and manifests in the periodic shedding of Kelvin–Helmholtz vortices that, due to the nature of the recirculation bubble, reorganize to constitute a part of the rollup. Later in the fall, the wake loses symmetry and shows high population of vortical structures leading to turbulence. The asymmetric wake leads to strong interactions between the flow field and the cone evidenced by the shedding of a part of the 3D large-scale vortex rollup. This shedding process along with the cone rotation around its own axis provides a possible explanation of the helical wake structure observed in other studies.
      PubDate: 2015-11-09
  • Flow field measurement around vortex cavitation
    • Abstract: Abstract Models for the center frequency of cavitating-vortex induced pressure-fluctuations, in a flow around propellers, require knowledge of the vortex strength and vapor cavity size. For this purpose, stereoscopic particle image velocimetry (PIV) measurements were taken downstream of a fixed half-wing model. A high spatial resolution is required and was obtained via correlation averaging. This reduces the interrogation area size by a factor of 2–8, with respect to conventional PIV measurements. Vortex wandering was accounted for by selecting PIV images for a given vortex position, yielding sufficient data to obtain statistically converged and accurate results, both with and without a vapor-filled vortex core. Based on these results, the low-order Proctor model was applied to describe the tip vortex velocity outside the viscous core, and the cavity size as a function of cavitation number. The flow field around the vortex cavity shows, in comparison with a flow field without cavitation, a region of retarded flow. This layer around the cavity interface is similar to the viscous core of a vortex without cavitation.
      PubDate: 2015-11-07
  • Integrating Mach–Zehnder interferometry with TPIV to measure the
           time-resolved deformation of a compliant wall along with the 3D velocity
           field in a turbulent channel flow
    • Abstract: Abstract A system combining tomographic PIV (TPIV) and Mach–Zehnder interferometry (MZI) simultaneously measures the time-resolved 3D flow field and 2D distribution of wall-normal deformation in a turbulent channel flow over a transparent compliant surface. This paper focuses on the experimental techniques and data analysis procedures, but includes sample results. Standard TPIV analysis resolves the log layer of the mean velocity and the linear decrease in total shear stress with distance from the wall. Single-pixel ensemble correlations reveal the buffer layer and top of the viscous sublayer. Analysis of the MZI data consists of two steps, namely critical spatial filtering of interferograms to remove noise and phase demodulation to calculate the surface shape. A new technique to improve the filtration of noise from interferograms based on spatial correlations of small windows is introduced and optimized. Taking advantage of this enhancement, the phase/deformation distribution is calculated directly from arccosines of the intensity, which avoids edge artifacts affecting spectral calculations. Validations using synthetic noisy interferograms indicate that errors associated with correlation-based enhancement are consistently lower and much less sensitive to fringe shape than spectral band-pass filtering. The experimental wavenumber–frequency spectra show that the deformation consists of patterns that are larger than the field of view, surface waves and small-scale patterns. Some of the latter are advected at the freestream velocity, but mostly at 70 % of the freestream, the mean speed at 10 % of the channel half height. Indeed, spatial correlations of the deformation with velocity components peak at this elevation.
      PubDate: 2015-11-03
  • Measurement of density in axisymmetric jets using a novel
           background-oriented schlieren (BOS) technique
    • Abstract: Abstract A novel application of the adaptive Fourier–Hankel (AFH) Abel algorithm to reconstruct the radial density distribution of axisymmetric jets is presented. The fluid is imaged using the non-intrusive path-integrated background-oriented schlieren (BOS) technique. BOS images are cross-correlated to obtain background displacements that are proportional to the first derivative of the refractive index. The critical step is deconvolving the projected displacements. The AFH method is applied to simulated displacement data to validate the use of averaged turbulent fluctuations that approximate an axisymmetric field. The influence of experimental noise and variations in the flow on the accuracy of the method is discussed. The limitations of the system are demonstrated by applying it to low- and high-Reynolds (Re) number jets. The high-Re jets are produced from a high-pressure fuel injector operating at nozzle pressure ratios of 2, 3, and 4.
      PubDate: 2015-11-03
  • Large-scale unsteadiness in a compressible, turbulent reattaching shear
    • Abstract: Abstract The large-scale unsteadiness that occurs in shock-wave/boundary layer interactions imposes severe aero-thermo-acoustic loads on high-speed aircraft. Much progress has been made on this problem in the last two decades: these interactions can now be tackled with large eddy simulation, at least for relatively low Reynolds numbers. Further, a large body of evidence now suggests that the physical mechanism for the unsteadiness lies in the selective amplification, within the separated flow, of large-scale disturbances originating in the incoming turbulent flow. The present paper examines the kinematics of these incoming structures in a turbulent boundary layer, and the scaling of the corresponding response of a reattaching shear layer flow. In particular, it presents an overview of the influence on recent research of experimental work carried out by Smits’ group at Princeton University in the 1990s.
      PubDate: 2015-11-03
  • Statistically advanced, self-similar, radial probability density functions
           of atmospheric and under-expanded hydrogen jets
    • Abstract: Abstract This paper presents improved statistical insight regarding the self-similar scalar mixing process of atmospheric hydrogen jets and the downstream region of under-expanded hydrogen jets. Quantitative planar laser Rayleigh scattering imaging is used to probe both jets. The self-similarity of statistical moments up to the sixth order (beyond the literature established second order) is documented in both cases. This is achieved using a novel self-similar normalization method that facilitated a degree of statistical convergence that is typically limited to continuous, point-based measurements. This demonstrates that image-based measurements of a limited number of samples can be used for self-similar scalar mixing studies. Both jets exhibit the same radial trends of these moments demonstrating that advanced atmospheric self-similarity can be applied in the analysis of under-expanded jets. Self-similar histograms away from the centerline are shown to be the combination of two distributions. The first is attributed to turbulent mixing. The second, a symmetric Poisson-type distribution centered on zero mass fraction, progressively becomes the dominant and eventually sole distribution at the edge of the jet. This distribution is attributed to shot noise-affected pure air measurements, rather than a diffusive superlayer at the jet boundary. This conclusion is reached after a rigorous measurement uncertainty analysis and inspection of pure air data collected with each hydrogen data set. A threshold based upon the measurement noise analysis is used to separate the turbulent and pure air data, and thusly estimate intermittency. Beta-distributions (four parameters) are used to accurately represent the turbulent distribution moments. This combination of measured intermittency and four-parameter beta-distributions constitutes a new, simple approach to model scalar mixing. Comparisons between global moments from the data and moments calculated using the proposed model show excellent agreement. This was attributed to the high quality of the measurements which reduced the width of the correctly identified, noise-affected pure air distribution, with respect to the turbulent mixing distribution. The ignitability of the atmospheric jet is determined using the flammability factor calculated from both kernel density estimated (KDE) PDFs and PDFs generated using the newly proposed model. Agreement between contours from both approaches is excellent. Ignitability of the under-expanded jet is also calculated using KDE PDFs. Contours are compared with those calculated by applying the atmospheric model to the under-expanded jet. Once again, agreement is excellent. This work demonstrates that self-similar scalar mixing statistics and ignitability of atmospheric jets can be accurately described by the proposed model. This description can be applied with confidence to under-expanded jets, which are more realistic of leak and fuel injection scenarios.
      PubDate: 2015-10-31
  • On the trajectory scaling of tandem twin jets in cross-flow in close
    • Abstract: Abstract An experimental study has been conducted on tandem twin jets in cross-flow (JICF) in close proximity to investigate the relationships between their trajectories, separation distances and velocity ratios. Results show that the front and rear jets, each with initially distinct jet trajectory, merge into a single trajectory shortly after they exhaust into the cross-flow. Furthermore, the merged tandem JICF attains deeper cross-flow penetration than that of a single JICF at the same velocity ratio. The front jet is also observed to provide ‘shielding’ for the rear jet such that the latter penetrates relatively deeper into the cross-flow, which corroborates observations made by earlier studies. In particular, the present study demonstrates that it is possible to collapse the tandem JICF merged trajectories by ‘rD’-scaling, where A and B coefficients show slight reductions and increments, respectively, with increasing separation distance. Collapsing the merged trajectories by using single JICF A and B coefficients leads to the notion of effective velocity ratio for tandem JICF, which enable the authors to propose a modification in the ‘rD’-scaling law for tandem JICF. Lastly, the modified ‘rD’-scaling law is applied to trajectory data from an earlier tandem JICF study, and its validity is demonstrated by the resulting good collapse.
      PubDate: 2015-10-30
  • Passive jet control of flow around a circular cylinder
    • Abstract: Abstract In the present study, a passive flow control method, which is featured by passive windward suction combined with leeward jet over a circular cylinder for drag reduction and dynamic wind loading suppression, was experimentally investigated to manipulate unsteady wake vortex shedding from a circular cylinder. Four perforated pipe designs with different numbers of suction/jet holes (i.e., from 2 to 24 suction/jet holes) were used to create flow communicating channels between the windward and leeward stagnation points of a cylindrical test model. The experimental study was performed in a wind tunnel at a Reynolds number of Re = 4.16 × 104 based on the cylinder diameter and oncoming airflow speed. In addition to measuring surface pressure distributions to determine the dynamic wind loads acting on the test model, a digital particle image velocimetry (PIV) system was also used to quantify the wake flow characteristics in order to assess the effectiveness of the passive jet control method with different perforated pipe designs, in comparison with a baseline case without passive jet control. It was found that the passive jet control method is very effective in manipulating the wake vortex shedding process from the circular cylinder. The perforated pipe designs with more suction/jet holes were found to be more effective in reducing drag and suppressing fluctuating amplitude of the dynamic wind loads acting on the test model. With 24 suction/jet holes evenly distributed over the cylindrical test model (i.e., the N13 design of the present study), the passive jet control method was found to be able to achieve up to 33.7 % in drag reduction and 90.6 % in fluctuating wind loading suppression, in comparison with the baseline case. The PIV measurement results revealed clearly that the passive jet control method would cause airflow jets into the cylinder wake and change the shedding modes of the wake vortex structures from the cylindrical test model. Because of the dynamic interactions between the passive jets and the wake vortex structures, the antisymmetric pattern of the wake vortex shedding was found to be converted to symmetric mode. The periodicity of the vortex shedding was also observed to be diminished and eventually disappeared with the number increase in the suction/jet holes. A linear stability analysis was performed to suggest that the passive jet flow would modify the wake stability of the circular cylinder by decreasing the disturbance growth rate in the immediate wake and pushing the region of absolute instability further downstream.
      PubDate: 2015-10-30
  • Investigations of air flow behavior past a conical bluff body using
           particle imaging velocimetry
    • Abstract: Abstract An annular jet flow past conical bluff body in an original configuration was investigated using particle imaging velocimetry for Reynolds (Re) numbers between 4900 and 58,800. The studied geometrical configuration finds its application in a novel low NO x burner; therefore, the flow conditions corresponding to burner operation were investigated in detail. It was found that the flow is laminar at Re = 4900 and the transition from a laminar to a turbulent flow regime starts at Re = 9800–14,700. The length of the recirculation zone increases abruptly when the flow becomes turbulent and is independent of the Re number within the turbulent flow regime. The fraction of the total flow rate representing flow circulating in the recirculation zone is relatively constant for the investigated flows. An increase in main stream velocity implies proportional decrease in the residence time in the recirculation zone observed within the turbulent flow regime. Two types of coherent structures shed from the trailing edge of the bluff body are identified using proper orthogonal decomposition technique. The first is vortices that cross the centerline of the bluff body and travel downstream along the centerline. The second is smaller vortex structures that are shed alternately from the trailing edge of the bluff body.
      PubDate: 2015-10-16
  • Solenoidal filtering of volumetric velocity measurements using Gaussian
           process regression
    • Abstract: Abstract Volumetric velocity measurements of incompressible flows contain spurious divergence due to measurement noise, despite mass conservation dictating that the velocity field must be divergence-free (solenoidal). We investigate the use of Gaussian process regression to filter spurious divergence, returning analytically solenoidal velocity fields. We denote the filter solenoidal Gaussian process regression (SGPR) and formulate it within the Bayesian framework to allow a natural inclusion of measurement uncertainty. To enable efficient handling of large data sets on regular and near-regular grids, we propose a solution procedure that exploits the Toeplitz structure of the system matrix. We apply SGPR to two synthetic and two experimental test cases and compare it with two other recently proposed solenoidal filters. For the synthetic test cases, we find that SGPR consistently returns more accurate velocity, vorticity and pressure fields. From the experimental test cases, we draw two important conclusions. Firstly, it is found that including an accurate model for the local measurement uncertainty further improves the accuracy of the velocity field reconstructed with SGPR. Secondly, it is found that all solenoidal filters result in an improved reconstruction of the pressure field, as verified with microphone measurements. The results obtained with SGPR are insensitive to correlation length, demonstrating the robustness of the filter to its parameters.
      PubDate: 2015-10-15
  • Effect of initial vortex core size on the coherent structures in the
           swirling jet near field
    • Abstract: Abstract This study investigates the sensitivity to initial conditions of swirling jets undergoing vortex breakdown. Emphasis is placed on the recirculation bubble and on the helical coherent structures that evolve in its periphery. It is proposed that the vortex core size of the incoming swirling jet is the critical parameter that determines the dynamics of these coherent structures. This proposition is assessed with Stereo Particle-Image-Velocimetry (PIV) measurements of the breakdown region of two swirling jet configurations with different vortex core sizes at very similar overall swirl intensities. The swirling jets were generated by radial vanes entering a mixing tube, and the vortex core size was adjusted by using different center-body geometries. The time-averaged flow fields in the breakdown region reveal substantial differences in the jet spreading and the size of the recirculation bubble. Proper Ortogonal Decomposition (POD) was applied to the anti-axisymmetric and axisymmetric velocity fluctuations, to reconstruct the dynamics of the helical instability and the breakdown bubble, respectively. We find that the mode shape of the helical instability is not affected by the vortex core size. The frequency is found to coincide with the vortex core rotation rate, which relates inversely to the core size. The shape and dynamics of the non-periodic breakdown bubble are significantly affected by a change in vortex core size. The POD reveals that the energy content of the dominant non-periodic structure is changed markedly with the vortex core size. The bubble dynamics are further investigated by tracking the upstream stagnation point from the PIV snapshots. It is shown that a larger vortex core promotes smooth fluctuations of the recirculation bubble, while a small initial vortex core is linked to bimodal fluctuations of the recirculation bubble. The conclusions drawn from this study are relevant for fundamental swirling jet studies, as well as for the design of swirl-stabilized combustors, where the investigated coherent structures influence combustion performance.
      PubDate: 2015-10-12
  • Fast-response underwater TSP investigation of subcritical instabilities of
           a cylinder in crossflow
    • Abstract: Abstract We investigate the classic cylinder in crossflow case to test the effectiveness of a fast-response underwater temperature-sensitive paint coating (TSP) in providing highly resolved spatial and time observations of the action of a flow over a bluff body surface. The flow is investigated at Reynolds number <190 k, before the onset of the drag-crisis state. The obtained TSP image sequences convey an accurate description of the evolution of the main features in the fluid–cylinder interaction, like the separation line position, the pattern of the large coherent structures acting on the cylinder’s surface and the small-scale intermittent streamwise arrays of vortices. Ad hoc data management and features extraction techniques are proposed which allow extraction of quantitative data, such as separation line position and vortex-shedding frequency, and results are compared to the literature. Use of TSP for water applications introduces an interesting point of view about the fluid–body interactions by focusing directly on the effect of the flow on the model surface.
      PubDate: 2015-10-07
  • The flexible asymmetric shock tube (FAST): a Ludwieg tube facility for
           wave propagation measurements in high-temperature vapours of organic
    • Abstract: Abstract This paper describes the commissioning of the flexible asymmetric shock tube (FAST), a novel Ludwieg tube-type facility designed and built at Delft University of Technology, together with the results of preliminary experiments. The FAST is conceived to measure the velocity of waves propagating in dense vapours of organic fluids, in the so-called non-ideal compressible fluid dynamics (NICFD) regime, and can operate at pressures and temperatures as high as 21 bar and 400  \(^\circ\) C, respectively. The set-up is equipped with a special fast-opening valve, separating the high-pressure charge tube from the low-pressure plenum. When the valve is opened, a wave propagates into the charge tube. The wave speed is measured using a time-of-flight technique employing four pressure transducers placed at known distances from each other. The first tests led to the following results: (1) the leakage rate of \(5 \times {\mathrm {10}}^{-4}\,{\mathrm {mbar\,l~s^{-1}}}\) for subatmospheric and \(5 \times {\mathrm {10}}^{-2}\,{\mathrm {mbar\,l~s^{-1}}}\) for a superatmospheric pressure is compatible with the purpose of the conceived experiments, (2) the process start-up time of the valve has been found to be between 2.1 and 9.0 ms, (3) preliminary rarefaction wave experiments in the dense vapour of siloxane \(\hbox {D}_6\) (dodecamethylcyclohexasiloxane, an organic fluid) were successfully accomplished up to temperatures of \(300\,{^\circ }\hbox {C}\) , and (4) a method for the estimation of the speed of sound from wave propagation experiments is proposed. Results are found to be within 2.1 % of accurate model predictions for various gases. The method is then applied to estimate the speed of sound of \(\hbox {D}_6\) in the NICFD regime.
      PubDate: 2015-10-05
  • Simultaneous measurements of droplet size, flying velocity and transient
           temperature of in-flight droplets by using a molecular tagging technique
    • Abstract: Abstract In the present study, a molecular tagging technique is introduced to achieve simultaneous measurements of droplet size, flying velocity and transient temperature of in-flight liquid droplets in a spray flow. For the molecular tagging measurements, a pulsed laser is used to “tag” phosphorescent 1-BrNp·Mβ-CD·ROH triplex molecules premixed within liquid droplets. After the same laser excitation pulse, long-lived laser-induced phosphorescence is imaged at two successive times within the phosphorescence lifetime of the tagged phosphorescent triplex molecules. While the sizes of the droplets are determined quantitatively based on the acquired droplet images with a precalibrated scale ratio between the image plane and the object plane, the displacement vectors of the in-flight droplets between the two image acquisitions are used to estimate the flying velocities of the droplets. The simultaneous measurements of the transient temperatures of the in-flight droplets are achieved by taking advantage of the temperature dependence of phosphorescence lifetime, which is estimated from the intensity ratio of the acquired phosphorescence image pair of the inflight droplets. The feasibility and implementation of the molecular tagging technique are demonstrated by conducting simultaneous measurements of droplet size, flying velocity and transient temperature of micro-sized water droplets exhausted from a piezoelectric droplet generator into ambient air at different test conditions in order to characterize the dynamic and thermodynamic behaviors of the micro-sized in-flight droplets. The unsteady heat transfer process between the in-flight droplets and the ambient air is also analyzed theoretically by using a lumped capacitance method to predict the temperature changes of the in-flight water droplets along their flight trajectories. The measured temperature data are compared with the theoretical analysis results quantitatively, and the discrepancies between measurement results and the theoretical predictions are found to be within 0.80 °C.
      PubDate: 2015-09-29
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2015