Abstract: Let be a graph of order and size . An edge-magic labeling of is a bijection such that is a constant for every edge . An edge-magic labeling of with is called a super edge-magic labeling. Furthermore, the edge-magic deficiency of a graph , , is defined as the smallest nonnegative integer such that has an edge-magic labeling. Similarly, the super edge-magic deficiency of a graph , , is either the smallest nonnegative integer such that has a super edge-magic labeling or if there exists no such integer . In this paper, we investigate the (super) edge-magic deficiency of chain graphs. Referring to these, we propose some open problems. PubDate: Wed, 12 Jul 2017 00:00:00 +000

Abstract: We apply new modified recursion schemes obtained by the Adomian decomposition method (ADM) to analytically solve specific types of two-point boundary value problems for nonlinear fractional order ordinary and partial differential equations. The new modified recursion schemes, which sometimes utilize the technique of Duan’s convergence parameter, are derived using the Duan-Rach modified ADM. The Duan-Rach modified ADM employs all of the given boundary conditions to compute the remaining unknown constants of integration, which are then embedded in the integral solution form before constructing recursion schemes for the solution components. New modified recursion schemes obtained by the method are generated in order to analytically solve nonlinear fractional order boundary value problems with a variety of two-point boundary conditions such as Robin and separated boundary conditions. Some numerical examples of such problems are demonstrated graphically. In addition, the maximal errors or the error remainder functions of each problem are calculated. PubDate: Mon, 10 Jul 2017 00:00:00 +000

Abstract: Let be a graph and let be a subgraph of . Assume that has an -decomposition such that for all . An -supermagic decomposition of is a bijection such that is a constant for each in the decomposition and . If admits an -supermagic decomposition, then is called -supermagic decomposable. In this paper, we give necessary and sufficient conditions for the existence of -supermagic decomposition of the complete bipartite graph minus a one-factor. PubDate: Wed, 21 Jun 2017 10:08:42 +000

Abstract: The asymptotic behavior of the effective mass of the so-called Nelson model in quantum field theory is considered, where is an ultraviolet cutoff parameter of the model. Let be the bare mass of the model. It is shown that for sufficiently small coupling constant of the model, can be expanded as . A physical folklore is that as . It is rigorously shown that , with some constants , , and . PubDate: Tue, 06 Jun 2017 00:00:00 +000

Abstract: We analyze the dynamics of a fractional order modified Leslie-Gower model with Beddington-DeAngelis functional response and additive Allee effect by means of local stability. In this respect, all possible equilibria and their existence conditions are determined and their stability properties are established. We also construct nonstandard numerical schemes based on Grünwald-Letnikov approximation. The constructed scheme is explicit and maintains the positivity of solutions. Using this scheme, we perform some numerical simulations to illustrate the dynamical behavior of the model. It is noticed that the nonstandard Grünwald-Letnikov scheme preserves the dynamical properties of the continuous model, while the classical scheme may fail to maintain those dynamical properties. PubDate: Sun, 28 May 2017 00:00:00 +000

Abstract: Let be a full set of outcomes (symbols) and let positive , , be their probabilities . Let us treat as a stop symbol; it can occur in sequences of symbols (we call them words) only once, at the very end. The probability of a word is defined as the product of probabilities of its symbols. We consider the list of all possible words sorted in the nonincreasing order of their probabilities. Let be the probability of the th word in this list. We prove that if at least one of the ratios , , is irrational, then the limit exists and differs from zero; here is the root of the equation . The limit constant can be expressed (rather easily) in terms of the entropy of the distribution . PubDate: Sun, 07 May 2017 00:00:00 +000

Abstract: It is a well-established fact in regression analysis that multicollinearity and autocorrelated errors have adverse effects on the properties of the least squares estimator. Huang and Yang (2015) and Chandra and Tyagi (2016) studied the PCTP estimator and the class estimator, respectively, to deal with both problems simultaneously and compared their performances with the estimators obtained as their special cases. However, to the best of our knowledge, the performance of both estimators has not been compared so far. Hence, this paper is intended to compare the performance of these two estimators under mean squared error (MSE) matrix criterion. Further, a simulation study is conducted to evaluate superiority of the class estimator over the PCTP estimator by means of percentage relative efficiency. Furthermore, two numerical examples have been given to illustrate the performance of the estimators. PubDate: Mon, 30 Jan 2017 06:34:57 +000

Abstract: The notions of the Killing form and invariant form in Lie algebras are extended to the ones in Lie-Yamaguti superalgebras and some of their properties are investigated. These notions are also -graded generalizations of the ones in Lie-Yamaguti algebras. PubDate: Thu, 12 Jan 2017 09:34:48 +000