for Journals by Title or ISSN
for Articles by Keywords

Publisher: Springer-Verlag (Total: 2351 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

        1 2 3 4 5 6 7 8 | Last   [Sort by number of followers]   [Restore default list]

Showing 1 - 200 of 2351 Journals sorted alphabetically
3D Printing in Medicine     Open Access   (Followers: 2)
3D Research     Hybrid Journal   (Followers: 21, SJR: 0.222, CiteScore: 1)
4OR: A Quarterly J. of Operations Research     Hybrid Journal   (Followers: 10, SJR: 0.825, CiteScore: 1)
AAPS J.     Hybrid Journal   (Followers: 26, SJR: 1.118, CiteScore: 4)
AAPS PharmSciTech     Hybrid Journal   (Followers: 8, SJR: 0.752, CiteScore: 3)
Abdominal Radiology     Hybrid Journal   (Followers: 17, SJR: 0.866, CiteScore: 2)
Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg     Hybrid Journal   (Followers: 4, SJR: 0.439, CiteScore: 0)
Academic Psychiatry     Full-text available via subscription   (Followers: 29, SJR: 0.53, CiteScore: 1)
Academic Questions     Hybrid Journal   (Followers: 8, SJR: 0.106, CiteScore: 0)
Accreditation and Quality Assurance: J. for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 31, SJR: 0.316, CiteScore: 1)
Acoustical Physics     Hybrid Journal   (Followers: 11, SJR: 0.359, CiteScore: 1)
Acoustics Australia     Hybrid Journal   (SJR: 0.232, CiteScore: 1)
Acta Analytica     Hybrid Journal   (Followers: 7, SJR: 0.367, CiteScore: 0)
Acta Applicandae Mathematicae     Hybrid Journal   (Followers: 1, SJR: 0.675, CiteScore: 1)
Acta Biotheoretica     Hybrid Journal   (Followers: 4, SJR: 0.284, CiteScore: 1)
Acta Diabetologica     Hybrid Journal   (Followers: 19, SJR: 1.587, CiteScore: 3)
Acta Endoscopica     Hybrid Journal   (Followers: 1)
acta ethologica     Hybrid Journal   (Followers: 4, SJR: 0.769, CiteScore: 1)
Acta Geochimica     Hybrid Journal   (Followers: 7, SJR: 0.24, CiteScore: 1)
Acta Geodaetica et Geophysica     Hybrid Journal   (Followers: 3, SJR: 0.305, CiteScore: 1)
Acta Geophysica     Hybrid Journal   (Followers: 11, SJR: 0.312, CiteScore: 1)
Acta Geotechnica     Hybrid Journal   (Followers: 7, SJR: 1.588, CiteScore: 3)
Acta Informatica     Hybrid Journal   (Followers: 5, SJR: 0.517, CiteScore: 1)
Acta Mathematica     Hybrid Journal   (Followers: 13, SJR: 7.066, CiteScore: 3)
Acta Mathematica Hungarica     Hybrid Journal   (Followers: 2, SJR: 0.452, CiteScore: 1)
Acta Mathematica Sinica, English Series     Hybrid Journal   (Followers: 6, SJR: 0.379, CiteScore: 1)
Acta Mathematica Vietnamica     Hybrid Journal   (SJR: 0.27, CiteScore: 0)
Acta Mathematicae Applicatae Sinica, English Series     Hybrid Journal   (SJR: 0.208, CiteScore: 0)
Acta Mechanica     Hybrid Journal   (Followers: 21, SJR: 1.04, CiteScore: 2)
Acta Mechanica Sinica     Hybrid Journal   (Followers: 5, SJR: 0.607, CiteScore: 2)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 7, SJR: 0.576, CiteScore: 2)
Acta Meteorologica Sinica     Hybrid Journal   (Followers: 3, SJR: 0.638, CiteScore: 1)
Acta Neurochirurgica     Hybrid Journal   (Followers: 7, SJR: 0.822, CiteScore: 2)
Acta Neurologica Belgica     Hybrid Journal   (Followers: 2, SJR: 0.376, CiteScore: 1)
Acta Neuropathologica     Hybrid Journal   (Followers: 4, SJR: 7.589, CiteScore: 12)
Acta Oceanologica Sinica     Hybrid Journal   (Followers: 3, SJR: 0.334, CiteScore: 1)
Acta Physiologiae Plantarum     Hybrid Journal   (Followers: 3, SJR: 0.574, CiteScore: 2)
Acta Politica     Hybrid Journal   (Followers: 18, SJR: 0.605, CiteScore: 1)
Activitas Nervosa Superior     Hybrid Journal   (SJR: 0.147, CiteScore: 0)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 8, SJR: 0.103, CiteScore: 0)
ADHD Attention Deficit and Hyperactivity Disorders     Hybrid Journal   (Followers: 25, SJR: 0.72, CiteScore: 2)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 9)
Administration and Policy in Mental Health and Mental Health Services Research     Partially Free   (Followers: 18, SJR: 1.005, CiteScore: 2)
Adsorption     Hybrid Journal   (Followers: 5, SJR: 0.703, CiteScore: 2)
Advances in Applied Clifford Algebras     Hybrid Journal   (Followers: 4, SJR: 0.698, CiteScore: 1)
Advances in Atmospheric Sciences     Hybrid Journal   (Followers: 37, SJR: 0.956, CiteScore: 2)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 20, SJR: 0.812, CiteScore: 1)
Advances in Contraception     Hybrid Journal   (Followers: 3)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 58, SJR: 1.09, CiteScore: 1)
Advances in Gerontology     Partially Free   (Followers: 8, SJR: 0.144, CiteScore: 0)
Advances in Health Sciences Education     Hybrid Journal   (Followers: 32, SJR: 1.64, CiteScore: 2)
Advances in Manufacturing     Hybrid Journal   (Followers: 3, SJR: 0.475, CiteScore: 2)
Advances in Polymer Science     Hybrid Journal   (Followers: 45, SJR: 1.04, CiteScore: 3)
Advances in Therapy     Hybrid Journal   (Followers: 5, SJR: 1.075, CiteScore: 3)
Aegean Review of the Law of the Sea and Maritime Law     Hybrid Journal   (Followers: 7)
Aequationes Mathematicae     Hybrid Journal   (Followers: 2, SJR: 0.517, CiteScore: 1)
Aerobiologia     Hybrid Journal   (Followers: 3, SJR: 0.673, CiteScore: 2)
Aesthetic Plastic Surgery     Hybrid Journal   (Followers: 11, SJR: 0.825, CiteScore: 1)
African Archaeological Review     Hybrid Journal   (Followers: 21, SJR: 0.862, CiteScore: 1)
Afrika Matematika     Hybrid Journal   (Followers: 1, SJR: 0.235, CiteScore: 0)
AGE     Hybrid Journal   (Followers: 7)
Ageing Intl.     Hybrid Journal   (Followers: 7, SJR: 0.39, CiteScore: 1)
Aggiornamenti CIO     Hybrid Journal   (Followers: 1)
Aging Clinical and Experimental Research     Hybrid Journal   (Followers: 3, SJR: 0.67, CiteScore: 2)
Agricultural Research     Hybrid Journal   (Followers: 6, SJR: 0.276, CiteScore: 1)
Agriculture and Human Values     Open Access   (Followers: 14, SJR: 1.173, CiteScore: 3)
Agroforestry Systems     Open Access   (Followers: 20, SJR: 0.663, CiteScore: 1)
Agronomy for Sustainable Development     Open Access   (Followers: 15, SJR: 1.864, CiteScore: 6)
AI & Society     Hybrid Journal   (Followers: 9, SJR: 0.227, CiteScore: 1)
AIDS and Behavior     Hybrid Journal   (Followers: 14, SJR: 1.792, CiteScore: 3)
Air Quality, Atmosphere & Health     Hybrid Journal   (Followers: 4, SJR: 0.862, CiteScore: 3)
Akupunktur & Aurikulomedizin     Full-text available via subscription   (Followers: 1)
Algebra and Logic     Hybrid Journal   (Followers: 6, SJR: 0.531, CiteScore: 0)
Algebra Universalis     Hybrid Journal   (Followers: 2, SJR: 0.583, CiteScore: 1)
Algebras and Representation Theory     Hybrid Journal   (Followers: 1, SJR: 1.095, CiteScore: 1)
Algorithmica     Hybrid Journal   (Followers: 9, SJR: 0.56, CiteScore: 1)
Allergo J.     Full-text available via subscription   (Followers: 1, SJR: 0.234, CiteScore: 0)
Allergo J. Intl.     Hybrid Journal   (Followers: 2)
Alpine Botany     Hybrid Journal   (Followers: 5, SJR: 1.11, CiteScore: 3)
ALTEX : Alternatives to Animal Experimentation     Open Access   (Followers: 3)
AMBIO     Hybrid Journal   (Followers: 10, SJR: 1.569, CiteScore: 4)
American J. of Cardiovascular Drugs     Hybrid Journal   (Followers: 16, SJR: 0.951, CiteScore: 3)
American J. of Community Psychology     Hybrid Journal   (Followers: 29, SJR: 1.329, CiteScore: 2)
American J. of Criminal Justice     Hybrid Journal   (Followers: 9, SJR: 0.772, CiteScore: 1)
American J. of Cultural Sociology     Hybrid Journal   (Followers: 18, SJR: 0.46, CiteScore: 1)
American J. of Dance Therapy     Hybrid Journal   (Followers: 5, SJR: 0.181, CiteScore: 0)
American J. of Potato Research     Hybrid Journal   (Followers: 2, SJR: 0.611, CiteScore: 1)
American J. of Psychoanalysis     Hybrid Journal   (Followers: 22, SJR: 0.314, CiteScore: 0)
American Sociologist     Hybrid Journal   (Followers: 16, SJR: 0.35, CiteScore: 0)
Amino Acids     Hybrid Journal   (Followers: 8, SJR: 1.135, CiteScore: 3)
AMS Review     Partially Free   (Followers: 4)
Analog Integrated Circuits and Signal Processing     Hybrid Journal   (Followers: 7, SJR: 0.211, CiteScore: 1)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 6, SJR: 0.536, CiteScore: 1)
Analysis in Theory and Applications     Hybrid Journal   (Followers: 1)
Analysis of Verbal Behavior     Hybrid Journal   (Followers: 6)
Analytical and Bioanalytical Chemistry     Hybrid Journal   (Followers: 32, SJR: 0.978, CiteScore: 3)
Anatomical Science Intl.     Hybrid Journal   (Followers: 3, SJR: 0.367, CiteScore: 1)
Angewandte Schmerztherapie und Palliativmedizin     Hybrid Journal  
Angiogenesis     Hybrid Journal   (Followers: 3, SJR: 2.177, CiteScore: 5)
Animal Cognition     Hybrid Journal   (Followers: 20, SJR: 1.389, CiteScore: 3)
Annales françaises de médecine d'urgence     Hybrid Journal   (Followers: 1, SJR: 0.192, CiteScore: 0)
Annales Henri Poincaré     Hybrid Journal   (Followers: 3, SJR: 1.097, CiteScore: 2)
Annales mathématiques du Québec     Hybrid Journal   (Followers: 4, SJR: 0.438, CiteScore: 0)
Annali dell'Universita di Ferrara     Hybrid Journal   (SJR: 0.429, CiteScore: 0)
Annali di Matematica Pura ed Applicata     Hybrid Journal   (Followers: 1, SJR: 1.197, CiteScore: 1)
Annals of Biomedical Engineering     Hybrid Journal   (Followers: 17, SJR: 1.042, CiteScore: 3)
Annals of Combinatorics     Hybrid Journal   (Followers: 4, SJR: 0.932, CiteScore: 1)
Annals of Data Science     Hybrid Journal   (Followers: 12)
Annals of Dyslexia     Hybrid Journal   (Followers: 10, SJR: 0.85, CiteScore: 2)
Annals of Finance     Hybrid Journal   (Followers: 34, SJR: 0.579, CiteScore: 1)
Annals of Forest Science     Hybrid Journal   (Followers: 7, SJR: 0.986, CiteScore: 2)
Annals of Global Analysis and Geometry     Hybrid Journal   (Followers: 1, SJR: 1.228, CiteScore: 1)
Annals of Hematology     Hybrid Journal   (Followers: 15, SJR: 1.043, CiteScore: 2)
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 12, SJR: 0.413, CiteScore: 1)
Annals of Microbiology     Hybrid Journal   (Followers: 11, SJR: 0.479, CiteScore: 2)
Annals of Nuclear Medicine     Hybrid Journal   (Followers: 5, SJR: 0.687, CiteScore: 2)
Annals of Operations Research     Hybrid Journal   (Followers: 10, SJR: 0.943, CiteScore: 2)
Annals of Ophthalmology     Hybrid Journal   (Followers: 13)
Annals of Regional Science     Hybrid Journal   (Followers: 8, SJR: 0.614, CiteScore: 1)
Annals of Software Engineering     Hybrid Journal   (Followers: 13)
Annals of Solid and Structural Mechanics     Hybrid Journal   (Followers: 9, SJR: 0.239, CiteScore: 1)
Annals of Surgical Oncology     Hybrid Journal   (Followers: 15, SJR: 1.986, CiteScore: 4)
Annals of Telecommunications     Hybrid Journal   (Followers: 9, SJR: 0.223, CiteScore: 1)
Annals of the Institute of Statistical Mathematics     Hybrid Journal   (Followers: 1, SJR: 1.495, CiteScore: 1)
Antonie van Leeuwenhoek     Hybrid Journal   (Followers: 5, SJR: 0.834, CiteScore: 2)
Apidologie     Hybrid Journal   (Followers: 4, SJR: 1.22, CiteScore: 3)
APOPTOSIS     Hybrid Journal   (Followers: 9, SJR: 1.424, CiteScore: 4)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2, SJR: 0.294, CiteScore: 1)
Applications of Mathematics     Hybrid Journal   (Followers: 3, SJR: 0.602, CiteScore: 1)
Applied Biochemistry and Biotechnology     Hybrid Journal   (Followers: 44, SJR: 0.571, CiteScore: 2)
Applied Biochemistry and Microbiology     Hybrid Journal   (Followers: 18, SJR: 0.21, CiteScore: 1)
Applied Categorical Structures     Hybrid Journal   (Followers: 4, SJR: 0.49, CiteScore: 0)
Applied Composite Materials     Hybrid Journal   (Followers: 50, SJR: 0.58, CiteScore: 2)
Applied Entomology and Zoology     Partially Free   (Followers: 6, SJR: 0.422, CiteScore: 1)
Applied Geomatics     Hybrid Journal   (Followers: 3, SJR: 0.733, CiteScore: 3)
Applied Geophysics     Hybrid Journal   (Followers: 9, SJR: 0.488, CiteScore: 1)
Applied Intelligence     Hybrid Journal   (Followers: 13, SJR: 0.6, CiteScore: 2)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 4, SJR: 0.319, CiteScore: 1)
Applied Mathematics & Optimization     Hybrid Journal   (Followers: 9, SJR: 0.886, CiteScore: 1)
Applied Mathematics - A J. of Chinese Universities     Hybrid Journal   (Followers: 1, SJR: 0.17, CiteScore: 0)
Applied Mathematics and Mechanics     Hybrid Journal   (Followers: 5, SJR: 0.461, CiteScore: 1)
Applied Microbiology and Biotechnology     Hybrid Journal   (Followers: 66, SJR: 1.182, CiteScore: 4)
Applied Physics A     Hybrid Journal   (Followers: 10, SJR: 0.481, CiteScore: 2)
Applied Physics B: Lasers and Optics     Hybrid Journal   (Followers: 25, SJR: 0.74, CiteScore: 2)
Applied Psychophysiology and Biofeedback     Hybrid Journal   (Followers: 8, SJR: 0.519, CiteScore: 2)
Applied Research in Quality of Life     Hybrid Journal   (Followers: 12, SJR: 0.316, CiteScore: 1)
Applied Solar Energy     Hybrid Journal   (Followers: 22, SJR: 0.225, CiteScore: 0)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 7, SJR: 0.542, CiteScore: 1)
Aquaculture Intl.     Hybrid Journal   (Followers: 26, SJR: 0.591, CiteScore: 2)
Aquarium Sciences and Conservation     Hybrid Journal   (Followers: 2)
Aquatic Ecology     Hybrid Journal   (Followers: 37, SJR: 0.656, CiteScore: 2)
Aquatic Geochemistry     Hybrid Journal   (Followers: 4, SJR: 0.591, CiteScore: 1)
Aquatic Sciences     Hybrid Journal   (Followers: 14, SJR: 1.109, CiteScore: 3)
Arabian J. for Science and Engineering     Hybrid Journal   (Followers: 5, SJR: 0.303, CiteScore: 1)
Arabian J. of Geosciences     Hybrid Journal   (Followers: 2, SJR: 0.319, CiteScore: 1)
Archaeological and Anthropological Sciences     Hybrid Journal   (Followers: 21, SJR: 1.052, CiteScore: 2)
Archaeologies     Hybrid Journal   (Followers: 12, SJR: 0.224, CiteScore: 0)
Archiv der Mathematik     Hybrid Journal   (Followers: 1, SJR: 0.725, CiteScore: 1)
Archival Science     Hybrid Journal   (Followers: 68, SJR: 0.745, CiteScore: 2)
Archive for History of Exact Sciences     Hybrid Journal   (Followers: 7, SJR: 0.186, CiteScore: 1)
Archive for Mathematical Logic     Hybrid Journal   (Followers: 3, SJR: 0.909, CiteScore: 1)
Archive for Rational Mechanics and Analysis     Hybrid Journal   (SJR: 3.93, CiteScore: 3)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 6, SJR: 0.79, CiteScore: 2)
Archives and Museum Informatics     Hybrid Journal   (Followers: 156, SJR: 0.101, CiteScore: 0)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 6, SJR: 1.41, CiteScore: 5)
Archives of Dermatological Research     Hybrid Journal   (Followers: 7, SJR: 1.006, CiteScore: 2)
Archives of Environmental Contamination and Toxicology     Hybrid Journal   (Followers: 14, SJR: 0.773, CiteScore: 2)
Archives of Gynecology and Obstetrics     Hybrid Journal   (Followers: 17, SJR: 0.956, CiteScore: 2)
Archives of Microbiology     Hybrid Journal   (Followers: 9, SJR: 0.644, CiteScore: 2)
Archives of Orthopaedic and Trauma Surgery     Hybrid Journal   (Followers: 9, SJR: 1.146, CiteScore: 2)
Archives of Osteoporosis     Hybrid Journal   (Followers: 2, SJR: 0.71, CiteScore: 2)
Archives of Sexual Behavior     Hybrid Journal   (Followers: 10, SJR: 1.493, CiteScore: 3)
Archives of Toxicology     Hybrid Journal   (Followers: 17, SJR: 1.541, CiteScore: 5)
Archives of Virology     Hybrid Journal   (Followers: 5, SJR: 0.973, CiteScore: 2)
Archives of Women's Mental Health     Hybrid Journal   (Followers: 17, SJR: 1.274, CiteScore: 3)
Archivio di Ortopedia e Reumatologia     Hybrid Journal  
Archivum Immunologiae et Therapiae Experimentalis     Hybrid Journal   (Followers: 2, SJR: 0.946, CiteScore: 3)
ArgoSpine News & J.     Hybrid Journal  
Argumentation     Hybrid Journal   (Followers: 6, SJR: 0.349, CiteScore: 1)
Arid Ecosystems     Hybrid Journal   (Followers: 2, SJR: 0.2, CiteScore: 0)
Arkiv för Matematik     Hybrid Journal   (Followers: 2, SJR: 0.766, CiteScore: 1)
Arnold Mathematical J.     Hybrid Journal   (Followers: 1, SJR: 0.355, CiteScore: 0)
Arthropod-Plant Interactions     Hybrid Journal   (Followers: 2, SJR: 0.839, CiteScore: 2)
Arthroskopie     Hybrid Journal   (Followers: 1, SJR: 0.131, CiteScore: 0)
Artificial Intelligence and Law     Hybrid Journal   (Followers: 11, SJR: 0.937, CiteScore: 2)
Artificial Intelligence Review     Hybrid Journal   (Followers: 18, SJR: 0.833, CiteScore: 4)
Artificial Life and Robotics     Hybrid Journal   (Followers: 10, SJR: 0.226, CiteScore: 0)
Asia Europe J.     Hybrid Journal   (Followers: 5, SJR: 0.504, CiteScore: 1)
Asia Pacific Education Review     Hybrid Journal   (Followers: 13, SJR: 0.479, CiteScore: 1)
Asia Pacific J. of Management     Hybrid Journal   (Followers: 16, SJR: 1.185, CiteScore: 2)
Asia-Pacific Education Researcher     Hybrid Journal   (Followers: 13, SJR: 0.353, CiteScore: 1)
Asia-Pacific Financial Markets     Hybrid Journal   (Followers: 3, SJR: 0.187, CiteScore: 0)
Asia-Pacific J. of Atmospheric Sciences     Hybrid Journal   (Followers: 19, SJR: 0.855, CiteScore: 1)
Asian Business & Management     Hybrid Journal   (Followers: 9, SJR: 0.378, CiteScore: 1)
Asian J. of Business Ethics     Hybrid Journal   (Followers: 11)
Asian J. of Criminology     Hybrid Journal   (Followers: 6, SJR: 0.543, CiteScore: 1)
AStA Advances in Statistical Analysis     Hybrid Journal   (Followers: 4, SJR: 0.548, CiteScore: 1)
AStA Wirtschafts- und Sozialstatistisches Archiv     Hybrid Journal   (Followers: 5, SJR: 0.183, CiteScore: 0)
ästhetische dermatologie & kosmetologie     Full-text available via subscription  
Astronomy and Astrophysics Review     Hybrid Journal   (Followers: 22, SJR: 3.385, CiteScore: 5)

        1 2 3 4 5 6 7 8 | Last   [Sort by number of followers]   [Restore default list]

Similar Journals
Journal Cover
Artificial Intelligence Review
Journal Prestige (SJR): 0.833
Citation Impact (citeScore): 4
Number of Followers: 18  
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1573-7462 - ISSN (Online) 0269-2821
Published by Springer-Verlag Homepage  [2351 journals]
  • A survey of swarm and evolutionary computing approaches for deep learning
    • Abstract: Deep learning (DL) has become an important machine learning approach that has been widely successful in many applications. Currently, DL is one of the best methods of extracting knowledge from large sets of raw data in a (nearly) self-organized manner. The technical design of DL depends on the feed-forward information flow principle of artificial neural networks with multiple layers of hidden neurons, which form deep neural networks (DNNs). DNNs have various architectures and parameters and are often developed for specific applications. However, the training process of DNNs can be prolonged based on the application and training set size (Gong et al. 2015). Moreover, finding the most accurate and efficient architecture of a deep learning system in a reasonable time is a potential difficulty associated with this approach. Swarm intelligence (SI) and evolutionary computing (EC) techniques represent simulation-driven non-convex optimization frameworks with few assumptions based on objective functions. These methods are flexible and have been proven effective in many applications; therefore, they can be used to improve DL by optimizing the applied learning models. This paper presents a comprehensive survey of the most recent approaches involving the hybridization of SI and EC algorithms for DL, the architecture of DNNs, and DNN training to improve the classification accuracy. The paper reviews the significant roles of SI and EC in optimizing the hyper-parameters and architectures of a DL system in context to large scale data analytics. Finally, we identify some open problems for further research, as well as potential issues related to DL that require improvements, and an extensive bibliography of the pertinent research is presented.
      PubDate: 2019-06-13
  • A survey on facial soft biometrics for video surveillance and forensic
    • Abstract: The face is one of the most reliable and easy-to-acquire biometric features, widely used for the recognition of individuals. In controlled environments facial recognition systems are highly effective, however, in real world scenarios and under varying lighting conditions, pose changes, facial expressions, occlusions and low resolution of captured images/videos, the task of recognizing faces becomes significantly complex. In this context it has been shown that certain attributes can be retrieved with a relative probability of success, being useful to complement a non conclusive result of a biometric system. In this paper we present an overview on face describable visual attributes and in particular of the so-called soft biometrics (e.g., facial marks, gender, age, skin color, and other physical characteristics). We review core issues regarding this topic, for instance what are the soft biometrics, which of them are the most robust in video surveillance and other uncontrolled scenarios, how different approaches have been addressed in the literature for their representation and classification, which datasets can be used for evaluation, which related problems remain unresolved and which are the possible ways to approach them.
      PubDate: 2019-06-12
  • Performance evaluation of classifiers for the recognition of offline
           handwritten Gurmukhi characters and numerals: a study
    • Abstract: Classification is a process to pull out patterns from a number of classes by using various statistical properties and artificial intelligence techniques. The problem of classification is considered as one of the important problems for the development of applications and for efficient data analysis. Based on the learning adaptability and capability to solve complex computations, classifiers are always the best suited for the pattern recognition problems. This paper presents a comparative study of various classifiers and the results achieved for offline handwritten Gurmukhi characters and numerals recognition. Various classifiers used and evaluated in this study include k-nearest neighbors, linear-support vector machine (SVM), RBF-SVM, Naive Bayes, decision tree, convolution neural network and random forest classifier. For the experimental work, authors used a balanced data set of 13,000 samples that includes 7000 characters and 6000 numerals. To assess the performance of classifiers, authors have used the Waikato Environment for Knowledge Analysis which is an open source tool for machine learning. The performance is assessed by considering various parameters such as accuracy rate, size of the dataset, time taken to train the model, false acceptance rate, false rejection rate and area under receiver operating characteristic Curve. The paper also highlights the comparison of correctness of tests obtained by applying the selected classifiers. Based on the experimental results, it is clear that classifiers considered in this study have complementary rewards and they should be implemented in a hybrid manner to achieve higher accuracy rates. After executing the experimental work, their comparison and analysis, it is concluded that the Random Forest classifier is performing better than other recently used classifiers for character and numeral recognition of offline handwritten Gurmukhi characters and numerals with the recognition accuracy of 87.9% for 13,000 samples.
      PubDate: 2019-06-11
  • Integration of case-based reasoning and fuzzy approaches for real-time
           applications in dynamic environments: current status and future directions
    • Abstract: This survey reviews recent researches conducted on the application of fuzzy approaches to Case-Based Reasoning (CBR) dealing with real-time applications. Fuzzy approaches have been effectively applied for knowledge representation, feature selection, and learning in CBR. Dealing with imprecise and uncertain knowledge, generalization, mining, and learning also in combination with low computational complexity are the main advantages of fuzzy approaches used in the CBR context. This paper presents and summarizes new findings on the integration of fuzzy approaches with CBR. The survey results highlight the advantages of fuzzy approaches in CBR for real-time applications. They show the current state of fuzzy-based CBR approaches. In addition, fuzzy approaches which are more operative for each operation in CBR are addressed. Those operations most contributing to the advantages of the fuzzy approach will be pointed out and detailed. Low accuracy, storage and computational challenges with a large amount of experiences and uncertainties are important issues in case of real-time applications. This paper proposes a general fuzzy-based CBR approach for real-time applications to benefit the advantages of previous approaches. Finally, some considerations of latest developments in fuzzy approaches which may be introduced as potential research directions for real-time applications are stated.
      PubDate: 2019-06-05
  • Computer aided detection in automated 3-D breast ultrasound images: a
    • Abstract: Nowadays, breast cancer is the leading cause of cancer death for women all over the world. Since the reason of breast cancer is unknown, early detection of the disease plays an important role in cancer control, saving lives and reducing costs. Among different modalities, automated 3-D breast ultrasound (3-D ABUS) is a new and effective imaging modality which has attracted a lot of interest as an adjunct to mammography for women with dense breasts. However, reading ABUS images is time consuming for radiologists and subtle abnormalities may be overlooked. Hence, computer aided detection (CADe) systems can be utilized as a second interpreter to assist radiologists to increase their screening speed and sensitivity. In this paper, a general architecture representing different CADe systems for ABUS images is introduced and the approaches for implementation of each block are categorized and reviewed. In addition, the limitations of these systems are discussed and their performance in terms of sensitivity and number of false positives per volume are compared.
      PubDate: 2019-06-04
  • Non-intrusive human activity recognition and abnormal behavior detection
           on elderly people: a review
    • Abstract: With the world population aging at a fast rate, ambient assisted living systems focused on elderly people gather more attention. Human activity recognition (HAR) is a component connected to those systems, as it allows identification of the actions performed and their utilization on behavioral analysis. This paper aims to provide a review on recent studies focusing on HAR and abnormal behavior detection specifically for seniors. The frameworks proposed in the literature are presented. The results are also discussed and summarized, along with the datasets and metrics used. The absence of a universal evaluation framework makes direct comparison not feasible, thus an analysis is made trying to divide the literature using a taxonomy. Solutions on the challenges identified are proposed, while discussing future work.
      PubDate: 2019-06-03
  • Leveraging synonymy and polysemy to improve semantic similarity
           assessments based on intrinsic information content
    • Abstract: Semantic similarity measures based on the estimation of the information content (IC) of concepts are currently regarded as the state of the art. Calculating the IC in an intrinsic (i.e., ontology-based) way is particularly convenient due to its accuracy and lack of dependency on annotated corpora. Intrinsic IC calculation models estimate concept probabilities from the taxonomic knowledge (i.e., number of hyponyms and/or hypernyms of the concepts) modelled in an ontology. In this paper, we aim to improve the intrinsic calculation of the IC by leveraging not only the hyponyms and hypernyms of concepts, but also the explicit evidences of synonymy and polysemy that ontologies such as WordNet also model. Specifically, we propose a more accurate intrinsic estimation of the concepts’ probabilities in which the IC calculation relies. We evaluate the accuracy of our proposal through a set of comprehensive experiments in which our IC calculation model is tested on a variety of IC-based similarity measures and benchmarks. Experimental results show that our proposal obtains consistently good accuracies, which vary less across measures and benchmarks than the most prominent intrinsic IC calculation models available in the literature.
      PubDate: 2019-06-03
  • A review of generative adversarial networks and its application in
    • Abstract: This paper reviews Generative Adversarial Networks (GANs) in detail by discussing the strength of the GAN when compared to other generative models, how GANs works and some of the notable problems with training, tuning and evaluating GANs. The paper also briefly reviews notable GAN architectures like the Deep Convolutional Generative Adversarial Network (DCGAN), and Wasserstein GAN, with the aim of showing how design specifications in these architectures help solve some of the problems with the basic GAN model. All this is done with a view of discussing the application of GANs in cybersecurity studies. Here, the paper reviews notable cybersecurity studies where the GAN plays a key role in the design of a security system or adversarial system. In general, from the review, one can observe two major approaches these cybersecurity studies follow. In the first approach, the GAN is used to improve generalization to unforeseen adversarial attacks, by generating novel samples that resembles adversarial data which can then serve as training data for other machine learning models. In the second approach, the GAN is trained on data that contains authorized features with the goal of generating realistic adversarial data that can thus fool a security system. These two approaches currently guide the scope of modern cybersecurity studies with generative adversarial networks.
      PubDate: 2019-06-01
  • A comparative study of neural-network feature weighting
    • Abstract: Many feature weighting methods have been proposed to evaluate feature saliencies in recent years. Neural-network (NN) feature weighting, as a supervised method, is founded upon the mapping from input features to output decisions, and implemented by evaluating the sensitivity of network outputs to its inputs. Through training on sample data, NN implicitly embodies the saliencies of input features. The partial derivatives of the outputs with respect to the inputs in the trained NN are calculated to measure their sensitivities to input features, which means that implicit feature weighting of the NN is transformed into explicit feature weighting. The purpose of this paper is to further probe into the principle of NN feature weighting, and evaluate its performance through a comparative study between NN feature weighting method and state-of-art weighting methods in the same working conditions. The motivation of this study is inspired by the lack of direct and comprehensive comparison studies of NN feature weighting method. Experiments in UCI repository data sets, face data sets and self-built data sets show that NN feature weighting method achieves superior performance in different conditions and has promising prospects. Compared with the other existing methods, NN feature weighting method can be used in more complex conditions, provided that NN can work in those conditions. As decision data, output data can be labels, reals or integers. Especially, feature weights can be calculated without the discretization of outputs in the condition of continuous outputs.
      PubDate: 2019-06-01
  • A comparative study of hash based approximate nearest neighbor learning
           and its application in image retrieval
    • Abstract: Plenty of data are available due to the growth of digital technology that creates a high expectation in retrieving the relevant images, accurately and efficiently for a given query image. For searching the relevant images efficiently for the Large Scale dataset, the searching algorithm should have fast access capability. The existing Exact Nearest Neighbor search performs in linear time and so it takes more time as both the dataset and data dimension increases. As a remedy to provide sub-linear/logarithmic time complexity, usage of Approximate Nearest Neighbor (ANN) algorithms is emerging at a rapid rate. This paper discusses about the importance of ANN and their general classification; the different categories involved in Learning to Hash has been analyzed with their pros and cons; different bit assignment types and methods to minimize the Quantization Errors have been reviewed along with its merits and demerits. Therefore, it serves to increase the efficiency of the Image Retrieval process in Large Scale.
      PubDate: 2019-06-01
  • Bayesian network hybrid learning using an elite-guided genetic algorithm
    • Abstract: Bayesian networks (BNs) constitute a powerful framework for probabilistic reasoning and have been extensively used in different research domains. This paper presents an improved hybrid learning strategy that features parameterized genetic algorithms (GAs) to learn the structure of BNs underlying a set of data samples. The performance of GAs is influenced by the choice of multiple initial parameters. This work is concerned with designing a series of parameter-less hybrid methods on a build-up basis: first the standard implementation is refined with the previously-developed data-informed evolutionary strategies. Then, two novel knowledge-driven parent controlling enhancements are presented. The first improvement works upon the parent limitation setting. BN structure learning algorithms typically set a bound for the maximum number of parents a BN node can possess to comply with the computational feasibility of the learning process. Our proposed method carefully selects the parents to rule out based on a knowledge-driven strategy. The second enhancement aims at reducing the sensitivity of the parent control setting by dynamically adjusting the maximum number of parents each node can hold. In the experimental section, it is shown how the adopted baseline outperforms the competitor algorithms included in the benchmark: thanks to its global search capabilities, the genetic methodology can efficiently prevail over other state-of-the-art structural learners on large networks. Presented experiments also prove how the proposed methods enhance the algorithmic efficiency and sensitivity to parameter setting, and address the problem of data fragmentation with respect to the baseline, with the advantage of higher performances in some cases.
      PubDate: 2019-06-01
  • Machine Learning and Deep Learning frameworks and libraries for
           large-scale data mining: a survey
    • Abstract: The combined impact of new computing resources and techniques with an increasing avalanche of large datasets, is transforming many research areas and may lead to technological breakthroughs that can be used by billions of people. In the recent years, Machine Learning and especially its subfield Deep Learning have seen impressive advances. Techniques developed within these two fields are now able to analyze and learn from huge amounts of real world examples in a disparate formats. While the number of Machine Learning algorithms is extensive and growing, their implementations through frameworks and libraries is also extensive and growing too. The software development in this field is fast paced with a large number of open-source software coming from the academy, industry, start-ups or wider open-source communities. This survey presents a recent time-slide comprehensive overview with comparisons as well as trends in development and usage of cutting-edge Artificial Intelligence software. It also provides an overview of massive parallelism support that is capable of scaling computation effectively and efficiently in the era of Big Data.
      PubDate: 2019-06-01
  • Empirically grounded agent-based models of innovation diffusion: a
           critical review
    • Abstract: Innovation diffusion has been studied extensively in a variety of disciplines, including sociology, economics, marketing, ecology, and computer science. Traditional literature on innovation diffusion has been dominated by models of aggregate behavior and trends. However, the agent-based modeling (ABM) paradigm is gaining popularity as it captures agent heterogeneity and enables fine-grained modeling of interactions mediated by social and geographic networks. While most ABM work on innovation diffusion is theoretical, empirically grounded models are increasingly important, particularly in guiding policy decisions. We present a critical review of empirically grounded agent-based models of innovation diffusion, developing a categorization of this research based on types of agent models as well as applications. By connecting the modeling methodologies in the fields of information and innovation diffusion, we suggest that the maximum likelihood estimation framework widely used in the former is a promising paradigm for calibration of agent-based models for innovation diffusion. Although many advances have been made to standardize ABM methodology, we identify four major issues in model calibration and validation, and suggest potential solutions.
      PubDate: 2019-06-01
  • Survey on supervised machine learning techniques for automatic text
    • Abstract: Supervised machine learning studies are gaining more significant recently because of the availability of the increasing number of the electronic documents from different resources. Text classification can be defined that the task was automatically categorized a group documents into one or more predefined classes according to their subjects. Thereby, the major objective of text classification is to enable users for extracting information from textual resource and deals with process such as retrieval, classification, and machine learning techniques together in order to classify different pattern. In text classification technique, term weighting methods design suitable weights to the specific terms to enhance the text classification performance. This paper surveys of text classification, process of different term weighing methods and comparison between different classification techniques.
      PubDate: 2019-06-01
  • Orthogonal based ANN and multiGA for optimization on WEDM of Ti–48Al
           intermetallic alloys
    • Abstract: As surveyed, many efforts have been made to model the performances of electrical discharge machining (EDM) using artificial neural network (ANN). However, the selections of the network parameters were mostly prepared in a random manner, resulting to unnecessary trials. Thus, orthogonal array (Taguchi) is employed in the procedure of network function and network architecture assortment to avoid excessive random trial experimentations. This proposed orthogonal based ANN modelling is employed on WEDM of Ti–48Al intermetallic alloys. Meanwhile modified multi objective genetic algorithm (multiGA) is used as the optimization technique. Material removal rate (MRR), surface roughness (Ra), cutting speed (Vc) and width of kerf (Dk) are the machining performances considered in this study. Five machining parameters observed from the previous researches are chosen as significant factors to the machining performances in this study, which are pulse on time, pulse off time, peak current, feed rate and servo voltage. Experimental studies are carried out to verify the machining performances suggested by this approach. Feed forward back propagation neural network (FFNN) is found to be the best network type on the selected dataset. Two hidden layer 5–6–6–4 FFNN showed the most precise and generalized network architecture with very good prediction accuracy. The proposed approach, OrthoANN, reduced ANN experimentation time by a large scale and produced viable results for machining optimization when integrated with multiGA.
      PubDate: 2019-06-01
  • Machine learning approaches for non-intrusive load monitoring: from
           qualitative to quantitative comparation
    • Abstract: Non-intrusive load monitoring (NILM) is the prevailing method used to monitor the energy profile of a domestic building and disaggregate the total power consumption into consumption signals by appliance. Whilst the most popular disaggregation algorithms are based on Hidden Markov Model solutions based on deep neural networks have attracted interest from researchers. The objective of this paper is to provide a comprehensive overview of the NILM method and present a comparative review of modern approaches. In this effort, many obstacles are identified. The plethora of metrics, the variety of datasets and the diversity of methodologies make an objective comparison almost impossible. An extensive analysis is made in order to scrutinize these problems. Possible solutions and improvements are suggested, while future research directions are discussed.
      PubDate: 2019-06-01
  • Local structure learning of chain graphs with the false discovery rate
    • Abstract: Chain graphs (CGs) containing both directed and undirected edges, offer an elegant generalisation of both Markov networks and Bayesian networks. In this paper, we propose an algorithm for local structure learning of CGs. It works by first learning adjacent nodes of each variable for skeleton identification and then orienting the edges of the complexes of the graph. To control the false discovery rate (FDR) of edges when learning a CG, FDR controlling procedure is embedded in the algorithm. Algorithms for skeleton identification and complexes recovery are presented. Experimental results demonstrate that the algorithm with the FDR controlling procedure can control the false discovery rate of the skeleton of the recovered graph under a user-specified level, and the proposed algorithm is also a viable alternative to learn the structure of chain graphs.
      PubDate: 2019-06-01
  • Establishment of a deep learning network based on feature extraction and
           its application in gearbox fault diagnosis
    • Abstract: Gearbox is an important part of mechanical equipment. If a fault cannot be timely detected, it will cause significant economic losses. In order to solve the problem of early fault diagnosis quickly and accurately, this paper proposes a feature extraction method by the decomposition of feature value to the waveform of signal, and inputs the extracted feature into the deep learning network established by this paper. Firstly, the input signal is reconstructed and the feature value is decomposed. Secondly, the extracted features are input into the established deep learning network as the deep learning signals to carry out fault diagnosis. Finally, the fault is identified by the established deep learning network. In a number of experiments, to compare with the existing some fault diagnosis methods, such as support vector machine, classical neural network, lifting wavelet and logical regression, the experimental results show that the average accurate recognition rate of the proposed method by established deep learning network based on feature value decomposition to fault diagnosis is 96.65%, its variance is 0.36 and the diagnostic speed is 0.612 s. However, the average accuracy of the best diagnostic method at present is 93.52%, the variance is 0.47 and the diagnostic speed is 0.826 s. It indicates that the proposed method has a good accuracy, stability and fastness.
      PubDate: 2019-04-12
  • Deep ensemble network based on multi-path fusion
    • Abstract: Deep convolutional network is commonly stacked by vast number of nonlinear convolutional layers. Deep fused network can improve the training process of deep convolutional network due to its capability of learning multi-scale representations and of optimizing information flow. However, the depth in a deep fused network does not contribute to the overall performance significantly. Therefore, a deep ensemble network consisting of deep fused network and branch channel is proposed. First, two base networks are combined in a concatenation and fusion manner to generate a deep fused network architecture. Then, an ensemble block with embedded learning mechanisms is formed to improve feature representation power of the model. Finally, the computational efficiency is improved by introducing group convolution without loss of performance. Experimental results on the standard recognition tasks have shown that the proposed network achieves better classification performance and has superior generalization ability compared to the original residual networks.
      PubDate: 2019-04-08
  • Kinect-based hand gesture recognition using trajectory information, hand
           motion dynamics and neural networks
    • Abstract: Hand gestures are spatio-temporal patterns which can be characterized by collections of spatio-temporal features. Recognition of hand gestures is to find the re-occurrences of such spatio-temporal patterns through pattern matching. However, dynamic hand gestures have many obstacles for accurate recognition, including poor lighting conditions, camera’s inability to capture dynamic gesture in focus, occlusion due to finger movement, color variations due to lighting conditions. The Microsoft Kinect device provides an effective way to solve the above issues and also provides the skeleton for more convenient hand localization and tracking. The aim of this study is to develop a new trajectory-based method for hand gesture recognition using Kinect. In the first step, trajectory-based hand gesture features including spatial position and direction of fingertips, are derived from Kinect. The properties associated with the hand motion dynamics are preserved in these features. In the second step, radial basis function (RBF) neural networks are employed to model and approximate the hand motion dynamics derived from different hand gestures which represent Arabic numbers (0–9) and English alphabets (A–Z). The trained patterns of the approximated hand motion dynamics is stored in constant RBF networks. In the last step, a bank of dynamical estimators is constructed for all the training patterns, in which the constant RBF networks are embedded in. By comparing the set of estimators with a test gesture pattern, a set of recognition errors are generated, in which the average \(L_1\) norms of the errors are taken as the recognition measure based on the smallest error principle. Finally, experiments are carried out to assess the performance of the proposed method compared with other state-of-the-art approaches. By using the twofold and tenfold cross-validation styles, the correct recognition rates for Arabic numbers (0–9) and English alphabets (A–Z) are reported to be \(95.83\%, 97.25\%\) , and \(91.35\%, 92.63\%\) , respectively.
      PubDate: 2019-04-01
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-