for Journals by Title or ISSN
for Articles by Keywords
help

Publisher: Springer-Verlag (Total: 2350 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

        1 2 3 4 5 6 7 8 | Last   [Sort by number of followers]   [Restore default list]

Showing 1 - 200 of 2350 Journals sorted alphabetically
3D Printing in Medicine     Open Access  
3D Research     Hybrid Journal   (Followers: 21, SJR: 0.222, CiteScore: 1)
4OR: A Quarterly J. of Operations Research     Hybrid Journal   (Followers: 10, SJR: 0.825, CiteScore: 1)
AAPS J.     Hybrid Journal   (Followers: 22, SJR: 1.118, CiteScore: 4)
AAPS PharmSciTech     Hybrid Journal   (Followers: 7, SJR: 0.752, CiteScore: 3)
Abdominal Imaging     Hybrid Journal   (Followers: 14, SJR: 0.866, CiteScore: 2)
Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg     Hybrid Journal   (Followers: 4, SJR: 0.439, CiteScore: 0)
Academic Psychiatry     Full-text available via subscription   (Followers: 23, SJR: 0.53, CiteScore: 1)
Academic Questions     Hybrid Journal   (Followers: 8, SJR: 0.106, CiteScore: 0)
Accreditation and Quality Assurance: J. for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 26, SJR: 0.316, CiteScore: 1)
Acoustical Physics     Hybrid Journal   (Followers: 11, SJR: 0.359, CiteScore: 1)
Acoustics Australia     Hybrid Journal   (SJR: 0.232, CiteScore: 1)
Acta Analytica     Hybrid Journal   (Followers: 7, SJR: 0.367, CiteScore: 0)
Acta Applicandae Mathematicae     Hybrid Journal   (Followers: 1, SJR: 0.675, CiteScore: 1)
Acta Biotheoretica     Hybrid Journal   (Followers: 4, SJR: 0.284, CiteScore: 1)
Acta Diabetologica     Hybrid Journal   (Followers: 17, SJR: 1.587, CiteScore: 3)
Acta Endoscopica     Hybrid Journal   (Followers: 1)
acta ethologica     Hybrid Journal   (Followers: 4, SJR: 0.769, CiteScore: 1)
Acta Geochimica     Hybrid Journal   (Followers: 6, SJR: 0.24, CiteScore: 1)
Acta Geodaetica et Geophysica     Hybrid Journal   (Followers: 2, SJR: 0.305, CiteScore: 1)
Acta Geotechnica     Hybrid Journal   (Followers: 7, SJR: 1.588, CiteScore: 3)
Acta Informatica     Hybrid Journal   (Followers: 5, SJR: 0.517, CiteScore: 1)
Acta Mathematica     Hybrid Journal   (Followers: 12, SJR: 7.066, CiteScore: 3)
Acta Mathematica Hungarica     Hybrid Journal   (Followers: 2, SJR: 0.452, CiteScore: 1)
Acta Mathematica Sinica, English Series     Hybrid Journal   (Followers: 6, SJR: 0.379, CiteScore: 1)
Acta Mathematica Vietnamica     Hybrid Journal   (SJR: 0.27, CiteScore: 0)
Acta Mathematicae Applicatae Sinica, English Series     Hybrid Journal   (SJR: 0.208, CiteScore: 0)
Acta Mechanica     Hybrid Journal   (Followers: 21, SJR: 1.04, CiteScore: 2)
Acta Mechanica Sinica     Hybrid Journal   (Followers: 5, SJR: 0.607, CiteScore: 2)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 7, SJR: 0.576, CiteScore: 2)
Acta Meteorologica Sinica     Hybrid Journal   (Followers: 3, SJR: 0.638, CiteScore: 1)
Acta Neurochirurgica     Hybrid Journal   (Followers: 6, SJR: 0.822, CiteScore: 2)
Acta Neurologica Belgica     Hybrid Journal   (Followers: 1, SJR: 0.376, CiteScore: 1)
Acta Neuropathologica     Hybrid Journal   (Followers: 5, SJR: 7.589, CiteScore: 12)
Acta Oceanologica Sinica     Hybrid Journal   (Followers: 3, SJR: 0.334, CiteScore: 1)
Acta Parasitologica     Hybrid Journal   (Followers: 10, SJR: 0.641, CiteScore: 1)
Acta Physiologiae Plantarum     Hybrid Journal   (Followers: 2, SJR: 0.574, CiteScore: 2)
Acta Politica     Hybrid Journal   (Followers: 14, SJR: 0.605, CiteScore: 1)
Activitas Nervosa Superior     Hybrid Journal   (SJR: 0.147, CiteScore: 0)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 6, SJR: 0.103, CiteScore: 0)
ADHD Attention Deficit and Hyperactivity Disorders     Hybrid Journal   (Followers: 23, SJR: 0.72, CiteScore: 2)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 9)
Administration and Policy in Mental Health and Mental Health Services Research     Partially Free   (Followers: 16, SJR: 1.005, CiteScore: 2)
Adsorption     Hybrid Journal   (Followers: 4, SJR: 0.703, CiteScore: 2)
Advances in Applied Clifford Algebras     Hybrid Journal   (Followers: 4, SJR: 0.698, CiteScore: 1)
Advances in Atmospheric Sciences     Hybrid Journal   (Followers: 37, SJR: 0.956, CiteScore: 2)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 19, SJR: 0.812, CiteScore: 1)
Advances in Contraception     Hybrid Journal   (Followers: 3)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 51, SJR: 1.09, CiteScore: 1)
Advances in Gerontology     Partially Free   (Followers: 8, SJR: 0.144, CiteScore: 0)
Advances in Health Sciences Education     Hybrid Journal   (Followers: 28, SJR: 1.64, CiteScore: 2)
Advances in Manufacturing     Hybrid Journal   (Followers: 3, SJR: 0.475, CiteScore: 2)
Advances in Polymer Science     Hybrid Journal   (Followers: 43, SJR: 1.04, CiteScore: 3)
Advances in Therapy     Hybrid Journal   (Followers: 5, SJR: 1.075, CiteScore: 3)
Aegean Review of the Law of the Sea and Maritime Law     Hybrid Journal   (Followers: 6)
Aequationes Mathematicae     Hybrid Journal   (Followers: 2, SJR: 0.517, CiteScore: 1)
Aerobiologia     Hybrid Journal   (Followers: 3, SJR: 0.673, CiteScore: 2)
Aesthetic Plastic Surgery     Hybrid Journal   (Followers: 9, SJR: 0.825, CiteScore: 1)
African Archaeological Review     Hybrid Journal   (Followers: 16, SJR: 0.862, CiteScore: 1)
Afrika Matematika     Hybrid Journal   (Followers: 1, SJR: 0.235, CiteScore: 0)
AGE     Hybrid Journal   (Followers: 7)
Ageing Intl.     Hybrid Journal   (Followers: 7, SJR: 0.39, CiteScore: 1)
Aggiornamenti CIO     Hybrid Journal   (Followers: 1)
Aging Clinical and Experimental Research     Hybrid Journal   (Followers: 3, SJR: 0.67, CiteScore: 2)
Agricultural Research     Hybrid Journal   (Followers: 4, SJR: 0.276, CiteScore: 1)
Agriculture and Human Values     Hybrid Journal   (Followers: 14, SJR: 1.173, CiteScore: 3)
Agroforestry Systems     Hybrid Journal   (Followers: 19, SJR: 0.663, CiteScore: 1)
Agronomy for Sustainable Development     Hybrid Journal   (Followers: 12, SJR: 1.864, CiteScore: 6)
AI & Society     Hybrid Journal   (Followers: 8, SJR: 0.227, CiteScore: 1)
AIDS and Behavior     Hybrid Journal   (Followers: 14, SJR: 1.792, CiteScore: 3)
Air Quality, Atmosphere & Health     Hybrid Journal   (Followers: 4, SJR: 0.862, CiteScore: 3)
Akupunktur & Aurikulomedizin     Full-text available via subscription   (Followers: 1)
Algebra and Logic     Hybrid Journal   (Followers: 5, SJR: 0.531, CiteScore: 0)
Algebra Universalis     Hybrid Journal   (Followers: 2, SJR: 0.583, CiteScore: 1)
Algebras and Representation Theory     Hybrid Journal   (Followers: 1, SJR: 1.095, CiteScore: 1)
Algorithmica     Hybrid Journal   (Followers: 9, SJR: 0.56, CiteScore: 1)
Allergo J.     Full-text available via subscription   (Followers: 1, SJR: 0.234, CiteScore: 0)
Allergo J. Intl.     Hybrid Journal   (Followers: 2)
Alpine Botany     Hybrid Journal   (Followers: 5, SJR: 1.11, CiteScore: 3)
ALTEX : Alternatives to Animal Experimentation     Open Access   (Followers: 3)
AMBIO     Hybrid Journal   (Followers: 11, SJR: 1.569, CiteScore: 4)
American J. of Cardiovascular Drugs     Hybrid Journal   (Followers: 16, SJR: 0.951, CiteScore: 3)
American J. of Community Psychology     Hybrid Journal   (Followers: 28, SJR: 1.329, CiteScore: 2)
American J. of Criminal Justice     Hybrid Journal   (Followers: 8, SJR: 0.772, CiteScore: 1)
American J. of Cultural Sociology     Hybrid Journal   (Followers: 15, SJR: 0.46, CiteScore: 1)
American J. of Dance Therapy     Hybrid Journal   (Followers: 4, SJR: 0.181, CiteScore: 0)
American J. of Potato Research     Hybrid Journal   (Followers: 2, SJR: 0.611, CiteScore: 1)
American J. of Psychoanalysis     Hybrid Journal   (Followers: 21, SJR: 0.314, CiteScore: 0)
American Sociologist     Hybrid Journal   (Followers: 12, SJR: 0.35, CiteScore: 0)
Amino Acids     Hybrid Journal   (Followers: 8, SJR: 1.135, CiteScore: 3)
AMS Review     Partially Free   (Followers: 4)
Analog Integrated Circuits and Signal Processing     Hybrid Journal   (Followers: 7, SJR: 0.211, CiteScore: 1)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 5, SJR: 0.536, CiteScore: 1)
Analysis in Theory and Applications     Hybrid Journal   (Followers: 1)
Analysis of Verbal Behavior     Hybrid Journal   (Followers: 5)
Analytical and Bioanalytical Chemistry     Hybrid Journal   (Followers: 32, SJR: 0.978, CiteScore: 3)
Anatomical Science Intl.     Hybrid Journal   (Followers: 2, SJR: 0.367, CiteScore: 1)
Angewandte Schmerztherapie und Palliativmedizin     Hybrid Journal  
Angiogenesis     Hybrid Journal   (Followers: 3, SJR: 2.177, CiteScore: 5)
Animal Cognition     Hybrid Journal   (Followers: 19, SJR: 1.389, CiteScore: 3)
Annales françaises de médecine d'urgence     Hybrid Journal   (Followers: 1, SJR: 0.192, CiteScore: 0)
Annales Henri Poincaré     Hybrid Journal   (Followers: 3, SJR: 1.097, CiteScore: 2)
Annales mathématiques du Québec     Hybrid Journal   (Followers: 4, SJR: 0.438, CiteScore: 0)
Annali dell'Universita di Ferrara     Hybrid Journal   (SJR: 0.429, CiteScore: 0)
Annali di Matematica Pura ed Applicata     Hybrid Journal   (Followers: 1, SJR: 1.197, CiteScore: 1)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 18, SJR: 1.042, CiteScore: 3)
Annals of Combinatorics     Hybrid Journal   (Followers: 4, SJR: 0.932, CiteScore: 1)
Annals of Data Science     Hybrid Journal   (Followers: 11)
Annals of Dyslexia     Hybrid Journal   (Followers: 10, SJR: 0.85, CiteScore: 2)
Annals of Finance     Hybrid Journal   (Followers: 30, SJR: 0.579, CiteScore: 1)
Annals of Forest Science     Hybrid Journal   (Followers: 7, SJR: 0.986, CiteScore: 2)
Annals of Global Analysis and Geometry     Hybrid Journal   (Followers: 1, SJR: 1.228, CiteScore: 1)
Annals of Hematology     Hybrid Journal   (Followers: 16, SJR: 1.043, CiteScore: 2)
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 12, SJR: 0.413, CiteScore: 1)
Annals of Microbiology     Hybrid Journal   (Followers: 10, SJR: 0.479, CiteScore: 2)
Annals of Nuclear Medicine     Hybrid Journal   (Followers: 4, SJR: 0.687, CiteScore: 2)
Annals of Operations Research     Hybrid Journal   (Followers: 10, SJR: 0.943, CiteScore: 2)
Annals of Ophthalmology     Hybrid Journal   (Followers: 11)
Annals of Regional Science     Hybrid Journal   (Followers: 7, SJR: 0.614, CiteScore: 1)
Annals of Software Engineering     Hybrid Journal   (Followers: 13)
Annals of Solid and Structural Mechanics     Hybrid Journal   (Followers: 9, SJR: 0.239, CiteScore: 1)
Annals of Surgical Oncology     Hybrid Journal   (Followers: 14, SJR: 1.986, CiteScore: 4)
Annals of Telecommunications     Hybrid Journal   (Followers: 9, SJR: 0.223, CiteScore: 1)
Annals of the Institute of Statistical Mathematics     Hybrid Journal   (Followers: 1, SJR: 1.495, CiteScore: 1)
Antonie van Leeuwenhoek     Hybrid Journal   (Followers: 5, SJR: 0.834, CiteScore: 2)
Apidologie     Hybrid Journal   (Followers: 4, SJR: 1.22, CiteScore: 3)
APOPTOSIS     Hybrid Journal   (Followers: 8, SJR: 1.424, CiteScore: 4)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2, SJR: 0.294, CiteScore: 1)
Applications of Mathematics     Hybrid Journal   (Followers: 2, SJR: 0.602, CiteScore: 1)
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 43, SJR: 0.571, CiteScore: 2)
Applied Biochemistry and Microbiology     Hybrid Journal   (Followers: 17, SJR: 0.21, CiteScore: 1)
Applied Cancer Research     Open Access  
Applied Categorical Structures     Hybrid Journal   (Followers: 2, SJR: 0.49, CiteScore: 0)
Applied Composite Materials     Hybrid Journal   (Followers: 49, SJR: 0.58, CiteScore: 2)
Applied Entomology and Zoology     Partially Free   (Followers: 3, SJR: 0.422, CiteScore: 1)
Applied Geomatics     Hybrid Journal   (Followers: 3, SJR: 0.733, CiteScore: 3)
Applied Geophysics     Hybrid Journal   (Followers: 8, SJR: 0.488, CiteScore: 1)
Applied Intelligence     Hybrid Journal   (Followers: 12, SJR: 0.6, CiteScore: 2)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 4, SJR: 0.319, CiteScore: 1)
Applied Mathematics & Optimization     Hybrid Journal   (Followers: 6, SJR: 0.886, CiteScore: 1)
Applied Mathematics - A J. of Chinese Universities     Hybrid Journal   (SJR: 0.17, CiteScore: 0)
Applied Mathematics and Mechanics     Hybrid Journal   (Followers: 5, SJR: 0.461, CiteScore: 1)
Applied Microbiology and Biotechnology     Hybrid Journal   (Followers: 63, SJR: 1.182, CiteScore: 4)
Applied Physics A     Hybrid Journal   (Followers: 9, SJR: 0.481, CiteScore: 2)
Applied Physics B: Lasers and Optics     Hybrid Journal   (Followers: 24, SJR: 0.74, CiteScore: 2)
Applied Psychophysiology and Biofeedback     Hybrid Journal   (Followers: 8, SJR: 0.519, CiteScore: 2)
Applied Research in Quality of Life     Hybrid Journal   (Followers: 12, SJR: 0.316, CiteScore: 1)
Applied Solar Energy     Hybrid Journal   (Followers: 18, SJR: 0.225, CiteScore: 0)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4, SJR: 0.542, CiteScore: 1)
Aquaculture Intl.     Hybrid Journal   (Followers: 22, SJR: 0.591, CiteScore: 2)
Aquarium Sciences and Conservation     Hybrid Journal   (Followers: 1)
Aquatic Ecology     Hybrid Journal   (Followers: 33, SJR: 0.656, CiteScore: 2)
Aquatic Geochemistry     Hybrid Journal   (Followers: 4, SJR: 0.591, CiteScore: 1)
Aquatic Sciences     Hybrid Journal   (Followers: 13, SJR: 1.109, CiteScore: 3)
Arabian J. for Science and Engineering     Hybrid Journal   (Followers: 5, SJR: 0.303, CiteScore: 1)
Arabian J. of Geosciences     Hybrid Journal   (Followers: 2, SJR: 0.319, CiteScore: 1)
Archaeological and Anthropological Sciences     Hybrid Journal   (Followers: 20, SJR: 1.052, CiteScore: 2)
Archaeologies     Hybrid Journal   (Followers: 12, SJR: 0.224, CiteScore: 0)
Archiv der Mathematik     Hybrid Journal   (Followers: 1, SJR: 0.725, CiteScore: 1)
Archival Science     Hybrid Journal   (Followers: 59, SJR: 0.745, CiteScore: 2)
Archive for History of Exact Sciences     Hybrid Journal   (Followers: 8, SJR: 0.186, CiteScore: 1)
Archive for Mathematical Logic     Hybrid Journal   (Followers: 2, SJR: 0.909, CiteScore: 1)
Archive for Rational Mechanics and Analysis     Hybrid Journal   (SJR: 3.93, CiteScore: 3)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 5, SJR: 0.79, CiteScore: 2)
Archives and Museum Informatics     Hybrid Journal   (Followers: 146, SJR: 0.101, CiteScore: 0)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 5, SJR: 1.41, CiteScore: 5)
Archives of Dermatological Research     Hybrid Journal   (Followers: 7, SJR: 1.006, CiteScore: 2)
Archives of Environmental Contamination and Toxicology     Hybrid Journal   (Followers: 14, SJR: 0.773, CiteScore: 2)
Archives of Gynecology and Obstetrics     Hybrid Journal   (Followers: 16, SJR: 0.956, CiteScore: 2)
Archives of Microbiology     Hybrid Journal   (Followers: 8, SJR: 0.644, CiteScore: 2)
Archives of Orthopaedic and Trauma Surgery     Hybrid Journal   (Followers: 8, SJR: 1.146, CiteScore: 2)
Archives of Osteoporosis     Hybrid Journal   (Followers: 2, SJR: 0.71, CiteScore: 2)
Archives of Sexual Behavior     Hybrid Journal   (Followers: 10, SJR: 1.493, CiteScore: 3)
Archives of Toxicology     Hybrid Journal   (Followers: 17, SJR: 1.541, CiteScore: 5)
Archives of Virology     Hybrid Journal   (Followers: 5, SJR: 0.973, CiteScore: 2)
Archives of Women's Mental Health     Hybrid Journal   (Followers: 14, SJR: 1.274, CiteScore: 3)
Archivio di Ortopedia e Reumatologia     Hybrid Journal  
Archivum Immunologiae et Therapiae Experimentalis     Hybrid Journal   (Followers: 2, SJR: 0.946, CiteScore: 3)
ArgoSpine News & J.     Hybrid Journal  
Argumentation     Hybrid Journal   (Followers: 5, SJR: 0.349, CiteScore: 1)
Arid Ecosystems     Hybrid Journal   (Followers: 2, SJR: 0.2, CiteScore: 0)
Arkiv för Matematik     Hybrid Journal   (Followers: 1, SJR: 0.766, CiteScore: 1)
Arnold Mathematical J.     Hybrid Journal   (Followers: 1, SJR: 0.355, CiteScore: 0)
Arthropod-Plant Interactions     Hybrid Journal   (Followers: 2, SJR: 0.839, CiteScore: 2)
Arthroskopie     Hybrid Journal   (Followers: 1, SJR: 0.131, CiteScore: 0)
Artificial Intelligence and Law     Hybrid Journal   (Followers: 11, SJR: 0.937, CiteScore: 2)
Artificial Intelligence Review     Hybrid Journal   (Followers: 14, SJR: 0.833, CiteScore: 4)
Artificial Life and Robotics     Hybrid Journal   (Followers: 9, SJR: 0.226, CiteScore: 0)
Asia Europe J.     Hybrid Journal   (Followers: 5, SJR: 0.504, CiteScore: 1)
Asia Pacific Education Review     Hybrid Journal   (Followers: 12, SJR: 0.479, CiteScore: 1)
Asia Pacific J. of Management     Hybrid Journal   (Followers: 16, SJR: 1.185, CiteScore: 2)
Asia-Pacific Education Researcher     Hybrid Journal   (Followers: 12, SJR: 0.353, CiteScore: 1)
Asia-Pacific Financial Markets     Hybrid Journal   (Followers: 2, SJR: 0.187, CiteScore: 0)
Asia-Pacific J. of Atmospheric Sciences     Hybrid Journal   (Followers: 19, SJR: 0.855, CiteScore: 1)
Asian Business & Management     Hybrid Journal   (Followers: 9, SJR: 0.378, CiteScore: 1)
Asian J. of Business Ethics     Hybrid Journal   (Followers: 9)
Asian J. of Criminology     Hybrid Journal   (Followers: 5, SJR: 0.543, CiteScore: 1)
AStA Advances in Statistical Analysis     Hybrid Journal   (Followers: 2, SJR: 0.548, CiteScore: 1)
AStA Wirtschafts- und Sozialstatistisches Archiv     Hybrid Journal   (Followers: 5, SJR: 0.183, CiteScore: 0)
ästhetische dermatologie & kosmetologie     Full-text available via subscription  

        1 2 3 4 5 6 7 8 | Last   [Sort by number of followers]   [Restore default list]

Journal Cover
Advances in Data Analysis and Classification
Journal Prestige (SJR): 1.09
Citation Impact (citeScore): 1
Number of Followers: 51  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1862-5355 - ISSN (Online) 1862-5347
Published by Springer-Verlag Homepage  [2350 journals]
  • Editorial for Special Issue on Analysis of Asymmetric Relationships
    • Authors: Giuseppe Bove; Akinori Okada
      Pages: 1 - 4
      PubDate: 2018-03-01
      DOI: 10.1007/s11634-018-0315-4
      Issue No: Vol. 12, No. 1 (2018)
       
  • Skew symmetry in retrospect
    • Authors: John C. Gower
      Pages: 33 - 41
      Abstract: The paper gives a short account of how I became interested in analysing asymmetry in square tables. The early history of the canonical analysis of skew-symmetry and the associated development of its geometrical interpretation are described.
      PubDate: 2018-03-01
      DOI: 10.1007/s11634-014-0181-7
      Issue No: Vol. 12, No. 1 (2018)
       
  • CLUSKEXT: CLUstering model for SKew-symmetric data including EXTernal
           information
    • Authors: Donatella Vicari
      Pages: 43 - 64
      Abstract: A CLUstering model for SKew-symmetric data including EXTernal information (CLUSKEXT) is proposed, which relies on the decomposition of a skew-symmetric matrix into within and between cluster effects which are further decomposed into regression and residual effects when possible external information on the objects is available. In order to fit the imbalances between objects, the model jointly searches for a partition of objects and appropriate weights which are in turn linearly linked to the external variables. The proposal is fitted in a least-squares framework and a decomposition of the fit is derived. An appropriate Alternating Least-Squares algorithm is provided to fit the model to illustrative real and artificial data.
      PubDate: 2018-03-01
      DOI: 10.1007/s11634-015-0203-0
      Issue No: Vol. 12, No. 1 (2018)
       
  • Hierarchical clustering of asymmetric networks
    • Authors: Gunnar Carlsson; Facundo Mémoli; Alejandro Ribeiro; Santiago Segarra
      Pages: 65 - 105
      Abstract: This paper considers networks where relationships between nodes are represented by directed dissimilarities. The goal is to study methods that, based on the dissimilarity structure, output hierarchical clusters, i.e., a family of nested partitions indexed by a connectivity parameter. Our construction of hierarchical clustering methods is built around the concept of admissible methods, which are those that abide by the axioms of value—nodes in a network with two nodes are clustered together at the maximum of the two dissimilarities between them—and transformation—when dissimilarities are reduced, the network may become more clustered but not less. Two particular methods, termed reciprocal and nonreciprocal clustering, are shown to provide upper and lower bounds in the space of admissible methods. Furthermore, alternative clustering methodologies and axioms are considered. In particular, modifying the axiom of value such that clustering in two-node networks occurs at the minimum of the two dissimilarities entails the existence of a unique admissible clustering method. Finally, the developed clustering methods are implemented to analyze the internal migration in the United States.
      PubDate: 2018-03-01
      DOI: 10.1007/s11634-017-0299-5
      Issue No: Vol. 12, No. 1 (2018)
       
  • Transitional modeling of experimental longitudinal data with missing
           values
    • Authors: Mark de Rooij
      Pages: 107 - 130
      Abstract: Longitudinal categorical data are often collected using an experimental design where the interest is in the differential development of the treatment group compared to the control group. Such differential development is often assessed based on average growth curves but can also be based on transitions. For longitudinal multinomial data we describe a transitional methodology for the statistical analysis based on a distance model. Such a distance approach has two advantages compared to a multinomial regression model: (1) sparse data can be handled more efficiently; (2) a graphical representation of the model can be made to enhance interpretation. Within this approach it is possible to jointly model the observations and missing values by adding a new category to the response variable representing the missingness condition. This approach is investigated in a Monte Carlo simulation study. The results show this is a promising way to deal with missing data, although the mechanism is not yet completely understood in all cases. Finally, an empirical example is presented where the advantages of the modeling procedure are highlighted.
      PubDate: 2018-03-01
      DOI: 10.1007/s11634-015-0226-6
      Issue No: Vol. 12, No. 1 (2018)
       
  • Assessing the asymmetric effects on branch rivalry of Spanish financial
           sector restructuring
    • Authors: Marti Sagarra; Frank M. T. A. Busing; Cecilio Mar-Molinero; Josep Rialp
      Pages: 131 - 153
      Abstract: Spanish financial institutions have been heavily affected by the banking crisis that began in 2008. Many of them, especially Spanish savings banks (or Cajas), had to merge with other institutions or had to be rescued. We address the question of up to what point the nature of competition in this sector has changed as a result of the crisis. Although institutions compete in many ways, we concentrate on their presence in the main street through bank branches open to the public (i.e., retail banking competition). Our measure of inter-firm rivalry is based on a geographical proximity measure that we calculate for the years 2008 (before the crisis) and 2012 (the last available data set). The technical approach is based on multidimensional unfolding, a methodology which allows us to graphically represent the asymmetric nature of such rivalry. These maps visualise the salient aspects of the system during the two dates analysed, and can be understood without a detailed technical knowledge.
      PubDate: 2018-03-01
      DOI: 10.1007/s11634-014-0186-2
      Issue No: Vol. 12, No. 1 (2018)
       
  • Relating brand confusion to ad similarities and brand strengths through
           image data analysis and classification
    • Authors: Daniel Baier; Sarah Frost
      Pages: 155 - 171
      Abstract: Brand confusion occurs when a consumer is exposed to an advertisement (ad) for brand A but believes that it is for brand B. If more consumers are confused in this direction than in the other one (assuming that an ad for B is for A), this asymmetry is a disadvantage for A. Consequently, the confusion potential and structure of ads has to be checked: A sample of consumers is exposed to a sample of ads. For each ad the consumers have to specify their guess about the advertised brand. Then, the collected data are aggregated and analyzed using, e.g., MDS or two-mode clustering. In this paper we compare this approach to a new one where image data analysis and classification is applied: The confusion potential and structure of ads is related to featurewise distances between ads and—to model asymmetric effects—to the strengths of the advertised brands. A sample application for the German beer market is presented, the results are encouraging.
      PubDate: 2018-03-01
      DOI: 10.1007/s11634-017-0282-1
      Issue No: Vol. 12, No. 1 (2018)
       
  • Unifying data units and models in (co-)clustering
    • Abstract: Statisticians are already aware that any task (exploration, prediction) involving a modeling process is largely dependent on the measurement units for the data, to the extent that it should be impossible to provide a statistical outcome without specifying the couple (unit,model). In this work, this general principle is formalized with a particular focus on model-based clustering and co-clustering in the case of possibly mixed data types (continuous and/or categorical and/or counting features), and this opportunity is used to revisit what the related data units are. Such a formalization allows us to raise three important spots: (i) the couple (unit,model) is not identifiable so that different interpretations unit/model of the same whole modeling process are always possible; (ii) combining different “classical” units with different “classical” models should be an interesting opportunity for a cheap, wide and meaningful expansion of the whole modeling process family designed by the couple (unit,model); (iii) if necessary, this couple, up to the non-identifiability property, could be selected by any traditional model selection criterion. Some experiments on real data sets illustrate in detail practical benefits arising from the previous three spots.
      PubDate: 2018-05-25
      DOI: 10.1007/s11634-018-0325-2
       
  • Finite mixture biclustering of discrete type multivariate data
    • Authors: Daniel Fernández; Richard Arnold; Shirley Pledger; Ivy Liu; Roy Costilla
      Abstract: Many of the methods which deal with clustering in matrices of data are based on mathematical techniques such as distance-based algorithms or matrix decomposition and eigenvalues. In general, it is not possible to use statistical inferences or select the appropriateness of a model via information criteria with these techniques because there is no underlying probability model. This article summarizes some recent model-based methodologies for matrices of binary, count, and ordinal data, which are modelled under a unified statistical framework using finite mixtures to group the rows and/or columns. The model parameter can be constructed from a linear predictor of parameters and covariates through link functions. This likelihood-based one-mode and two-mode fuzzy clustering provides maximum likelihood estimation of parameters and the options of using likelihood information criteria for model comparison. Additionally, a Bayesian approach is presented in which the parameters and the number of clusters are estimated simultaneously from their joint posterior distribution. Visualization tools focused on ordinal data, the fuzziness of the clustering structures, and analogies of various standard plots used in the multivariate analysis are presented. Finally, a set of future extensions is enumerated.
      PubDate: 2018-05-15
      DOI: 10.1007/s11634-018-0324-3
       
  • Directional co-clustering
    • Authors: Aghiles Salah; Mohamed Nadif
      Abstract: Co-clustering addresses the problem of simultaneous clustering of both dimensions of a data matrix. When dealing with high dimensional sparse data, co-clustering turns out to be more beneficial than one-sided clustering even if one is interested in clustering along one dimension only. Aside from being high dimensional and sparse, some datasets, such as document-term matrices, exhibit directional characteristics, and the \(L_2\) normalization of such data, so that it lies on the surface of a unit hypersphere, is useful. Popular co-clustering assumptions such as Gaussian or Multinomial are inadequate for this type of data. In this paper, we extend the scope of co-clustering to directional data. We present Diagonal Block Mixture of Von Mises–Fisher distributions (dbmovMFs), a co-clustering model which is well suited for directional data lying on a unit hypersphere. By setting the estimate of the model parameters under the maximum likelihood (ML) and classification ML approaches, we develop a class of EM algorithms for estimating dbmovMFs from data. Extensive experiments, on several real-world datasets, confirm the advantage of our approach and demonstrate the effectiveness of our algorithms.
      PubDate: 2018-04-30
      DOI: 10.1007/s11634-018-0323-4
       
  • Variable selection in model-based clustering and discriminant analysis
           with a regularization approach
    • Authors: Gilles Celeux; Cathy Maugis-Rabusseau; Mohammed Sedki
      Abstract: Several methods for variable selection have been proposed in model-based clustering and classification. These make use of backward or forward procedures to define the roles of the variables. Unfortunately, such stepwise procedures are slow and the resulting algorithms inefficient when analyzing large data sets with many variables. In this paper, we propose an alternative regularization approach for variable selection in model-based clustering and classification. In our approach the variables are first ranked using a lasso-like procedure in order to avoid slow stepwise algorithms. Thus, the variable selection methodology of Maugis et al. (Comput Stat Data Anal 53:3872–3882, 2000b) can be efficiently applied to high-dimensional data sets.
      PubDate: 2018-04-11
      DOI: 10.1007/s11634-018-0322-5
       
  • Linear components of quadratic classifiers
    • Authors: José R. Berrendero; Javier Cárcamo
      Abstract: We obtain a decomposition of any quadratic classifier in terms of products of hyperplanes. These hyperplanes can be viewed as relevant linear components of the quadratic rule (with respect to the underlying classification problem). As an application, we introduce the associated multidirectional classifier; a piecewise linear classification rule induced by the approximating products. Such a classifier is useful to determine linear combinations of the predictor variables with ability to discriminate. We also show that this classifier can be used as a tool to reduce the dimension of the data and helps identify the most important variables to classify new elements. Finally, we illustrate with a real data set the use of these linear components to construct oblique classification trees.
      PubDate: 2018-04-07
      DOI: 10.1007/s11634-018-0321-6
       
  • A bivariate index vector for measuring departure from double symmetry in
           square contingency tables
    • Authors: Shuji Ando; Kouji Tahata; Sadao Tomizawa
      Abstract: For square contingency tables, a double symmetry model having a matrix structure that combines both symmetry and point symmetry was proposed. Also, an index which represents the degree of departure from double symmetry was proposed. However, this index cannot simultaneously characterize the degree of departure from symmetry and the degree of departure from point symmetry. For measuring the degree of departure from double symmetry, the present paper proposes a bivariate index vector that can simultaneously characterize the degree of departure from symmetry and the degree of departure from point symmetry.
      PubDate: 2018-03-26
      DOI: 10.1007/s11634-018-0320-7
       
  • An efficient random forests algorithm for high dimensional data
           classification
    • Authors: Qiang Wang; Thanh-Tung Nguyen; Joshua Z. Huang; Thuy Thi Nguyen
      Abstract: In this paper, we propose a new random forest (RF) algorithm to deal with high dimensional data for classification using subspace feature sampling method and feature value searching. The new subspace sampling method maintains the diversity and randomness of the forest and enables one to generate trees with a lower prediction error. A greedy technique is used to handle cardinal categorical features for efficient node splitting when building decision trees in the forest. This allows trees to handle very high cardinality meanwhile reducing computational time in building the RF model. Extensive experiments on high dimensional real data sets including standard machine learning data sets and image data sets have been conducted. The results demonstrated that the proposed approach for learning RFs significantly reduced prediction errors and outperformed most existing RFs when dealing with high-dimensional data.
      PubDate: 2018-03-21
      DOI: 10.1007/s11634-018-0318-1
       
  • Properties of Bangdiwala’s B
    • Authors: Matthijs J. Warrens; Alexandra de Raadt
      Abstract: Cohen’s kappa is the most widely used coefficient for assessing interobserver agreement on a nominal scale. An alternative coefficient for quantifying agreement between two observers is Bangdiwala’s B. To provide a proper interpretation of an agreement coefficient one must first understand its meaning. Properties of the kappa coefficient have been extensively studied and are well documented. Properties of coefficient B have been studied, but not extensively. In this paper, various new properties of B are presented. Category B-coefficients are defined that are the basic building blocks of B. It is studied how coefficient B, Cohen’s kappa, the observed agreement and associated category coefficients may be related. It turns out that the relationships between the coefficients are quite different for \(2\times 2\) tables than for agreement tables with three or more categories.
      PubDate: 2018-03-19
      DOI: 10.1007/s11634-018-0319-0
       
  • Mixtures of restricted skew- t factor analyzers with common factor
           loadings
    • Authors: Wan-Lun Wang; Luis M. Castro; Yen-Ting Chang; Tsung-I Lin
      Abstract: Mixtures of common t factor analyzers (MCtFA) have been shown its effectiveness in robustifying mixtures of common factor analyzers (MCFA) when handling model-based clustering of the high-dimensional data with heavy tails. However, the MCtFA model may still suffer from a lack of robustness against observations whose distributions are highly asymmetric. This paper presents a further robust extension of the MCFA and MCtFA models, called the mixture of common restricted skew-t factor analyzers (MCrstFA), by assuming a restricted multivariate skew-t distribution for the common factors. The MCrstFA model can be used to accommodate severely non-normal (skewed and leptokurtic) random phenomena while preserving its parsimony in factor-analytic representation and performing graphical visualization in low-dimensional plots. A computationally feasible expectation conditional maximization either algorithm is developed to carry out maximum likelihood estimation. The numbers of factors and mixture components are simultaneously determined based on common likelihood penalized criteria. The usefulness of our proposed model is illustrated with simulated and real datasets, and experimental results signify its superiority over some existing competitors.
      PubDate: 2018-03-08
      DOI: 10.1007/s11634-018-0317-2
       
  • Equi-Clustream: a framework for clustering time evolving mixed data
    • Authors: Ravi Sankar Sangam; Hari Om
      Abstract: In data stream environment, most of the conventional clustering algorithms are not sufficiently efficient, since large volumes of data arrive in a stream and these data points unfold with time. The problem of clustering time-evolving metric data and categorical time-evolving data has separately been well explored in recent years, but the problem of clustering mixed type time-evolving data remains a challenging issue due to an awkward gap between the structure of metric and categorical attributes. In this paper, we devise a generalized framework, termed Equi-Clustream to dynamically cluster mixed type time-evolving data, which comprises three algorithms: a Hybrid Drifting Concept Detection Algorithm that detects the drifting concept between the current sliding window and previous sliding window, a Hybrid Data Labeling Algorithm that assigns an appropriate cluster label to each data vector of the current non-drifting window based on the clustering result of the previous sliding window, and a visualization algorithm that analyses the relationship between the clusters at different timestamps and also visualizes the evolving trends of the clusters. The efficacy of the proposed framework is shown by experiments on synthetic and real world datasets.
      PubDate: 2018-02-26
      DOI: 10.1007/s11634-018-0316-3
       
  • Model-based approach for household clustering with mixed scale variables
    • Authors: Christian Carmona; Luis Nieto-Barajas; Antonio Canale
      Abstract: The Ministry of Social Development in Mexico is in charge of creating and assigning social programmes targeting specific needs in the population for the improvement of the quality of life. To better target the social programmes, the Ministry is aimed to find clusters of households with the same needs based on demographic characteristics as well as poverty conditions of the household. Available data consists of continuous, ordinal, and nominal variables, all of which come from a non-i.i.d complex design survey sample. We propose a Bayesian nonparametric mixture model that jointly models a set of latent variables, as in an underlying variable response approach, associated to the observed mixed scale data and accommodates for the different sampling probabilities. The performance of the model is assessed via simulated data. A full analysis of socio-economic conditions in households in the Mexican State of Mexico is presented.
      PubDate: 2018-02-08
      DOI: 10.1007/s11634-018-0313-6
       
  • Clustering space-time series: FSTAR as a flexible STAR approach
    • Authors: Edoardo Otranto; Massimo Mucciardi
      Abstract: The STAR model is widely used to represent the dynamics of a certain variable recorded at several locations at the same time. Its advantages are often discussed in terms of parsimony with respect to space-time VAR structures because it considers a single coefficient for each time and spatial lag. This hypothesis can be very strong; we add a certain degree of flexibility to the STAR model, providing the possibility for coefficients to vary in groups of locations. The new class of models (called Flexible STAR–FSTAR) is compared to the classical STAR and the space-time VAR by simulations and an application.
      PubDate: 2018-02-07
      DOI: 10.1007/s11634-018-0314-5
       
  • Methods for the analysis of asymmetric pairwise relationships
    • Authors: Giuseppe Bove; Akinori Okada
      Abstract: Asymmetric pairwise relationships are frequently observed in experimental and non-experimental studies. They can be analysed with different aims and approaches. A brief review of models and methods of multidimensional scaling and cluster analysis able to deal with asymmetric proximities is provided taking a ‘data-analytic’ approach and emphasizing data visualization.
      PubDate: 2018-02-01
      DOI: 10.1007/s11634-017-0307-9
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.166.141.12
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-