Abstract: Initiated by a task in tunable microoptics, but not limited to this application, a microfluidic droplet array in an upright standing module with 3 × 3 subcells and droplet actuation via electrowetting is presented. Each subcell is filled with a single (of course transparent) water droplet, serving as a movable iris, surrounded by opaque blackened decane. Each subcell measures 1 × 1 mm2 and incorporates 2 × 2 quadratically arranged positions for the droplet. All 3 × 3 droplets are actuated synchronously by electrowetting on dielectric (EWOD). The droplet speed is up to 12 mm/s at 130 V with response times of about 40 ms. Minimum operating voltage is 30 V. Horizontal and vertical movement of the droplets is demonstrated. Furthermore, a minor modification of the subcells allows us to exploit the flattening of each droplet. Hence, the opaque decane fluid sample can cover each water droplet and render each subcell opaque, resulting in switchable irises of constant opening diameter. The concept does not require any mechanically moving parts or external pumps. PubDate: Thu, 01 Feb 2018 00:00:00 +000

Abstract: A conversion efficiency of 20.23% of heterojunction with intrinsic thin layer (HIT) solar cell on 156 mm × 156 mm metallurgical Si wafer has been obtained. Applying AFORS-HET software simulation, HIT solar cell with metallurgical Si was investigated with regard to impurity concentration, compensation level, and their impacts on cell performance. It is known that a small amount of impurity in metallurgical Si materials is not harmful to solar cell properties. PubDate: Thu, 18 Jan 2018 00:00:00 +000

Abstract: Previously we focused on fundamental transverse mode selection (TMS#0) of broad area semiconductor lasers (BALs) with two-arm folded integrated resonators for Fourier-optical spatial frequency filtering. The resonator had a round-trip length of 4f, where f is the focal length of the Fourier-transform element (FTE), that is, a cylindrical mirror in-between the orthogonal resonator branches. This 4f set-up can be called “retracted once” due to the reflective filter after 2f; that is, the 2f path was used forwards and backwards. Now the branches are retracted once more resulting in a compact 1f long linear resonator (called “retracted twice”) with a round-trip length of 2f. One facet accommodates the filter, while the other houses the FTE, now incorporating a film-waveguide lens. The BAL facet with the filter represents both the Fourier-transform plane (after 2f, i.e., one round-trip) as well as the image plane (after 4f, two round-trips). Thus filtering is performed even after 4f, not just after 2f. Experimental results reveal good fundamental TMS for pump currents up to 20% above threshold and a one-dimensional beam quality parameter = 1.47. The BALs are made from AlGaInAsSb, but the concept can equally well be employed for BALs of any material system. PubDate: Thu, 14 Dec 2017 00:00:00 +000

Abstract: In order to solve the problem that the measure precision of coal roof rock strain amount detection using traditional electric sensor is insufficient, a kind of High Sensitive Surface-Pasted Fiber Bragg Grating Strain Sensor based on rock bolting is designed for substitution. Furthermore, a kind of Reference Grating Zero-Strain method based on sensitivity matrix coefficient is proposed for solving FBG strain-temperature cross-sensitivity problem and realizing the better separation relevant to strain and temperature. It is proved that the sensitivity and measurement precision and anti-interference ability of FBG strain sensors are better than traditional electricity class sensors, being able to realize the real-time and online detection for coal roof surrounding rock strain. PubDate: Thu, 03 Aug 2017 00:00:00 +000

Abstract: A cascaded intensity modulator (IM) and phase modulator (PM) are used to modulate a continuous-wave (CW) laser and generate an optical frequency comb (OFC). Thus, the generated comb is utilized as an initial seed and combined with another CW-laser to generate four-wave mixing (FWM) in photonic crystal fiber (PCF). Results show that an initial flat 30 GHz OFC of 29, 55 lines within power fluctuation of 0.8 dB and 2 dB, respectively, can be achieved by setting the ratio of the DC bias to amplitude of sinusoidal signal at 0.1 and setting the modulation indices of both IM and PM at 10. Moreover, the 1st order of FWM created through 14 m of PCF has over 68 and 94 lines with fluctuation of 0.8 dB and 2 dB, respectively. Hence, the generated wavelengths of 1st left and right order of FWM can be tuned in a range from ~1500 nm to ~1525 nm and ~1590 nm to ~1604 nm, respectively. PubDate: Wed, 12 Jul 2017 00:00:00 +000

Abstract: Intensive studies have been done to get robust encryption algorithms. Due to the importance of image information, optical encryption has played a vital role in information security. Many optical encryption schemes have been proposed but most of them suffer from poor robustness. In this paper six proposed algorithms will be presented for optical encryption to be robust to severe attacks: composite attack. Three of these approaches are based on one level Discrete Wavelet Transform (DWT) and the others are based on Wavelet Packet (WP). Not only will new techniques be presented but also a new proposed chaotic map has been developed as random keys for all algorithms. After extensive comparative study with some traditional techniques, it has been found that the novel algorithms have achieved better performance versus conventional ones. Also it has been found that WP based algorithms have achieved better performance than DWT based ones against severe composite attacks. PubDate: Mon, 05 Jun 2017 09:02:15 +000

Abstract: The evolution of a fiber-fuse phenomenon in a single-mode optical fiber was studied theoretically. To clarify both the silica-glass densification and cavity formation, which have been observed in fiber fuse propagation, we investigated a nonlinear oscillation model using the Van Der Pol equation. This model was able to phenomenologically explain both the densification of the core material and the formation of periodic cavities in the core layer as a result of a relaxation oscillation. PubDate: Sun, 14 May 2017 08:50:56 +000

Abstract: A theoretical study of electromagnetic wave propagation in parallel plate chirowaveguide is presented. The waveguide is filled with a chiral material having diagonal anisotropic constitutive parameters. The propagation characterization in this medium is based on algebraic formulation of Maxwell’s equations combined with the constitutive relations. Three propagation regions are identified: the fast-fast-wave region, the fast-slow-wave region, and the slow-slow-wave region. This paper focuses completely on the propagation in the first region, where the dispersion modal equations are obtained and solved. The cut-off frequencies calculation leads to three cases of the plane wave propagation in anisotropic chiral medium. The particularity of these results is the possibility of controlling the appropriate cut-off frequencies by choosing the adequate physical parameters values. The specificity of this study lies in the bifurcation modes confirmation and the possible contribution to the design of optical devices such as high-pass filters, as well as positive and negative propagation constants. This negative constant is an important feature of metamaterials which shows the phenomena of backward waves. Original results of the biaxial anisotropic chiral metamaterial are obtained and discussed. PubDate: Wed, 08 Mar 2017 09:20:12 +000

Abstract: Avalanche photodiodes (APDs) are key optical receivers due to their performance advantages of high speed, high sensitivity, and low noise. The most critical device parameters of APD include the avalanche breakdown voltage and dark current. In this work, we study the temperature dependence of the breakdown voltage and dark current of the mesa-type APD over a wide temperature range of 20–145°C. We institute an empirical model based on impact ionization processes to account for the experimental data. It is shown that highly stable breakdown characteristics of mesa-type APD can be attained with the optimization of the multiplication layer design. We have achieved excellent stability of avalanche breakdown voltage with a temperature coefficient of 0.017 V/°C. The temperature dependence of dark current is attributed to generation-recombination mechanism. The bandgap energy is estimated to be about 0.71 eV based on the temperature variation of dark current, in good agreement with the value for InGaAs. PubDate: Thu, 12 Jan 2017 00:00:00 +000