Abstract: Suppressing higher-order modes up to sixth harmonics of the fundamental working frequency in a single-layer microstrip line-fed patch antenna has been successfully demonstrated. Higher-order modes of the antenna are suppressed by simultaneously employing a circular head open stub connected to the feed line and a novel defected ground structure (DGS) beneath the feed line. The filtering property of the antenna has been improved by the novel DGS significantly. The role played by the novel DGS is carefully analyzed, and the effect of some key parameters of DGS is further discussed. A microstrip patch antenna with the working frequency 3.13 GHz (fc) is designed and manufactured. The designed antenna possesses an ultrawideband harmonic suppression capability ranging from 2fc to 6fc. More importantly, the area occupied by the novel DGS is decreased by 41% compared to the earlier design. PubDate: Wed, 14 Oct 2020 13:20:01 +000

Abstract: A compact substrate integrated waveguide (SIW) antenna array that operates at 28 GHz and 38 GHz is proposed for fifth generation (5G) applications. The proposed array consists of four SIW cavities fabricated on one single layer of substrate. Each cavity implements a rhombic slot and a triangular-split-ring slot, resonating on TE101 and TE102 modes at 28 GHz and 38 GHz, respectively. In comparison with dual-band SIW antennas in the literature, the proposed configuration depicts a miniature footprint (28.7 × 30.8 mm2) without stacking substrates. To excite the four cavities with equal power, a broadband power divider that supports the propagation of TE10 mode is designed. Accordingly, the impedance bandwidths are 26.6–28.3 GHz and 36.8–38.9 GHz. The measured realized peak gain over the lower and higher bands is 9.3–10.9 dBi and 8.7–12.1 dBi, respectively. The measured half-power beam widths (HPBWs) at 28 GHz and 38 GHz are 20.7° and 15.0°, respectively. Considering these characteristics, including dual bands, high gain, narrow beam widths, miniaturization, and single layer, the proposed antenna array is a suitable candidate for millimeter-wave 5G communication systems with the flexibility in switching operating frequency bands against channel quality variations. PubDate: Mon, 12 Oct 2020 13:20:01 +000

Abstract: A new strategy of density tapering called the partial density tapering (PDT) accompanied with the algorithm of differential evolution (DE) is proposed to suppress the peak sidelobe level (PSL) of uniform excited concentric ring arrays (UECRA) with isotropic elements. Through performing the PDT, a sound starting solution for DE can be generated. Then, the ring filling factor (RFF) is introduced so that the optimization of the number of elements can be transformed into the optimization of RFFs within the tapered thresholds, and thereby the real coding can be directly used with respect to the consideration of parallel encoding strategy. Finally, the UECRA featuring improved PSL performance can be obtained by limited runs of conventional DE. Several numerical instances for UECRA, with aperture sizes ranging from small to large scale, confirmed the outperformance of the proposed method. PubDate: Sat, 10 Oct 2020 13:35:00 +000

Abstract: This article presents the design, fabrication, and measurement of a square Koch fractal slot antenna for UHF band using both the FR4-G10 and Cuclad 250 substrates. Conveniently, this 56.56 cm full-length antenna possesses a geometry that allows it to be incorporated into the standardized 10 cm × 10 cm faces of the CubeSats. Furthermore, it is shown that both selected substrates exhibit an acceptable performance at the frequency of interest despite the economic cost difference and relative permittivity. Hence, the commercial FR4-G10 antenna substrate can be preferred because of its low-cost and admissible performance at 458 MHz, which is a frequency in the UHF band that is commonly used for telemetry, tracking, and command downlinks of CubeSats. Measurements show that the proposed antenna exhibits a reflection coefficient of −16.53 dB, a bandwidth of 22.62 MHz at −10 dB, a VSWR of 1.3508, a normalized impedance of 0.794 − j0.173 at 50 Ω, and a directivity of 2.24 dBi. The contribution of this work consists in the use of a fractal geometry to construct a low-cost slot antenna working at UHF frequencies over the limited area of the CubeSat faces and in order to optimize the area for an eventual coexistence with solar cells. PubDate: Fri, 09 Oct 2020 05:20:02 +000

Abstract: This research proposes a single-fed broadband circularly polarized (CP) bidirectional antenna operable in 840–960 MHz frequency band for readers of universal UHF-RFID applications. The proposed antenna is comprised of upper-layer conductor, lower-layer conductor, and wall patches. The upper-layer conductor consists of two diagonally aligned rectangular copper plates with a feeding gap at the center, and the lower-layer conductor is of two diagonally adjoined rectangular plates. The upper- and lower-layer conductors are adjoined with the wall patches. The diagonal alignment technique of the upper- and lower-layer plates was used to realize circular polarization and improve 3-dB axial ratio (AR) bandwidth. The double layers were deployed to improve impedance bandwidth (|S11| PubDate: Thu, 08 Oct 2020 13:20:01 +000

Abstract: Space target identification is key to missile defense. Micromotion, as an inherent attribute of the target, can be used as the theoretical basis for target recognition. Meanwhile, time-varying micro-Doppler (m-D) frequency shifts induce frequency modulations on the target echo, which can be referred to as the m-D effect. m-D features are widely used in space target recognition as it can reflect the physical attributes of the space targets. However, the traditional recognition method requires human participation, which often leads to misjudgment. In this paper, an intelligent recognition method for space target micromotion is proposed. First, accurate and suitable models of warhead and decoy are derived, and then the m-D formulae are offered. Moreover, we present a deep-learning (DL) model composed of a one-dimensional parallel structure and long short-term memory (LSTM). Then, we utilize this DL model to recognize time-frequency distribution (TFD) of different targets. Finally, simulations are performed to validate the effectiveness of the proposed method. PubDate: Mon, 05 Oct 2020 13:50:02 +000

Abstract: A backward to forward scanning periodic microstrip leaky wave antenna (MLWA) is presented. The proposed antenna consists of a long rectangular patch with alternating shorting pin on each side, which connects the antenna patch and the ground plane to form periodic shorting circuits. There are two pairs of slots alternately spaced on the long patch to suppress the open stop band (OSB). The OSB problem was initially reduced by optimizing the structural parameters, and the slotting on the patch further improved it. The measured radiation pattern in the y-z plane shows that the antenna can scan electronically from 142° to 39° toward the end-fire (+z direction) when the operating frequency changes from 6 GHz to 12.9 GHz. The measured gain is greater than 5 dBi over the entire operating band. PubDate: Wed, 30 Sep 2020 12:50:02 +000

Abstract: Apart from interfering in the communication system of an aircraft, electromagnetic pulses (EMPs) radiated from spark discharge plasma, which is generated during high-speed flight, can also be utilized in passive detection. In order to validate this idea, an experiment on direction of arrival (DOA) estimation of a spark discharge plasma target using its radiated EMPs is carried out in this paper. A combined time-domain antenna is designed based on the model of spark discharge process and is used to receive the radiated EMPs during the experiment. According to the experimental results, the DOA estimation system with combined antenna is able to obtain the direction information of a spark discharge plasma. Results also show that the estimation performance of elevation angle is better when the actual elevation angle of the discharge plasma target is higher, while the estimation performance of azimuth is opposite. The azimuth angle of a target has very little influence on the DOA estimation. Moreover, the estimation error can be reduced effectively by increasing the aperture size of receiving array. The previously mentioned results provide an approach to locate the discharge plasma source using radiated EMPs with passive detection techniques. PubDate: Sun, 27 Sep 2020 13:20:01 +000

Abstract: In this study, a phased array radar was used to accurately image stationary and moving ship targets on the vast sea surface. To solve the challenge in real-time processing of the massive amount of data generated by phased array synthetic-aperture radar imaging, this study leveraged the block sparse characteristics of ships on the sea surface and adopted the joint block orthogonal matching pursuit algorithm to obtain high-resolution one-dimensional range images. By only estimating the azimuth Doppler parameters of the targets within the range gates, the amount of process data was significantly reduced, and the data processing speed was enhanced. The synchrosqueezing transform-STFT algorithm was introduced to perform transient imaging as a solution to the blurred imaging of ships due to the three-dimensional swing under the action of waves. The images of the targets were obtained from different squint angles of the antenna array, which improved the imaging accuracy of ships on a vast sea surface. Compared with traditional imaging algorithms, this algorithm can effectively overcome the interference of sea clutter on ship imaging and the influence of sea waves on ship wobble; it can also obtain high-resolution imaging for both stationary and moving targets in a limited amount of time. PubDate: Tue, 22 Sep 2020 08:20:02 +000

Abstract: This paper presents the low profile, planar, and small-size antenna design for WWAN, LTE, and 5G (5th generation wireless systems) for use in portable communication equipment. The antenna occupies only 65 × 13 × 0.4 mm3, and the antenna is combined with a 200 × 260 mm2 copper plate to simulated system ground plane. In the low band, a direct-fed right-side arm and a coupled-fed arm implemented can excite a 1/4 λ fundamental resonant mode at 0.85 and 0.76 GHz to cover 0.698–0.96 GHz and upper 3/4 λ and 5/4 λ resonant modes are controlled by L-shaped element at 2.34, 2.69, 3.4, and 4.0 GHz to cover 1.71–2.69 GHz and 3.2–4.2 GHz. The direct-fed left-side arm produced 1/4 λ to cover 5.15–5.85 GHz. In far-field measured, peak gain and efficiency in low, middle, and high bands are 0.43–5.67 dBi and 55–86%. Finally, experiments demonstrate that the present antenna exhibits a good performance for portable devices. PubDate: Mon, 21 Sep 2020 08:05:05 +000

Abstract: Electromagnetic metasurface lenses with the characteristic of being conformal to a cylindrical geometry are presented in this study. Based on the formulated principle of the cylindrical metasurface lens operating with transmission or reflection mode, the transmission or reflection phase gradient varying along the circumferential direction of a cylinder is implemented. A focused beam is observed at the objective focal point for each lens illuminated by a plane electromagnetic wave with transverse magnetic or transverse electric polarization. A coaxial-fed microstrip patch antenna element is used as a feeding of cylindrical metasurface lenses and positioned at their focal points, so as to evaluate their application in the enhancement of antenna gain along the boresight direction. By virtue of the focusing ability of presented lenses, effectively enhanced boresight gain from the cylindrical metasurface lens antennas are obtained, in comparison with the freestanding feeding antenna. The agreement between simulation and measurement validates the designs. Conformal integration or embedment of the electromagnetic lens into a certain platform skin with cylindrical characteristics is therefore potentially demonstrated, which implies an enhancement of boresight gain without obviously disturbing the local shape of the skin by apparent weight or drag. PubDate: Mon, 21 Sep 2020 05:05:04 +000

Abstract: In this paper, we consider the joint angle-range estimation in monostatic FDA-MIMO radar. The transmit subarrays are first utilized to expand the range ambiguity, and the maximum likelihood estimation (MLE) algorithm is first proposed to improve the estimation performance. The range ambiguity is a serious problem in monostatic FDA-MIMO radar, which can reduce the detection range of targets. To extend the unambiguous range, we propose to divide the transmitting array into subarrays. Then, within the unambiguous range, the maximum likelihood (ML) algorithm is proposed to estimate the angle and range with high accuracy and high resolution. In the ML algorithm, the joint angle-range estimation problem becomes a high-dimensional search problem; thus, it is computationally expensive. To reduce the computation load, the alternating projection ML (AP-ML) algorithm is proposed by transforming the high-dimensional search into a series of one-dimensional search iteratively. With the proposed AP-ML algorithm, the angle and range are automatically paired. Simulation results show that transmitting subarray can extend the range ambiguity of monostatic FDA-MIMO radar and obtain a lower cramer-rao low bound (CRLB) for range estimation. Moreover, the proposed AP-ML algorithm is superior over the traditional estimation algorithms in terms of the estimation accuracy and resolution. PubDate: Tue, 08 Sep 2020 07:05:10 +000

Abstract: This paper introduces a 2D angle-of-arrival (AoA) estimator, which has a 6–18 GHz 7-element nonuniformly spaced array (NSA) and a Direct Data Domain- (D3-) based AoA algorithm for a 2D isotropic-element planar array (IEPA). A 2D calibration and data-transformation method is developed to convert the NSA data to the output of the IEPA, so that the NSA-measured data can be used in the D3 algorithm. Using the steering vector (SV) of the IEPA and the results derived from the D3 method, a new 2D AoA searching method is also developed, which offers frequency-independent performance defined by the probability of AoA estimation, when the required estimation accuracy and signal-to-noise ratio (SNR) are given. For the applications of electronic support measures, this paper also presents the use of precalculated SV and data-transformation matrix databases built on preselected frequency points and a 2D-angle grid that is close to uniformly distributed directions. The simulation results show that with good SNR (≥15 dB), the estimator can have 50% probability of AoA estimation with root mean square error (RMSE) less than or equal to 1° using just a few samples from the NSA. Moreover, the study focuses on the applications with low SNR by using more samples from the NSA. Results show that the estimator has 52% and 80% probabilities of AoA estimation with RMSE ≤1° and 5°, respectively, for phase- or frequency-modulated radar pulses, when the SNR is within [−10, 0] dB. The study also shows that the estimator prefers a circular-shaped planar array with a triangular interelement pattern, since it presents more symmetrical characteristics from different azimuth angles. PubDate: Wed, 02 Sep 2020 05:50:01 +000

Abstract: For the traditional target localization algorithms of frequency diverse array (FDA), there are some problems such as angle and distance coupling in single-frequency receiving FDA mode, large amount of calculation, and weak adaptability. This paper introduces a good learning and predictive method of target localization by using BP neural network on FDA, and FDA-IPSO-BP neural network algorithm is formed. The improved particle swarm optimization (IPSO) algorithm with nonlinear weights is developed to optimize the neural network weights and biases to prevent BP neural network from easily falling into local minimum points. In addition, the decoupling of angle and distance with single frequency increment is well solved. The simulation experiments show that the proposed algorithm has better target localization effect and convergence speed, compared with FDA-BP and FDA-MUSIC algorithms. PubDate: Thu, 27 Aug 2020 13:20:16 +000

Abstract: Fast factorized backprojection (FFBP) takes advantage of high accuracy of time-domain algorithms while also possessing high efficiency comparable with conventional frequency domain algorithms. When phase errors need to be compensated for high-resolution synthetic aperture radar (SAR) imaging, however, neither polar formatted subimages within FFBP flow nor the final Cartesian image formed by FFBP is suitable for phase gradient autofocus (PGA). This is because these kinds of images are not capable of providing PGA with a clear Fourier transform relationship (FTR) between image domain and range-compressed phase history domain. In this paper, we make some essential modifications to the original FFBP and present a scheme to incorporate overlapped-subaperture frame for an accurate PGA processing. The raw data collected by an airborne high-resolution spotlight SAR are used to demonstrate the performance of this algorithm. PubDate: Tue, 25 Aug 2020 08:20:14 +000

Abstract: This paper presents two novel UHF RFID near-field reader antennas with uniform vertical electric field distribution. The two antennas have the following common characteristics. First, the radiating parts of the two antennas are simulated and fabricated by the microstrip lines and work using the leakage wave principle of microstrip lines. Second, the end of microstrip lines match the load to form a traveling wave mode of operation, so the two antennas have broadband characteristics. Third, both antennas are fed in a coaxial manner at the center of the antenna. The simulation and measurement results can show that the proposed three-branch antenna and four-branch antenna achieve good impedance matching in the range of 883–960 MHz and 870–960 MHz, respectively, and achieve uniform distribution of the vertical electric field component in a certain area. The reading areas of the three-branch antenna and the four-branch antenna are 70 mm × 70 mm × 90 mm and 100 mm × 100 mm × 120 mm (length × width × height), respectively. Due to the introduction of the ground plate, the antenna gain is low, which meets the design requirements of near-field antennas. PubDate: Mon, 24 Aug 2020 12:50:12 +000

Abstract: Antenna array synthesis is one of the most popular topics in the electromagnetic field. Since achieving a desired antenna radiation pattern is a mathematical problem, in the literature, there are various optimization algorithms applied to the synthesis process of different kinds of antenna arrays. In this study, Multiverse Optimizer (MVO) and modified MVO (MMVO) are used to perform circular antenna array (CAA) synthesis. During the exploration, exploitation, and local search phases of calculation, MVO uses three concepts in cosmology; white hole, black hole, and wormhole. Convergence capability of this nature-inspired algorithm is employed for finding optimum amplitude and position values of CAA elements in order to achieve an array pattern with low maximum sidelobe level (MSL) and minimum circumference. The performance of MVO and MMVO was tested on five design examples of pattern synthesis, and the obtained results were compared with ten different algorithms. The simulation results show that MVO and MMVO provide low MSLs with small circumferences. PubDate: Mon, 24 Aug 2020 12:05:09 +000

Abstract: This paper presents a new design of a compact, high-gain coplanar waveguide-fed antenna and proposes a multielement approach to attain enhanced characteristics. The proposed method overcomes the simulation and geometrical complexity and achieves optimal performance features. The antenna prototype is carefully designed, and simulation results have been analyzed. The proposed antenna was fabricated on a new WangLing TP-2 laminate with dimensions (0.195λ × 0.163λ × 0.0052λ) at the lowest resonance of 9.78 GHz. The results have been tested and experimentally verified. The antenna model achieved excellent performance including a peak realized gain better than 9.0 dBi, optimal radiation efficiency better than 87.6% over the operating band, and a good relative bandwidth of 11.48% at 10 dB return loss. Symmetrical stable far-field radiation pattern in orthogonal planes and strong distribution of current are observed. Moreover, a comparative analysis with state-of-the-artwork is presented. The measured and simulation result shows a good agreement. The high-performance antenna results reveal that the proposed model is a good contender of military airborne, land, and naval radar applications. PubDate: Thu, 20 Aug 2020 14:20:08 +000

Abstract: The rapid development of high-speed train and Metro communications has provided new challenges for the application of MIMO technologies. Therefore, we propose a three-dimensional (3D) multiple-input multiple-output (MIMO) channel model using leaky coaxial cable (LCX) in a rectangular tunnel. The channel model is based on geometry-based single-bounce (GBSB) channel model and the electric field distribution of LCX in the tunnel environment. The theoretical expressions of channel impulse response (CIR) and space-time correlation function (CF) are also derived and analyzed. The CFs for different model parameters (moving velocity and moving time) and different regions of the tunnel are simulated by Monte Carlo method to verify the theoretical derivation at 1.8 GHz. In the same parametric configuration of nonstationary tunnel scenarios, the time delay of the first minimum value of CFs for LCX-MIMO is 1/5 of the time delay of the minimum value of CFs for dipole antennas MIMO when the train moving velocity is 360 km/h. It is shown that, for MIMO system, the performance of using LCXs is better than using dipole antennas. PubDate: Thu, 20 Aug 2020 05:50:07 +000

Abstract: In high-frequency (HF) hybrid sky-surface wave radar, the first-order sea clutter broadening is severe under the action of ionospheric phase disturbance and bistatic angles. In this paper, a cascaded method is described to suppress the spread sea clutter. Firstly, the radar configuration and sea clutter broadening model are introduced based on the newly developed integrated HF sky-surface wave experimental system. In the cascaded processing method, a new ionospheric decontamination method based on general parameterized time-frequency (GPTF) analysis is proposed to estimate or correct the ionospheric phase distortion with large amplitude. Then, the forward-backward linear prediction (FBLP) algorithm is used to suppress the spread sea clutter caused by bistatic angle. Simulation results show that such ionospheric decontamination method based on GPTF is helpful for the large-amplitude ionospheric contamination when the target masking effect happens even after ionospheric phase decontamination. Finally, the proposed method is examined by the measured data. Experimental results indicate that the proposed method can well suppress the broadening sea clutter for HF hybrid sky-surface wave radars. PubDate: Wed, 19 Aug 2020 14:20:08 +000

Abstract: The performance of wireless optical MIMO system with multiple pulse position modulation (MPPM) over correlated fading channel is investigated. The combined effects of atmospheric attenuation, atmospheric turbulence, and pointing error are taken into consideration. The bit error rate (BER) and the ergodic channel capacity are analyzed by utilizing the Poisson counting model and the exponential correlation model. Moreover, their approximate expressions are derived. The simulation results demonstrate that the pointing error is the most prominent influence factor over weak correlated channel. The performance degradation caused by a high channel correlation coefficient is more than that of pointing error in strong correlated channel. Therefore, the use of pointing, acquisition, and tracking (PAT) system and reasonable arrangement of the number and spacing of antennas at the transceiver are the keys to improve system performance. PubDate: Tue, 18 Aug 2020 06:35:05 +000

Abstract: A compact hybrid-mode antenna is proposed for sub-6 GHz communication. The proposed antenna is composed of a slotted rectangular patch, a feeding dipole, and a balun. Three modes are sequentially excited in a shared patch to achieve a compact size. A prototype antenna with a major size of 0.48 λ0 × 0.31 λ0 × 0.16 λ0 (λ0 is the wavelength in the free space at the center of the operating frequency band) is fabricated and measured. The measured results demonstrate an impedance bandwidth of 56.87% from 2.97 GHz to 5.33 GHz and an average gain of approximately 8.00 dBi with 1 dB variation in the operating frequency band of 3.0–5.0 GHz. The proposed antenna can be an element for microbase stations in sub-6 GHz communication. PubDate: Fri, 31 Jul 2020 07:20:15 +000

Abstract: This paper presents a dual-band step impedance resonator (SIR) antenna based on metamaterial-inspired periodic structure of coupled complementary split-ring resonators substrate-integrated waveguide (CSRR-SIW). The antenna supports wireless local area networks (WLAN) bands at 2.4/5.2/5.8 GHz. The CSRRs and two branches of the SIR element are etched on the top and bottom metal surfaces of the substrate. The SIR element produces a fundamental frequency f1 at 2.4 GHz and a second harmonic frequency fs2 at 5.7 GHz. Meanwhile, the CSRRs produces a resonant frequency at high-frequency band around 5.2 GHz, which can be combined with the second harmonic frequency fs2 at 5.7 GHz. The high-frequency bandwidth can then be broadened. The simulated and measured results show that the dual operation bands with bandwidths of 16% from 2.25 GHz to 2.64 GHz and 18.2% from 5 GHz to 6 GHz for |S11| PubDate: Wed, 29 Jul 2020 14:35:14 +000

Abstract: This paper presents a broadband band-pass filter with cross-coupled line structure. The cross-coupled line structure is composed of the parallel coupled lines and an open stub. It can be analyzed by the odd- and even-mode method due to its symmetric structure. There are three transmission poles in the passband and two transmission zeros out of passband. Then, the influence of the impedance parameters on the transmission zeros and transmission poles are analyzed. Then, the physical parameters of the proposed band-pass filter are given. And using HFSS for simulation and optimization, the final insertion loss and return loss of filter are obtained. The simulation and measurement results are in good agreement, which validates the design idea. PubDate: Mon, 27 Jul 2020 06:35:07 +000

Abstract: A multiwideband bandpass filter (MW-BPF) using a quad cross-stub stepped impedance resonator (QC-SSIR) was simulated, fabricated, and measured. The proposed QC-SSIR is designed on a four-series arrangement of crossed open stub (COS) structures where each open stub is developed with a step impedance resonator (SIR) structure to generate a wide bandwidth. Compared to the COS resonator, the QC-SSIR has a wider fractional bandwidth and good transmission coefficients and is compact. ABCD matrix analysis is used to investigate the filter structure. Furthermore, the MW-BPF is designed on an FR4 microstrip substrate with εr = 4.4, thickness h = 1.6 mm, and tan δ = 0.0265. The results show that the proposed MW-BPF using a QC-SSIR achieves transmission coefficients/fractional bandwidths of −0.60 dB/49.3%, −1.49 dB/18.7%, and −1.93 dB/13.9% at 0.81 GHz, 1.71 GHz, and 2.58 GHz, respectively. Furthermore, to reduce the filter size, a folded QC-SSIR (FQC-SSIR) structure was also proposed. The results show that the proposed MW-BPF using an FQC-SSIR achieves transmission coefficients/fractional bandwidths of −0.57 dB/49.6%, −1.21 dB/17.7%, and −1.76 dB/12.5% at 0.82 GHz, 1.80 GHz, and 2.62 GHz, respectively. The size of the proposed MW-BPF using an FQC-SSIR is reduced by up to 46% compared with the MW-BPF using a QC-SSIR. Finally, the performance of the simulated MW-BPF based on the QC-SSIR and FQC-SSIR was in good agreement with the measurement results. PubDate: Fri, 24 Jul 2020 14:05:07 +000

Abstract: System analysis is a powerful tool for researching modern wireless systems. This includes breaking such systems into parts that make them up and studying how these parts work together. All these parts can be represented as “black boxes” in the form of two-port or multiport networks with the common system of parameters. Antenna is an integral part of any wireless system, so it should be also represented as a two-port network. In this paper, an analytical model of an arbitrary single antenna in the form of a two-port network, whose electrical and noise parameters are described in terms of scattering matrices, is obtained. The initial data for creating the model are the antenna fundamental parameters, viz., the input reflection coefficient and the radiation efficiency. Applications of this model for antenna analysis operating in the transmitting, receiving, and scattering modes are demonstrated. A numerical example using the antenna scattering matrix for computer simulation of a wireless connection is given. PubDate: Fri, 24 Jul 2020 06:05:03 +000