Publisher: Hindawi   (Total: 343 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

        1 2 | Last   [Sort by number of followers]   [Restore default list]

Showing 1 - 200 of 343 Journals sorted alphabetically
Abstract and Applied Analysis     Open Access   (Followers: 3, SJR: 0.343, CiteScore: 1)
Active and Passive Electronic Components     Open Access   (Followers: 8, SJR: 0.136, CiteScore: 0)
Advances in Acoustics and Vibration     Open Access   (Followers: 52, SJR: 0.147, CiteScore: 0)
Advances in Aerospace Engineering     Open Access   (Followers: 63)
Advances in Agriculture     Open Access   (Followers: 12)
Advances in Artificial Intelligence     Open Access   (Followers: 19)
Advances in Astronomy     Open Access   (Followers: 44, SJR: 0.257, CiteScore: 1)
Advances in Bioinformatics     Open Access   (Followers: 20, SJR: 0.565, CiteScore: 2)
Advances in Biology     Open Access   (Followers: 12)
Advances in Chemistry     Open Access   (Followers: 33)
Advances in Civil Engineering     Open Access   (Followers: 47, SJR: 0.539, CiteScore: 1)
Advances in Computer Engineering     Open Access   (Followers: 8)
Advances in Condensed Matter Physics     Open Access   (Followers: 11, SJR: 0.315, CiteScore: 1)
Advances in Decision Sciences     Open Access   (Followers: 4, SJR: 0.303, CiteScore: 1)
Advances in Electrical Engineering     Open Access   (Followers: 51)
Advances in Electronics     Open Access   (Followers: 100)
Advances in Emergency Medicine     Open Access   (Followers: 15)
Advances in Endocrinology     Open Access   (Followers: 6)
Advances in Environmental Chemistry     Open Access   (Followers: 10)
Advances in Epidemiology     Open Access   (Followers: 8)
Advances in Fuzzy Systems     Open Access   (Followers: 5, SJR: 0.161, CiteScore: 1)
Advances in Geology     Open Access   (Followers: 19)
Advances in Geriatrics     Open Access   (Followers: 6)
Advances in Hematology     Open Access   (Followers: 12, SJR: 0.661, CiteScore: 2)
Advances in Hepatology     Open Access   (Followers: 3)
Advances in High Energy Physics     Open Access   (Followers: 24, SJR: 0.866, CiteScore: 2)
Advances in Human-Computer Interaction     Open Access   (Followers: 21, SJR: 0.186, CiteScore: 1)
Advances in Materials Science and Engineering     Open Access   (Followers: 30, SJR: 0.315, CiteScore: 1)
Advances in Mathematical Physics     Open Access   (Followers: 8, SJR: 0.218, CiteScore: 1)
Advances in Medicine     Open Access   (Followers: 3)
Advances in Meteorology     Open Access   (Followers: 23, SJR: 0.48, CiteScore: 1)
Advances in Multimedia     Open Access   (Followers: 1, SJR: 0.173, CiteScore: 1)
Advances in Nonlinear Optics     Open Access   (Followers: 6)
Advances in Numerical Analysis     Open Access   (Followers: 9)
Advances in Nursing     Open Access   (Followers: 37)
Advances in Operations Research     Open Access   (Followers: 13, SJR: 0.205, CiteScore: 1)
Advances in Optical Technologies     Open Access   (Followers: 4, SJR: 0.214, CiteScore: 1)
Advances in Optics     Open Access   (Followers: 6)
Advances in OptoElectronics     Open Access   (Followers: 6, SJR: 0.141, CiteScore: 0)
Advances in Orthopedics     Open Access   (Followers: 9, SJR: 0.922, CiteScore: 2)
Advances in Pharmacological and Pharmaceutical Sciences     Open Access   (Followers: 8, SJR: 0.591, CiteScore: 2)
Advances in Physical Chemistry     Open Access   (Followers: 12, SJR: 0.179, CiteScore: 1)
Advances in Polymer Technology     Open Access   (Followers: 14, SJR: 0.299, CiteScore: 1)
Advances in Power Electronics     Open Access   (Followers: 41, SJR: 0.184, CiteScore: 0)
Advances in Preventive Medicine     Open Access   (Followers: 6)
Advances in Public Health     Open Access   (Followers: 27)
Advances in Regenerative Medicine     Open Access   (Followers: 4)
Advances in Software Engineering     Open Access   (Followers: 11)
Advances in Statistics     Open Access   (Followers: 9)
Advances in Toxicology     Open Access   (Followers: 4)
Advances in Tribology     Open Access   (Followers: 15, SJR: 0.265, CiteScore: 1)
Advances in Urology     Open Access   (Followers: 13, SJR: 0.51, CiteScore: 1)
Advances in Virology     Open Access   (Followers: 7, SJR: 0.838, CiteScore: 2)
AIDS Research and Treatment     Open Access   (Followers: 2, SJR: 0.758, CiteScore: 2)
Analytical Cellular Pathology     Open Access   (Followers: 3, SJR: 0.886, CiteScore: 2)
Anatomy Research Intl.     Open Access   (Followers: 4)
Anemia     Open Access   (Followers: 6, SJR: 0.669, CiteScore: 2)
Anesthesiology Research and Practice     Open Access   (Followers: 15, SJR: 0.501, CiteScore: 1)
Applied and Environmental Soil Science     Open Access   (Followers: 18, SJR: 0.451, CiteScore: 1)
Applied Bionics and Biomechanics     Open Access   (Followers: 7, SJR: 0.288, CiteScore: 1)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 14)
Archaea     Open Access   (Followers: 4, SJR: 0.852, CiteScore: 2)
Autism Research and Treatment     Open Access   (Followers: 34)
Autoimmune Diseases     Open Access   (Followers: 3, SJR: 0.805, CiteScore: 2)
Behavioural Neurology     Open Access   (Followers: 9, SJR: 0.786, CiteScore: 2)
Biochemistry Research Intl.     Open Access   (Followers: 6, SJR: 0.437, CiteScore: 2)
Bioinorganic Chemistry and Applications     Open Access   (Followers: 10, SJR: 0.419, CiteScore: 2)
BioMed Research Intl.     Open Access   (Followers: 5, SJR: 0.935, CiteScore: 3)
Biotechnology Research Intl.     Open Access   (Followers: 1)
Bone Marrow Research     Open Access   (Followers: 2, SJR: 0.531, CiteScore: 1)
Canadian J. of Gastroenterology & Hepatology     Open Access   (Followers: 4, SJR: 0.867, CiteScore: 1)
Canadian J. of Infectious Diseases and Medical Microbiology     Open Access   (Followers: 8, SJR: 0.548, CiteScore: 1)
Canadian Respiratory J.     Open Access   (Followers: 3, SJR: 0.474, CiteScore: 1)
Cardiology Research and Practice     Open Access   (Followers: 11, SJR: 1.237, CiteScore: 4)
Cardiovascular Therapeutics     Open Access   (Followers: 1, SJR: 1.075, CiteScore: 2)
Case Reports in Anesthesiology     Open Access   (Followers: 11)
Case Reports in Cardiology     Open Access   (Followers: 7, SJR: 0.219, CiteScore: 0)
Case Reports in Critical Care     Open Access   (Followers: 12)
Case Reports in Dentistry     Open Access   (Followers: 7, SJR: 0.229, CiteScore: 0)
Case Reports in Dermatological Medicine     Open Access   (Followers: 2)
Case Reports in Emergency Medicine     Open Access   (Followers: 17)
Case Reports in Endocrinology     Open Access   (Followers: 2, SJR: 0.209, CiteScore: 1)
Case Reports in Gastrointestinal Medicine     Open Access   (Followers: 3)
Case Reports in Genetics     Open Access   (Followers: 2)
Case Reports in Hematology     Open Access   (Followers: 8)
Case Reports in Hepatology     Open Access   (Followers: 2)
Case Reports in Immunology     Open Access   (Followers: 6)
Case Reports in Infectious Diseases     Open Access   (Followers: 6)
Case Reports in Medicine     Open Access   (Followers: 3)
Case Reports in Nephrology     Open Access   (Followers: 5)
Case Reports in Neurological Medicine     Open Access   (Followers: 1)
Case Reports in Obstetrics and Gynecology     Open Access   (Followers: 11)
Case Reports in Oncological Medicine     Open Access   (Followers: 2, SJR: 0.204, CiteScore: 1)
Case Reports in Ophthalmological Medicine     Open Access   (Followers: 3)
Case Reports in Orthopedics     Open Access   (Followers: 6)
Case Reports in Otolaryngology     Open Access   (Followers: 7)
Case Reports in Pathology     Open Access   (Followers: 7)
Case Reports in Pediatrics     Open Access   (Followers: 7)
Case Reports in Psychiatry     Open Access   (Followers: 17)
Case Reports in Pulmonology     Open Access   (Followers: 3)
Case Reports in Radiology     Open Access   (Followers: 12)
Case Reports in Rheumatology     Open Access   (Followers: 10)
Case Reports in Surgery     Open Access   (Followers: 12)
Case Reports in Transplantation     Open Access  
Case Reports in Urology     Open Access   (Followers: 12)
Case Reports in Vascular Medicine     Open Access  
Case Reports in Veterinary Medicine     Open Access   (Followers: 5)
Child Development Research     Open Access   (Followers: 20, SJR: 0.144, CiteScore: 0)
Chinese J. of Engineering     Open Access   (Followers: 2, SJR: 0.114, CiteScore: 0)
Chinese J. of Mathematics     Open Access  
Chromatography Research Intl.     Open Access   (Followers: 5)
Complexity     Hybrid Journal   (Followers: 7, SJR: 0.531, CiteScore: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2, SJR: 0.403, CiteScore: 1)
Computational Biology J.     Open Access   (Followers: 7)
Computational Intelligence and Neuroscience     Open Access   (Followers: 13, SJR: 0.326, CiteScore: 1)
Concepts in Magnetic Resonance Part A     Open Access   (Followers: 1, SJR: 0.354, CiteScore: 1)
Concepts in Magnetic Resonance Part B, Magnetic Resonance Engineering     Open Access   (Followers: 1, SJR: 0.26, CiteScore: 1)
Conference Papers in Science     Open Access   (Followers: 2)
Contrast Media & Molecular Imaging     Open Access   (Followers: 2, SJR: 0.842, CiteScore: 3)
Critical Care Research and Practice     Open Access   (Followers: 13, SJR: 0.499, CiteScore: 1)
Current Gerontology and Geriatrics Research     Open Access   (Followers: 9, SJR: 0.512, CiteScore: 2)
Depression Research and Treatment     Open Access   (Followers: 19, SJR: 0.816, CiteScore: 2)
Dermatology Research and Practice     Open Access   (Followers: 4, SJR: 0.806, CiteScore: 2)
Diagnostic and Therapeutic Endoscopy     Open Access   (SJR: 0.201, CiteScore: 1)
Discrete Dynamics in Nature and Society     Open Access   (Followers: 6, SJR: 0.279, CiteScore: 1)
Disease Markers     Open Access   (Followers: 1, SJR: 0.9, CiteScore: 2)
Economics Research Intl.     Open Access   (Followers: 1)
Education Research Intl.     Open Access   (Followers: 19)
Emergency Medicine Intl.     Open Access   (Followers: 10, SJR: 0.298, CiteScore: 1)
Enzyme Research     Open Access   (Followers: 5, SJR: 0.653, CiteScore: 3)
Evidence-based Complementary and Alternative Medicine     Open Access   (Followers: 28, SJR: 0.683, CiteScore: 2)
Game Theory     Open Access   (Followers: 1)
Gastroenterology Research and Practice     Open Access   (Followers: 1, SJR: 0.768, CiteScore: 2)
Genetics Research Intl.     Open Access   (Followers: 1, SJR: 0.61, CiteScore: 2)
Geofluids     Open Access   (Followers: 5, SJR: 0.952, CiteScore: 2)
Hepatitis Research and Treatment     Open Access   (Followers: 6, SJR: 0.389, CiteScore: 2)
Heteroatom Chemistry     Open Access   (Followers: 3, SJR: 0.333, CiteScore: 1)
HPB Surgery     Open Access   (Followers: 7, SJR: 0.824, CiteScore: 2)
Infectious Diseases in Obstetrics and Gynecology     Open Access   (Followers: 5, SJR: 1.27, CiteScore: 2)
Interdisciplinary Perspectives on Infectious Diseases     Open Access   (Followers: 1, SJR: 0.627, CiteScore: 2)
Intl. J. of Aerospace Engineering     Open Access   (Followers: 78, SJR: 0.232, CiteScore: 1)
Intl. J. of Agronomy     Open Access   (Followers: 6, SJR: 0.311, CiteScore: 1)
Intl. J. of Alzheimer's Disease     Open Access   (Followers: 12, SJR: 0.787, CiteScore: 3)
Intl. J. of Analytical Chemistry     Open Access   (Followers: 22, SJR: 0.285, CiteScore: 1)
Intl. J. of Antennas and Propagation     Open Access   (Followers: 11, SJR: 0.233, CiteScore: 1)
Intl. J. of Atmospheric Sciences     Open Access   (Followers: 21)
Intl. J. of Biodiversity     Open Access   (Followers: 3)
Intl. J. of Biomaterials     Open Access   (Followers: 5, SJR: 0.511, CiteScore: 2)
Intl. J. of Biomedical Imaging     Open Access   (Followers: 3, SJR: 0.501, CiteScore: 2)
Intl. J. of Breast Cancer     Open Access   (Followers: 14, SJR: 1.025, CiteScore: 2)
Intl. J. of Cell Biology     Open Access   (Followers: 4, SJR: 1.887, CiteScore: 4)
Intl. J. of Chemical Engineering     Open Access   (Followers: 8, SJR: 0.327, CiteScore: 1)
Intl. J. of Chronic Diseases     Open Access   (Followers: 1)
Intl. J. of Combinatorics     Open Access   (Followers: 1)
Intl. J. of Computer Games Technology     Open Access   (Followers: 10, SJR: 0.287, CiteScore: 2)
Intl. J. of Corrosion     Open Access   (Followers: 11, SJR: 0.194, CiteScore: 1)
Intl. J. of Dentistry     Open Access   (Followers: 8, SJR: 0.649, CiteScore: 2)
Intl. J. of Differential Equations     Open Access   (Followers: 8, SJR: 0.191, CiteScore: 0)
Intl. J. of Digital Multimedia Broadcasting     Open Access   (Followers: 5, SJR: 0.296, CiteScore: 2)
Intl. J. of Electrochemistry     Open Access   (Followers: 9)
Intl. J. of Endocrinology     Open Access   (Followers: 4, SJR: 1.012, CiteScore: 3)
Intl. J. of Engineering Mathematics     Open Access   (Followers: 7)
Intl. J. of Food Science     Open Access   (Followers: 5, SJR: 0.44, CiteScore: 2)
Intl. J. of Forestry Research     Open Access   (Followers: 3, SJR: 0.373, CiteScore: 1)
Intl. J. of Genomics     Open Access   (Followers: 2, SJR: 0.868, CiteScore: 3)
Intl. J. of Geophysics     Open Access   (Followers: 5, SJR: 0.182, CiteScore: 1)
Intl. J. of Hepatology     Open Access   (Followers: 4, SJR: 0.874, CiteScore: 2)
Intl. J. of Hypertension     Open Access   (Followers: 8, SJR: 0.578, CiteScore: 1)
Intl. J. of Inflammation     Open Access   (SJR: 1.264, CiteScore: 3)
Intl. J. of Inorganic Chemistry     Open Access   (Followers: 4)
Intl. J. of Manufacturing Engineering     Open Access   (Followers: 2)
Intl. J. of Mathematics and Mathematical Sciences     Open Access   (Followers: 3, SJR: 0.177, CiteScore: 0)
Intl. J. of Medicinal Chemistry     Open Access   (Followers: 6, SJR: 0.31, CiteScore: 1)
Intl. J. of Metals     Open Access   (Followers: 7)
Intl. J. of Microbiology     Open Access   (Followers: 8, SJR: 0.662, CiteScore: 2)
Intl. J. of Microwave Science and Technology     Open Access   (Followers: 3, SJR: 0.136, CiteScore: 1)
Intl. J. of Navigation and Observation     Open Access   (Followers: 20, SJR: 0.267, CiteScore: 2)
Intl. J. of Nephrology     Open Access   (Followers: 2, SJR: 0.697, CiteScore: 1)
Intl. J. of Oceanography     Open Access   (Followers: 8)
Intl. J. of Optics     Open Access   (Followers: 8, SJR: 0.231, CiteScore: 1)
Intl. J. of Otolaryngology     Open Access   (Followers: 3)
Intl. J. of Partial Differential Equations     Open Access   (Followers: 2)
Intl. J. of Pediatrics     Open Access   (Followers: 6)
Intl. J. of Peptides     Open Access   (Followers: 2, SJR: 0.46, CiteScore: 1)
Intl. J. of Photoenergy     Open Access   (Followers: 3, SJR: 0.341, CiteScore: 1)
Intl. J. of Plant Genomics     Open Access   (Followers: 4, SJR: 0.583, CiteScore: 1)
Intl. J. of Polymer Science     Open Access   (Followers: 28, SJR: 0.298, CiteScore: 1)
Intl. J. of Population Research     Open Access   (Followers: 4)
Intl. J. of Quality, Statistics, and Reliability     Open Access   (Followers: 17)
Intl. J. of Reconfigurable Computing     Open Access   (SJR: 0.123, CiteScore: 1)
Intl. J. of Reproductive Medicine     Open Access   (Followers: 5)
Intl. J. of Rheumatology     Open Access   (Followers: 4, SJR: 0.645, CiteScore: 2)
Intl. J. of Rotating Machinery     Open Access   (Followers: 2, SJR: 0.193, CiteScore: 1)
Intl. J. of Spectroscopy     Open Access   (Followers: 8)
Intl. J. of Stochastic Analysis     Open Access   (Followers: 3, SJR: 0.279, CiteScore: 1)
Intl. J. of Surgical Oncology     Open Access   (Followers: 1, SJR: 0.573, CiteScore: 2)
Intl. J. of Telemedicine and Applications     Open Access   (Followers: 5, SJR: 0.403, CiteScore: 2)
Intl. J. of Vascular Medicine     Open Access   (SJR: 0.782, CiteScore: 2)
Intl. J. of Zoology     Open Access   (Followers: 2, SJR: 0.209, CiteScore: 1)
Intl. Scholarly Research Notices     Open Access   (Followers: 229)

        1 2 | Last   [Sort by number of followers]   [Restore default list]

Similar Journals
Journal Cover
Journal of Nanomaterials
Journal Prestige (SJR): 0.36
Citation Impact (citeScore): 1
Number of Followers: 3  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1687-4110 - ISSN (Online) 1687-4129
Published by Hindawi Homepage  [343 journals]
  • The Synergistic Anticancer Effect of Dual Drug-
           (Cisplatin/Epigallocatechin Gallate) Loaded Gelatin Nanoparticles for Lung
           Cancer Treatment

    • Abstract: Lung cancer has the highest mortality of any cancer worldwide, and cisplatin is a first-line chemotherapeutic agent for lung cancer treatment. Unfortunately, cisplatin resistance is a common cause of therapeutic failure. The ability to overcome chemoresistance is crucial to the effective treatment of lung cancer. Recently, epigallocatechin gallate (EGCG), a type of polyphenol extracted from tea, has been shown to suppress the rapid proliferation of cancer cells, including lung cancer. We tested whether nanoparticles (NPs) carrying a dual drug load, cisplatin and EGCG, could overcome chemoresistance to cisplatin, by working together to kill lung cancer cells. Self-assembling gelatin/EGCG nanoparticles (GE) were synthesized, and cisplatin was then incorporated, to construct a dual drug nanomedicine (EGCG/cisplatin-loaded gelatin nanoparticle, named as GE-Pt NP). The particle size and zeta potential were examined by dynamic light scattering (DLS). The morphological structure of GE-Pt NPs was observed by transmission electron microscopy (TEM). In vitro testing was performed using a human lung adenocarcinoma cell line (A549). A cytotoxicity examination was performed, using a WST-8 cell proliferation assay. Intracellular cisplatin content was quantified by inductively coupled plasma mass spectrometry (ICP-MS). In conclusion, we successfully prepared GE-Pt NPs, as spherical structures, approximately 75 nm in diameter, with a positive charge (). The encapsulation rate of cisplatin in GE-Pt was about 63.7%, and the EGCG loading rate was around 89%. A relatively low concentration of GE-Pt NPs (EGCG 5 μg/mL : cisplatin 2 μg/mL) exhibited significant cytotoxicity, compared to cisplatin alone. The GE-Pt NPs are freely taken up by cells via endocytosis, raising the intracellular cisplatin concentration to a therapeutic level. We consider that combination therapy of cisplatin and EGCG in nanoparticles (GE-Pt NPs) may help overcome cisplatin resistance and could effectively be used in the treatment of lung cancer.
      PubDate: Wed, 05 Aug 2020 15:05:06 +000
  • Towards Sophisticated 3D Interphase Modelling of Advanced
           Bionanocomposites via Atomic Force Microscopy

    • Abstract: Nanomechanical properties and interphase dimensions of PVA bionanocomposites reinforced with halloysite nanotubes (HNTs) and Cloisite 30B montmorillonite (MMT) were evaluated by means of peak force quantitative nanomechanical mapping (PFQNM). A three-phase theoretical composite model was established based on hard-core–soft-shell structures consisting of hard mono-/polydispersed anisotropic particles and soft interphase and matrices. Halpin-Tsai model and Mori-Tanaka model were employed to predict experimentally determined tensile moduli of PVA bionanocomposites where effective volume fraction of randomly oriented nanoparticles resulted from the inclusion of interphase properties and volume fractions. Overall, it was suggested that the estimation of elastic modulus according to effective volume fraction of nanoparticles revealed better agreement with experimental data as opposed to that based upon their nominal volume fraction. In particular, the use of polydispersed HNTs and Cloisite 30B MMT clays with Fuller particulate gradation was proven to yield the best prediction when compared with experimental data among all proposed theoretical models. This study overcomes the neglected real interphase characteristics in modelling nanocomposite materials with much more accurate estimation of their mechanical properties.
      PubDate: Tue, 04 Aug 2020 06:20:05 +000
  • Functionalization of Graphene Oxide Nanosheets Can Reduce Their
           Cytotoxicity to Dental Pulp Stem Cells

    • Abstract: Background. The dental pulp is a heterogeneous soft tissue that supplies nutrients and acts as a biosensor to identify pathogenic stimuli. Regeneration of the dental pulp is one of the desirable topics for researchers. Graphene oxide nanosheets (nGOs) help overexpression of the genes related to odontogenic differentiation of stem cells from dental pulps and increases attachment and proliferation of dental pulp stem cells. Despite its benefits, nGO may be considered as a threat to the environment and human health. Therefore, the purpose of this study was to evaluate the biocompatibility potential of graphene oxide (nGO), chitosan functionalized graphene oxide (nGO-CS), and carboxylated graphene (nGO-COOH) when exposed to human dental pulp stem cells (hDPSCs). Material and Methods. Some different aspects of biocompatibility of nGO, nGO-CS, and nGO-COOH were synthesized, and several intracellular effects induced by different concentrations of graphene-based nanosheets, including cell viability, intracellular oxidative damages, and various factors such as LDH, GSH, SOD, MDA, and MMP, were studied on hDPSCs. Results. According to results, IC50 was determined as 232.01, 467.81, and ≥1000 μg/mL for nGO, nGO-CS, and nGO-COOH, respectively. These results demonstrated the lower toxicity and higher cytocompatibility of nGO-CS and nGO-COOH compared to nGO. nGO-COOH not only has any adverse effect on the cell membrane and mitochondrial activity but also shows slight antioxidant activity at some concentrations. Conclusion. The findings help design safe and cytocompatible nGO derivatives for biomedical applications in dental fields.
      PubDate: Mon, 03 Aug 2020 14:35:02 +000
  • Superhydrophobic Hair-Like Nanowire Membrane for the Highly Efficient
           Separation of Oil/Water Mixtures

    • Abstract: Water pollution caused by oil leakage and oily wastewater has become a serious environmental problem. Therefore, it is important to develop an efficient material to remove oil from water. Given the cost and efficiency, the membrane with superhydrophobicity is the most used material for the separation of oil/water mixtures. However, many works have been done through modification with a fluorinated reagent, causing high cost and damage to the environment. In this work, a simple and fast two-step method is employed to achieve a superhydrophobic hair-like nanowire membrane. Through the alkali-assisted oxidation process and modification with nonfluorinated low surface energy chemical, the so-obtained membrane (denoted as SHM), with the water contact angle of about 164°, exhibits excellent separation efficiency for binary mixtures of water and oils (toluene, hexane, gasoline, and so on). Meantime, this membrane also exhibits excellent durability and reusability in the long-term separation process, indicating its great potential for practical application in the future.
      PubDate: Mon, 03 Aug 2020 07:50:07 +000
  • Fluorescent Mitoxantrone Hydrochloride Nanoparticles Inhibit the Malignant
           Behavior of Giant Cell Tumor of Bone via miR-125b/PTH1R Axis

    • Abstract: Objective. To explore the therapeutic effects and mechanism of fluorescent mitoxantrone hydrochloride nanoparticles on giant cell tumor of bone. Methods. The adsorption capacity of nanoparticles to hydroxyapatite (HA), cell adsorption capacity, encapsulation rate, particle size, and potential of the nanoparticles were determined by HPLC and Zetasizer Nano ZS nanomicelle potentiometer. MTT assay was used to determine the toxicity of nanoparticles to cells. The fluorescent intensity of the nanoparticles and their location in the cells were observed under a fluorescence microscope. RT-qPCR and Western blotting were then used to measure the expression levels of miRNA, mRNA, and proteins in cells. Transwell and Annexin V-FITC/PI staining tests were used to study the cell invasion and apoptotic rate, respectively. The dual-luciferase reporter gene experiment was then carried out to verify the binding relationship between miR-125b and its predicted target. Results. ALN-FOL-MTO-NLC nanoparticles showed a stronger adsorption capacity for HA and stronger toxicity to GCTB28 cells. Compared to normal tissues, the expression level of miR-125b in giant bone tumor tissue and cells was significantly downregulated, and the expression level of miR-125b was upregulated to some extent after treatment. Overexpression of miR-125b or treatment of ALN-FOL-MTO-NLC nanoparticles can inhibit the malignant behavior of GCTB28 cells, whereas the inhibition of the expression of miR-125b can promote the malignant behavior of GCTB28 cells. The result showed that parathyroid hormone receptor 1 (PTH1R) was a downstream target gene for miR-125b. Rescue experiment showed that the treatment of GCTB28 with ALN-FOL-MTO-NLC nanoparticles while inhibiting miR-125b expression can reduce the inhibitory effect of miR-125b on the malignant behavior of GCTB28 cells, whereas upregulating the expression levels of miR-125b and PTH1R in GCTB28 cells had no significant effect on the malignant behavior of GCTB28 cells. Conclusion. ALN-FOL-MTO-NLC nanoparticles have a certain inhibitory effect on the malignant behavior of giant cell tumor of bone through the miR-125b/PTH1R molecular axis.
      PubDate: Sat, 01 Aug 2020 03:35:18 +000
  • Chemosensing Test Paper Based on Aggregated Nanoparticles of a Barbituric
           Acid Derivative

    • Abstract: The development of sensitive, cheap, and portable methods for detecting nitroaromatics explosives has a profound significance and value for public health and environmental protection. For this purpose, a new D-π-A barbituric acid derivative CB-CYH with aggregation-induced emission (AIE) behavior was synthesized, which can interact with picric acid through photoinduced electron transfer (PET). Scanning electron microscopy (SEM) and dynamic light scattering (DLS) indicate that the enhanced emission of the compounds is related to the formation of nano-aggregates. It is well known that an important source of mechanochromic fluorescence (MCF) characteristic materials is the compound with AIE characteristics. The chemosensing test paper prepared by aggregated nanoparticles based on AIE properties is often subjected to external friction or squeeze during transportation or storage, resulting in changes of their optical properties, and destruction of test paper followed. Therefore, the development of compounds with AIE properties and stable optical properties in the presence of external stimuli is particularly important for chemosensing test paper. Molecular dynamics simulation (MDS) shows that the presence of hydrophobic cycloalkyl group in CB-CYH, which caused the molecules to be closely interspersed with each other; hence, it is difficult to change the microstructure and stacking mode of molecules by external stimulation simultaneously; the optical properties are not changed by external stimuli. Therefore, the test paper based on the AIE effect of CB-CYH was developed as chemosensing test paper for the detection of nitroaromatics.
      PubDate: Sat, 01 Aug 2020 02:50:16 +000
  • Novel Nano-Fe2O3-Co3O4 Modified Dolomite and Its Use as Highly Efficient
           Catalyst in the Ozonation of Ammonium Solution

    • Abstract: Catalytic ozonation is a new method used for removal of NH4OH solution. Therefore, high catalytic performance (activity and selectivity) should be achieved. In this work, we report the synthesis and catalytic performance of Fe2O3-Co3O4 modified dolomite in the catalytic ozonation of NH4OH solution. Dolomite was successfully activated and modified with Fe2O3 and Co3O4. Firstly, dolomite was activated by heating at 800°C for 3 h and followed by KOH treatment. Activated dolomite was modified with Fe2O3 by the atomic implantation method using FeCl3 as Fe source. Fe2O3 modified dolomite was further modified with Co3O4 by precipitation method. The obtained catalysts were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), N2 adsorption–desorption (BET), and temperature-programmed reduction (H2-TPR). From SEM image, it was revealed that nano-Fe2O3 and Co3O4 particles with the size of 80–120 nm. Catalytic performance of activated dolomite, Fe2O3 modified dolomite, and Fe2O3-Co3O4 modified dolomite in catalytic ozonation of NH4+ solution was investigated and evaluated. Among 3 tested catalysts, Fe2O3-Co3O4 modified dolomite has the highest NH4+ conversion (96%) and N2 selectivity (77.82%). Selectivity toward N2 over the catalyst was explained on the basis of bond strength M-O in oxides through the standard enthalpy of oxide. Catalyst with lower value has higher N2 selectivity and the order is the following: Co3O4 ( of 60 kcal (mole O)) > Fe2O3 ( of 70 kcal (mole O)) > MgO ( of 170 kcal (mole O)). Moreover, high reduction ability of Fe2O3-Co3O4 modified dolomite could improve the N2 selectivity by the reduction of NO3- to N2 gas.
      PubDate: Sat, 01 Aug 2020 02:35:17 +000
  • Micro- and Nanofibrillated Cellulose (MNFC) from Pineapple (Ananas
           comosus) Stems and Their Application on Polyvinyl Acetate (PVAc) and
           Urea-Formaldehyde (UF) Wood Adhesives

    • Abstract: Micro- and nanofibrillated cellulose (MNFC) was extracted from pineapple stems by acid hydrolysis, then characterized and tested in two concentrations (0.5 and 1.0 wt%) in polyvinyl acetate (PVAc) and urea-formaldehyde (UF) adhesives. The modified adhesives were used to glue three tropical wood species (Vochysia ferruginea, Cordia alliodora, and Gmelina arborea), and their corresponding bond strength resistance was determined. MNFC and the correspondent adhesives were characterized by TGA, FTIR, SEM, TEM, AFM, and viscosity determination. The TGA analysis of MNFC showed three decomposition reactions. The SEM, TEM, and AFM evaluations demonstrated the presence of micro- and nanosized dimensions of particles after the acid hydrolysis of pineapple stems. Adding 1 wt% MNFC to PVAc and UF adhesives increased their thermal stability in similar manner. Viscosity diminished in both modified adhesives with MNFC; however, this reduction did not affect the adhesion properties in the tropical wood tested. MNFC added to PVAc and UF adhesives improved shear strength (SS) of the glue line in the three tropical species tested. The highest SS increase was obtained when adding 0.5 wt% MNFC to PVAc in V. ferruginea, and 1 wt% MNFC concentration in the case of C. alliodora and G. arborea. In the case of UF adhesives, the application of 1 wt% MNFC produced significant differences in SS for the three tropical species studied.
      PubDate: Sat, 01 Aug 2020 01:20:20 +000
  • Electrochemical Characterization of Cu-Catalysed Si Nanowires as an Anode
           for Lithium-Ion Cells

    • Abstract: Silicon (Si) nanowires (NWs) grown on stainless-steel substrates by Cu-catalysed Chemical Vapour Deposition (CVD) have been prepared to be used as anodes in lithium-ion batteries. The use of NWs can overcome the problems related to the Si volume changes occurring during lithium alloying by reducing stress relaxation and preventing material fragmentation. Moreover, since the SiNWs are grown directly on the substrate, which also acts as a current collector, an excellent electrical contact is generated between the two materials without the necessity to use additional binders or conducting additives. The electrochemical performance of the SiNWs was tested in cells using lithium metal as the anode. A large irreversible capacity was observed during the first cycle and, to a lesser extent, during the second cycle. All the subsequent cycles showed good reversibility even if the coulombic efficiency did not exceed 95%, suggesting the formation of an unstable SEI film and a continuous decomposition of the electrolyte on the silicon surface. The absence of a stable SEI film was assumed responsible for a linear capacity fade observed upon cycling. On the other hand, the electrochemical characterization performed at different values of the charging current showed that SiNWs possess an exceptionally high rate capability.
      PubDate: Wed, 22 Jul 2020 08:35:07 +000
  • Exploration of the Antimicrobial and Catalytic Properties of Gold
           Nanoparticles Greenly Synthesized by Cryptolepis buchanani Roem. and
           Schult Extract

    • Abstract: A green, simple, and rapid synthesis of gold nanoparticles using plant extract, Cryptolepis buchanani Roem. and Schult, and their applications are first described in this paper. The formation of gold nanoparticles was visually observed by the appearance of a ruby red color, which was further indicated by an absorption peak at 530 nm in UV-Vis spectroscopy. Optimization of reaction parameters for the gold nanoparticles was also investigated. Various analytical techniques were employed as part of the process of characterizing the resulting gold nanoparticles. Fourier transform infrared (FTIR) analysis revealed that the phenol compounds present in the extract were responsible for gold(III) reduction and stabilization of gold nanoparticles. Transmission electron microscopy (TEM) analysis showed that the gold nanoparticles were spherical in shape with an average diameter of 11 nm. Powder X-ray diffraction (XRD) pattern indicated that the green synthesis approach produced highly crystalline, face-centered cubic gold nanoparticles. Energy-dispersive X-ray spectroscopy (EDS) measurements confirmed the presence of elemental gold in the prepared nanoparticles. The negative zeta potential value of gold nanoparticles was found to be -30.28 mV. The green synthesized gold nanoparticles expressed effective antibacterial activity against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Acinetobacter baumannii and exhibited an excellent catalytic property in terms of its reduction ability of methylene blue.
      PubDate: Mon, 20 Jul 2020 10:05:03 +000
  • Magnetic Properties, Adhesion, and Nanomechanical Property of Co40Fe40W20
           Films on Si (100) Substrate

    • Abstract: In this study, a Co40Fe40W20 alloy was sputtered onto Si (100) with thicknesses () ranging from 18 to 90 nm, and the corresponding structure, magnetic properties, adhesive characteristics, and nanomechanical properties were investigated. X-ray diffraction (XRD) patterns of the Co40Fe40W20 films demonstrated a significant crystalline body-centered cubic (BCC) CoFe (110) structure when the thickness was 42 nm, and an amorphous status was shown when the thickness was 18 nm, 30 nm, 60 nm, and 90 nm. The saturation magnetization () showed a saturated trend as was increased. Moreover, the coercivity () showed a minimum 1.65 Oe with 30 nm. was smaller than 4.5 Oe owing to the small grain size distribution and amorphous structure, indicating that the Co40Fe40W20 film had soft magnetism. The low-frequency alternating current magnetic susceptibility () decreased as the frequency was increased. The revealed a thickness effect when greater thicknesses had a large . The maximum ac and optimal resonance frequency () of Co40Fe40W20 were investigated. The maximum indicated the spin sensitivity and was maximized at the optimal resonance frequency. The 90 mm thickness had the highest 0.18 value at an of 50 Hz. The contact angles of the Co40Fe40W20 films are less than 90°, which indicated that the film had a good wetting effect and hydrophilicity. The surface energy was correlated with the adhesion and displayed a concave-down trend. CoFeW films can be used as a seed or buffer layer; therefore, the surface energy and adhesion are very important. The highest surface energy was 30.12 mJ/mm2 at 42 nm and demonstrated high adhesion. High surface energy has corresponding strong adhesive performance. The increased surface roughness can induce domain wall pinning effect and high surface energy, causing a high coercivity and strong adhesion. The increase of hardness and Young’s modulus could be reasonably inferred from the thinner CoFeW films. The hardness and Young’s modulus of CoFeW films are also displayed to saturated tendency when increasing thickness.
      PubDate: Mon, 20 Jul 2020 08:20:08 +000
  • An Effective Method for Hybrid CNT/GNP Dispersion and Its Effects on the
           Mechanical, Microstructural, Thermal, and Electrical Properties of
           Multifunctional Cementitious Composites

    • Abstract: This paper reports a study undertaken to achieve a compatible and affordable technique for the high-quality dispersion of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) in an aqueous suspension to be used in multifunctional cementitious composites. In this research work, two noncovalent surfactants with different dispersion mechanisms (Pluronic F-127 (nonionic) and sodium dodecylbenzene sulfonate (SDBS) (ionic)) were used. We evaluated the influences of various factors on the dispersion quality, such as the surfactant concentration, sonication time, and temperature using UV-visible spectroscopy, optical microscopic image analysis, zeta potentials, and particle size measurement. The effect of tributyl phosphate (TBP) used as an antifoam agent was also evaluated. The optimum suspensions of each surfactant were used to produce cementitious composites, and their mechanical, microstructural, electrical, and thermal behaviors were assessed and analyzed. The best dispersed CNT+GNP aqueous suspensions using Pluronic and SDBS were obtained for concentrations of 10% and 5%, respectively, with 3 hours of sonication, at 40°C, with TBP used for both surfactants. The results also demonstrate that cementitious composites reinforced with CNT+GNP/Pluronic showed better mechanical performance and microstructural characteristics due to the higher quality of the dispersion and the increasing hydration rate. Composites prepared with an SDBS suspension demonstrated lower electrical and thermal conductivities compared to those of the Pluronic suspension due to changes in the intrinsic properties of CNTs and GNPs by the SDBS dispersion mechanism.
      PubDate: Fri, 17 Jul 2020 09:20:05 +000
  • Analysis of Electrical Characteristics of Pd/n-Nanocarbon/p-Si
           Heterojunction Diodes: By C-V-f and G/w-V-f

    • Abstract: Diamond films are candidate for a wide range of applications, due to their wide band gap, high thermal conductivity, and chemical stability. In this report, diamond-based heterojunction diodes (HJDs) were fabricated by growing n-type nanocarbon composite in the form of nitrogen-doped ultrananocrystalline diamond/amorphous carbon (UNCD/a-C:H:N) films onto p-type Si substrates. X-ray photoemission and the Fourier transform infrared spectroscopies were employed to examine the contribution of nitrogen atoms from the gas phase into the deposited films. The results indicate the incorporation of nitrogen atoms into the grain boundaries of UNCD/a-C:H film by replacing hydrogen atoms. The capacitance- (C-V-f), conductance- (G/ω-V-f), and series resistance-voltage characteristics of the fabricated Pd/n-(UNCD/a-C:H:N)/p-Si HJDs were studied in the frequency range of 40 kHz-2 MHz. The existence of interface states () and series resistance () were attributed to the interruption of the periodic lattice structure at the surface of the fabricated junction as well as the defects on the (UNCD/a-C:H:N)/Si interface. By increasing the frequency (≥500 kHz), the reveals an almost frequency-independent behavior, which indicates that the charges at the interface states cannot follow ac signal at higher frequency. The obtained results demonstrated that the UNCD/a-C:H:N is a promising n-type semiconductor for diamond-based heterostructure diodes.
      PubDate: Fri, 17 Jul 2020 05:20:01 +000
  • Hydrothermal Synthesis of Hydroxyapatite Assisted by Gemini Cationic

    • Abstract: Hydroxyapatite (HAp) has been synthesized by a hydrothermal treatment in the presence of a Gemini cationic surfactant. This process is a new strategy of synthesis and mainly consists of two parts, i.e., an ordinary hydrothermal treatment and a liquid-solid-solution reaction (LSS strategy). Crystalline HAp nanorods or nanogranules with length of 50-180 nm and width of 30-40 nm were produced by ordinary hydrothermal treatment. By contrary, HAp spheres with a 3D architecture were fabricated with Gemini cationic surfactant by LSS strategy. For Gemini cationic surfactant concentration of 0.05%, spherical HAp particles with an average diameter of 1.7 μm were obtained.
      PubDate: Wed, 15 Jul 2020 12:50:04 +000
  • Facile Synthesis of Nanoporous Amorphous Silica on Silicon Substrate

    • Abstract: Large-scale nanoporous amorphous silica nanostructure is fabricated via a simply etched approach and effective thermal evaporation process. The nanoporous amorphous silica was synthesized by a general and scalable process via etching by metal particles on the silica sheets. In this study, we elucidated how a nanoporous structure was performed and the addition of indium is the key factor that determined the formation of the nanoporous structures. The morphology and the sizes of the porous structure could be tunable by the sizes and the shape of the metal. We discovered a promising optical property in the as-synthesized nanostructures, which have a photoluminescence in an intensive ultraviolet emission as well as a broad visible emission at room temperature.
      PubDate: Tue, 14 Jul 2020 05:35:04 +000
  • Sequential Delivery of BMP2-Derived Peptide P24 by Thiolated
           Chitosan/Calcium Carbonate Composite Microspheres Scaffolds for Bone

    • Abstract: The combination of tissue-engineered bone scaffolds with osteogenic induction molecules is an important strategy for critical-sized bone defects repair. We synthesized a novel thiolated chitosan/calcium carbonate composite microsphere (TCS-P24/CA) scaffold as a carrier for bone morphogenetic protein 2- (BMP2-) derived peptide P24 and evaluated the release kinetics of P24. The effect of TCS-P24/CA scaffolds on the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs) was evaluated by scanning electron microscope (SEM), CCK-8, ALP assay, alizarin red staining, and PCR. A 5 mm diameter calvarial defect was created, then new bone formation was evaluated by Micro-CT and histological examination at 4 and 8 weeks after operation. We found the sequential release of P24 could last for 29 days. Meanwhile, BMSCs revealed spindle-shaped surface morphology, indicating the TCS-P24/CA scaffolds could support cell adhesion and mRNA levels for ALP, Runx2, and COL1a1 were significantly upregulated on TCS-10%P24/CA scaffold compared with other groups in vitro (). Similarly, the BMSCs exhibited a higher ALP activity as well as calcium deposition level on TCS-10%P24/CA scaffolds compared with other groups (). Analysis of in vivo bone formation showed that the TCS-10%P24/CA scaffold induced more bone formation than TCS-5%P24/CA, TCS/CA, and control groups. This study demonstrates that the novel TCS-P24/CA scaffolds might contribute to the delivery of BMP2-derived Peptide P24 and is considered to be a potential candidate for repairing bone defects.
      PubDate: Mon, 13 Jul 2020 05:20:04 +000
  • Theanine-Modified Graphene Oxide Composite Films for Neural Stem Cells
           Proliferation and Differentiation

    • Abstract: The central nervous system (CNS) injury has been a worldwide clinical problem for regenerative medicine. Nerve tissue engineering is a new strategy for CNS injury. Among kinds of biomaterials, graphene oxide (GO)-based degradable composite materials are considered to be promising in the field of neurogenesis. In this study, GO and L-theanine (TH) were combined by chemical grafting to prepare a new PLGA/GO-TH composite material. X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared spectra (FTIR), contact angle testers, and mechanical testers were performed to obtain characterization of composite materials. The protein adsorption efficiency of the PLGA/GO-TH films was then evaluated. Next, the effect of the composite films on neural stem cell (NSC) survival, proliferation, and differentiation was investigated. Our results indicated that L-theanine was successfully grafted onto GO. PLGA/GO-TH composite film can significantly improve NSC survival, proliferation, and neuronal differentiation. Our results demonstrated that the neurogenesis function of a novel PLGA/GO-TH composite film and its potential as a carrier for the further application in the CNS injury.
      PubDate: Mon, 13 Jul 2020 05:05:02 +000
  • Amperometric Biosensor Based on Coimmobilization of Multiwalled Carbon
           Nanotubes and Horseradish Peroxidase-Gold Nanocluster Bioconjugates for
           Detecting H2O2

    • Abstract: An enzyme-based amperometric biosensor was fabricated for detecting hydrogen peroxide (H2O2). Horseradish peroxidase (HRP) was modified using functionalized fluorescent gold nanoclusters (AuNCs) via biomineralization. HRP-AuNCs were successfully immobilized on multiwalled carbon nanotube- (MWCNT-) coated carbon fiber ultramicroelectrodes (CFUMEs). The AuNCs, which act as molecular electric wires, effectively promote the electron transfer between the enzyme active center and the electrode. Additionally, the HRP conjugated with the AuNCs retains its biological activity, which enables the catalytic reaction of H2O2. The HRP-AuNCs/MWCNTs/CFUMEs have been proven as excellent amperometric sensors for H2O2. The sensitivity of the H2O2 biosensor is , and the detection limit is estimated to be 443 nM. Furthermore, the biosensor exhibited long-term stability and good reproducibility. Moreover, the biosensor has been tested by determining the H2O2 concentration in calf serum samples.
      PubDate: Sat, 11 Jul 2020 13:20:04 +000
  • Simultaneous Voltammetric Determination of Uric Acid, Xanthine, and
           Hypoxanthine Using CoFe2O4/Reduced Graphene Oxide-Modified Electrode

    • Abstract: In the present paper, the synthesis of cobalt ferrite/reduced graphene oxide (Co2Fe2O4/rGO) composite and its use for the simultaneous determination of uric acid (UA), xanthine (XA), and hypoxanthine (HX) is demonstrated. Cobalt ferrite hollow spheres were synthesized by using the carbonaceous polysaccharide microspheres prepared from a D-glucose solution as templates, followed by calcination. The CoFe2O4/rGO composite was prepared with the ultrasound-assisted method. The obtained material was characterized by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, EDX elemental mapping, and nitrogen adsorption/desorption isotherms. The electrochemical behavior of UA, XA, and HX on the CoFe2O4/rGO-modified electrode was studied with cyclic voltammetry and differential pulse voltammetry (DPV). The modified electrode exhibits excellent electrocatalytic activity towards the oxidation of the three compounds. The calibration curves for UA, XA, and HX were obtained over the range of 2.0–10.0 μM from DPV. The limits of detection for UA, XA, and HX are 0.767, 0.650, and 0.506 μM, respectively. The modified electrode was applied to the simultaneous detection of UA, XA, and HX in human urine, and the results are consistent with those obtained from the high-performance liquid chromatography technique.
      PubDate: Fri, 10 Jul 2020 13:20:04 +000
  • Gelatin Encapsulated Curcumin Nanoparticles Moderate Behavior of Human
           Primary Gingival Fibroblasts In Vitro

    • Abstract: Objective. Currently, there is no study evaluating the effect of nano-curcumin on human oral cells in vitro. In this study, we developed gelatin encapsulated curcumin nanoparticles (GelCur) and cultured the primary human gingival fibroblasts (hGFs) to verify the effect of GelCur on the cellular events related to oral wound healing capacities, such as cell migration and proliferation of gingival fibroblasts. Materials and Methods. GelCur was produced by the sonoprecipitation method. Particle size, zeta potential, SEM morphological observation, entrapment efficiency, and drug loading were used to characterize new GelCur. Primary hGFs were cultured from the attached gingival tissue of healthy third molar teeth. The effect of different concentrations of GelCur on hGFs was investigated by cell toxicity assay (MTT), cell proliferation assay, and cell migration assays by scratch test and transwell migration assay. Results. The average particle size of GelCur was around 356 nm with a moderate zeta potential of 26.5 mV. The mean PdI value of GelCur was 0.2, while the entrapment efficiency and drug loading of curcumin in this study were around 57% and 2.4%, respectively. IC30 of GelCur on hGFs was 3.96 mg/ml, while IC50 was 12,37 mg/ml. More than 70% of cells were viable after 24 hours incubated with 1, 2, and 3 mg/ml GelCur. At the concentration of 2 mg/ml GelCur virtually limited cell proliferation and migration. Conclusions. GelCur remained physically stable and did not alter cell proliferation and migration. The concentration of GelCur
      PubDate: Thu, 09 Jul 2020 05:05:06 +000
  • Enhanced Crystallinity and Antibacterial of PHBV Scaffolds Incorporated
           with Zinc Oxide

    • Abstract: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has a great potential in bone repair, but unfortunately, the poor mechanical properties limit its further application. In this work, zinc oxide (ZnO) nanoparticles were incorporated into PHBV porous scaffold fabricated by selective laser sintering technique. It was because ZnO nanoparticles could provide nucleating sites for the orderly stacking of polymer chains, thereby enhancing the crystallinity of PHBV. It was well known that the mechanical properties of PHBV scaffold could be enhanced with the increase of crystallinity. More significantly, the released Zn2+ would combine negatively charged cell membranes of bacterial through electrostatic interaction and consequently destructed the protein structure and resulted in the death of bacterial, which was highly desired in reducing the risk of implant infection. Results indicated that the relative crystallinity of scaffold with 3 wt.% ZnO increased remarkably from 38% to 64% compared to pure PHBV scaffold, which effectively enhanced the compression strength and modulus by 56% and 51.5%, respectively. Moreover, the scaffold had a favorable antibacterial activity. Cell culture experiments proved that the scaffold could promote the cell behaviors. The positive results demonstrated the scaffold may serve as a potential replacement in bone repair.
      PubDate: Wed, 08 Jul 2020 06:35:03 +000
  • Polymer Blend Containing MoO3 Nanowires with Antibacterial Activity
           against Staphylococcus epidermidis ATCC 12228

    • Abstract: Antibacterial activity of a polymer nanocomposite containing water-soluble poly(ethylene oxide) (PEO), water insoluble poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), and MoO3 nanowires or MoO3 microparticles as antibacterial active substances is reported. The UV-vis absorption method was used for the illumination of dissolving of the MoO3 particles of different size and morphology in water. Dissolving of MoO3 nanowires (1 mg ml-1) decreases pH bellow 3.6 in only 3 min and below 3 in 15 min, while dissolving of the PEO/PVDF-HFP/MoO3 nanowires coating (5 mg ml-1) decreases pH bellow 3.6 in 90 min. These coatings completely destroy the Staphylococcus epidermidis ATCC 12228 bacterial strain within 3 h. The proposed applications are antibacterial protective coatings of contact surfaces.
      PubDate: Mon, 06 Jul 2020 06:20:03 +000
  • Optimization of Milling Procedures for Synthesizing Nano-CaCO3 from
           Achatina fulica Shell through Mechanochemical Techniques

    • Abstract: The possibility of obtaining calcium carbonate nanoparticles from Achatina fulica shell through mechanochemical synthesis to be used as a modifying filler for polymer materials has been studied. The process of obtaining calcium carbonate nanopowders includes two stages: dry and wet milling processes. At the first stage, the collected shell was dry milled and undergone mechanical sieving to ≤50 μm. The shell particles were wet milled afterward with four different solvents (water, methanol, ethylene glycol, and ethanol) and washed using the decantation method. The particle size and shape were investigated on transmission electron microscopy, and twenty-three particle counts were examined using an iTEM image analyzer. Significantly, nanoparticle sizes ranging from 11.56 to 180.06 nm of calcium carbonate was achieved after the dry and wet milling processes. The size particles collected vary with the different solvents used, and calcium carbonate synthesis with ethanol offered the smallest organic particle size with the average size ranging within 13.48-42.90 nm. The effect of the solvent on the chemical characteristics such as the functional group, elemental composition, and carbonate ion of calcium carbonate nanopowders obtained from Achatina fulica shell was investigated. The chemical characterization was analyzed using Fourier transform infrared (FTIR) and a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscope (EDX). The effect of milling procedures on the mechanical properties such as tensile strength, stiffness, and hardness of prepared nanocomposites was also determined. This technique has shown that calcium carbonate nanoparticles can be produced at low cost, with low agglomeration, uniformity of crystal morphology, and structure from Achatina fulica shell. It also proved that the solvents used for milling have no adverse effect on the chemical properties of the nano-CaCO3 produced. The loading of calcium carbonate nanoparticles, wet milled with different solvents, exhibited different mechanical properties, and nanocomposites filled with methanol-milled nano-CaCO3 offered superior mechanical properties.
      PubDate: Sat, 04 Jul 2020 12:35:02 +000
  • Effects of Graphene-Based Materials on the Behavior of Neural Stem Cells

    • Abstract: Neural tissue engineering is a research field aimed at rebuilding neurological defects resulting from severe trauma, vascular impairment, syringomyelia, spinal stenosis, malignant and benign tumors, or transverse myelitis. Of particular interest, neural stem cells (NSCs) and the effective differentiation and proliferation thereof are attractive research areas that have yielded widespread utility for implants or neural scaffold materials. Graphene and its derivatives have more effective and efficient physical, chemical, and biological abilities than other nanomaterials, and may act as new coating materials to promote neuronal proliferation and differentiation. Therefore, here, we review the recent progress of studies that examine the effect of graphene-based materials on NSCs. We specifically review how graphene and its derivatives influence NSC adhesion, differentiation, and proliferation. We also discuss the risks of graphene-based materials, including their anti-inflammatory effects, in the realm of neural tissue engineering as well as current challenges facing the field today.
      PubDate: Fri, 03 Jul 2020 04:50:01 +000
  • Recent Trends in Nanocarrier-Based Targeted Chemotherapy: Selective
           Delivery of Anticancer Drugs for Effective Lung, Colon, Cervical, and
           Breast Cancer Treatment

    • Abstract: Chemotherapy drugs are cytotoxic to tumor cells, but their lack of specificity leads to a range of side effects. The off-target effects of such drugs can be improved through the use of nanoparticles (NPs). Administered NPs show enhanced accumulation in tumor tissue near the blood vessels, enhancing both anticancer drug permeability and tumor retention. Several nanocarriers are now approved for clinical use in a range of cancer therapies, and many novel formulations are in the later stages of clinical trials. Here, we describe the advances in this area through the review of novel NP drug formulations developed over the last year. We focus specifically on lung, colon, cervical, and breast cancers and discuss the future of NPs as potential treatment options in these areas.
      PubDate: Thu, 02 Jul 2020 13:05:01 +000
  • Photoelectrochemical Properties of Porous Si/TiO2 Nanowire Heterojunction

    • Abstract: The porous silicon as substrate material was prepared by metal-assisted chemical etching (MACE) method. The TiO2 nanowire cover layer on porous silicon was prepared by hydrothermal method. Thus, porous Si/TiO2 nanowire heterostructure was obtained. The formation of the porous Si/TiO2 nanowire heterostructure was confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results of diffuse reflection spectra (DRS) show that porous Si/TiO2 nanowire has the highest antireflectivity among the four tested samples. Photoelectric catalysis (PEC) and photocurrent measurement show that the porous Si/TiO2 nanowire heterostructure has higher photoelectric catalytic and photocurrent activity than the other samples under the simulated solar light and visible light irradiation. The results showed that the construction of the porous Si/TiO2 nanowire heterostructure improved the photoelectrochemical properties, which is attributed to the heterogeneous effect and window effect.
      PubDate: Wed, 01 Jul 2020 00:35:15 +000
  • Synchrotron FTIR Light Reveals Signal Changes of Biofunctionalized
           Magnetic Nanoparticle Attachment on Salmonella sp.

    • Abstract: The objective of this research was to develop new technology for possible noncontact, nondestructive, and culture-independent rapid detection of Salmonella using ferromagnetic nanoparticles. Light signal changes of particles, cells, and their reaction stages were investigated. Amino-functionalized ferromagnetic nanoparticles (amino-FMNs) were synthesized and modified by glutaraldehyde to crosslink the attachment of specific antibodies to the particles. The nanoparticle complex was used to capture, concentrate, and isolate Salmonella in a culture broth. Signal changes of the four stages of the nanoparticles-amino-glutaraldehyde-antibodies-Salmonella cell attachments were tracked with sensitive Synchrotron FTIR spectroscopy (SR-FTIR). The unique peaks from these four steps were identified. Results can be applied to develop a new test method or a new test/universal reader for rapid, nondestructive, and culture-independent detection of Salmonella in food products using IR spectroscopy at wave numbers 1454 cm-1, 1542 cm-1, and 1414 cm-1, respectively.
      PubDate: Mon, 29 Jun 2020 11:35:10 +000
  • Cavitation-Enhanced Delivery of the Nanomaterial Graphene
           Oxide-Doxorubicin to Hepatic Tumors in Nude Mice Using 20 kHz
           Low-Frequency Ultrasound and Microbubbles

    • Abstract: Graphene oxide (GO) is a kind of nanomaterial. Here, we explored its application in tumor treatment. We loaded doxorubicin onto the surface of GO to form graphene oxide-doxorubicin (GO-DOX). After injection of the contrast agent SonoVue microbubbles (MBs) into the tail vein of tumor-bearing nude mice, subcutaneous hepatic carcinomas inoculated with the HepG2 cell line were irradiated with 20 kHz low-frequency ultrasound (US). Subsequently, GO-DOX was injected into the tail vein of nude mice. Transmission electron microscopy (TEM) and TUNEL assays were performed to observe the curative effects. Biocompatibility tests of GO-DOX included routine blood cell counts, blood smears, serum biochemical assays, and histological sampling of important organs. It was found that the nanomaterial GO-DOX promoted apoptosis of tumor cells in nude mice. TEM of the USMB+GO-DOX treatment showed vascular endothelial cell wall rupture, widened endothelial cell gaps, black granules in the vascular lumen, interstitial erythrocyte leakage, and apparent apoptosis of tumor cells. There were no toxic side effects of GO-DOX on the blood system and in the major organs of these mice. Ultrasound cavitation destroys tumor blood vessels and enhances the release of nanomaterials to tumor cells of nude mice.
      PubDate: Mon, 29 Jun 2020 11:35:09 +000
  • Green Synthesis of Carbon Dots from Grapefruit and Its Fluorescence

    • Abstract: In this study, undoped carbon quantum dots (UCQDs, UCQDs-peel) and N-doped carbon dots (NCQDs) were prepared by a facile one-pot environmentally friendly hydrothermal method using grapefruit as carbon sources in the absence and presence of area, respectively. The structure, morphology, and fluorescence properties of three samples were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and photoluminescence (PL). It was found that three types of CQDs could emit blue fluorescence with different intensities when irradiated with ultraviolet light. Compared to the luminescence properties of UCQDs, NCQDs, and UCQDs-peel, it can be seen that the fluorescence intensity of NCQDs was strongest due to the presence of NH and C-N bonds.
      PubDate: Mon, 29 Jun 2020 11:20:08 +000
  • Biosynthesis of Silver and Gold Nanoparticles Using Aqueous Extract of
           Codonopsis pilosula Roots for Antibacterial and Catalytic Applications

    • Abstract: In this study, biogenic silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized by a green approach using an aqueous extract from Codonopsis pilosula (CP) roots as a reducing and stabilizing agent. The formation of CP-AgNPs and CP-AuNPs was confirmed and optimized by UV-Vis spectroscopy. The CP-AgNPs and CP-AuNPs obtained under optimum conditions of metal ion concentration, reaction temperature, and reaction time were characterized by high-resolution transition electron microscopy (HR-TEM), selected area electron diffraction (SAED) analysis, field-emission scan electron microscopy (FE-SEM), powder X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, dispersive X-ray spectroscopy (EDX), and dynamic light scattering (DLS) method. It has been found that the biosynthesized CP-AgNPs and CP-AuNPs were formed in spherical shape with an average size of and , respectively. The biosynthesized metallic nanoparticles exhibited selective bacterial activity against three bacterial strains including two Gram-positive bacteria of Bacillus subtilis and Staphylococcus aureus and one Gram-negative bacteria of Escherichia coli. Meanwhile, there was no antibacterial activity detected toward Gram-negative Salmonella enteritidis. CP-AgNPs and CP-AuNPs also manifested an excellent catalytic performance in the reduction of 1,4-dinitrobenzene, 2-nitrophenol, 3-nitrophenol, and 4-nitrophenol.
      PubDate: Wed, 24 Jun 2020 07:05:04 +000
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-