for Journals by Title or ISSN
for Articles by Keywords

Publisher: John Wiley and Sons   (Total: 1580 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

        1 2 3 4 5 6 7 8 | Last   [Sort by number of followers]   [Restore default list]

Showing 1 - 200 of 1580 Journals sorted alphabetically
Abacus     Hybrid Journal   (Followers: 13, SJR: 0.48, h-index: 22)
About Campus     Hybrid Journal   (Followers: 5)
Academic Emergency Medicine     Hybrid Journal   (Followers: 65, SJR: 1.385, h-index: 91)
Accounting & Finance     Hybrid Journal   (Followers: 47, SJR: 0.547, h-index: 30)
ACEP NOW     Free   (Followers: 1)
Acta Anaesthesiologica Scandinavica     Hybrid Journal   (Followers: 52, SJR: 1.02, h-index: 88)
Acta Archaeologica     Hybrid Journal   (Followers: 158, SJR: 0.101, h-index: 9)
Acta Geologica Sinica (English Edition)     Hybrid Journal   (Followers: 3, SJR: 0.552, h-index: 41)
Acta Neurologica Scandinavica     Hybrid Journal   (Followers: 5, SJR: 1.203, h-index: 74)
Acta Obstetricia et Gynecologica Scandinavica     Hybrid Journal   (Followers: 15, SJR: 1.197, h-index: 81)
Acta Ophthalmologica     Hybrid Journal   (Followers: 6, SJR: 0.112, h-index: 1)
Acta Paediatrica     Hybrid Journal   (Followers: 56, SJR: 0.794, h-index: 88)
Acta Physiologica     Hybrid Journal   (Followers: 6, SJR: 1.69, h-index: 88)
Acta Polymerica     Hybrid Journal   (Followers: 9)
Acta Psychiatrica Scandinavica     Hybrid Journal   (Followers: 35, SJR: 2.518, h-index: 113)
Acta Zoologica     Hybrid Journal   (Followers: 6, SJR: 0.459, h-index: 29)
Acute Medicine & Surgery     Hybrid Journal   (Followers: 4)
Addiction     Hybrid Journal   (Followers: 35, SJR: 2.086, h-index: 143)
Addiction Biology     Hybrid Journal   (Followers: 13, SJR: 2.091, h-index: 57)
Adultspan J.     Hybrid Journal   (SJR: 0.127, h-index: 4)
Advanced Energy Materials     Hybrid Journal   (Followers: 27, SJR: 6.411, h-index: 86)
Advanced Engineering Materials     Hybrid Journal   (Followers: 26, SJR: 0.81, h-index: 81)
Advanced Functional Materials     Hybrid Journal   (Followers: 51, SJR: 5.21, h-index: 203)
Advanced Healthcare Materials     Hybrid Journal   (Followers: 14, SJR: 0.232, h-index: 7)
Advanced Materials     Hybrid Journal   (Followers: 267, SJR: 9.021, h-index: 345)
Advanced Materials Interfaces     Hybrid Journal   (Followers: 6, SJR: 1.177, h-index: 10)
Advanced Optical Materials     Hybrid Journal   (Followers: 7, SJR: 2.488, h-index: 21)
Advanced Science     Open Access   (Followers: 5)
Advanced Synthesis & Catalysis     Hybrid Journal   (Followers: 17, SJR: 2.729, h-index: 121)
Advances in Polymer Technology     Hybrid Journal   (Followers: 13, SJR: 0.344, h-index: 31)
Africa Confidential     Hybrid Journal   (Followers: 21)
Africa Research Bulletin: Economic, Financial and Technical Series     Hybrid Journal   (Followers: 13)
Africa Research Bulletin: Political, Social and Cultural Series     Hybrid Journal   (Followers: 10)
African Development Review     Hybrid Journal   (Followers: 33, SJR: 0.275, h-index: 17)
African J. of Ecology     Hybrid Journal   (Followers: 15, SJR: 0.477, h-index: 39)
Aggressive Behavior     Hybrid Journal   (Followers: 15, SJR: 1.391, h-index: 66)
Aging Cell     Open Access   (Followers: 11, SJR: 4.374, h-index: 95)
Agribusiness : an Intl. J.     Hybrid Journal   (Followers: 6, SJR: 0.627, h-index: 14)
Agricultural and Forest Entomology     Hybrid Journal   (Followers: 16, SJR: 0.925, h-index: 43)
Agricultural Economics     Hybrid Journal   (Followers: 45, SJR: 1.099, h-index: 51)
AIChE J.     Hybrid Journal   (Followers: 31, SJR: 1.122, h-index: 120)
Alcoholism and Drug Abuse Weekly     Hybrid Journal   (Followers: 7)
Alcoholism Clinical and Experimental Research     Hybrid Journal   (Followers: 7, SJR: 1.416, h-index: 125)
Alimentary Pharmacology & Therapeutics     Hybrid Journal   (Followers: 33, SJR: 2.833, h-index: 138)
Alimentary Pharmacology & Therapeutics Symposium Series     Hybrid Journal   (Followers: 3)
Allergy     Hybrid Journal   (Followers: 51, SJR: 3.048, h-index: 129)
Alternatives to the High Cost of Litigation     Hybrid Journal   (Followers: 3)
American Anthropologist     Hybrid Journal   (Followers: 144, SJR: 0.951, h-index: 61)
American Business Law J.     Hybrid Journal   (Followers: 24, SJR: 0.205, h-index: 17)
American Ethnologist     Hybrid Journal   (Followers: 90, SJR: 2.325, h-index: 51)
American J. of Economics and Sociology     Hybrid Journal   (Followers: 28, SJR: 0.211, h-index: 26)
American J. of Hematology     Hybrid Journal   (Followers: 33, SJR: 1.761, h-index: 77)
American J. of Human Biology     Hybrid Journal   (Followers: 12, SJR: 1.018, h-index: 58)
American J. of Industrial Medicine     Hybrid Journal   (Followers: 16, SJR: 0.993, h-index: 85)
American J. of Medical Genetics Part A     Hybrid Journal   (Followers: 16, SJR: 1.115, h-index: 61)
American J. of Medical Genetics Part B: Neuropsychiatric Genetics     Hybrid Journal   (Followers: 4, SJR: 1.771, h-index: 107)
American J. of Medical Genetics Part C: Seminars in Medical Genetics     Partially Free   (Followers: 6, SJR: 2.315, h-index: 79)
American J. of Physical Anthropology     Hybrid Journal   (Followers: 37, SJR: 1.41, h-index: 88)
American J. of Political Science     Hybrid Journal   (Followers: 271, SJR: 5.101, h-index: 114)
American J. of Primatology     Hybrid Journal   (Followers: 15, SJR: 1.197, h-index: 63)
American J. of Reproductive Immunology     Hybrid Journal   (Followers: 3, SJR: 1.347, h-index: 75)
American J. of Transplantation     Hybrid Journal   (Followers: 17, SJR: 2.792, h-index: 140)
American J. on Addictions     Hybrid Journal   (Followers: 9, SJR: 0.843, h-index: 57)
Anaesthesia     Hybrid Journal   (Followers: 137, SJR: 1.404, h-index: 88)
Analyses of Social Issues and Public Policy     Hybrid Journal   (Followers: 10, SJR: 0.397, h-index: 18)
Analytic Philosophy     Hybrid Journal   (Followers: 18)
Anatomia, Histologia, Embryologia: J. of Veterinary Medicine Series C     Hybrid Journal   (Followers: 3, SJR: 0.295, h-index: 27)
Anatomical Sciences Education     Hybrid Journal   (Followers: 1, SJR: 0.633, h-index: 24)
Andrologia     Hybrid Journal   (Followers: 2, SJR: 0.528, h-index: 45)
Andrology     Hybrid Journal   (Followers: 2, SJR: 0.979, h-index: 14)
Angewandte Chemie     Hybrid Journal   (Followers: 190)
Angewandte Chemie Intl. Edition     Hybrid Journal   (Followers: 220, SJR: 6.229, h-index: 397)
Animal Conservation     Hybrid Journal   (Followers: 39, SJR: 1.576, h-index: 62)
Animal Genetics     Hybrid Journal   (Followers: 8, SJR: 0.957, h-index: 67)
Animal Science J.     Hybrid Journal   (Followers: 6, SJR: 0.569, h-index: 24)
Annalen der Physik     Hybrid Journal   (Followers: 5, SJR: 1.46, h-index: 40)
Annals of Anthropological Practice     Partially Free   (Followers: 2, SJR: 0.187, h-index: 5)
Annals of Applied Biology     Hybrid Journal   (Followers: 7, SJR: 0.816, h-index: 56)
Annals of Clinical and Translational Neurology     Open Access   (Followers: 1)
Annals of Human Genetics     Hybrid Journal   (Followers: 9, SJR: 1.191, h-index: 67)
Annals of Neurology     Hybrid Journal   (Followers: 47, SJR: 5.584, h-index: 241)
Annals of Noninvasive Electrocardiology     Hybrid Journal   (Followers: 2, SJR: 0.531, h-index: 38)
Annals of Public and Cooperative Economics     Hybrid Journal   (Followers: 9, SJR: 0.336, h-index: 23)
Annals of the New York Academy of Sciences     Hybrid Journal   (Followers: 5, SJR: 2.389, h-index: 189)
Annual Bulletin of Historical Literature     Hybrid Journal   (Followers: 13)
Annual Review of Information Science and Technology     Hybrid Journal   (Followers: 14)
Anthropology & Education Quarterly     Hybrid Journal   (Followers: 25, SJR: 0.72, h-index: 31)
Anthropology & Humanism     Hybrid Journal   (Followers: 17, SJR: 0.137, h-index: 3)
Anthropology News     Hybrid Journal   (Followers: 15)
Anthropology of Consciousness     Hybrid Journal   (Followers: 11, SJR: 0.172, h-index: 5)
Anthropology of Work Review     Hybrid Journal   (Followers: 11, SJR: 0.256, h-index: 5)
Anthropology Today     Hybrid Journal   (Followers: 90, SJR: 0.545, h-index: 15)
Antipode     Hybrid Journal   (Followers: 49, SJR: 2.212, h-index: 69)
Anz J. of Surgery     Hybrid Journal   (Followers: 7, SJR: 0.432, h-index: 59)
Anzeiger für Schädlingskunde     Hybrid Journal   (Followers: 1)
Apmis     Hybrid Journal   (Followers: 1, SJR: 0.855, h-index: 73)
Applied Cognitive Psychology     Hybrid Journal   (Followers: 70, SJR: 0.754, h-index: 69)
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 7, SJR: 0.632, h-index: 58)
Applied Psychology     Hybrid Journal   (Followers: 201, SJR: 1.023, h-index: 64)
Applied Psychology: Health and Well-Being     Hybrid Journal   (Followers: 49, SJR: 0.868, h-index: 13)
Applied Stochastic Models in Business and Industry     Hybrid Journal   (Followers: 5, SJR: 0.613, h-index: 24)
Aquaculture Nutrition     Hybrid Journal   (Followers: 14, SJR: 1.025, h-index: 55)
Aquaculture Research     Hybrid Journal   (Followers: 31, SJR: 0.807, h-index: 60)
Aquatic Conservation Marine and Freshwater Ecosystems     Hybrid Journal   (Followers: 36, SJR: 1.047, h-index: 57)
Arabian Archaeology and Epigraphy     Hybrid Journal   (Followers: 11, SJR: 0.453, h-index: 11)
Archaeological Prospection     Hybrid Journal   (Followers: 12, SJR: 0.922, h-index: 21)
Archaeology in Oceania     Hybrid Journal   (Followers: 13, SJR: 0.745, h-index: 18)
Archaeometry     Hybrid Journal   (Followers: 27, SJR: 0.809, h-index: 48)
Archeological Papers of The American Anthropological Association     Hybrid Journal   (Followers: 15, SJR: 0.156, h-index: 2)
Architectural Design     Hybrid Journal   (Followers: 25, SJR: 0.261, h-index: 9)
Archiv der Pharmazie     Hybrid Journal   (Followers: 4, SJR: 0.628, h-index: 43)
Archives of Drug Information     Hybrid Journal   (Followers: 5)
Archives of Insect Biochemistry and Physiology     Hybrid Journal   (SJR: 0.768, h-index: 54)
Area     Hybrid Journal   (Followers: 12, SJR: 0.938, h-index: 57)
Art History     Hybrid Journal   (Followers: 248, SJR: 0.153, h-index: 13)
Arthritis & Rheumatology     Hybrid Journal   (Followers: 50, SJR: 1.984, h-index: 20)
Arthritis Care & Research     Hybrid Journal   (Followers: 26, SJR: 2.256, h-index: 114)
Artificial Organs     Hybrid Journal   (Followers: 1, SJR: 0.872, h-index: 60)
ASHE Higher Education Reports     Hybrid Journal   (Followers: 15)
Asia & the Pacific Policy Studies     Open Access   (Followers: 16)
Asia Pacific J. of Human Resources     Hybrid Journal   (Followers: 321, SJR: 0.494, h-index: 19)
Asia Pacific Viewpoint     Hybrid Journal   (Followers: 1, SJR: 0.616, h-index: 26)
Asia-Pacific J. of Chemical Engineering     Hybrid Journal   (Followers: 8, SJR: 0.345, h-index: 20)
Asia-pacific J. of Clinical Oncology     Hybrid Journal   (Followers: 6, SJR: 0.554, h-index: 14)
Asia-Pacific J. of Financial Studies     Hybrid Journal   (SJR: 0.241, h-index: 7)
Asia-Pacific Psychiatry     Hybrid Journal   (Followers: 4, SJR: 0.377, h-index: 7)
Asian Economic J.     Hybrid Journal   (Followers: 8, SJR: 0.234, h-index: 21)
Asian Economic Policy Review     Hybrid Journal   (Followers: 4, SJR: 0.196, h-index: 12)
Asian J. of Control     Hybrid Journal   (SJR: 0.862, h-index: 34)
Asian J. of Endoscopic Surgery     Hybrid Journal   (SJR: 0.394, h-index: 7)
Asian J. of Organic Chemistry     Hybrid Journal   (Followers: 6, SJR: 1.443, h-index: 19)
Asian J. of Social Psychology     Hybrid Journal   (Followers: 5, SJR: 0.665, h-index: 37)
Asian Politics and Policy     Hybrid Journal   (Followers: 12, SJR: 0.207, h-index: 7)
Asian Social Work and Policy Review     Hybrid Journal   (Followers: 5, SJR: 0.318, h-index: 5)
Asian-pacific Economic Literature     Hybrid Journal   (Followers: 5, SJR: 0.168, h-index: 15)
Assessment Update     Hybrid Journal   (Followers: 4)
Astronomische Nachrichten     Hybrid Journal   (Followers: 2, SJR: 0.701, h-index: 40)
Atmospheric Science Letters     Open Access   (Followers: 29, SJR: 1.332, h-index: 27)
Austral Ecology     Hybrid Journal   (Followers: 15, SJR: 1.095, h-index: 66)
Austral Entomology     Hybrid Journal   (Followers: 9, SJR: 0.524, h-index: 28)
Australasian J. of Dermatology     Hybrid Journal   (Followers: 8, SJR: 0.714, h-index: 40)
Australasian J. On Ageing     Hybrid Journal   (Followers: 6, SJR: 0.39, h-index: 22)
Australian & New Zealand J. of Statistics     Hybrid Journal   (Followers: 14, SJR: 0.275, h-index: 28)
Australian Accounting Review     Hybrid Journal   (Followers: 4, SJR: 0.709, h-index: 14)
Australian and New Zealand J. of Family Therapy (ANZJFT)     Hybrid Journal   (Followers: 3, SJR: 0.382, h-index: 12)
Australian and New Zealand J. of Obstetrics and Gynaecology     Hybrid Journal   (Followers: 47, SJR: 0.814, h-index: 49)
Australian and New Zealand J. of Public Health     Hybrid Journal   (Followers: 11, SJR: 0.82, h-index: 62)
Australian Dental J.     Hybrid Journal   (Followers: 7, SJR: 0.482, h-index: 46)
Australian Economic History Review     Hybrid Journal   (Followers: 4, SJR: 0.171, h-index: 12)
Australian Economic Papers     Hybrid Journal   (Followers: 29, SJR: 0.23, h-index: 9)
Australian Economic Review     Hybrid Journal   (Followers: 6, SJR: 0.357, h-index: 21)
Australian Endodontic J.     Hybrid Journal   (Followers: 3, SJR: 0.513, h-index: 24)
Australian J. of Agricultural and Resource Economics     Hybrid Journal   (Followers: 3, SJR: 0.765, h-index: 36)
Australian J. of Grape and Wine Research     Hybrid Journal   (Followers: 5, SJR: 0.879, h-index: 56)
Australian J. of Politics & History     Hybrid Journal   (Followers: 14, SJR: 0.203, h-index: 14)
Australian J. of Psychology     Hybrid Journal   (Followers: 18, SJR: 0.384, h-index: 30)
Australian J. of Public Administration     Hybrid Journal   (Followers: 408, SJR: 0.418, h-index: 29)
Australian J. of Rural Health     Hybrid Journal   (Followers: 5, SJR: 0.43, h-index: 34)
Australian Occupational Therapy J.     Hybrid Journal   (Followers: 72, SJR: 0.59, h-index: 29)
Australian Psychologist     Hybrid Journal   (Followers: 12, SJR: 0.331, h-index: 31)
Australian Veterinary J.     Hybrid Journal   (Followers: 20, SJR: 0.459, h-index: 45)
Autism Research     Hybrid Journal   (Followers: 36, SJR: 2.126, h-index: 39)
Autonomic & Autacoid Pharmacology     Hybrid Journal   (SJR: 0.371, h-index: 29)
Banks in Insurance Report     Hybrid Journal   (Followers: 1)
Basic & Clinical Pharmacology & Toxicology     Hybrid Journal   (Followers: 11, SJR: 0.539, h-index: 70)
Basic and Applied Pathology     Open Access   (Followers: 2, SJR: 0.113, h-index: 4)
Basin Research     Hybrid Journal   (Followers: 5, SJR: 1.54, h-index: 60)
Bauphysik     Hybrid Journal   (Followers: 2, SJR: 0.194, h-index: 5)
Bauregelliste A, Bauregelliste B Und Liste C     Hybrid Journal  
Bautechnik     Hybrid Journal   (Followers: 1, SJR: 0.321, h-index: 11)
Behavioral Interventions     Hybrid Journal   (Followers: 9, SJR: 0.297, h-index: 23)
Behavioral Sciences & the Law     Hybrid Journal   (Followers: 24, SJR: 0.736, h-index: 57)
Berichte Zur Wissenschaftsgeschichte     Hybrid Journal   (Followers: 9, SJR: 0.11, h-index: 5)
Beton- und Stahlbetonbau     Hybrid Journal   (Followers: 2, SJR: 0.493, h-index: 14)
Biochemistry and Molecular Biology Education     Hybrid Journal   (Followers: 6, SJR: 0.311, h-index: 26)
Bioelectromagnetics     Hybrid Journal   (Followers: 1, SJR: 0.568, h-index: 64)
Bioengineering & Translational Medicine     Open Access  
BioEssays     Hybrid Journal   (Followers: 10, SJR: 3.104, h-index: 155)
Bioethics     Hybrid Journal   (Followers: 14, SJR: 0.686, h-index: 39)
Biofuels, Bioproducts and Biorefining     Hybrid Journal   (Followers: 1, SJR: 1.725, h-index: 56)
Biological J. of the Linnean Society     Hybrid Journal   (Followers: 16, SJR: 1.172, h-index: 90)
Biological Reviews     Hybrid Journal   (Followers: 4, SJR: 6.469, h-index: 114)
Biologie in Unserer Zeit (Biuz)     Hybrid Journal   (Followers: 42, SJR: 0.12, h-index: 1)
Biology of the Cell     Full-text available via subscription   (Followers: 9, SJR: 1.812, h-index: 69)
Biomedical Chromatography     Hybrid Journal   (Followers: 6, SJR: 0.572, h-index: 49)
Biometrical J.     Hybrid Journal   (Followers: 5, SJR: 0.784, h-index: 44)
Biometrics     Hybrid Journal   (Followers: 36, SJR: 1.906, h-index: 96)
Biopharmaceutics and Drug Disposition     Hybrid Journal   (Followers: 10, SJR: 0.715, h-index: 44)
Biopolymers     Hybrid Journal   (Followers: 18, SJR: 1.199, h-index: 104)
Biotechnology and Applied Biochemistry     Hybrid Journal   (Followers: 45, SJR: 0.415, h-index: 55)
Biotechnology and Bioengineering     Hybrid Journal   (Followers: 159, SJR: 1.633, h-index: 146)
Biotechnology J.     Hybrid Journal   (Followers: 14, SJR: 1.185, h-index: 51)
Biotechnology Progress     Hybrid Journal   (Followers: 39, SJR: 0.736, h-index: 101)
Biotropica     Hybrid Journal   (Followers: 20, SJR: 1.374, h-index: 71)
Bipolar Disorders     Hybrid Journal   (Followers: 9, SJR: 2.592, h-index: 100)
Birth     Hybrid Journal   (Followers: 38, SJR: 0.763, h-index: 64)
Birth Defects Research Part A : Clinical and Molecular Teratology     Hybrid Journal   (Followers: 2, SJR: 0.727, h-index: 77)
Birth Defects Research Part B: Developmental and Reproductive Toxicology     Hybrid Journal   (Followers: 6, SJR: 0.468, h-index: 47)
Birth Defects Research Part C : Embryo Today : Reviews     Hybrid Journal   (SJR: 1.513, h-index: 55)
BJOG : An Intl. J. of Obstetrics and Gynaecology     Partially Free   (Followers: 244, SJR: 2.083, h-index: 125)

        1 2 3 4 5 6 7 8 | Last   [Sort by number of followers]   [Restore default list]

Journal Cover Aging Cell
  [SJR: 4.374]   [H-I: 95]   [11 followers]  Follow
  This is an Open Access Journal Open Access journal
   ISSN (Print) 1474-9718 - ISSN (Online) 1474-9726
   Published by John Wiley and Sons Homepage  [1580 journals]
  • 17α-estradiol acts through hypothalamic pro-opiomelanocortin expressing
           neurons to reduce feeding behavior

    • Authors: Frederik J. Steyn; Shyuan T. Ngo, Vicky Ping Chen, Lora C. Bailey-Downs, Teresa Y. Xie, Martin Ghadami, Stephen Brimijoin, Willard M. Freeman, Marcelo Rubinstein, Malcolm J. Low, Michael B. Stout
      Abstract: Weight loss is an effective intervention for diminishing disease burden in obese older adults. Pharmacological interventions that reduce food intake and thereby promote weight loss may offer effective strategies to reduce age-related disease. We previously reported that 17α-estradiol (17α-E2) administration elicits beneficial effects on metabolism and inflammation in old male mice. These observations were associated with reduced calorie intake. Here, we demonstrate that 17α-E2 acts through pro-opiomelanocortin (Pomc) expression in the arcuate nucleus (ARC) to reduce food intake and body mass in mouse models of obesity. These results confirm that 17α-E2 modulates appetite through selective interactions within hypothalamic anorexigenic pathways. Interestingly, some peripheral markers of metabolic homeostasis were also improved in animals with near complete loss of ARC Pomc transcription. This suggests that 17α-E2 might have central and peripheral actions that can beneficially affect metabolism cooperatively or independently.
      PubDate: 2017-11-23T00:28:24.674337-05:
      DOI: 10.1111/acel.12703
  • Comparative proteomic profiling reveals a role for Cisd2 in skeletal
           muscle aging

    • Authors: Yi-Long Huang; Zhao-Qing Shen, Chia-Yu Wu, Yuan-Chi Teng, Chen-Chung Liao, Cheng-Heng Kao, Liang-Kung Chen, Chao-Hsiung Lin, Ting-Fen Tsai
      Abstract: Skeletal muscle has emerged as one of the most important tissues involved in regulating systemic metabolism. The gastrocnemius is a powerful skeletal muscle composed of predominantly glycolytic fast-twitch fibers that are preferentially lost among old age. This decrease in gastrocnemius muscle mass is remarkable during aging; however, the underlying molecular mechanism is not fully understood. Strikingly, there is a ~70% decrease in Cisd2 protein, a key regulator of lifespan in mice and the disease gene for Wolfram syndrome 2 in humans, within the gastrocnemius after middle age among mice. A proteomics approach was used to investigate the gastrocnemius of naturally aged mice, and this was compared to the autonomous effect of Cisd2 on gastrocnemius aging using muscle-specific Cisd2 knockout (mKO) mice as a premature aging model. Intriguingly, dysregulation of calcium signaling and activation of UPR/ER stress stand out as the top two pathways. Additionally, the activity of Serca1 was significantly impaired and this impairment is mainly attributable to irreversibly oxidative modifications of Serca. Our results reveal that the overall characteristics of the gastrocnemius are very similar when naturally aged mice and the Cisd2 mKO mice are compared in terms of pathological alterations, ultrastructural abnormalities, and proteomics profiling. This suggests that Cisd2 mKO mouse is a unique model for understanding the aging mechanism of skeletal muscle. Furthermore, this work substantiates the hypothesis that Cisd2 is crucial to the gastrocnemius muscle and suggests that Cisd2 is a potential therapeutic target for muscle aging.
      PubDate: 2017-11-23T00:28:04.149909-05:
      DOI: 10.1111/acel.12705
  • DLP1-dependent mitochondrial fragmentation and redistribution mediate
           prion-associated mitochondrial dysfunction and neuronal death

    • Authors: Chaosi Li; Di Wang, Wei Wu, Wei Yang, Syed Zahid Ali Shah, Ying Zhao, Yuhan Duan, Lu Wang, Xiangmei Zhou, Deming Zhao, Lifeng Yang
      Abstract: Mitochondrial malfunction is a universal and critical step in the pathogenesis of many neurodegenerative diseases including prion diseases. Dynamin-like protein 1 (DLP1) is one of the key regulators of mitochondrial fission. In this study, we investigated the role of DLP1 in mitochondrial fragmentation and dysfunction in neurons using in vitro and in vivo prion disease models. Mitochondria became fragmented and redistributed from axons to soma, correlated with increased mitochondrial DLP1 expression in murine primary neurons (N2a cells) treated with the prion peptide PrP106–126 in vitro as well as in prion strain-infected hamster brain in vivo. Suppression of DLP1 expression by DPL1 RNAi inhibited prion-induced mitochondrial fragmentation and dysfunction (measured by ADP/ATP ratio, mitochondrial membrane potential, and mitochondrial integrity). We also demonstrated that DLP1 RNAi is neuroprotective against prion peptide in N2a cells as shown by improved cell viability and decreased apoptosis markers, caspase 3 induced by PrP106–126. On the contrary, overexpression of DLP1 exacerbated mitochondrial dysfunction and cell death. Moreover, inhibition of DLP1 expression ameliorated PrP106–126-induced neurite loss and synaptic abnormalities (i.e., loss of dendritic spine and PSD-95, a postsynaptic scaffolding protein as a marker of synaptic plasticity) in primary neurons, suggesting that altered DLP1 expression and mitochondrial fragmentation are upstream events that mediate PrP106–126-induced neuron loss and degeneration. Our findings suggest that DLP1-dependent mitochondrial fragmentation and redistribution plays a pivotal role in PrPSc-associated mitochondria dysfunction and neuron apoptosis. Inhibition of DLP1 may be a novel and effective strategy in the prevention and treatment of prion diseases.
      PubDate: 2017-11-22T19:15:44.04388-05:0
      DOI: 10.1111/acel.12693
  • Cellular aging dynamics after acute malaria infection: A 12-month
           longitudinal study

    • Authors: Muhammad Asghar; Victor Yman, Manijeh Vafa Homann, Klara Sondén, Ulf Hammar, Dennis Hasselquist, Anna Färnert
      Abstract: Accelerated cellular aging and reduced lifespan have recently been shown in birds chronically infected with malaria parasites. Whether malaria infection also affects cellular aging in humans has not been reported. Here, we assessed the effect of a single acute Plasmodium falciparum malaria infection on cellular aging dynamics in travelers prospectively followed over one year in Sweden. DNA and RNA were extracted from venous blood collected at the time of admission and repeatedly up to one year. Telomere length was measured using real-time quantitative PCR, while telomerase activity and CDKN2A expression were measured by reverse transcriptase (RT)–qPCR. Our results show that acute malaria infection affects cellular aging as reflected by elevated levels of CDKN2A expression, lower telomerase activity, and substantial telomere shortening during the first three months postinfection. After that CDKN2A expression declined, telomerase activity increased and telomere length was gradually restored over one year, reflecting that cellular aging was reversed. These findings demonstrate that malaria infection affects cellular aging and the underlying cellular mechanism by which pathogens can affect host cellular aging and longevity need to be elucidated. Our results urge the need to investigate whether repeated malaria infections have more pronounced and long-lasting effects on cellular aging and lifespan (similarly to what was observed in birds) in populations living in malaria endemic areas.
      PubDate: 2017-11-16T03:20:31.13157-05:0
      DOI: 10.1111/acel.12702
  • SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer's

    • Authors: Junghee Lee; Yunha Kim, Tian Liu, Yu Jin Hwang, Seung Jae Hyeon, Hyeonjoo Im, Kyungeun Lee, Victor E. Alvarez, Ann C. McKee, Soo-Jong Um, Manwook Hur, Inhee Mook-Jung, Neil W. Kowall, Hoon Ryu
      Abstract: Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Despite decades of study, effective treatments for AD are lacking. Mitochondrial dysfunction has been closely linked to the pathogenesis of AD, but the relationship between mitochondrial pathology and neuronal damage is poorly understood. Sirtuins (SIRT, silent mating type information regulation 2 homolog in yeast) are NAD-dependent histone deacetylases involved in aging and longevity. The objective of this study was to investigate the relationship between SIRT3 and mitochondrial function and neuronal activity in AD. SIRT3 mRNA and protein levels were significantly decreased in AD cerebral cortex, and Ac-p53 K320 was significantly increased in AD mitochondria. SIRT3 prevented p53-induced mitochondrial dysfunction and neuronal damage in a deacetylase activity-dependent manner. Notably, mitochondrially targeted p53 (mito-p53) directly reduced mitochondria DNA-encoded ND2 and ND4 gene expression resulting in increased reactive oxygen species (ROS) and reduced mitochondrial oxygen consumption. ND2 and ND4 gene expressions were significantly decreased in patients with AD. p53-ChIP analysis verified the presence of p53-binding elements in the human mitochondrial genome and increased p53 occupancy of mitochondrial DNA in AD. SIRT3 overexpression restored the expression of ND2 and ND4 and improved mitochondrial oxygen consumption by repressing mito-p53 activity. Our results indicate that SIRT3 dysfunction leads to p53-mediated mitochondrial and neuronal damage in AD. Therapeutic modulation of SIRT3 activity may ameliorate mitochondrial pathology and neurodegeneration in AD.
      PubDate: 2017-11-11T08:14:10.06929-05:0
      DOI: 10.1111/acel.12679
  • Running-wheel activity delays mitochondrial respiratory flux decline in
           aging mouse muscle via a post-transcriptional mechanism

    • Authors: Sarah Stolle; Jolita Ciapaite, Aaffien C. Reijne, Alzbeta Talarovicova, Justina C. Wolters, Raúl Aguirre-Gamboa, Pieter Vlies, Kim Lange, Pieter B. Neerincx, Gerben Vries, Patrick Deelen, Morris A. Swertz, Yang Li, Rainer Bischoff, Hjalmar P. Permentier, Peter L. Horvatovitch, Albert K. Groen, Gertjan Dijk, Dirk-Jan Reijngoud, Barbara M. Bakker
      Abstract: Loss of mitochondrial respiratory flux is a hallmark of skeletal muscle aging, contributing to a progressive decline of muscle strength. Endurance exercise alleviates the decrease in respiratory flux, both in humans and in rodents. Here, we dissect the underlying mechanism of mitochondrial flux decline by integrated analysis of the molecular network.Mice were given a lifelong ad libitum low-fat or high-fat sucrose diet and were further divided into sedentary and running-wheel groups. At 6, 12, 18 and 24 months, muscle weight, triglyceride content and mitochondrial respiratory flux were analysed. Subsequently, transcriptome was measured by RNA-Seq and proteome by targeted LC-MS/MS analysis with 13C-labelled standards. In the sedentary groups, mitochondrial respiratory flux declined with age. Voluntary running protected the mitochondrial respiratory flux until 18 months of age. Beyond this time point, all groups converged. Regulation Analysis of flux, proteome and transcriptome showed that the decline of flux was equally regulated at the proteomic and at the metabolic level, while regulation at the transcriptional level was marginal. Proteomic regulation was most prominent at the beginning and at the end of the pathway, namely at the pyruvate dehydrogenase complex and at the synthesis and transport of ATP. Further proteomic regulation was scattered across the entire pathway, revealing an effective multisite regulation. Finally, reactions regulated at the protein level were highly overlapping between the four experimental groups, suggesting a common, post-transcriptional mechanism of muscle aging.
      PubDate: 2017-11-09T05:15:34.802321-05:
      DOI: 10.1111/acel.12700
  • Ketone body 3-hydroxybutyrate mimics calorie restriction via the Nrf2
           activator, fumarate, in the retina

    • Authors: Yusuke Izuta; Toshihiro Imada, Ryuji Hisamura, Erina Oonishi, Shigeru Nakamura, Emi Inagaki, Masataka Ito, Tomoyoshi Soga, Kazuo Tsubota
      Abstract: Calorie restriction (CR) being the most robust dietary intervention provides various health benefits. D-3-hydroxybutyrate (3HB), a major physiological ketone, has been proposed as an important endogenous molecule for CR. To investigate the role of 3HB in CR, we investigated potential shared mechanisms underlying increased retinal 3HB induced by CR and exogenously applied 3HB without CR to protect against ischemic retinal degeneration. The repeated elevation of retinal 3HB, with or without CR, suppressed retinal degeneration. Metabolomic analysis showed that the antioxidant pentose phosphate pathway and its limiting enzyme, glucose-6-phosphate dehydrogenase (G6PD), were concomitantly preserved. Importantly, the upregulation of nuclear factor erythroid 2 p45-related factor 2 (Nrf2), a regulator of G6PD, and elevation of the tricarboxylic acid cycle's Nrf2 activator, fumarate, were also shared. Together, our findings suggest that CR provides retinal antioxidative defense by 3HB through the antioxidant Nrf2 pathway via modification of a tricarboxylic acid cycle intermediate during 3HB metabolism.
      PubDate: 2017-11-09T04:56:25.970457-05:
      DOI: 10.1111/acel.12699
  • Brain 5-lipoxygenase over-expression worsens memory, synaptic integrity,
           and tau pathology in the P301S mice

    • Authors: Alana N. Vagnozzi; Phillip F. Giannopoulos, Domenico Praticò
      Abstract: Progressive accumulation of highly phosphorylated tau protein isoforms is the main feature of a group of neurodegenerative diseases collectively called tauopathies. Data from human and animal models of these diseases have shown that neuroinflammation often accompanies their pathogenesis. The 5-lipoxygenase (5LO) is an enzyme widely expressed in the brain and a source of potent pro-inflammatory mediators, while its pharmacological inhibition modulates the phenotype of a tau transgenic mouse model, the htau mice. By employing an adeno-associated viral vector system to over-express 5LO in the brain, we examined its contribution to the behavioral deficits and neuropathology in a different transgenic mouse model of tauopathy, the P301S mouse line. Compared with controls, 5LO-targeted gene brain over-expression in these mice resulted in a worsening of behavioral and motor deficits. Over-expression of 5LO resulted in microglia and astrocyte activation and significant synaptic pathology, which was associated with a significant elevation of tau phosphorylation at specific epitopes, tau insoluble fraction, and activation of the cdk5 kinase. In vitro studies confirmed that 5LO directly modulates tau phosphorylation at the same epitopes via the cdk5 kinase pathway. These data demonstrate that 5LO plays a direct role in tau phosphorylation and is an active player in the development of the entire tau phenotype. They provide further support to the hypothesis that 5LO is a viable therapeutic target for the treatment and/or prevention of human tauopathy.
      PubDate: 2017-11-04T23:05:46.271017-05:
      DOI: 10.1111/acel.12695
  • Amyloid Beta monomers regulate cyclic adenosine monophosphate response
           element binding protein functions by activating type-1 insulin-like growth
           factor receptors in neuronal cells

    • Authors: Stefania Zimbone; Irene Monaco, Fiorenza Gianì, Giuseppe Pandini, Agata G. Copani, Maria Laura Giuffrida, Enrico Rizzarelli
      Abstract: Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with synaptic dysfunction, pathological accumulation of β-amyloid (Aβ), and neuronal loss. The self-association of Aβ monomers into soluble oligomers seems to be crucial for the development of neurotoxicity (J. Neurochem., 00, 2007 and 1172). Aβ oligomers have been suggested to compromise neuronal functions in AD by reducing the expression levels of the CREB target gene and brain-derived neurotrophic factor (BDNF) (J. Neurosci., 27, 2007 and 2628; Neurobiol. Aging, 36, 2015 and 20406 Mol. Neurodegener., 6, 2011 and 60). We previously reported a broad neuroprotective activity of physiological Aβ monomers, involving the activation of type-1 insulin-like growth factor receptors (IGF-IRs) (J. Neurosci., 29, 2009 and 10582, Front Cell Neurosci., 9, 2015 and 297). We now provide evidence that Aβ monomers, by activating the IGF-IR-stimulated PI3-K/AKT pathway, induce the activation of CREB in neurons and sustain BDNF transcription and release.
      PubDate: 2017-11-01T23:48:01.983088-05:
      DOI: 10.1111/acel.12684
  • Sirt2-BubR1 acetylation pathway mediates the effects of advanced maternal
           age on oocyte quality

    • Authors: Danhong Qiu; Xiaojing Hou, Longsen Han, Xiaoyan Li, Juan Ge, Qiang Wang
      Abstract: The level of Sirt2 protein is reduced in oocytes from aged mice, while exogenous expression of Sirt2 could ameliorate the maternal age-associated meiotic defects. To date, the underlying mechanism remains unclear. Here, we confirmed that specific depletion of Sirt2 disrupts maturational progression and spindle/chromosome organization in mouse oocytes, with compromised kinetochore–microtubule attachments. Candidate screening revealed that acetylation state of lysine 243 on BubR1 (BubR1-K243, an integral part of the spindle assembly checkpoint complex) functions during oocyte meiosis, and acetylation-mimetic mutant BubR1-K243Q results in the very similar phenotypes as Sirt2-knockdown oocytes. Furthermore, we found that nonacetylatable-mimetic mutant BubR1-K243R partly prevents the meiotic deficits in oocytes depleted of Sirt2. Importantly, BubR1-K243R overexpression in oocytes derived from aged mice markedly suppresses spindle/chromosome anomalies and thereupon lowers the incidence of aneuploid eggs. In sum, our data suggest that Sirt2-dependent BubR1 deacetylation involves in the regulation of meiotic apparatus in normal oocytes and mediates the effects of advanced maternal age on oocyte quality.
      PubDate: 2017-10-25T01:11:58.13439-05:0
      DOI: 10.1111/acel.12698
  • PGC-1α affects aging-related changes in muscle and motor function by
           modulating specific exercise-mediated changes in old mice

    • Authors: Jonathan F. Gill; Gesa Santos, Svenia Schnyder, Christoph Handschin
      Abstract: The age-related impairment in muscle function results in a drastic decline in motor coordination and mobility in elderly individuals. Regular physical activity is the only efficient intervention to prevent and treat this age-associated degeneration. However, the mechanisms that underlie the therapeutic effect of exercise in this context remain unclear. We assessed whether endurance exercise training in old age is sufficient to affect muscle and motor function. Moreover, as muscle peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a key regulatory hub in endurance exercise adaptation with decreased expression in old muscle, we studied the involvement of PGC-1α in the therapeutic effect of exercise in aging. Intriguingly, PGC-1α muscle-specific knockout and overexpression, respectively, precipitated and alleviated specific aspects of aging-related deterioration of muscle function in old mice, while other muscle dysfunctions remained unchanged upon PGC-1α modulation. Surprisingly, we discovered that muscle PGC-1α was not only involved in improving muscle endurance and mitochondrial remodeling, but also phenocopied endurance exercise training in advanced age by contributing to maintaining balance and motor coordination in old animals. Our data therefore suggest that the benefits of exercise, even when performed at old age, extend beyond skeletal muscle and are at least in part mediated by PGC-1α.
      PubDate: 2017-10-25T01:11:04.148806-05:
      DOI: 10.1111/acel.12697
  • Influence of cell distribution and diabetes status on the association
           between mitochondrial DNA copy number and aging phenotypes in the
           InCHIANTI study

    • Authors: Ann Zenobia Moore; Jun Ding, Marcus A. Tuke, Andrew R. Wood, Stefania Bandinelli, Timothy M. Frayling, Luigi Ferrucci
      Abstract: Mitochondrial DNA copy number (mtDNA-CN) estimated in whole blood is a novel marker of mitochondrial mass and function that can be used in large population-based studies. Analyses that attempt to relate mtDNA-CN to specific aging phenotypes may be confounded by differences in the distribution of blood cell types across samples. Also, low or high mtDNA-CN may have a different meaning given the presence of diseases associated with mitochondrial damage. We evaluated the impact of blood cell type distribution and diabetes status on the association between mtDNA-CN and aging phenotypes, namely chronologic age, interleukin-6, hemoglobin, and all-cause mortality, among 672 participants of the InCHIANTI study. After accounting for white blood cell count, platelet count, and white blood cell proportions in multivariate models, associations of mtDNA-CN with age and interleukin-6 were no longer statistically significant. Evaluation of a statistical interaction by diabetes status suggested heterogeneity of effects in the analysis of mortality (P 
      PubDate: 2017-10-19T00:45:19.598565-05:
      DOI: 10.1111/acel.12683
  • Enhanced inflammation and attenuated tumor suppressor pathways are
           associated with oncogene-induced lung tumors in aged mice

    • Authors: Neha Parikh; Ryan L. Shuck, Mihai Gagea, Lanlan Shen, Lawrence A. Donehower
      Abstract: Aging is often accompanied by a dramatic increase in cancer susceptibility. To gain insights into how aging affects tumor susceptibility, we generated a conditional mouse model in which oncogenic KrasG12D was activated specifically in lungs of young (3–5 months) and old (19–24 months) mice. Activation of KrasG12D in old mice resulted in shorter survival and development of higher-grade lung tumors. Six weeks after KrasG12D activation, old lung tissues contained higher numbers of adenomas than their young tissue counterparts. Lung tumors in old mice displayed higher proliferation rates, as well as attenuated DNA damage and p53 tumor suppressor responses. Gene expression comparison of lung tumors from young and old mice revealed upregulation of extracellular matrix-related genes in young tumors, indicative of a robust cancer-associated fibroblast response. In old tumors, numerous inflammation-related genes such as Ccl7, IL-1β, Cxcr6, and IL-15ra were consistently upregulated. Increased numbers of immune cells were localized around the periphery of lung adenomas from old mice. Our experiments indicate that more aggressive lung tumor formation in older KrasG12D mice may be in part the result of subdued tumor suppressor and DNA damage responses, an enhanced inflammatory milieu, and a more accommodating tissue microenvironment.
      PubDate: 2017-10-18T23:06:13.153748-05:
      DOI: 10.1111/acel.12691
  • Anti-inflammaging effects of human alpha-1 antitrypsin

    • Authors: Ye Yuan; Benedetto DiCiaccio, Ying Li, Ahmed S. Elshikha, Denis Titov, Brian Brenner, Lee Seifer, Hope Pan, Nurdina Karic, Mohammad A. Akbar, Yuanqing Lu, Sihong Song, Lei Zhou
      Abstract: Inflammaging plays an important role in most age-related diseases. However, the mechanism of inflammaging is largely unknown, and therapeutic control of inflammaging is challenging. Human alpha-1 antitrypsin (hAAT) has immune-regulatory, anti-inflammatory, and cytoprotective properties as demonstrated in several disease models including type 1 diabetes, arthritis, lupus, osteoporosis, and stroke. To test the potential anti-inflammaging effect of hAAT, we generated transgenic Drosophila lines expressing hAAT. Surprisingly, the lifespan of hAAT-expressing lines was significantly longer than that of genetically matched controls. To understand the mechanism underlying the anti-aging effect of hAAT, we monitored the expression of aging-associated genes and found that aging-induced expressions of Relish (NF-ĸB orthologue) and Diptericin were significantly lower in hAAT lines than in control lines. RNA-seq analysis revealed that innate immunity genes regulated by NF-kB were significantly and specifically inhibited in hAAT transgenic Drosophila lines. To confirm this anti-inflammaging effect in human cells, we treated X-ray-induced senescence cells with hAAT and showed that hAAT treatment significantly decreased the expression and maturation of IL-6 and IL-8, two major factors of senescence-associated secretory phenotype. Consistent with results from Drosophila,RNA-seq analysis also showed that hAAT treatment significantly inhibited inflammation related genes and pathways. Together, our results demonstrated that hAAT significantly inhibited inflammaging in both Drosophila and human cell models. As hAAT is a FDA-approved drug with a confirmed safety profile, this novel therapeutic potential may make hAAT a promising candidate to combat aging and aging-related diseases.
      PubDate: 2017-10-17T03:57:00.24757-05:0
      DOI: 10.1111/acel.12694
  • Human CD8+ EMRA T cells display a senescence-associated secretory
           phenotype regulated by p38 MAPK

    • Authors: Lauren A. Callender; Elizabeth C. Carroll, Robert W. J. Beal, Emma S. Chambers, Sussan Nourshargh, Arne N. Akbar, Sian M. Henson
      Abstract: Cellular senescence is accompanied by a senescence-associated secretory phenotype (SASP). We show here that primary human senescent CD8+ T cells also display a SASP comprising chemokines, cytokines and extracellular matrix remodelling proteases that are unique to this subset and contribute to age-associated inflammation. We found the CD8+ CD45RA+CD27− EMRA subset to be the most heterogeneous, with a population aligning with the naïve T cells and another with a closer association to the effector memory subset. However, despite the differing processes that give rise to these senescent CD8+ T cells once generated, they both adopt a unique secretory profile with no commonality to any other subset, aligning more closely with senescence than quiescence. Furthermore, we also show that the SASP observed in senescent CD8+ T cells is governed by p38 MAPK signalling.
      PubDate: 2017-10-12T01:40:59.179802-05:
      DOI: 10.1111/acel.12675
  • Interplay of pathogenic forms of human tau with different autophagic

    • Authors: Benjamin Caballero; Yipeng Wang, Antonio Diaz, Inmaculada Tasset, Yves Robert Juste, Eva-Maria Mandelkow, Eckhard Mandelkow, Ana Maria Cuervo
      Abstract: Loss of neuronal proteostasis, a common feature of the aging brain, is accelerated in neurodegenerative disorders, including different types of tauopathies. Aberrant turnover of tau, a microtubule-stabilizing protein, contributes to its accumulation and subsequent toxicity in tauopathy patients’ brains. A direct toxic effect of pathogenic forms of tau on the proteolytic systems that normally contribute to their turnover has been proposed. In this study, we analyzed the contribution of three different types of autophagy, macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy to the degradation of tau protein variants and tau mutations associated with this age-related disease. We have found that the pathogenic P301L mutation inhibits degradation of tau by any of the three autophagic pathways, whereas the risk-associated tau mutation A152T reroutes tau for degradation through a different autophagy pathway. We also found defective autophagic degradation of tau when using mutations that mimic common posttranslational modifications in tau or known to promote its aggregation. Interestingly, although most mutations markedly reduced degradation of tau through autophagy, the step of this process preferentially affected varies depending on the type of tau mutation. Overall, our studies unveil a complex interplay between the multiple modifications of tau and selective forms of autophagy that may determine its physiological degradation and its faulty clearance in the disease context.
      PubDate: 2017-10-12T01:36:09.073264-05:
      DOI: 10.1111/acel.12692
  • Ghrelin deletion protects against age-associated hepatic steatosis by
           downregulating the C/EBPα-p300/DGAT1 pathway

    • Authors: Bobby Guillory; Nicole Jawanmardi, Polina Iakova, Barbara Anderson, Pu Zang, Nikolai A. Timchenko, Jose M. Garcia
      Abstract: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. NAFLD usually begins as low-grade hepatic steatosis which further progresses in an age-dependent manner to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma in some patients. Ghrelin is a hormone known to promote adiposity in rodents and humans, but its potential role in hepatic steatosis is unknown. We hypothesized that genetic ghrelin deletion will protect against the development of age-related hepatic steatosis. To examine this hypothesis, we utilized ghrelin knockout (KO) mice. Although no different in young animals (3 months old), we found that at 20 months of age, ghrelin KO mice have significantly reduced hepatic steatosis compared to aged-matched wild-type (WT) mice. Examination of molecular pathways by which deletion of ghrelin reduces steatosis showed that the increase in expression of diacylglycerol O-acyltransferase-1 (DGAT1), one of the key enzymes of triglyceride (TG) synthesis, seen with age in WT mice, is not present in KO mice. This was due to the lack of activation of CCAAT/enhancer binding protein-alpha (C/EBPα) protein and subsequent reduction of C/EBPα-p300 complexes. These complexes were abundant in livers of old WT mice and were bound to and activated the DGAT1 promoter. However, the C/EBPα-p300 complexes were not detected on the DGAT1 promoter in livers of old KO mice resulting in lower levels of the enzyme. In conclusion, these studies demonstrate the mechanism by which ghrelin deletion prevents age-associated hepatic steatosis and suggest that targeting this pathway may offer therapeutic benefit for NAFLD.
      PubDate: 2017-10-12T01:35:38.679579-05:
      DOI: 10.1111/acel.12688
  • In vivo properties of the disaggregase function of J-proteins and Hsc70 in
           Caenorhabditis elegans stress and aging

    • Authors: Janine Kirstein; Kristin Arnsburg, Annika Scior, Anna Szlachcic, D. Lys Guilbride, Richard I. Morimoto, Bernd Bukau, Nadinath B. Nillegoda
      Abstract: Protein aggregation is enhanced upon exposure to various stress conditions and aging, which suggests that the quality control machinery regulating protein homeostasis could exhibit varied capacities in different stages of organismal lifespan. Recently, an efficient metazoan disaggregase activity was identified in vitro, which requires the Hsp70 chaperone and Hsp110 nucleotide exchange factor, together with single or cooperating J-protein co-chaperones of classes A and B. Here, we describe how the orthologous Hsp70s and J-protein of Caenorhabditis elegans work together to resolve protein aggregates both in vivo and in vitro to benefit organismal health. Using an RNAi knockdown approach, we show that class A and B J-proteins cooperate to form an interactive flexible network that relocalizes to protein aggregates upon heat shock and preferentially recruits constitutive Hsc70 to disaggregate heat-induced protein aggregates and polyQ aggregates that form in an age-dependent manner. Cooperation between class A and B J-proteins is also required for organismal health and promotes thermotolerance, maintenance of fecundity, and extended viability after heat stress. This disaggregase function of J-proteins and Hsc70 therefore constitutes a powerful regulatory network that is key to Hsc70-based protein quality control mechanisms in metazoa with a central role in the clearance of aggregates, stress recovery, and organismal fitness in aging.
      PubDate: 2017-10-10T23:06:07.453665-05:
      DOI: 10.1111/acel.12686
  • Sirtuins at the crossroads of stemness, aging, and cancer

    • Authors: Carol O'Callaghan; Athanassios Vassilopoulos
      Abstract: Sirtuins are stress-responsive proteins that direct various post-translational modifications (PTMs) and as a result, are considered to be master regulators of several cellular processes. They are known to both extend lifespan and regulate spontaneous tumor development. As both aging and cancer are associated with altered stem cell function, the possibility that the involvement of sirtuins in these events is mediated by their roles in stem cells is worthy of investigation. Research to date suggests that the individual sirtuin family members can differentially regulate embryonic, hematopoietic as well as other adult stem cells in a tissue- and cell type-specific context. Sirtuin-driven regulation of both cell differentiation and signaling pathways previously involved in stem cell maintenance has been described where downstream effectors involved determine the biological outcome. Similarly, diverse roles have been reported in cancer stem cells (CSCs), depending on the tissue of origin. This review highlights the current knowledge which places sirtuins at the intersection of stem cells, aging, and cancer. By outlining the plethora of stem cell-related roles for individual sirtuins in various contexts, our purpose was to provide an indication of their significance in relation to cancer and aging, as well as to generate a clearer picture of their therapeutic potential. Finally, we propose future directions which will contribute to the better understanding of sirtuins, thereby further unraveling the full repertoire of sirtuin functions in both normal stem cells and CSCs.
      PubDate: 2017-10-10T01:26:37.805349-05:
      DOI: 10.1111/acel.12685
  • Age-associated dysregulation of protein metabolism in the mammalian oocyte

    • Authors: Francesca E. Duncan; Susmita Jasti, Ariel Paulson, John M. Kelsh, Barbara Fegley, Jennifer L. Gerton
      Abstract: Reproductive aging is characterized by a marked decline in oocyte quality that contributes to infertility, miscarriages, and birth defects. This decline is multifactorial, and the underlying mechanisms are under active investigation. Here, we performed RNA-Seq on individual growing follicles from reproductively young and old mice to identify age-dependent functions in oocytes. This unbiased approach revealed genes involved in cellular processes known to change with age, including mitochondrial function and meiotic chromosome segregation, but also uncovered previously unappreciated categories of genes related to proteostasis and organelles required for protein metabolism. We further validated our RNA-Seq data by comparing nucleolar structure and function in oocytes from reproductively young and old mice, as this organelle is central for protein production. We examined key nucleolar markers, including upstream binding transcription factor (UBTF), an RNA polymerase I cofactor, and fibrillarin, an rRNA methyltransferase. In oocytes from mice of advanced reproductive age, UBTF was primarily expressed in giant fibrillar centers (GFCs), structures associated with high levels of rDNA transcription, and fibrillarin expression was increased ~2-fold. At the ultrastructural level, oocyte nucleoli from reproductively old mice had correspondingly more prominent fibrillar centers and dense fibrillar centers relative to young controls and more ribosomes were found in the cytoplasm. Taken together, our findings are significant because the growing oocyte is one of the most translationally active cells in the body and must accumulate high-quality maternally derived proteins to support subsequent embryo development. Thus, perturbations in protein metabolism are likely to have a profound impact on gamete health.
      PubDate: 2017-10-10T01:26:27.843834-05:
      DOI: 10.1111/acel.12676
  • Loss of SIRT2 leads to axonal degeneration and locomotor disability
           associated with redox and energy imbalance

    • Authors: Stéphane Fourcade; Laia Morató, Janani Parameswaran, Montserrat Ruiz, Tatiana Ruiz-Cortés, Mariona Jové, Alba Naudí, Paloma Martínez-Redondo, Mara Dierssen, Isidre Ferrer, Francesc Villarroya, Reinald Pamplona, Alejandro Vaquero, Manel Portero-Otín, Aurora Pujol
      Abstract: Sirtuin 2 (SIRT2) is a member of a family of NAD+-dependent histone deacetylases (HDAC) that play diverse roles in cellular metabolism and especially for aging process. SIRT2 is located in the nucleus, cytoplasm, and mitochondria, is highly expressed in the central nervous system (CNS), and has been reported to regulate a variety of processes including oxidative stress, genome integrity, and myelination. However, little is known about the role of SIRT2 in the nervous system specifically during aging. Here, we show that middle-aged, 13-month-old mice lacking SIRT2 exhibit locomotor dysfunction due to axonal degeneration, which was not present in young SIRT2 mice. In addition, these Sirt2−/− mice exhibit mitochondrial depletion resulting in energy failure, and redox dyshomeostasis. Our results provide a novel link between SIRT2 and physiological aging impacting the axonal compartment of the central nervous system, while supporting a major role for SIRT2 in orchestrating its metabolic regulation. This underscores the value of SIRT2 as a therapeutic target in the most prevalent neurodegenerative diseases that undergo with axonal degeneration associated with redox and energetic dyshomeostasis.
      PubDate: 2017-10-05T23:06:06.922706-05:
      DOI: 10.1111/acel.12682
  • Dopamine D4 receptor activation restores CA1 LTP in hippocampal slices
           from aged mice

    • Authors: Fangli Guo; Jianhua Zhao, Dandan Zhao, Jiangang Wang, Xiaofang Wang, Zhiwei Feng, Martin Vreugdenhil, Chengbiao Lu
      Abstract: Normal aging is characterized with a decline in hippocampal memory functions that is associated with changes in long-term potentiation (LTP) of the CA3-to-CA1 synapse. Age-related deficit of the dopaminergic system may contribute to impairment of CA1 LTP. Here we assessed how the modulation of CA1 LTP by dopamine is affected by aging and how it is dependent on the Ca2+ source. In slices from adult mice, the initial slope of the field potential showed strong LTP, but in slices from aged mice LTP was impaired. Dopamine did not affect LTP in adult slices, but enhanced LTP in aged slices. The dopamine D1/D5 receptor (D1R/D5R) agonist SKF-81297 did not affect LTP in adult but caused a relative small increase in LTP in aged slices; however, although there was no difference in dopamine D4 receptor (D4R) expression, the D4R agonist PD168077 increased LTP in aged slices to a magnitude similar to that in adult slices. The N-Methyl-D-aspartate receptor antagonist D-AP5 reduced LTP in adult slices, but not in aged slices. However, in the presence of D-AP5, PD168077 completely blocked LTP in aged slices. The voltage-dependent calcium channel (VDCC) blocker nifedipine reduced LTP in adult slices, but surprisingly enhanced LTP in aged slices. Furthermore, in the presence of nifedipine, PD168077 caused a strong enhancement of LTP in aged slices to a magnitude exceeding LTP in adult slices. Our results indicate that the full rescue of impaired LTP in aging by the selective D4R activation and that a large potentiation role on LTP by co-application of D4R agonist and VDCC blocker may provide novel strategies for the intervention of cognitive decline of aging and age-related diseases.
      PubDate: 2017-10-03T23:08:13.537891-05:
      DOI: 10.1111/acel.12666
  • TOR-mediated regulation of metabolism in aging

    • Authors: Henri Antikainen; Monica Driscoll, Gal Haspel, Radek Dobrowolski
      Abstract: Cellular metabolism is regulated by the mTOR kinase, a key component of the molecular nutrient sensor pathway that plays a central role in cellular survival and aging. The mTOR pathway promotes protein and lipid synthesis and inhibits autophagy, a process known for its contribution to longevity in several model organisms. The nutrient-sensing pathway is regulated at the lysosomal membrane by a number of proteins for which deficiency triggers widespread aging phenotypes in tested animal models. In response to environmental cues, this recently discovered lysosomal nutrient-sensing complex regulates autophagy transcriptionally through conserved factors, such as the transcription factors TFEB and FOXO, associated with lifespan extension. This key metabolic pathway strongly depends on nucleocytoplasmic compartmentalization, a cellular phenomenon gradually lost during aging. In this review, we discuss the current progress in understanding the contribution of mTOR-regulating factors to autophagy and longevity. Furthermore, we review research on the regulation of metabolism conducted in multiple aging models, including Caenorhabditis elegans, Drosophila and mouse, and human iPSCs. We suggest that conserved molecular pathways have the strongest potential for the development of new avenues for treatment of age-related diseases.
      PubDate: 2017-10-02T23:40:30.953939-05:
      DOI: 10.1111/acel.12689
  • miR-155 induces ROS generation through downregulation of
           antioxidation-related genes in mesenchymal stem cells

    • Authors: Yuta Onodera; Takeshi Teramura, Toshiyuki Takehara, Kayoko Obora, Tatsufumi Mori, Kanji Fukuda
      Abstract: Inflammation-induced reactive oxygen species (ROS) are implicated in cellular dysfunction and an important trigger for aging- or disease-related tissue degeneration. Inflammation-induced ROS in stem cells lead to deterioration of their properties, altering tissue renewal or regeneration. Pathological ROS generation can be induced by multiple steps, and dysfunction of antioxidant systems is a major cause. The identification of the central molecule mediating the above-mentioned processes would pave the way for the development of novel therapeutics for aging, aging-related diseases, or stem cell therapies. In recent years, microRNAs (miRNAs) have been shown to play important roles in many biological reactions, including inflammation and stem cell functions. In inflammatory conditions, certain miRNAs are highly expressed and mediate some cytotoxic actions. Here, we focused on miR-155, which is one of the most prominent miRNAs in inflammation and hypothesized that miR-155 participates to inflammation-induced ROS generation in stem cells. We observed mesenchymal stem cells (MSCs) from 1.5-year-old aged mice and determined that antioxidants, Nfe2l2, Sod1, and Hmox1, were suppressed, while miR-155-5p was highly expressed. Subsequent in vitro studies demonstrated that miR-155-5p induces ROS generation by suppression of the antioxidant genes by targeting the common transcription factor C/ebpβ. Moreover, this mechanism occurred during the cell transplantation process, in which ROS generation is triggering loss of transplanted stem cells. Finally, attenuation of antioxidants and ROS accumulation were partially prevented in miR-155 knockout MSCs. In conclusion, our study suggests that miR-155 is an important mediator connecting aging, inflammation, and ROS generation in stem cells.
      PubDate: 2017-10-02T05:25:51.972847-05:
      DOI: 10.1111/acel.12680
  • MicroRNAs mir-184 and let-7 alter Drosophila metabolism and longevity

    • Authors: Christi M. Gendron; Scott D. Pletcher
      Abstract: MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression associated with many complex biological processes. By comparing miRNA expression between long-lived cohorts of Drosophila melanogaster that were fed a low-nutrient diet with normal-lived control animals fed a high-nutrient diet, we identified miR-184, let-7, miR-125, and miR-100 as candidate miRNAs involved in modulating aging. We found that ubiquitous, adult-specific overexpression of these individual miRNAs led to significant changes in fat metabolism and/or lifespan. Most impressively, adult-specific overexpression of let-7 in female nervous tissue increased median fly lifespan by ~22%. We provide evidence that this lifespan extension is not due to alterations in nutrient intake or to decreased insulin signaling.
      PubDate: 2017-09-29T23:05:47.636785-05:
      DOI: 10.1111/acel.12673
  • Caloric restriction stabilizes body weight and accelerates behavioral
           recovery in aged rats after focal ischemia

    • Authors: Ovidiu Ciobanu; Raluca Elena Sandu, Adrian Tudor Balseanu, Alexandra Zavaleanu, Andrei Gresita, Eugen Bogdan Petcu, Adriana Uzoni, Aurel Popa-Wagner
      Abstract: Obesity and hyperinsulinemia are risk factors for stroke. We tested the hypothesis that caloric restriction, which reduces the incidence of age-related obesity and metabolic syndrome, may represent an efficient and cost-effective strategy for preventing stroke and its devastating consequences. To this end, we placed aged, obese Sprague-Dawley aged rats on a calorie-restricted diet for 8 weeks prior to the experimental infarction. Stroke in this animal model caused a progressive decrease in weight that reached a minimum at day 6 for the young rats, and at day 10 for the aged, ad libitum-fed rats. However, in aged animals that were calorie-restricted prior to stroke, body weight did not decrease after stroke, but we noted accelerated body weight gain shortly thereafter starting at day 5 poststroke. Moreover, calorie-restricted aged animals showed improved behavioral recovery in tasks requiring complex sensorimotor skills, or in tasks requiring cutaneous sensitivity and sensorimotor integration or spatial memory. Likewise, calorie-restricted aged rats showed significant poststroke increases in serum glucose, insulin, and IGF1 levels, as well as CR-specific changes in the expression of gene transcripts involved in glycogen metabolism, IGF signaling, apoptosis, arteriogenesis, and hypoxia. In conclusion, our study shows that recovery from stroke is enhanced in aged rats by a dietary regimen that reduces body weight prior to infarct.
      PubDate: 2017-09-29T11:28:23.593782-05:
      DOI: 10.1111/acel.12678
  • Sexually divergent DNA methylation patterns with hippocampal aging

    • Authors: Dustin R. Masser; Niran Hadad, Hunter L. Porter, Colleen A. Mangold, Archana Unnikrishnan, Matthew M. Ford, Cory B. Giles, Constantin Georgescu, Mikhail G. Dozmorov, Jonathan D. Wren, Arlan Richardson, David R. Stanford, Willard M. Freeman
      Abstract: DNA methylation is a central regulator of genome function, and altered methylation patterns are indicative of biological aging and mortality. Age-related cellular, biochemical, and molecular changes in the hippocampus lead to cognitive impairments and greater vulnerability to neurodegenerative disease that varies between the sexes. The role of hippocampal epigenomic changes with aging in these processes is unknown as no genome-wide analyses of age-related methylation changes have considered the factor of sex in a controlled animal model. High-depth, genome-wide bisulfite sequencing of young (3 month) and old (24 month) male and female mouse hippocampus revealed that while total genomic methylation amounts did not change with aging, specific sites in CG and non-CG (CH) contexts demonstrated age-related increases or decreases in methylation that were predominantly sexually divergent. Differential methylation with age for both CG and CH sites was enriched in intergenic and intronic regions and under-represented in promoters, CG islands, and specific enhancer regions in both sexes, suggesting that certain genomic elements are especially labile with aging, even if the exact genomic loci altered are predominantly sex-specific. Lifelong sex differences in autosomal methylation at CG and CH sites were also observed. The lack of genome-wide hypomethylation, sexually divergent aging response, and autosomal sex differences at CG sites was confirmed in human data. These data reveal sex as a previously unappreciated central factor of hippocampal epigenomic changes with aging. In total, these data demonstrate an intricate regulation of DNA methylation with aging by sex, cytosine context, genomic location, and methylation level.
      PubDate: 2017-09-25T23:36:05.001054-05:
      DOI: 10.1111/acel.12681
  • Gene therapy with the TRF1 telomere gene rescues decreased TRF1 levels
           with aging and prolongs mouse health span

    • Authors: Aksinya Derevyanko; Kurt Whittemore, Ralph P. Schneider, Verónica Jiménez, Fàtima Bosch, Maria A. Blasco
      Abstract: The shelterin complex protects telomeres by preventing them from being degraded and recognized as double-strand DNA breaks. TRF1 is an essential component of shelterin, with important roles in telomere protection and telomere replication. We previously showed that TRF1 deficiency in the context of different mouse tissues leads to loss of tissue homeostasis owing to impaired stem cell function. Here, we show that TRF1 levels decrease during organismal aging both in mice and in humans. We further show that increasing TRF1 expression in both adult (1-year-old) and old (2-year-old) mice using gene therapy can delay age-associated pathologies. To this end, we used the nonintegrative adeno-associated serotype 9 vector (AAV9), which transduces the majority of mouse tissues allowing for moderate and transient TRF1 overexpression. AAV9-TRF1 gene therapy significantly prevented age-related decline in neuromuscular function, glucose tolerance, cognitive function, maintenance of subcutaneous fat, and chronic anemia. Interestingly, although AAV9-TRF1 treatment did not significantly affect median telomere length, we found a lower abundance of short telomeres and of telomere-associated DNA damage in some tissues. Together, these findings suggest that rescuing naturally decreased TRF1 levels during mouse aging using AAV9-TRF1 gene therapy results in an improved mouse health span.
      PubDate: 2017-09-24T21:26:24.160784-05:
      DOI: 10.1111/acel.12677
  • Transthyretin deposition promotes progression of osteoarthritis

    • Authors: Tokio Matsuzaki; Yukio Akasaki, Merissa Olmer, Oscar Alvarez-Garcia, Natalia Reixach, Joel N. Buxbaum, Martin K. Lotz
      Abstract: Deposition of amyloid is a common aging-associated phenomenon in several aging-related diseases. Osteoarthritis (OA) is the most prevalent joint disease, and aging is its major risk factor. Transthyretin (TTR) is an amyloidogenic protein that is deposited in aging and OA-affected human cartilage and promotes inflammatory and catabolic responses in cultured chondrocytes. Here, we investigated the role of TTR in vivo using transgenic mice overexpressing wild-type human TTR (hTTR-TG). Although TTR protein was detected in cartilage in hTTR-TG mice, the TTR transgene was highly overexpressed in liver, but not in chondrocytes. OA was surgically induced by destabilizing the medial meniscus (DMM) in hTTR-TG mice, wild-type mice of the same strain (WT), and mice lacking endogenous Ttr genes. In the DMM model, both cartilage and synovitis histological scores were significantly increased in hTTR-TG mice. Further, spontaneous degradation and OA-like changes in cartilage and synovium developed in 18-month-old hTTR mice. Expression of cartilage catabolic (Adamts4, Mmp13) and inflammatory genes (Nos2, Il6) was significantly elevated in cartilage from 6-month-old hTTR-TG mice compared with WT mice as was the level of phospho-NF-κB p65. Intra-articular injection of aggregated TTR in WT mice increased synovitis and significantly increased expression of inflammatory genes in synovium. These findings are the first to show that TTR deposition increases disease severity in the murine DMM and aging model of OA.
      PubDate: 2017-09-22T23:06:45.56518-05:0
      DOI: 10.1111/acel.12665
  • Genetic interaction with temperature is an important determinant of
           nematode longevity

    • Authors: Hillary Miller; Marissa Fletcher, Melissa Primitivo, Alison Leonard, George L. Sutphin, Nicholas Rintala, Matt Kaeberlein, Scott F. Leiser
      Abstract: As in other poikilotherms, longevity in C. elegans varies inversely with temperature; worms are longer-lived at lower temperatures. While this observation may seem intuitive based on thermodynamics, the molecular and genetic basis for this phenomenon is not well understood. Several recent reports have argued that lifespan changes across temperatures are genetically controlled by temperature-specific gene regulation. Here, we provide data that both corroborate those studies and suggest that temperature-specific longevity is more the rule than the exception. By measuring the lifespans of worms with single modifications reported to be important for longevity at 15, 20, or 25 °C, we find that the effect of each modification on lifespan is highly dependent on temperature. Our results suggest that genetics play a major role in temperature-associated longevity and are consistent with the hypothesis that while aging in C. elegans is slowed by decreasing temperature, the major cause(s) of death may also be modified, leading to different genes and pathways becoming more or less important at different temperatures. These differential mechanisms of age-related death are not unlike what is observed in humans, where environmental conditions lead to development of different diseases of aging.
      PubDate: 2017-09-21T20:05:44.6892-05:00
      DOI: 10.1111/acel.12658
  • In a randomized trial in prostate cancer patients, dietary protein
           restriction modifies markers of leptin and insulin signaling in plasma
           extracellular vesicles

    • Authors: Erez Eitan; Valeria Tosti, Caitlin N. Suire, Edda Cava, Sean Berkowitz, Beatrice Bertozzi, Sophia M. Raefsky, Nicola Veronese, Ryan Spangler, Francesco Spelta, Maja Mustapic, Dimitrios Kapogiannis, Mark P. Mattson, Luigi Fontana
      Abstract: Obesity, metabolic syndrome, and hyperleptinemia are associated with aging and age-associated diseases including prostate cancer. One experimental approach to inhibit tumor growth is to reduce dietary protein intake and hence levels of circulating amino acids. Dietary protein restriction (PR) increases insulin sensitivity and suppresses prostate cancer cell tumor growth in animal models, providing a rationale for clinical trials. We sought to demonstrate that biomarkers derived from plasma extracellular vesicles (EVs) reflect systemic leptin and insulin signaling and respond to dietary interventions. We studied plasma samples from men with prostate cancer awaiting prostatectomy who participated in a randomized trial of one month of PR or control diet. We found increased levels of leptin receptor in the PR group in total plasma EVs and in a subpopulation of plasma EVs expressing the neuronal marker L1CAM. Protein restriction also shifted the phosphorylation status of the insulin receptor signal transducer protein IRS1 in L1CAM+ EVs in a manner suggestive of improved insulin sensitivity. Dietary PR modifies indicators of leptin and insulin signaling in circulating EVs. These findings are consistent with improved insulin and leptin sensitivity in response to PR and open a new window for following physiologic responses to dietary interventions in humans.
      PubDate: 2017-09-17T23:21:01.475417-05:
      DOI: 10.1111/acel.12657
  • Deficiency of CCAAT/enhancer-binding protein homologous protein (CHOP)
           prevents diet-induced aortic valve calcification in vivo

    • Authors: Zhejun Cai; Baoqing Liu, Jia Wei, Zurong Fu, Yidong Wang, Yaping Wang, Jian Shen, Liangliang Jia, Shengan Su, Xiaoya Wang, Xiaoping Lin, Han Chen, Fei Li, Jian'an Wang, Meixiang Xiang
      Abstract: Aortic valve (AoV) calcification is common in aged populations. Its subsequent aortic stenosis has been linked with increased morbidity, but still has no effective pharmacological intervention. Our previous data show endoplasmic reticulum (ER) stress is involved in AoV calcification. Here, we investigated whether deficiency of ER stress downstream effector CCAAT/enhancer-binding protein homology protein (CHOP) may prevent development of AoV calcification. AoV calcification was evaluated in Apoe−/− mice (n = 10) or in mice with dual deficiencies of ApoE and CHOP (Apoe−/−CHOP−/−, n = 10) fed with Western diet for 24 weeks. Histological and echocardiographic analysis showed that genetic ablation of CHOP attenuated AoV calcification, pro-calcification signaling activation, and apoptosis in the leaflets of Apoe−/− mice. In cultured human aortic valvular interstitial cells (VIC), we found oxidized low-density lipoprotein (oxLDL) promoted apoptosis and osteoblastic differentiation of VIC via CHOP activation. Using conditioned media (CM) from oxLDL-treated VIC, we further identified that oxLDL triggered osteoblastic differentiation of VIC via paracrine pathway, while depletion of apoptotic bodies (ABs) in CM suppressed the effect. CM from oxLDL-exposed CHOP-silenced cells prevented osteoblastic differentiation of VIC, while depletion of ABs did not further enhance this protective effect. Overall, our study indicates that CHOP deficiency protects against Western diet-induced AoV calcification in Apoe−/− mice. CHOP deficiency prevents oxLDL-induced VIC osteoblastic differentiation via preventing VIC-derived ABs releasing.
      PubDate: 2017-09-10T19:30:33.415825-05:
      DOI: 10.1111/acel.12674
  • Estrogenic regulation of skeletal muscle proteome: a study of
           premenopausal women and postmenopausal MZ cotwins discordant for hormonal

    • Authors: Eija K. Laakkonen; Rabah Soliymani, Sira Karvinen, Jaakko Kaprio, Urho M. Kujala, Marc Baumann, Sarianna Sipilä, Vuokko Kovanen, Maciej Lalowski
      Abstract: Female middle age is characterized by a decline in skeletal muscle mass and performance, predisposing women to sarcopenia, functional limitations, and metabolic dysfunction as they age. Menopausal loss of ovarian function leading to low circulating level of 17β-estradiol has been suggested as a contributing factor to aging-related muscle deterioration. However, the underlying molecular mechanisms remain largely unknown and thus far androgens have been considered as a major anabolic hormone for skeletal muscle. We utilized muscle samples from 24 pre- and postmenopausal women to establish proteome-wide profiles, associated with the difference in age (30–34 years old vs. 54–62 years old), menopausal status (premenopausal vs. postmenopausal), and use of hormone replacement therapy (HRT; user vs. nonuser). None of the premenopausal women used hormonal medication while the postmenopausal women were monozygotic (MZ) cotwin pairs of whom the other sister was current HRT user or the other had never used HRT. Label-free proteomic analyses resulted in the quantification of 797 muscle proteins of which 145 proteins were for the first time associated with female aging using proteomics. Furthermore, we identified 17β-estradiol as a potential upstream regulator of the observed differences in muscle energy pathways. These findings pinpoint the underlying molecular mechanisms of the metabolic dysfunction accruing upon menopause, thus having implications for understanding the complex functional interactions between female reproductive hormones and health.
      PubDate: 2017-09-07T21:01:07.631741-05:
      DOI: 10.1111/acel.12661
  • The acceleration of reproductive aging in Nrg1flox/flox;Cyp19-Cre female

    • Authors: Takashi Umehara; Tomoko Kawai, Ikko Kawashima, Katsuhiro Tanaka, Satoshi Okuda, Hiroya Kitasaka, JoAnne S. Richards, Masayuki Shimada
      Abstract: Irregular menstrual cycles, reduced responses to exogenous hormonal treatments, and altered endocrine profiles (high FSH/high LH/low AMH) are observed in women with increasing age before menopause. In this study, because the granulosa cell-specific Nrg1 knockout mice (gcNrg1KO) presented ovarian and endocrine phenotypes similar to older women, we sought to understand the mechanisms of ovarian aging and to develop a new strategy for improving fertility in older women prior to menopause. In the ovary of 6-month-old gcNrg1KO mice, follicular development was blocked in bilayer secondary follicles and heterogeneous cells accumulated in ovarian stroma. The heterogeneous cells in ovarian stroma were distinguished as two different types: (i) the LH receptor-positive endocrine cells and (ii) actin-rich fibrotic cells expressing collagen. Both the endocrine and fibrotic cells disappeared following long-term treatment with a GnRH antagonist, indicating that the high levels of serum LH induced the survival of both cell types and the abnormal endocrine profile to reduce fertility. Moreover, follicular development to the antral stages was observed with reduced LH and the disappearance of the abnormal stromal cells. Mice treated with the GnRH antagonist regained normal, recurrent estrous cycles and continuously delivered pups for at least for 3 months. We conclude that endocrine and matrix alternations occur within the ovarian stroma with increasing age and that abolishing these alternations resets the cyclical release of LH. Thus, GnRH antagonist treatments might provide a new, noninvasive strategy for improving fertility in a subset of aging women before menopause.
      PubDate: 2017-08-31T01:01:42.554309-05:
      DOI: 10.1111/acel.12662
  • Hyperphosphatemia induces senescence in human endothelial cells by
           increasing endothelin-1 production

    • Authors: Gemma Olmos; Patricia Martínez-Miguel, Elena Alcalde-Estevez, Diana Medrano, Patricia Sosa, Leocadio Rodríguez-Mañas, Manuel Naves-Diaz, Diego Rodríguez-Puyol, María Piedad Ruiz-Torres, Susana López-Ongil
      Abstract: Hyperphosphatemia is related to some pathologies, affecting vascular cell behavior. This work analyzes whether high concentration of extracellular phosphate induces endothelial senescence through up-regulation of endothelin-1 (ET-1), exploring the mechanisms involved. The phosphate donor β-glycerophosphate (BGP) in human endothelial cells increased ET-1 production, endothelin-converting enzyme-1 (ECE-1) protein, and mRNA expression, which depend on the AP-1 activation through ROS production. In parallel, BGP also induced endothelial senescence by increasing p16 expression and the senescence-associated β-galactosidase (SA-ß-GAL) activity. ET-1 itself was able to induce endothelial senescence, increasing p16 expression and SA-ß-GAL activity. In addition, senescence induced by BGP was blocked when different ET-1 system antagonists were used. BGP increased ROS production at short times, and the presence of antioxidants prevented the effect of BGP on AP1 activation, ECE-1 expression, and endothelial senescence. These findings were confirmed in vivo with two animal models in which phosphate serum levels were increased: seven/eight nephrectomized rats as chronic kidney disease models fed on a high phosphate diet and aged mice. Both models showed hyperphosphatemia, higher levels of ET-1, and up-regulation in aortic ECE-1, suggesting a direct relationship between hyperphosphatemia and ET-1. Present results point to a new and relevant role of hyperphosphatemia on the regulation of ET-1 system and senescence induction at endothelial level, both in endothelial cells and aorta from two animal models. The mechanism involved showed a higher ROS production, which probably activates AP-1 transcription factor and, as a result, ECE-1 expression, increasing ET-1 synthesis, which in consequence induces endothelial senescence.
      PubDate: 2017-08-31T00:55:55.591081-05:
      DOI: 10.1111/acel.12664
  • Wide-scale comparative analysis of longevity genes and interventions

    • Authors: Hagai Yanai; Arie Budovsky, Thomer Barzilay, Robi Tacutu, Vadim E. Fraifeld
      Abstract: Hundreds of genes, when manipulated, affect the lifespan of model organisms (yeast, worm, fruit fly, and mouse) and thus can be defined as longevity-associated genes (LAGs). A major challenge is to determine whether these LAGs are model-specific or may play a universal role as longevity regulators across diverse taxa. A wide-scale comparative analysis of the 1805 known LAGs across 205 species revealed that (i) LAG orthologs are substantially overrepresented, from bacteria to mammals, compared to the entire genomes or interactomes, and this was especially noted for essential LAGs; (ii) the effects on lifespan, when manipulating orthologous LAGs in different model organisms, were mostly concordant, despite a high evolutionary distance between them; (iii) LAGs that have orthologs across a high number of phyla were enriched in translational processes, energy metabolism, and DNA repair genes; (iv) LAGs that have no orthologs out of the taxa in which they were discovered were enriched in autophagy (Ascomycota/Fungi), G proteins (Nematodes), and neuroactive ligand–receptor interactions (Chordata). The results also suggest that antagonistic pleiotropy might be a conserved principle of aging and highlight the importance of overexpression studies in the search for longevity regulators.
      PubDate: 2017-08-24T01:25:43.009957-05:
      DOI: 10.1111/acel.12659
  • Sex differences in lifespan extension with acarbose and 17-α estradiol:
           gonadal hormones underlie male-specific improvements in glucose tolerance
           and mTORC2 signaling

    • Authors: Michael Garratt; Brian Bower, Gonzalo G. Garcia, Richard A. Miller
      Abstract: Interventions that extend lifespan in mice can show substantial sexual dimorphism. Here, we show that male-specific lifespan extension with two pharmacological treatments, acarbose (ACA) and 17-α estradiol (17aE2), is associated, in males only, with increased insulin sensitivity and improved glucose tolerance. Females, which show either smaller (ACA) or no lifespan extension (17aE2), do not derive these metabolic benefits from drug treatment. We find that these male-specific metabolic improvements are associated with enhanced hepatic mTORC2 signaling, increased Akt activity, and phosphorylation of FOXO1a – changes that might promote metabolic health and survival in males. By manipulating sex hormone levels through gonadectomy, we show that sex-specific changes in these metabolic pathways are modulated, in opposite directions, by both male and female gonadal hormones: Castrated males show fewer metabolic responses to drug treatment than intact males, and only those that are also observed in intact females, while ovariectomized females show some responses similar to those seen in intact males. Our results demonstrate that sex-specific metabolic benefits occur concordantly with sexual dimorphism in lifespan extension. These sex-specific effects can be influenced by the presence of both male and female gonadal hormones, suggesting that gonadally derived hormones from both sexes may contribute to sexual dimorphism in responses to interventions that extend mouse lifespan.
      PubDate: 2017-08-22T05:56:02.522909-05:
      DOI: 10.1111/acel.12656
  • In aged primary T cells, mitochondrial stress contributes to telomere
           attrition measured by a novel imaging flow cytometry assay

    • Authors: Sharon Lesley Sanderson; Anna Katharina Simon
      Abstract: The decline of the immune system with age known as immune senescence contributes to inefficient pathogen clearance and is a key risk factor for many aged-related diseases. However, reversing or halting immune aging requires more knowledge about the cell biology of senescence in immune cells. Telomere shortening, low autophagy and mitochondrial dysfunction have been shown to underpin cell senescence. While autophagy has been found to control mitochondrial damage, no link has been made to telomere attrition. In contrast, mitochondrial stress can contribute to telomere attrition and vice versa. Whereas this link has been investigated in fibroblasts or cell lines, it is unclear whether this link exists in primary cells such as human lymphocytes and whether autophagy contributes to it. As traditional methods for measuring telomere length are low throughput or unsuitable for the analysis of cell subtypes within a mixed population of primary cells, we have developed a novel sensitive flow-FISH assay using the imaging flow cytometer. Using this assay, we show a correlation between age and increased mitochondrial reactive oxygen species in CD8+ T-cell subsets, but not with autophagy. Telomere shortening within the CD8+ subset could be prevented in vitro by treatment with a ROS scavenger. Our novel assay is a sensitive assay to measure relative telomere length in primary cells and has revealed ROS as a contributing factor to the decline in telomere length.
      PubDate: 2017-08-19T23:21:17.01698-05:0
      DOI: 10.1111/acel.12640
  • A multimethod computational simulation approach for investigating
           mitochondrial dynamics and dysfunction in degenerative aging

    • Authors: Timothy E. Hoffman; Katherine J. Barnett, Lyle Wallis, William H. Hanneman
      Abstract: Research in biogerontology has largely focused on the complex relationship between mitochondrial dysfunction and biological aging. In particular, the mitochondrial free radical theory of aging (MFRTA) has been well accepted. However, this theory has been challenged by recent studies showing minimal increases in reactive oxygen species (ROS) as not entirely deleterious in nature, and even beneficial under the appropriate cellular circumstances. To assess these significant and nonintuitive observations in the context of a functional system, we have taken an in silico approach to expand the focus of the MFRTA by including other key mitochondrial stress response pathways, as they have been observed in the nematode Caenorhabditis elegans. These include the mitochondrial unfolded protein response (UPRmt), mitochondrial biogenesis and autophagy dynamics, the relevant DAF-16 and SKN-1 axes, and NAD+-dependent deacetylase activities. To integrate these pathways, we have developed a multilevel hybrid-modeling paradigm, containing agent-based elements among stochastic system-dynamics environments of logically derived ordinary differential equations, to simulate aging mitochondrial phenotypes within a population of energetically demanding cells. The simulation experiments resulted in accurate predictions of physiological parameters over time that accompany normal aging, such as the declines in both NAD+ and ATP and an increase in ROS. Additionally, the in silico system was virtually perturbed using a variety of pharmacological (e.g., rapamycin, pterostilbene, paraquat) and genetic (e.g., skn-1, daf-16, sod-2) schemes to quantitate the temporal alterations of specific mechanistic targets, supporting insights into molecular determinants of aging as well as cytoprotective agents that may improve neurological or muscular healthspan.
      PubDate: 2017-08-16T03:00:55.573049-05:
      DOI: 10.1111/acel.12644
  • Issue Information

    • Pages: 1205 - 1207
      PubDate: 2017-11-08T00:28:52.321752-05:
      DOI: 10.1111/acel.12536
  • Corrigendum

    • Pages: 1439 - 1439
      PubDate: 2017-11-08T00:28:50.4002-05:00
      DOI: 10.1111/acel.12690
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016