Authors:Hang Wang; Hubert Chanson Pages: 1087 - 1110 Abstract: A physical study of hydraulic jump is often undertaken using down-scaled Froude-similar models with Reynolds numbers much smaller than in prototype (e.g. spillway stilling basins). The potential viscous scale effects may affect a number of physical processes including turbulence development and air entrainment, thus challenging the extrapolation of laboratory data to the prediction of prototype conditions or justification of numerical modelling. This paper presents an experimental study of hydraulic jumps with a particular focus on the scale effects in terms of free-surface fluctuation and deformation, bubble advection and diffusion, bubble-turbulence interaction and turbulence dissipation. A broad range of free-surface, air–water flow and turbulence properties were measured systematically for Froude numbers from 3.8 to 10 and Reynolds numbers from 2.1 × 104 to 1.6 × 105. Based upon self-similarities in the longitudinal evolution of a number of characteristic flow properties, the analytical expressions of time-averaged roller surface profile, void fraction distribution and longitudinal velocity distribution were derived for given Froude number. The roller surface dynamics were found free of scale effects in terms of fluctuation amplitudes but the characteristic frequencies were scale-sensitive. While some air–water flow parameters such as bubble count rate, bubble chord time distribution and bubble grouping behaviour could only be correctly quantified at full-scale prototype conditions, the aeration level and turbulent scales might be estimated with satisfactory accuracy for engineering applications given a model Reynolds number no less than 4 × 10 to 6 × 104. PubDate: 2016-12-01 DOI: 10.1007/s10652-016-9466-z Issue No:Vol. 16, No. 6 (2016)

Authors:D. Termini Pages: 1111 - 1127 Abstract: Vegetation is a critical component of aquatic ecosystems and exerts an important role in river morphodynamics. This paper describes the results of laboratory study carried out to investigate the role of vegetation on flow field and erosion process developing in non-equilibrium situations. Particular attention is paid to scour evolving downstream of a rigid bed and to the effect of a vegetated carpet used as a protective measure against scouring. The reported experimental study shows that the introduction of the vegetated carpet results in a more favourable configuration than in its absence determining reduced values of flow velocity, turbulence intensity and bed shear stress, and modifying their patterns, downstream of the rigid bed. Consequently, the vegetated carpet protects the bed against the erosive action of flow and determines a beneficial effect with respect the stability of the structure. Experiments also show that a scour hole forms downstream of the vegetated carpet but the geometrical characteristics (length and depth) of such a scour hole are reduced by about 50 %compared to those obtained downstream of the rigid bed in absence of vegetation. PubDate: 2016-12-01 DOI: 10.1007/s10652-016-9467-y Issue No:Vol. 16, No. 6 (2016)

Authors:Yu-hang Guo; Bao-zhi Pan; Wen-bin Liu Pages: 1129 - 1141 Abstract: Relative permeability and resistivity index are important parameters in petrophysics experiments and reservoir evaluations. According to the results of previous studies, there exists a relationship between resistivity index and relative permeability in in situ reservoir condition and a lot of transformation models were established. In this paper, we compared the relative permeability which was calculated from the resistivity index measured in different conditions (in situ reservoir condition and conventional condition), and the result shows that the relative permeabilities are similar. If core samples are fragile and not resistant to high temperature or high pressure, it is possible to use resistivity index measured in conventional condition to get the relative permeability which provides a convenient way for experimental measurement and reservoir evaluation. In practical applications, the results show that the pore structure make a great influence on the relationship between wetting phase tortuosity ratio and resistivity index. Therefore, in this study we took the difference of pore structure into account when deciding model parameters by core analysis, and the verification results are basically consistent with the laboratory measurement results. PubDate: 2016-12-01 DOI: 10.1007/s10652-016-9469-9 Issue No:Vol. 16, No. 6 (2016)

Authors:Michał Korycki; Lech Łobocki; Andrzej Wyszogrodzki Pages: 1143 - 1171 Abstract: Results of large-eddy simulations of stably stratified atmospheric flow around an isolated, complex-shaped tall building are presented. The study focuses on the identification of flow structures in the building wake in high and low Froude number regimes. A qualitative comparison of results with available literature data and existing theories is presented. In addition to flow structures identified in earlier studies such as the horseshoe and recirculation eddy vortices, we analyze a stationary disturbance akin to mountain gravity wave, and a complex vortex structure associated with this wave, consisting of multiple symmetric pairs of vortices. The Froude number appears to be the principal parameter controlling the structure of the wake, waves and vortex pattern. PubDate: 2016-12-01 DOI: 10.1007/s10652-016-9470-3 Issue No:Vol. 16, No. 6 (2016)

Authors:Victor Dupuis; Sébastien Proust; Céline Berni; André Paquier Pages: 1173 - 1193 Abstract: Open channel flows subjected to a longitudinal transition in roughness, from bed friction to emergent cylinder drag and vice versa, are investigated experimentally in an 18-m-long laboratory flume. These are compared to uniform flows subject to (1) bed roughness only and (2) an array of emergent vertical cylinders installed on bed roughness. The near-bed region is investigated in detail for uniform flows through the cylinder array. The water column can be divided into two parts: a region of constant velocity and a boundary layer near the channel bed. In the latter region, a local increase in velocity, or velocity bulge, is observed in line of a cylinder row. The velocity bulge may be related to the disorganization of the von Kármán vortex street by the bed-induced turbulence, resulting in reduced momentum loss in the cylinder wake. The boundary layer height is found to be independent of water depth and bed roughness (smooth or rough bottom). Strong oscillations of the free surface (seiching) are observed. Oscillation amplitude is dependent on the longitudinal position within the cylinder array and is found to decrease with decreasing array length. When water depth/boundary layer height ratio is close to unity, the disorganization of the von Kármán vortex street throughout the water column prevents seiching from occurring. In the case of roughness transition flows, the water depth is found to vary only upstream of the change in roughness. Vertical profiles of velocity and turbulence are self-similar upstream of the transition and collapse with the uniform flow profiles. Downstream of the roughness change, velocity and turbulence vary over a distance of 35–50 times the water depth. Roughness transition flows show that seiching is lowered by flow non-uniformity. A 1D momentum equation integrating bed friction and drag force exerted by the cylinder array predicts accurately the water surface profile (0.9 % mean relative error). The computed profiles show that upstream of the transition, flow depth varies over a distance of about 2600 times the uniform water depth of the upstream roughness. The 1D equation is solved analytically for zero bed friction. PubDate: 2016-12-01 DOI: 10.1007/s10652-016-9471-2 Issue No:Vol. 16, No. 6 (2016)

Authors:Juan Pablo Toro; Fabián A. Bombardelli; Joongcheol Paik; Inês Meireles; António Amador Pages: 1195 - 1221 Abstract: In this work we address the mean flow and turbulence statistics in the non-aerated region of a stepped spillway by using two different numerical strategies in two dimensions. First, we present results regarding the flow in a large portion of the spillway, simulated with a volume of fluid (VoF) method to capture the position of the free surface (case A). Numerically-obtained data are in very good agreement with particle image velocimetry (PIV) data; further, results suggest that profiles of mean velocity, turbulent kinetic energy (TKE) and dissipation rate of TKE at the step edges are approximately self-similar. It was also found that values of TKE and dissipation rate of TKE in the boundary layer development region follow universal similarity laws which are valid for open-channel flows. In addition, the field of simulated dimensionless pressure and pressure distributions at the step edges are qualitatively similar to those reported in a recent experimental work. Second, additional simulations were developed as a pressure-driven flow for only a portion of the spillway (case B). This was possible due to prior knowledge of the water depths. We show that, despite the fact that the pressure field can not be interpreted as in case A, the numerical simulations closely reproduce the experimental data regarding averaged velocity, vorticity, and the turbulence statistics. It was also found that turbulence intensity profiles in the intermediate region are consistent with published experimental results for open-channel flows. These numerical results offer new avenues for the simulation of portions of stepped spillways to assess the physics at the inception point of air entrainment with more sophisticated turbulence closures. PubDate: 2016-12-01 DOI: 10.1007/s10652-016-9472-1 Issue No:Vol. 16, No. 6 (2016)

Authors:Meruyert Zhunussova; Martin Jaeger; Desmond Adair Abstract: High-resolution computational fluid dynamics (CFD) simulations have been performed to assess the dispersion of air pollutants (CO2) emanating from traffic in a busy street and in the vicinity of a complex configuration of buildings located in Salmiya, Kuwait City. New buildings are planned for this area, and the work here includes predictions for the dispersion of pollutants after the buildings’ completion. The CFD simulations are based on calculated CO2 concentration levels for traffic counts taken on location in Salmiya with the existing configuration of buildings. As the computer code used in this work has been evaluated previously, it will be applied here to predict with confidence any potential air pollution problem areas on the addition of the new buildings. It was found for very light wind, that the proposed new buildings help reduce pollution in the vicinity of residential buildings within the configuration of buildings, but as the wind becomes moderate to strong, there was a tendency for the pollutant to get trapped in the residential area. Results are given for both exceptionally high ambient temperatures and very light wind, which are not often reported in studies found in the literature. PubDate: 2016-11-30 DOI: 10.1007/s10652-016-9497-5

Authors:A. M. Razmi; U. Lemmin; D. Bouffard; A. Wüest; R. E. Uittenbogaard; D. A. Barry Abstract: Numerical simulations were carried out to investigate gyres within open lacustrine embayments subjected to parallel-to-shore currents. In such embayments, gyre formation occurs due to flow separation at the embayment’s upstream edge. High momentum fluid from the mixing layer between the embayment and offshore flows into the embayment and produces recirculating flow. Systematic numerical experiments using different synthetic embayment configurations were used to examine the impact of embayment geometry. Geometries included embayments with different aspect ratios, depths and embayment corner angles. The magnitudes of the recirculation and turbulent kinetic energy (TKE) in the embayment vary significantly for angles in the range 40°–55°. Embayments with corner angles less than 50° have much stronger recirculation and TKE, other parameters remaining the same. The numerical findings are consistent with gyre formation observed in two embayments located in Lake Geneva, Switzerland, and thus help explain flow patterns recorded in lacustrine shoreline regions. PubDate: 2016-11-30 DOI: 10.1007/s10652-016-9494-8

Authors:Rachael Bonnebaigt; C. P. Caulfield; P. F. Linden Abstract: We present experimental results demonstrating that, for the turbulent plume from a buoyancy source that is vertically distributed over the full area of a wall, detrainment qualitatively changes the shape of the ambient buoyancy profile that develops in a sealed space. Theoretical models with one-way-entrainment predict stratifications that are qualitatively different from the stratifications measured in experiments. A peeling plume model, where density and vertical velocity vary linearly across the width of the plume, so that plume fluid “peels” off into the ambient at intermediate heights, more accurately captures the shape of the ambient buoyancy profiles measured in experiments than a conventional one-way-entrainment model does. PubDate: 2016-11-22 DOI: 10.1007/s10652-016-9492-x

Authors:Riccardo Buccolieri; Hans Wigö; Mats Sandberg; Silvana Di Sabatino Abstract: Wind tunnel measurements of the total drag force for aligned arrays of cubes exposed to two different boundary-layer flows at three flow velocities are discussed. The drag force for eight different building packing densities λ p (from 0.028 to 1) is measured with a standard load cell generating a novel dataset. Different λ p are reproduced by increasing the number of buildings on the same lot area; this represents a real situation that an urban planner is faced with when a lot area of a given (fixed) size is allocated to the development of new built areas. It is assumed that the surrounding terrain is uniform and there is a transition from a given roughness (smooth) to a new roughness (rough). The approaching flow will adjust itself over the new surface within a distance that in general may be larger than the horizontal length covered by the array. We investigate the region where the flow adjustment occurs. The wide range of packing densities allowed us to analyse in detail the evolution of the drag force. The drag force increases with increasing packing densities until it reaches a maximum at an intermediate packing density (λ p = 0.25 in our case) followed by a slight decrease at larger packing densities. The value of the drag force depends on the flow adjustment along the array which is evaluated by introducing the parameter “drag area” to retrieve information about the drag distribution at different λ p . Results clearly suggest a change of the distribution of the drag force, which is found to be relatively uniform at low packing densities, while most of the force acts on first rows of the arrays at large packing densities. The drag area constitutes the basis for the formulation of a new adjustment length scale defined as the ratio between the volume of the air within the array and the drag area. The proposed adjustment length scale automatically takes into account the change in drag distribution along the array for a better parameterization of urban effects in dispersion models. PubDate: 2016-11-21 DOI: 10.1007/s10652-016-9493-9

Authors:Emmanuel Mignot; Wei Cai; Juan Ignacio Polanco; Cristian Escauriaza; Nicolas Riviere Abstract: Lateral cavities are major storage zones in riverine environments for which the mass exchanges with the main stream strongly impact the characteristics of the habitat in these dead zones. An experimental work is presented here with a controlled main stream and a connected open-channel lateral cavity to assess the processes responsible for these exchanges and to quantify the exchange capacities. In a first step, the measurements of passive scalar transport allow us to identify the physical processes involved in the exchange of mass from the main stream and its spreading within the cavity. In a second step, the quantitative mass exchange coefficient, representative of the exchange capacity, is measured for 28 flow and cavity configurations. The sensibility analysis to the governing parameters proposed by the dimensional analysis then reveals that changing the geometric aspect ratio of the cavity does not affect the exchange coefficient while increasing the normalized water depth or decreasing the Reynolds number of the main stream tend to increase this coefficient. Indeed, these parameters modify both the growth rate of the mixing layer width at the interface and the amplitude of the alternating transverse velocity across the interface, thus affecting the exchange capacities from the main stream to the cavity. PubDate: 2016-11-19 DOI: 10.1007/s10652-016-9495-7

Authors:Ayse Yuksel-Ozan; George Constantinescu Abstract: The paper reports results of large eddy simulations of lock exchange compositional gravity currents with a low volume of release advancing in a horizontal, long channel. The channel contains an array of spanwise-oriented square cylinders. The cylinders are uniformly distributed within the whole channel. The flow past the individual cylinders is resolved by the numerical simulation. The paper discusses how the structure and evolution of the current change with the main geometrical parameters of the flow (e.g., solid volume fraction, ratio between the initial height of the region containing lock fluid and the channel depth, ratio between the initial length and height of the region containing lock fluid) and the Reynolds number. Though in all cases with a sufficiently large solid volume fraction the current transitions to a drag-dominated regime, the value of the power law coefficient, α, describing the front position’s variation with time (x f ~ t α , where t is the time measured from the removal of the lock gate) is different between full depth cases and partial depth cases. The paper also discusses how large eddy simulation (LES) results compare with findings based on shallow-water equations. In particular, LES results show that the values of α are not always equal to values predicted by shallow water theory for the limiting cases where the current height is comparable, or much smaller, than the channel depth. PubDate: 2016-11-16 DOI: 10.1007/s10652-016-9490-z

Authors:Peng Wang; Tamay M. Özgökmen; Angelique C. Haza Abstract: Internal gravity waves that are generated in the open ocean have a universal frequency spectrum, called Garrett–Munk spectrum. By initializing internal waves that satisfy the Garrett–Munk spectrum in a non-hydrostatic numerical model, we investigate the material dispersion produced by these internal waves. Three numerical experiments are designed: Exp.-1 uses a linearly stratified fluid, Exp.-2 has an upper mixed layer, and Exp.-3 incorporates a circular front into the upper mixed layer. Resorting to neutrally buoyant particles, we investigate the dispersion in terms of metrics of the relative dispersion and finite-scale Lyapunov exponent (FSLE). Exp.-1 shows that the dispersion regime produced by these internal waves is between ballistic and diffusive based on relative dispersion, and is however ballistic according to FSLE. The maximum FSLE at scales of 100 m is about 5 day \(^{-1}\) , which is comparable to that calculated using ocean drifters. Exp.-2 demonstrates that internal waves can generate flows and material dispersion in an upper mixed layer. However, when mixed layer eddies are present, as in Exp.-3, the dispersion in the mixed layer is controlled by the eddies. In addition, we show that inertial oscillations do not affect the relative dispersion, but impact FSLE at scales of inertial oscillations. PubDate: 2016-11-16 DOI: 10.1007/s10652-016-9491-y

Authors:Zhaowei Liu; Yongcan Chen; Yongyan Wu; Wenyong Wang; Ling Li Abstract: The paper focuses on the numerical simulation of the exchange flow between open water and floating vegetation, which plays an important role in maintaining the ecological balance by transporting nutrient matter. The simulation was conducted using a new solver developed upon OpenFOAM. A modified RNG k-ε turbulence model, which is expected to model both the high- and low-Reynolds number flows correctly, was used to determine the eddy viscosity. Several particular terms were added into the momentum equations and turbulence model equations to model the effects of vegetation and buoyancy. Among these terms, the term for the effect of vegetation in the ε-equation was re-modelled. The model was validated by properly predicting the profiles of mean velocity and turbulent kinetic energy for flows through suspended canopies. The density flow between open and vegetated water was simulated with the same conditions as those of the experiment conducted by Zhang and Nepf. The predicted results agreed well with the experimental data and provided more detailed information of such exchange flow. The convection between the root layer and the layer beneath the roots, which was not observed in the experiment, was observed in the numerical simulation. PubDate: 2016-11-11 DOI: 10.1007/s10652-016-9489-5

Authors:Timothy I. Marjoribanks; Richard J. Hardy; Stuart N. Lane; Daniel R. Parsons Abstract: Vegetation is a characteristic feature of shallow aquatic flows such as rivers, lakes and coastal waters. Flow through and above aquatic vegetation canopies is commonly described using a canopy mixing layer analogy which provides a canonical framework for assessing key hydraulic characteristics such as velocity profiles, large-scale coherent turbulent structures and mixing and transport processes for solutes and sediments. This theory is well developed for the case of semi-rigid terrestrial vegetation and has more recently been applied to the case of aquatic vegetation. However, aquatic vegetation often displays key differences in morphology and biomechanics to terrestrial vegetation due to the different environment it inhabits. Here we investigate the effect of plant morphology and biomechanical properties on flow–vegetation interactions through the application of a coupled LES-biomechanical model. We present results from two simulations of aquatic vegetated flows: one assuming a semi-rigid canopy and the other a highly flexible canopy and provide a comparison of the associated flow regimes. Our results show that while both cases display canopy mixing layers, there are also clear differences in the shear layer characteristics and turbulent processes between the two, suggesting that the semi-rigid approximation may not provide a complete representation of flow–vegetation interactions. PubDate: 2016-11-02 DOI: 10.1007/s10652-016-9482-z

Authors:Vasileios Kitsikoudis; Oral Yagci; V. S. Ozgur Kirca; Dorukhan Kellecioglu Abstract: Riparian and floodplain tree-like emergent vegetation alter significantly the flow field and lead to complicated three-dimensional flow patterns, characterized by increased turbulence production, with the potential to induce morphological changes. The canopy presence in tree-like vegetation leads to the formation of lee wake vortices and can induce a strong subcanopy flow. The present experimental study employs artificial, rigid, tree-like emergent vegetation elements, with relatively simple structure, in order to investigate the canopy effects on the flow field. Specifically, the tree-like canopy is simulated by placing an element on top of a wooden rod simulating the trunk. Three elements with an equal encircling diameter of 16 cm are examined as canopy in tree-like vegetation, namely a circular cylinder and two hexagonal arrays comprising smaller circular cylinders with two different individual diameters. The experiments were conducted in a 26 m long laboratory flume and the velocity measurements were carried out with an acoustic Doppler velocimeter. The results show that the canopy porosity has a direct impact on the subcanopy flow intensity and on the required distance that the flow needs to recover. In addition, the subcanopy flow disrupts the formation of a steady wake region behind the entire porous element and inhibits the development of a recognizable von Karman vortex street. PubDate: 2016-10-31 DOI: 10.1007/s10652-016-9487-7

Authors:Jasim Imran; Sadia M. Khan; Carlos Pirmez; Gary Parker Abstract: The scaling problem associated with the modeling of turbidity currents has been recognized but is yet to be explored systematically. This paper presents an analysis of the dimensionless governing equations of turbidity currents to investigate the scale effect. Three types of flow conditions are considered: (i) conservative density current; (ii) purely depositional turbidity current; and (iii) mixed erosional/depositional turbidity current. Two controlling dimensionless numbers, the Froude number and the Reynolds number, appear in the non-dimensional governing equations. When densimetric Froude similarity is satisfied, the analysis shows that the results would be scale-invariant for conservative density current under the rough turbulent condition. In the case of purely depositional flows, truly scale-invariant results cannot be obtained, as the Reynolds-mediated scale effects appear in the bottom boundary conditions of the flow velocity and sediment fall velocity. However, the scale effect would be relatively modest. The Reynolds effect becomes more significant for erosional or mixed erosional/depositional turbidity currents as Reynolds-mediated scale effects also appear in the sediment entrainment relation. Numerical simulations have been conducted at three different scales by considering densimetric Froude scaling alone as well as combined densimetric Froude and Reynolds similarity. Simulation results confirm that although the scaling of densimetric Froude number alone can produce scale-invariable results for conservative density currents, variations occur in the case of turbidity currents. The results become scale invariant when densimetric Froude and Reynolds similarities are satisfied simultaneously. PubDate: 2016-10-31 DOI: 10.1007/s10652-016-9488-6

Authors:Peter Bacopoulos; Ethan J. Kubatko; Scott C. Hagen; Andrew T. Cox; Teddy Mulamba Abstract: Continuous data of vertical-profile salinity were analyzed for four stations located successively upriver in a macrotidal estuary, the lower St. Johns River (Northeast Florida, USA). The data analysis confirmed well-mixed salinity conditions in the river with at most 1.3 ppt of vertical variability at Dames Point (river km 20), where the main variations of salinity are along the longitudinal axis of the river. Given the well-mixed salinity conditions and dominant horizontal structure of salinity variations in the river, we present and apply a barotropic, two-dimensional modeling approach for hydrodynamic-salinity transport simulation in the lower St. Johns River. When properly forced by offshore surge, high-resolution wind fields and freshwater river inflows, the model replicated the salinity measurements remarkably well, including the separation into tidal and sub-tidal components. The data and model results show that, at times, offshore winds and surge can be more influential on longitudinal salinity variations than local winds over the river. We demonstrate the importance of using proper boundary conditions to force the model relative to the minimal sensitivity of the model to parameter adjustment of horizontal mixing and uncertainty-based perturbation of wind and inflow forcings. PubDate: 2016-10-14 DOI: 10.1007/s10652-016-9486-8

Abstract: This study implemented three analytical models to investigate the lateral distribution of depth-averaged streamwise velocity in a rectangular channel with lateral, unevenly-distributed, flexible submerged vegetation. Secondary flow, vegetation drag, and turbulent shear were introduced into the momentum equations to represent the interaction between vegetation and flow. Comparison of model results and experimental data indicated that predictions were improved with a mixing layer model, which considers the secondary flow term in the mixing region, particularly for channels with a high aspect ratio. The research established a relationship between the vegetation drag coefficient and the Reynolds number. A sensitivity analysis of the dimensionless eddy viscosity coefficient and bed friction factor indicated that the coefficient had as significant an impact as the second factor on the lateral velocity profile. A reasonable dimensionless eddy viscosity coefficient is essential to predict velocity accurately. PubDate: 2016-10-04 DOI: 10.1007/s10652-016-9485-9

Authors:Moisés Brito; João Fernandes; João Bento Leal Abstract: The main goal of this study is the 3D numerical simulation of river flows with submerged vegetated floodplains. Since, vegetation layers are usually dense and present a large spatial heterogeneity they are here represented as a porous media. Standard semi-empirical relations drawn for porous beds packed with non-spherical particles are used to estimate the porous media parameters based on the averaged geometry of the vegetation elements. Thus, eliminating the uncertainty arising from a bulk drag coefficient approach and allowing the use of a coarser mesh. The free flow is described by Reynolds-averaged Navier–Stokes (RANS) equations, whereas the porous media flow is described by the volumetric-average of RANS equations. The volume-of-fluid method and an anisotropic explicit algebraic Reynolds stress model are used for free-surface and turbulence closure, respectively. The simulation approach is validated against results by other authors featuring vegetated flows in horizontal and rectangular open-channel. The computed results show that the time-averaged streamwise velocity and Reynolds shear stress vertical profiles are properly simulated. The validated approach was applied to simulate compound open-channel flows with submerged vegetated floodplains and compared with data obtained in an experimental facility. The results show that the proposed porous media approach is adequate to simulate flows with submerged vegetation on the floodplains. PubDate: 2016-09-09 DOI: 10.1007/s10652-016-9481-0

Authors:Nino Krvavica; Vanja Travaš; Nevenka Ožanić Abstract: The interfacial friction and entrainment were investigated in a microtidal salt-wedge estuary. A detailed sampling campaign was conducted in the Rječina River estuary in Croatia from January 2014 to June 2015. The observed vertical profiles of salinity s and temperature T confirmed the presence of a highly stratified estuary, represented by an upper layer of freshwater separated from a lower salt-wedge by a sharp density interface. The entrainment rate E across the interface was estimated by a two-layer box-model, based on the observed freshwater flow rate Q and layer-averaged salinity. Interfacial friction factor \(\lambda _i\) was estimated by fitting the results of a numerical model to the observed interface depths. For this purpose we applied a numerical two-layer shallow water model extended to account for irregular non-prismatic cross sections of the channel. We found that in microtidal conditions, the strength of the stratification is reduced with increasing Q. Furthermore, we found that as Q increases, so does the shear velocity, the interfacial friction factor and the vertical mixing across the interface. More detail analysis showed that E may be parametrized by bulk non-dimensional parameters, in particular, a combination of bulk Richardson number Ri and average friction factor \(\lambda\) , which accounts for the channel bed friction and the interfacial friction. On the other hand, \(\lambda _i\) can be linked to a combination of Reynolds number Re and bulk Richardson Ri. Contrary to previous studies, we showed that in field conditions, \(\lambda _i\) may increase with Re. PubDate: 2016-08-26 DOI: 10.1007/s10652-016-9480-1