for Journals by Title or ISSN
for Articles by Keywords

Publisher: Springer-Verlag   (Total: 2210 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  First | 3 4 5 6 7 8 9 10 | Last

Dysphagia     Hybrid Journal   (Followers: 160, SJR: 0.684, h-index: 46)
e & i Elektrotechnik und Informationstechnik     Hybrid Journal   (Followers: 7, SJR: 0.146, h-index: 8)
e-Neuroforum     Hybrid Journal  
Early Childhood Education J.     Hybrid Journal   (Followers: 12, SJR: 0.367, h-index: 12)
Earth Science Informatics     Hybrid Journal   (Followers: 3, SJR: 0.245, h-index: 5)
Earth, Moon, and Planets     Hybrid Journal   (Followers: 5, SJR: 0.436, h-index: 28)
Earthquake Engineering and Engineering Vibration     Hybrid Journal   (Followers: 7, SJR: 0.433, h-index: 17)
Earthquake Science     Hybrid Journal   (Followers: 9, SJR: 0.486, h-index: 7)
East Asia     Hybrid Journal   (Followers: 7, SJR: 0.165, h-index: 9)
Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity     Hybrid Journal   (Followers: 6, SJR: 0.289, h-index: 23)
EcoHealth     Hybrid Journal   (Followers: 1, SJR: 0.651, h-index: 22)
Ecological Research     Hybrid Journal   (Followers: 7, SJR: 0.698, h-index: 38)
Economic Botany     Hybrid Journal   (Followers: 8, SJR: 0.666, h-index: 40)
Economic Bulletin     Hybrid Journal   (Followers: 3)
Economic Change and Restructuring     Hybrid Journal   (Followers: 1, SJR: 0.263, h-index: 6)
Economic Theory     Hybrid Journal   (Followers: 5, SJR: 1.857, h-index: 31)
Economic Theory Bulletin     Hybrid Journal  
Economics of Governance     Hybrid Journal   (Followers: 2, SJR: 0.367, h-index: 12)
Ecosystems     Hybrid Journal   (Followers: 18, SJR: 1.793, h-index: 83)
Ecotoxicology     Hybrid Journal   (Followers: 10, SJR: 1.041, h-index: 53)
Education and Information Technologies     Hybrid Journal   (Followers: 142, SJR: 0.207, h-index: 15)
Educational Assessment, Evaluation and Accountability     Hybrid Journal   (Followers: 11, SJR: 0.519, h-index: 14)
Educational Psychology Review     Hybrid Journal   (Followers: 13, SJR: 1.781, h-index: 52)
Educational Research for Policy and Practice     Hybrid Journal   (Followers: 6, SJR: 0.211, h-index: 8)
Educational Studies in Mathematics     Hybrid Journal   (Followers: 7, SJR: 0.946, h-index: 27)
Educational Technology Research and Development     Partially Free   (Followers: 148, SJR: 1.124, h-index: 45)
Electrical Engineering     Hybrid Journal   (Followers: 9, SJR: 0.352, h-index: 17)
Electrocatalysis     Hybrid Journal   (SJR: 0.542, h-index: 7)
Electronic Commerce Research     Hybrid Journal   (Followers: 3, SJR: 0.636, h-index: 14)
Electronic Markets     Hybrid Journal   (Followers: 5, SJR: 0.326, h-index: 5)
Electronic Materials Letters     Hybrid Journal   (Followers: 2, SJR: 0.566, h-index: 11)
Elemente der Mathematik     Hybrid Journal  
Emergency Radiology     Hybrid Journal   (Followers: 4, SJR: 0.446, h-index: 22)
Empirica     Hybrid Journal   (Followers: 3, SJR: 0.185, h-index: 12)
Empirical Economics     Hybrid Journal   (Followers: 7, SJR: 0.5, h-index: 29)
Empirical Software Engineering     Hybrid Journal   (Followers: 4, SJR: 2.319, h-index: 33)
Employee Responsibilities and Rights J.     Hybrid Journal   (Followers: 2, SJR: 0.21, h-index: 13)
Endocrine     Hybrid Journal   (Followers: 4, SJR: 0.659, h-index: 55)
Endocrine Pathology     Hybrid Journal   (Followers: 2, SJR: 0.555, h-index: 27)
Energy Efficiency     Hybrid Journal   (Followers: 10, SJR: 1.056, h-index: 10)
Energy Systems     Hybrid Journal   (Followers: 8, SJR: 0.589, h-index: 5)
Engineering With Computers     Hybrid Journal   (Followers: 5, SJR: 0.497, h-index: 26)
Entomological Review     Hybrid Journal   (Followers: 3, SJR: 0.128, h-index: 5)
Environment Systems & Decisions     Hybrid Journal   (Followers: 2)
Environment, Development and Sustainability     Hybrid Journal   (Followers: 28, SJR: 0.319, h-index: 26)
Environmental and Ecological Statistics     Hybrid Journal   (Followers: 5, SJR: 0.389, h-index: 29)
Environmental and Resource Economics     Hybrid Journal   (Followers: 17, SJR: 1.651, h-index: 46)
Environmental Biology of Fishes     Hybrid Journal   (Followers: 3, SJR: 0.486, h-index: 53)
Environmental Chemistry Letters     Hybrid Journal   (Followers: 3, SJR: 0.664, h-index: 22)
Environmental Earth Sciences     Hybrid Journal   (Followers: 10, SJR: 0.601, h-index: 55)
Environmental Economics and Policy Studies     Hybrid Journal   (Followers: 5, SJR: 0.35, h-index: 3)
Environmental Evidence     Open Access  
Environmental Fluid Mechanics     Hybrid Journal   (Followers: 2, SJR: 0.732, h-index: 23)
Environmental Geochemistry and Health     Hybrid Journal   (Followers: 2, SJR: 0.909, h-index: 32)
Environmental Geology     Hybrid Journal   (Followers: 11)
Environmental Health and Preventive Medicine     Hybrid Journal   (Followers: 2, SJR: 0.388, h-index: 14)
Environmental Management     Hybrid Journal   (Followers: 30, SJR: 0.773, h-index: 60)
Environmental Modeling & Assessment     Hybrid Journal   (Followers: 11, SJR: 0.413, h-index: 27)
Environmental Monitoring and Assessment     Hybrid Journal   (Followers: 9, SJR: 0.671, h-index: 46)
Environmental Science and Pollution Research     Hybrid Journal   (Followers: 11, SJR: 0.878, h-index: 42)
Epidemiologic Perspectives & Innovations     Open Access   (Followers: 1, SJR: 1.002, h-index: 14)
Epileptic Disorders     Hybrid Journal   (Followers: 1, SJR: 0.669, h-index: 34)
EPJ A - Hadrons and Nuclei     Hybrid Journal   (Followers: 1, SJR: 1.435, h-index: 58)
EPJ B - Condensed Matter and Complex Systems     Hybrid Journal   (Followers: 3, SJR: 0.749, h-index: 85)
EPJ direct     Hybrid Journal  
EPJ E - Soft Matter and Biological Physics     Hybrid Journal   (Followers: 1, SJR: 0.661, h-index: 57)
EPMA J.     Open Access   (SJR: 0.161, h-index: 4)
ERA-Forum     Hybrid Journal   (Followers: 2, SJR: 0.13, h-index: 2)
Erkenntnis     Hybrid Journal   (Followers: 11, SJR: 0.62, h-index: 14)
Erwerbs-Obstbau     Hybrid Journal   (SJR: 0.173, h-index: 8)
Esophagus     Hybrid Journal   (SJR: 0.268, h-index: 9)
Estuaries and Coasts     Hybrid Journal   (Followers: 3, SJR: 1.111, h-index: 61)
Ethical Theory and Moral Practice     Hybrid Journal   (Followers: 7, SJR: 0.278, h-index: 8)
Ethics and Information Technology     Hybrid Journal   (Followers: 159, SJR: 0.363, h-index: 20)
Ethik in der Medizin     Hybrid Journal   (SJR: 0.204, h-index: 6)
Euphytica     Hybrid Journal   (Followers: 7, SJR: 0.709, h-index: 57)
Eurasian Soil Science     Hybrid Journal   (Followers: 2, SJR: 0.271, h-index: 10)
EURO J. of Transportation and Logistics     Hybrid Journal   (Followers: 4)
EURO J. on Computational Optimization     Hybrid Journal  
EURO J. on Decision Processes     Hybrid Journal  
Europaisches J. fur Minderheitenfragen     Hybrid Journal  
European Actuarial J.     Hybrid Journal   (Followers: 3)
European Archives of Oto-Rhino-Laryngology     Hybrid Journal   (Followers: 4, SJR: 0.737, h-index: 37)
European Archives of Paediatric Dentistry     Hybrid Journal   (Followers: 1, SJR: 0.446, h-index: 12)
European Archives of Psychiatry and Clinical Neuroscience     Hybrid Journal   (Followers: 2, SJR: 1.334, h-index: 62)
European Biophysics J.     Hybrid Journal   (Followers: 4, SJR: 0.979, h-index: 53)
European Child & Adolescent Psychiatry     Hybrid Journal   (Followers: 4, SJR: 1.269, h-index: 51)
European Clinics in Obstetrics and Gynaecology     Hybrid Journal   (Followers: 4)
European Food Research and Technology     Hybrid Journal   (Followers: 8, SJR: 0.773, h-index: 49)
European J. for Education Law and Policy     Hybrid Journal   (Followers: 5)
European J. for Philosophy of Science     Partially Free   (Followers: 4, SJR: 0.165, h-index: 2)
European J. of Ageing     Hybrid Journal   (Followers: 8, SJR: 0.49, h-index: 17)
European J. of Applied Physiology     Hybrid Journal   (Followers: 7, SJR: 1.044, h-index: 74)
European J. of Clinical Microbiology & Infectious Diseases     Hybrid Journal   (Followers: 10, SJR: 0.958, h-index: 74)
European J. of Clinical Pharmacology     Hybrid Journal   (Followers: 9, SJR: 0.916, h-index: 69)
European J. of Dermatology     Hybrid Journal   (Followers: 8)
European J. of Drug Metabolism and Pharmacokinetics     Hybrid Journal   (Followers: 6, SJR: 0.24, h-index: 25)
European J. of Epidemiology     Hybrid Journal   (Followers: 17, SJR: 1.946, h-index: 60)
European J. of Forest Research     Hybrid Journal   (Followers: 3, SJR: 0.864, h-index: 25)
European J. of Health Economics     Hybrid Journal   (Followers: 9, SJR: 0.67, h-index: 25)

  First | 3 4 5 6 7 8 9 10 | Last

Journal Cover Experiments in Fluids
   [7 followers]  Follow    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
     ISSN (Print) 1432-1114 - ISSN (Online) 0723-4864
     Published by Springer-Verlag Homepage  [2210 journals]   [SJR: 1.033]   [H-I: 62]
  • Proper orthogonal and dynamic mode decompositions of time-resolved PIV of
           confined backward-facing step flow
    • Abstract: Abstract The unsteady flow field past a backward-facing step in a rectangular duct is investigated by adopting time-resolved particle image velocimetry (PIV) in the Reynolds number range of 2,640–9,880 based on step height and the inlet average velocity. The PIV realizations are subjected to post-processing techniques, namely, proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). At low Reynolds numbers, the second spatial POD modes indicate the presence of the shear layer mode, whereas this feature shifts to higher modes at higher Reynolds numbers. The corresponding temporal modes are Fourier-transformed to obtain the dominant frequency, whose Strouhal number corroborates the above observation. Short-time windows in the transverse velocity component along the shear layer are selected to investigate the temporal stability of the flow field by DMD to quantify the growth rate of the shear layer mode. The higher harmonics of this mode are also observed to grow, albeit at lesser rate. By relating to POD analysis, the most energetic structures were found to correspond to the unstable modes. The correlation between these unstable DMD modes and the Fourier-filtered flow fields for the same frequencies indicate better match for the lower operating Reynolds number case as compared to higher ones. The spatial stability analysis demonstrates the growth of the shear layer vortices, which is combined with the temporal stability analysis to evaluate the phase velocity of the identified shear layer structures. The calculated phase velocity magnitude of the shear layer is found to be reasonably below the local velocity as expected.
      PubDate: 2014-08-19
  • PIV-based load investigation in dynamic stall for different reduced
    • Abstract: Abstract Measuring the aerodynamic loads on dynamic objects in small wind tunnels is often challenging. In this regard, fast-response particle image velocimetry (PIV) data are post-processed using advanced tools to calculate aerodynamic loads based on the control-volume approach. For dynamic stall phenomena, due to the existence of dynamic stall vortices and significant load changes over a short time interval, applying the control-volume technique is difficult in particular for drag estimation. In this study, an examination of the dynamic stall phenomena of an oscillating SD7037 airfoil is reported for a reduced frequency range of \(0.05\le k \le 0.12\) when \(Re=4\times 10^{4}\) . A numerical simulation is utilized as an alternative method for comparison and agrees well with the experimental results. The results suggest that loads can be determined accurately if the spatial resolution satisfies the reduced frequency increment. Minimizing the control-volume works best for lift determination. For the drag calculation, it was found that the location of the downstream boundary should be placed where it was not disturbed with wake vortices. The high-velocity gradients of the wake vortices increase the error level along the downstream boundary for the drag calculation but not for the lift estimation. Beside the load calculation, high-resolution PIV velocity fields also reveal insights into the effects of reduced frequency on dynamic flow behavior including the pitch angle range for vortex growth (between vortex generation and pinch-off), phase delay and number of vortices. These observations agree well with the load curve behavior.
      PubDate: 2014-08-15
  • POD-based reduced-order hybrid simulation using the data-driven transfer
           function with time-resolved PTV feedback
    • Abstract: Abstract A data-driven system-identification technique is explored for proper orthogonal decomposition (POD)-based reduced-order unsteady simulation integrated with time-resolved particle-image-velocimetry/particle-tracking-velocimetry (PIV/PTV) feedback. Principal interaction pattern analysis is extended to calculate a nonlinear transfer function for the POD-mode evolution. Compared with the transfer function derived from the Galerkin projection of the Navier–Stokes equation, instability is suppressed in this approach by introducing a specific norm to be minimized. A feedback loop is implemented such that multiple POD modes obtained by the snapshot method can be stably tracked and assimilated into the PIV/PTV measurement over time. The proposed algorithm is demonstrated by solving a planar-jet problem at \(Re \approx 2{,}000\) . Suitable feedback gain is analyzed, and the capability for data assimilation is discussed.
      PubDate: 2014-08-13
  • On the accuracy of PLIF measurements in slender plumes
    • Abstract: Abstract The purpose of this article was to assess the measurement uncertainty of the planar laser-induced fluorescence (PLIF) method and, as much as possible, to devise corrections for predictable biases. More specifically, we considered the measurement of concentration maps in cross sections parallel to and normal to the axis of a slender plume containing Rhodamine 6G as a passive scalar tracer and transported by a turbulent shear flow. In addition to previously examined sources of error related to PLIF, we also investigated several unexplored ones. First, we demonstrated that errors would arise if the laser sheet thickness was comparable to or larger than the thickness of the instantaneous plume. We then investigated the effect of secondary fluorescence, which was attributed to absorption and re-emission of primary fluorescence by dye both within and outside the laser sheet. We found that, if uncorrected, this effect would contaminate the calibration as well as the instantaneous concentration measurements of the plume, and proposed methods for the correction of these errors and for identifying the instantaneous boundaries of the in-sheet dye regions.
      PubDate: 2014-08-10
  • A learning-based approach for highly accurate measurements of turbulent
           fluid flows
    • Abstract: Abstract A new learning-based approach for determining fluid flow velocities and dominant motion patterns from particle images is proposed. It is a local parametric technique based on linear spatio-temporal models, which have previously been obtained by methods of unsupervised learning using proper orthogonal decomposition (POD). The learned motion models, embodied by the first POD modes, capture information about complex relations between neighboring flow vectors in spatio-temporal motion patterns. These motion models ensure the solution of the flow problem to be restricted to the orthogonal space spanned by the POD modes. Additional information about local, dominant flow structures can be gained by the POD modes and related parameters. The method can easily be tuned for different flow applications by choice of training data and, thus, is universally applicable. Beyond its simple implementation, the approach is very efficient, accurate and easily adaptable to all types of flow situations. It is an extension of the optical flow technique proposed by Lucas and Kandade (Proceedings of the 1981 DARPA image understanding workshop, pp 121–130, 1981) in their seminal paper. As such, it can also be applied as a postprocessing step to particle image velocimetry (PIV) measurements and improves the results for all conditions analyzed. The approach was tested on synthetic and real image sequences. For typical use cases of optical flow, such as small image displacements, it was more accurate compared to PIV and all other optical flow techniques tested.
      PubDate: 2014-08-10
  • Dynamics of flow control in an emulated boundary layer-ingesting offset
    • Abstract: Abstract Dynamics of flow control comprised of arrays of active (synthetic jets) and passive (vanes) control elements , and its effectiveness for suppression of total-pressure distortion is investigated experimentally in an offset diffuser, in the absence of internal flow separation. The experiments are conducted in a wind tunnel inlet model at speeds up to M = 0.55 using approach flow conditioning that mimics boundary layer ingestion on a Blended-Wing-Body platform. Time-dependent distortion of the dynamic total-pressure field at the ‘engine face’ is measured using an array of forty total-pressure probes, and the control-induced distortion changes are analyzed using triple decomposition and proper orthogonal decomposition (POD). These data indicate that an array of the flow control small-scale synthetic jet vortices merge into two large-scale, counter-rotating streamwise vortices that exert significant changes in the flow distortion. The two most energetic POD modes appear to govern the distortion dynamics in either active or hybrid flow control approaches. Finally, it is shown that the present control approach is sufficiently robust to reduce distortion with different inlet conditions of the baseline flow.
      PubDate: 2014-08-09
  • Experimental study of flash boiling spray vaporization through
           quantitative vapor concentration and liquid temperature measurements
    • Abstract: Abstract Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air–fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a “gas jet” structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the “gas jet” structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information concerning the heat and mass transfer inside flash boiling sprays, which is important for the understanding of its unique vaporization process.
      PubDate: 2014-08-08
  • Flow separation control over a Gö 387 airfoil by nanosecond
           pulse-periodic discharge
    • Abstract: Abstract Airfoil flow separation control using plasma actuator driven by repetitive nanosecond pulse voltage was experimentally investigated. The pressure distribution on an airfoil surface was measured by means of a liquid manometer, which is free from electromagnetic interference of the plasma. By integrating the pressure distribution, the lift coefficient was computed and the effects of the input voltage amplitude and repetitive frequency were evaluated. The results show two different manners of the lift increment depending on the angle of attack. At the pre-stall and stall angle, the flow is steady and the lift increment does not depend on the frequency. A strong hysteresis effect is also observed, i.e., once the lift increases due to the plasma actuation, it is still increased even after the actuation stops. At the post-stall angle, the flow is unsteady and the lift increment becomes significant with actuation at frequencies related to inherent flow instabilities for the shear layer and wake, which are determined by the spectrum analysis based on hot-wire measurements. At the preference frequency ranges, there is a certain voltage amplitude depending on the angle of attack, at which the extended plasma layer results in an optimum increase of lift.
      PubDate: 2014-08-06
  • Error reduction in molecular tagging velocimetry via image preprocessing
    • Abstract: Abstract The effect of preprocessing molecular tagging velocimetry (MTV) images to reduce measurement error was studied using simulated and experimental images with signal-to-noise (SN) ratios of SN = 2–16. The results of the simulations showed that image filtering reduced the measurement error by up to 30 % for conditions typically seen in real-world MTV experiments. Under some conditions (i.e., thin lines or large spatial filters), filtering was found to increase the measurement error. Experiments confirmed the simulation results, although the actual error levels were higher. The use of an averaged initial or “undelayed” image, instead of individual undelayed images, was also investigated. This strategy increased the SN of the undelayed image by averaging out the random noise. It was shown that the use of an averaged undelayed image reduced error for low SN images but potentially increased error for high SN images.
      PubDate: 2014-08-05
  • Turbulent boundary-layer control with plasma spanwise travelling waves
    • Abstract: Abstract Arrays of dielectric-barrier-discharge plasma actuators have been designed to generate spanwise travelling waves in the turbulent boundary layer for possible skin-friction drag reductions. Particle image velocimetry was used to elucidate the modifications to turbulence structures created by the plasma spanwise travelling waves. It has been observed that the plasma spanwise travelling waves amalgamated streamwise vortices, lifting low-speed fluid from the near-wall region up and around the peripheries of their cores to form wide ribbons of low-speed streamwise velocity within the viscous sublayer.
      PubDate: 2014-08-02
  • Experimental closed-loop control of flow separation over a plain flap
           using slope seeking
    • Abstract: Abstract Slope seeking control is implemented to suppress flow separation occurring on a plain flap progressively deflected at \(Re_{\mathrm{c}}=2\times 10^{6}\) . The flap is equipped with pulsed blowing slots that are actuated by a square signal whose duty cycle is adapted by the so-called slope seeking algorithm in order to minimise the injected momentum while maintaining the flow attached whatever the flap deflection angle. Thirteen hot-film sensors are chordwise distributed on the flap. They measure the wall shear stress fluctuations that are used to calculate in real time a series of correlation coefficients. This method constitutes a way to determine whether the flow is separated or not within the context of flow separation control. Finally, a modification of basic slope seeking algorithm is proposed to improve its convergence rate without compromising stability.
      PubDate: 2014-08-01
  • Drag reduction using superhydrophobic sanded Teflon surfaces
    • Abstract: Abstract In this paper, a series of experiments are presented which demonstrate drag reduction for the laminar flow of water through microchannels using superhydrophobic surfaces with random surface microstructure. These superhydrophobic surfaces were fabricated with a simple, inexpensive technique of sanding polytetrafluoroethylene (PTFE) with sandpaper having grit sizes between 120- and 600-grit. A microfluidic device was used to measure the pressure drop as a function of the flow rate to determine the drag reduction and slip length of each surface. A maximum pressure drop reduction of 27 % and a maximum apparent slip length of b = 20 μm were obtained for the superhydrophobic surfaces created by sanding PTFE with a 240-grit sandpaper. The pressure drop reduction and slip length were found to increase with increasing mean particle size of the sandpaper up to 240-grit. Beyond that grit size, increasing the pitch of the surface roughness was found to cause the interface to transition from the Cassie–Baxter state to the Wenzel state. This transition was observed both as an increase in the contact angle hysteresis and simultaneously as a reduction in the pressure drop reduction. For these randomly rough surfaces, a correlation between the slip length and the contact angle hysteresis was found. The surfaces with the smallest contact angle hysteresis were found to also have the largest slip length. Finally, a number of sanding protocols were tested by sanding preferentially along the flow direction, across the flow direction and with a random circular pattern. In all cases, sanding in the flow direction was found to produce the largest pressure drop reduction.
      PubDate: 2014-07-27
  • On the feasibility of tomographic-PIV with low pulse energy illumination
           in a lifted turbulent jet flame
    • Abstract: Abstract Tomographic particle image velocimetry (tomographic-PIV) is a recently developed measurement technique used to acquire volumetric velocity field data in liquid and gaseous flows. The technique relies on line-of-sight reconstruction of the rays between a 3D particle distribution and a multi-camera imaging system. In a turbulent flame, however, index-of-refraction variations resulting from local heat-release may inhibit reconstruction and thereby render the technique infeasible. The objective of this study was to test the efficacy of tomographic-PIV in a turbulent flame. An additional goal was to determine the feasibility of acquiring usable tomographic-PIV measurements in a turbulent flame at multi-kHz acquisition rates with current-generation laser and camera technology. To this end, a setup consisting of four complementary metal oxide semiconductor cameras and a dual-cavity Nd:YAG laser was implemented to test the technique in a lifted turbulent jet flame. While the cameras were capable of kHz-rate image acquisition, the laser operated at a pulse repetition rate of only 10 Hz. However, use of this laser allowed exploration of the required pulse energy and thus power for a kHz-rate system. The imaged region was 29 × 28 × 2.7 mm in size. The tomographic reconstruction of the 3D particle distributions was accomplished using the multiplicative algebraic reconstruction technique. The results indicate that volumetric velocimetry via tomographic-PIV is feasible with pulse energies of 25 mJ, which is within the capability of current-generation kHz-rate diode-pumped solid-state lasers.
      PubDate: 2014-07-26
  • Near-field development of a row of round jets at low Reynolds numbers
    • Abstract: Abstract This article reports on an experimental investigation of the near-field behavior of interacting jets at low Reynolds numbers (Re = 2125, 3290 and 4555). Two measurement techniques, particle image velocimetry (PIV) and laser Doppler anemometry (LDA), were employed to measure mean velocity and turbulence statistics in the near field of a row of six parallel coplanar round jets with equidistant spacing. The overall results from PIV and LDA measurements show good agreement, although LDA enabled more accurate measurements in the thin shear layers very close to the nozzle exit. The evolution of all six coplanar jets showed initial, merging, and combined regions. While the length of the potential core and the maximum velocity in the merging region are Reynolds number-dependent, the location of the merging points and the minimum velocity between jets were found to be independent of Reynolds number. Side jets at the edges of the coplanar row showed a constant decay rate of maximum velocity after their core region, which is comparable to a single round jet. Jets closer to the center of the row showed reducing velocity decay in the merging region, which led to a higher maximum velocity compared to a single round jet. A comparison with the flow for an in-line array of 6 × 6 round jets showed that the inward bending of streamwise velocity, which exists in the near field of the 6 × 6 jet array, does not occur in the single row of coplanar jets, although both setups have identical nozzle shape, spacing, and Reynolds number.
      PubDate: 2014-07-25
  • Outer ligament-mediated spray formation of annular liquid sheet by an
           inner round air stream
    • Abstract: Abstract The interfacial jetting phenomena of coaxial air-assisted water jets are studied using high-speed digital camera. Here, an inner round air jet is injected into annular water sheet spray. The experimental photographs show that the outside interface of liquid sheet shoots out large numbers of violent ligaments at high air velocity. The ligament velocity, ligament angle, ligament diameter, fragment size, and distribution are measured and analyzed. There are two kinds of ligament evolution that are breakup and contraction. An empirical model is also proposed for the ligament evolution process. At last, we obtain the criterion of critical Weber number on the ligament breakup based on the experimental results. This suggestion agrees well with the experimental data.
      PubDate: 2014-07-23
  • Schlieren-based techniques for investigating instability development and
           transition in a hypersonic boundary layer
    • Abstract: Abstract Three variants of schlieren techniques are employed to investigate the development of second-mode instability waves in the hypersonic boundary layer of a slender cone in a reflected shock tunnel. First, a previously proposed technique using high frame rate (i.e., at least as high as the dominant instability frequency) schlieren visualization with a continuous light source is shown to provide repeatable measurements of the instability propagation speed and frequency. A modified version of the technique is then introduced whereby a pulsed light source allows the use of a higher-resolution camera with a lower frame rate: this provides significant benefits in terms of spatial resolution and total recording time. A detailed picture of the surface-normal intensity distribution for individual wave packets is obtained, and the images provide comprehensive insight into the unsteady flow structures within the boundary layer. Finally, two-point schlieren deflectometry is implemented and shown to be capable of providing second-mode growth information in the challenging shock tunnel environment.
      PubDate: 2014-07-23
  • A benchmark experiment on gas cavitation
    • Abstract: Abstract Cavitation research is often a matter of experiments conducted in complex machinery. There, it is extremely difficult to look into one of the most important issues of cavitation which is nucleation. This work investigates gas cavitation under well-defined flow conditions. Nuclei are placed in wall bound cavities and are exposed to a radial gap flow featuring independent pressure and shear stress. A reciprocating bubble generation is achieved. Bubble frequency and size are evaluated which turn out to depend on pressure and wall shear stress. The experiment lends itself to systematic research in cavitation.
      PubDate: 2014-07-20
  • POD analysis of a finite-length cylinder near wake
    • Abstract: Abstract The near wake of a wall-mounted finite-length square cylinder with an aspect ratio of 7 is investigated based on the proper orthogonal decomposition (POD) of the PIV data measured in three spanwise planes, i.e., z/d = 6, 3.5 and 1.0, near the cylinder free end, mid-span and fixed end (wall), respectively. The Reynolds number based on free-stream velocity (U ∞) and cylinder width (d) is 9,300. A two-dimensional (2D) square cylinder wake is also measured and analyzed at the same Reynolds number for the purpose of comparison. The structures of various POD modes show marked differences between the two flows. While the coefficients, a 1 and a 2, of the POD modes 1 and 2 occur within an annular area centered at a 1 = a 2 = 0 in the 2D wake, their counterparts are scattered all over the entire circular plane at z/d = 1.0 and 3.5 of the finite-length cylinder wake. Flow at z/d = 6 is dominated by POD mode 1, which corresponds to symmetrical vortex shedding and accounts for 54.0 % of the total turbulent kinetic energy (TKE). On the other hand, the POD modes 1 and 2, corresponding to anti-symmetrical vortex shedding, are predominant, accounting for about 45.0 % of the total TKE, at z/d = 3.5 and 1. It has been found that the flow structure may be qualitatively and quantitatively characterized by the POD coefficients. For example, at z/d = 6, a larger a 1 corresponds to a smaller length of flow reversal zone and a stronger downwash flow. At z/d = 3.5 and 1, two typical flow modes can be identified from a 1 and a 2. While large a 1 and/or a 2 correspond to anti-symmetrical vortex shedding, as in a 2D cylinder wake, small a 1 and a 2 lead to symmetrical vortex shedding. Any values between the large and small a 1 and/or a 2 correspond to the flow structure between these two typical flow modes. As such, the probability of occurrence of a flow structure may be determined from the distribution of the POD coefficients.
      PubDate: 2014-07-18
  • Wake instabilities of a blunt trailing edge profiled body at intermediate
           Reynolds numbers
    • Abstract: Abstract Experiments have been conducted to identify and characterize the instabilities in the wake of a blunt trailing edge profiled body, comprised of an elliptical leading edge and a rectangular trailing edge, for a broad range of Reynolds numbers ( \(2{,}000\le Re(d)\le 50{,}000\) based on the thickness of the body). These experiments, which include measurements of the wake velocity field using hot-wire anemometry and particle image velocimetry, complement previous studies of the wake flow for the same geometry at lower and higher Reynolds numbers. The spatial characteristics of the primary wake instability (the von Kármán vortex street) are found to have relatively little variation in the range of Reynolds numbers investigated, in spite of the transition of the boundary layer upstream of the trailing edge from a laminar to a turbulent state. The dominant secondary instability, identified based on the structure of velocity and vorticity fields in the wake extracted using proper orthogonal decomposition, is found to have features similar to the ones described numerically and experimentally by Ryan et al. (J Fluid Mech 538:1–29, 2005), and Naghib-Lahouti et al. (Exp Fluids 52:1547–1566, 2012) at lower Reynolds numbers. The findings suggest that the spatial characteristics of the dominant primary and secondary wake flow instabilities have little dependence on the state of the flow upstream of the separation points, in spite of the distinct change in the normalized vortex shedding frequency upon the transition of the boundary layer.
      PubDate: 2014-07-18
  • Slope effects on the fluid dynamics of a fire spreading across a fuel bed:
           PIV measurements and OH* chemiluminescence imaging
    • Abstract: Abstract Slope is among the most influencing factor affecting the spread of wildfires. A contribution to the understanding of the fluid dynamics of a fire spreading in these terrain conditions is provided in the present paper. Coupled optical diagnostics are used to study the slope effects on the flow induced by a fire at laboratory scale. Optical diagnostics consist of particle image velocimetry, for investigating the 2D (vertical) velocity field of the reacting flow and chemiluminescence imaging, for visualizing the region of spontaneous emission of OH radical occurring during gaseous combustion processes. The coupling of these two techniques allows locating accurately the contour of the reaction zone within the computed velocity field. The series of experiments are performed across a bed of vegetative fuel, under both no-slope and 30° upslope conditions. The increase in the rate of fire spread with increasing slope is attributed to a significant change in fluid dynamics surrounding the flame. For horizontal fire spread, flame fronts exhibit quasi-vertical plume resulting in the buoyancy forces generated by the fire. These buoyancy effects induce an influx of ambient fresh air which is entrained laterally into the fire, equitably from both sides. For upward flame spread, the induced flow is strongly influenced by air entrainment on the burnt side of the fire and fire plume is tilted toward unburned vegetation. A particular attention is paid to the induced air flow ahead of the spreading flame. With increasing the slope angle beyond a threshold, highly dangerous conditions arise because this configuration induces wind blows away from the fire rather than toward it, suggesting the presence of convective heat transfers ahead of the fire front.
      PubDate: 2014-07-18
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2014