Abstract: Spiral angel is an important structure parameter of spiral oil wedge sleeve bearing, which produces greater impact on bearing performance. Based on JFO boundary condition, the generalized Reynolds equations considering four slip conditions are established. Using the concept of partial derivatives, stiffness and damping coefficients of sleeve bearing are calculated. The results show that carrying capacity and friction drag of oil film decrease, temperature rise decreases first and then increases, and end leakage rate, stiffness, and damping coefficients generally increase first and then decrease with the increase of spiral angle. The carrying capacity, friction drag, temperature rise, stiffness, and damping coefficients are smaller and the end leakage rate is higher considering wall slip and JFO condition compared with reckoning with no slip and Reynolds boundary condition. PubDate: Tue, 05 Jun 2018 00:00:00 +000

Abstract: In side channel blowers, the pressure field is the result of complex, inner flow mechanisms. While there are already experimental investigations on the wall pressure distributions, little is known about the pressure in the rotating system, i.e., on the blade surface. In this work, we present an experimental setup for measuring the unsteady blade surface pressure in several positions. The acquired data will be complemented by and compared to the additionally measured wall pressure on the side channel housing. Miniature pressure sensors are integrated into the impeller. It is modified to ensure flush mounted membranes of the sensors and to avoid impacting on the flow field. A telemetric system is used for a wireless transfer of the data from the rotating system to the data recorder. As a result, we show the time-resolved pressure distribution as well as its phase-locked ensemble average. The variations of the pressure field are related to the integral pressure difference across the turbomachine and to its rotational speed. Due to the high temporal resolution of the measurement data, an exact spatial localization of crucial flow phenomena is achieved. Low integral pressure differences show a nearly linear increase of the pressure in circumferential direction, while greater integral pressure differences evolve exponentially over the azimuth. The results confirm the circulatory flow theory. Different rotational speeds elicit a comparable behavior. The stripper is a dominant source for pressure fluctuations. Its individual geometric discontinuities are correlated to the flow field. Our results provide a deeper understanding of the flow phenomena in side channel blowers and the theory of pressure generation. Although the measurements were performed for only one type of side channel blower with a double-flow configuration and open blades, the energy transfer mechanism is the same for other modifications like single flow or closed blade versions. PubDate: Sun, 03 Jun 2018 00:00:00 +000

Abstract: A steady mixing plane approach is compared with the time-averaged solution of an unsteady full annulus calculation for a conventional fan operating at load-controlled windmill. The objective is to assess the added value of a complete unsteady calculation compared with a more classical approach, especially concerning the effect of the spatial and temporal periodicity release in such an unusual operation as windmill. Experiment with global steady measurements and rotor radial characterizations was conducted. Numerical analysis demonstrates that windmilling global performances obtained with the time-averaged solution of the unsteady simulation are not far different from the steady case, especially in the rotor. Some differences arise in the stator, particularly regarding the velocity field. Temporal periodicity release in this row has clearly a significant effect on the flow unsteady response. A detailed analysis highlights that generic patterns of windmilling flows recorded on a steady approach are also reported on the unsteady case. PubDate: Thu, 17 May 2018 08:11:36 +000

Abstract: Background. In order to investigate the effect of aerodynamic characteristics of S series airfoils on the straight-bladed vertical axis wind turbine (SB-VAWT), numerical simulations and wind tunnel experiments were carried out using a small SB-VAWT model with three kinds of blade airfoils, which are asymmetric airfoil S809, symmetric airfoil S1046, and NACA0018 used for performance comparison among S series. The aerodynamics characteristics researched in this study included static torque coefficient, out power coefficient, and rotational speed performance. The flow fields of these three kinds of blade under static and dynamic conditions were also simulated and analyzed to explain the mechanism effect of aerodynamic performance. According to the results, the SB-VAWT with airfoil S1046 has better dynamic aerodynamic characteristics than other two airfoils, while the SB-VAWT with airfoil S809 is better in terms of the static characteristics. As the most suitable airfoil for SB-VAWT, the S series airfoil is worth researching deeply. PubDate: Wed, 16 May 2018 00:00:00 +000

Abstract: Nowadays, bulk-flow models are the most time-efficient approaches to estimate the rotor dynamic coefficients of labyrinth seals. Dealing with the one-control volume bulk-flow model developed by Iwatsubo and improved by Childs, the “leakage correlation” allows the leakage mass-flow rate to be estimated, which directly affects the calculation of the rotor dynamic coefficients. This paper aims at filling the lack of the numerical modelling for staggered labyrinth seals: a one-control volume bulk-flow model has been developed and, furthermore, a new leakage correlation has been defined using CFD analysis. Design and analysis of computer experiments have been performed to investigate the leakage mass-flow rate, static pressure, circumferential velocity, and temperature distribution along the seal cavities. Four design factors have been chosen, which are the geometry, pressure drop, inlet preswirl, and rotor peripheral speed. Finally, dynamic forces, estimated by the bulk-flow model, are compared with experimental measurements available in the literature. PubDate: Tue, 15 May 2018 00:00:00 +000

Abstract: This paper presents a method to control the rotor speed of wind turbines in presence of gearbox efficiency fault. This kind of faults happens due to lack of lubrication. It affects the dynamic of the principal shaft and thus the rotor speed. The principle of the fault tolerant control is to find a bloc that equalizes the dynamics of the healthy and faulty situations. The effectiveness decrease impacts on not only the dynamics but also the steady state value of the rotor speed. The last reason makes it mandatory to add an integral term on the steady state error to cancel the residual between the measured and operating point rotor speed. The convergence of the method is proven with respect to the rotor parameters and its effectiveness is evaluated through the rotor speed. PubDate: Mon, 30 Apr 2018 00:00:00 +000

Abstract: Numerical simulation of temperature field of cooled turbine blades is a required element of gas turbine engine design process. The verification is usually performed on the basis of results of test of full-size blade prototype on a gas-dynamic test bench. A method of calorimetric measurement in a molten metal thermostat for verification of a thermal model of cooled blade is proposed in this paper. The method allows obtaining local values of heat flux in each point of blade surface within a single experiment. The error of determination of local heat transfer coefficients using this method does not exceed 8% for blades with radial channels. An important feature of the method is that the heat load remains unchanged during the experiment and the blade outer surface temperature equals zinc melting point. The verification of thermal-hydraulic model of high-pressure turbine blade with cooling allowing asymmetrical heat removal from pressure and suction sides was carried out using the developed method. An analysis of heat transfer coefficients confirmed the high level of heat transfer in the leading edge, whose value is comparable with jet impingement heat transfer. The maximum of the heat transfer coefficients is shifted from the critical point of the leading edge to the pressure side. PubDate: Mon, 23 Apr 2018 00:00:00 +000

Abstract: This paper investigates the aerodynamics of a transonic impeller using static pressure measurements. The impeller is a high-speed, high-pressure-ratio wheel used in small gas turbine engines. The experiment was conducted on the single stage centrifugal compressor facility in the compressor research laboratory at Purdue University. Data were acquired from choke to near-surge at four different corrected speeds (Nc) from 80% to 100% design speed, which covers both subsonic and supersonic inlet conditions. Details of the impeller flow field are discussed using data acquired from both steady and time-resolved static pressure measurements along the impeller shroud. The flow field is compared at different loading conditions, from subsonic to supersonic inlet conditions. The impeller performance was strongly dependent on the inducer, where the majority of relative diffusion occurs. The inducer diffuses flow more efficiently for inlet tip relative Mach numbers close to unity, and the performance diminishes at other Mach numbers. Shock waves emerging upstream of the impeller leading edge were observed from 90% to 100% corrected speed, and they move towards the impeller trailing edge as the inlet tip relative Mach number increases. There is no shock wave present in the inducer at 80% corrected speed. However, a high-loss region near the inducer throat was observed at 80% corrected speed resulting in a lower impeller efficiency at subsonic inlet conditions. PubDate: Tue, 10 Apr 2018 00:00:00 +000

Abstract: In this study, a counter-rotating-type pump-turbine unit was optimized to improve the pump and turbine mode efficiencies simultaneously. Numerical analysis was carried out by solving three-dimensional Reynolds-averaged Navier–Stokes equations using the shear stress turbulence model. The hub and tip blade angles of the rear impeller (in the pump mode) were selected as the design variables by conducting a sensitivity test. An optimization process based on steady flow analysis was conducted using a radial basis neural network surrogate model with Latin hypercube sampling. The pump and turbine mode efficiencies of the unit were selected as the objective functions and they combined into a single specific objective function with the weighting factors. Consequently, the pump and turbine mode efficiencies of the optimum design increased simultaneously at overall range of flow rate, except for low flow rate of turbine mode, compared to the reference design. PubDate: Tue, 03 Apr 2018 00:00:00 +000

Abstract: The present study aims to combine the fields modal analysis and signal processing and to show the use of Frequency Response Function (FRF), as a vibration transfer path, in enhancing reliability and abilities of the next generation vibration-based rolling bearing condition monitoring (CM) systems in complex mechanical systems. In line with this purpose, the hereby-presented paper employs an appropriate numerical model, that is, Multibody Simulation (MBS) of a vehicle’s drivetrain as a manner for numerical modal and structural analyses. For this, first, the principles of vibration-based bearing fault detection are reviewed and presented. Following that, a summary of MBS modelling and validating strategies are given. Then, the validated MBS model is used as a case study for further investigations. The results can confirm existence of challenges in fault detection of rolling bearings, in particular in complex mechanical systems. In further discussions, the capability of FRFs in fault localization and determination of ideal sensor positions is discussed in some detail. Finally, concluding remarks and suggestions for future works are summarized. PubDate: Tue, 13 Mar 2018 06:25:42 +000

Abstract: The main objective of this study is to estimate the dynamic loads acting over a glaze-iced airfoil. This work studies the performance of unsteady Reynolds-averaged Navier-Stokes (URANS) simulations in predicting the oscillations over an iced airfoil. The structure and size of time-averaged vortices are compared to measurements. Furthermore, the accuracy of a two-equation eddy viscosity turbulence model, the shear stress transport (SST) model, is investigated in the case of the dynamic load analysis over a glaze-iced airfoil. The computational fluid dynamic analysis was conducted to investigate the effect of critical ice accretions on a 0.610 m chord NACA 0011 airfoil. Leading edge glaze ice accretion was simulated with flat plates (spoiler-ice) extending along the span of the blade. Aerodynamic performance coefficients and pressure profiles were calculated and validated for the Reynolds number of 1.83 × 106. Furthermore, turbulent separation bubbles were studied. The numerical results confirm both time-dependent phenomena observed in previous similar measurements: (1) low-frequency mode, with a Strouhal number –0.02, and (2) higher frequency mode with a Strouhal number –0.69. The higher frequency motion has the same characteristics as the shedding mode and the lower frequency motion has the flapping mode characteristics. PubDate: Wed, 07 Mar 2018 00:00:00 +000

Abstract: Renewable sources of energy, abundant in availability, are needed to be exploited with adaptable technology. For wind energy, the wind turbine is very well adapted to generate electricity. Among the different typologies, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off-grid power generation at low wind speeds. The combined Darrieus-Savonius wind turbine is intended to enhance the performance of the Darrieus rotor in low speed. In combined turbine, the Savonius buckets are always attached at the rotor shaft and the Darrieus blades are installed far from the shaft which have arm attaching to the shaft. A simple combined turbine offers two rotors on the same shaft. The combined turbine that consists of two Darrieus and Savonius blades was tested in wind tunnel test section with constant wind velocity and its performance was assessed in terms of power and torque coefficients. The study gives the effect of the radius ratio between Savonius and Darrieus rotor on the performance of the turbine. The results show that there is a significant influence on the turbine performance if the radius ratio was changed. PubDate: Thu, 01 Mar 2018 00:00:00 +000

Abstract: In their application to air-cooled condensers, axial fans are often subject to the detrimental influence of ambient flow fields at their inlet or outlet. While effects have been investigated mostly under perpendicular cross-flow conditions on fans operating as part of an array in their target design point, this study aims at examining the integral influence of uniform ambient flow fields on a single axial fan over a wide operating range. For this purpose, a wind tunnel fan test rig has been designed and assessed. Multiple angles between uniform ambient flow field and fan axis are examined in their integral influence on the characteristic curve of two distinct industrial axial fans with varying inlet modifications. Increasingly with the fan flow rate, perpendicular inlet cross-flow was found to always have a detrimental influence on fan performance. The straight bladed fan reacted less sensitively than the forward skewed fan, and the adverse cross-flow influence could be reduced with an inlet guard grille and with short conical shroud extensions. Cross-flow at the fan outlet showed potential static fan pressure increases at low flow rates. PubDate: Thu, 01 Mar 2018 00:00:00 +000

Abstract: The spatial fluctuating pressure field (FPF) of counter rotating propeller (CRP) under noncavitating condition is investigated. The hydrodynamic performance and pressure distributions on the blade surfaces are obtained through low-order potential-based panel method, which is also used to analyze the hydrodynamic interaction between the front and rear propellers of CRP as well as the hydrodynamic interference between any solid surface and propeller. The interaction between the given solid spherical surface and propeller is used to simulate the spatial FPF of propeller, and the fluctuating pressure induced by a propeller over one revolution is analyzed in frequency domain through fast Fourier transform. The method proposed is validated through two given propellers by comparing the calculation results with test data. The FPFs of the front and rear propellers are calculated and compared with that of the corresponding single propeller. The result shows that the CRP produces weaker FPF compared with the single propeller. PubDate: Mon, 19 Feb 2018 00:00:00 +000

Abstract: A simple method was developed to detect damage based on a discrete mathematical model for fan blades using changes in natural frequencies combined with a fluid-structure analysis. In addition, a numerical approach was developed for the fluid-structure analysis. The results of numerical simulation provided the natural frequency data for each mode under different locations and sizes of a single crack in a blade. A fault database was built using Matlab. The damage of a blade was detected using the changes in natural frequencies. This study will assist in investigating the effect of a crack on a structure from different perspectives; the simulation results show the effectiveness of this approach. PubDate: Mon, 05 Feb 2018 00:00:00 +000

Abstract: The wind turbine dynamics are complex and critical area of study for the wind industry. Quantification of the effective factors to wind turbine performance is valuable for making improvements to both power performance and turbine health. In this paper, the global sensitivity analysis of validated mathematical model for high speed shaft drive train test rig has been developed in order to evaluate the contribution of systems input parameters to the specified objective functions. The drive train in this study consists of a 3-phase induction motor, flexible shafts, shafts’ coupling, bearing housing, and disk with an eccentric mass. The governing equations were derived by using the Lagrangian formalism and were solved numerically by Newmark method. The variance based global sensitivity indices are introduced to evaluate the contribution of input structural parameters correlated to the objective functions. The conclusion from the current research provides informative beneficial data in terms of design and optimization of a drive train setup and also can provide better understanding of wind turbine drive train system dynamics with respect to different structural parameters, ultimately designing more efficient drive trains. Finally, the proposed global sensitivity analysis (GSA) methodology demonstrates the detectability of faults in different components. PubDate: Thu, 01 Feb 2018 00:00:00 +000

Abstract: An air turbine handpiece is a dental abrasive device that rotates at high speed and uses compressed air as the driving force. It is characterized by its small size, light weight, and painless abrading due to its high-speed rotation, but its torque is small and noise level is high. Thus, to improve the performance of the air turbine handpiece, we conducted a performance test of an actual handpiece and a numerical analysis that modeled the whole handpiece; we also analyzed the internal flow of the handpiece. Results show that experimental and calculated values were consistent for a constant speed load method with the descending speed of 1 mm/min for torque and turbine output. When the tip of the blade was at the center of the nozzle, the torque was at its highest. This is likely because the jet from the nozzle entered the tip of the blade from a close distance that would not reduce the speed and exited along the blade. PubDate: Tue, 30 Jan 2018 00:00:00 +000