for Journals by Title or ISSN
for Articles by Keywords
help

Publisher: Hindawi   (Total: 298 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

        1 2 | Last   [Sort by number of followers]   [Restore default list]

Showing 1 - 200 of 298 Journals sorted alphabetically
Abstract and Applied Analysis     Open Access   (Followers: 3, SJR: 0.512, h-index: 32)
Active and Passive Electronic Components     Open Access   (Followers: 7, SJR: 0.157, h-index: 15)
Advances in Acoustics and Vibration     Open Access   (Followers: 29, SJR: 0.259, h-index: 6)
Advances in Agriculture     Open Access   (Followers: 7)
Advances in Artificial Intelligence     Open Access   (Followers: 16)
Advances in Astronomy     Open Access   (Followers: 38, SJR: 0.351, h-index: 17)
Advances in Bioinformatics     Open Access   (Followers: 18, SJR: 0.421, h-index: 8)
Advances in Chemistry     Open Access   (Followers: 14)
Advances in Civil Engineering     Open Access   (Followers: 34, SJR: 0.338, h-index: 8)
Advances in Condensed Matter Physics     Open Access   (Followers: 8, SJR: 0.248, h-index: 10)
Advances in Decision Sciences     Open Access   (Followers: 5, SJR: 0.231, h-index: 6)
Advances in Electrical Engineering     Open Access   (Followers: 20)
Advances in Fuzzy Systems     Open Access   (Followers: 5, SJR: 0.258, h-index: 7)
Advances in Hematology     Open Access   (Followers: 9, SJR: 0.892, h-index: 18)
Advances in High Energy Physics     Open Access   (Followers: 19, SJR: 0.892, h-index: 19)
Advances in Human-Computer Interaction     Open Access   (Followers: 20, SJR: 0.439, h-index: 9)
Advances in Materials Science and Engineering     Open Access   (Followers: 32, SJR: 0.263, h-index: 11)
Advances in Mathematical Physics     Open Access   (Followers: 5, SJR: 0.332, h-index: 10)
Advances in Medicine     Open Access   (Followers: 2)
Advances in Meteorology     Open Access   (Followers: 18, SJR: 0.498, h-index: 10)
Advances in Multimedia     Open Access   (Followers: 2, SJR: 0.191, h-index: 10)
Advances in Nonlinear Optics     Open Access   (Followers: 5)
Advances in Numerical Analysis     Open Access   (Followers: 4)
Advances in Operations Research     Open Access   (Followers: 11, SJR: 0.343, h-index: 7)
Advances in Optical Technologies     Open Access   (Followers: 3, SJR: 0.283, h-index: 16)
Advances in OptoElectronics     Open Access   (Followers: 5, SJR: 0.973, h-index: 16)
Advances in Orthopedic Surgery     Open Access   (Followers: 10)
Advances in Orthopedics     Open Access   (Followers: 9)
Advances in Pharmacological Sciences     Open Access   (Followers: 6, SJR: 0.695, h-index: 13)
Advances in Physical Chemistry     Open Access   (Followers: 11, SJR: 0.297, h-index: 7)
Advances in Power Electronics     Open Access   (Followers: 26, SJR: 0.26, h-index: 6)
Advances in Preventive Medicine     Open Access   (Followers: 6)
Advances in Public Health     Open Access   (Followers: 22)
Advances in Tribology     Open Access   (Followers: 10, SJR: 0.267, h-index: 6)
Advances in Urology     Open Access   (Followers: 10, SJR: 0.629, h-index: 16)
Advances in Virology     Open Access   (Followers: 7, SJR: 1.04, h-index: 12)
AIDS Research and Treatment     Open Access   (Followers: 3, SJR: 1.125, h-index: 14)
Analytical Cellular Pathology     Open Access   (Followers: 2, SJR: 0.334, h-index: 12)
Anatomy Research Intl.     Open Access   (Followers: 2)
Anemia     Open Access   (Followers: 4, SJR: 0.991, h-index: 11)
Anesthesiology Research and Practice     Open Access   (Followers: 12, SJR: 0.513, h-index: 12)
Applied and Environmental Soil Science     Open Access   (Followers: 17, SJR: 0.53, h-index: 9)
Applied Bionics and Biomechanics     Open Access   (Followers: 8, SJR: 0.23, h-index: 13)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Archaea     Open Access   (Followers: 3, SJR: 1.248, h-index: 27)
Arthritis     Open Access   (Followers: 4)
Autism Research and Treatment     Open Access   (Followers: 29)
Autoimmune Diseases     Open Access   (Followers: 3, SJR: 0.909, h-index: 17)
Behavioural Neurology     Open Access   (Followers: 7, SJR: 0.696, h-index: 34)
Biochemistry Research Intl.     Open Access   (Followers: 6, SJR: 1.085, h-index: 17)
Bioinorganic Chemistry and Applications     Open Access   (Followers: 9, SJR: 0.286, h-index: 19)
BioMed Research Intl.     Open Access   (Followers: 6, SJR: 0.725, h-index: 59)
Biotechnology Research Intl.     Open Access   (Followers: 2)
Bone Marrow Research     Open Access   (Followers: 2)
Canadian J. of Gastroenterology & Hepatology     Open Access   (Followers: 4, SJR: 0.856, h-index: 53)
Canadian J. of Infectious Diseases and Medical Microbiology     Open Access   (Followers: 4, SJR: 0.409, h-index: 25)
Canadian Respiratory J.     Open Access   (Followers: 1, SJR: 0.503, h-index: 42)
Cardiology Research and Practice     Open Access   (Followers: 8, SJR: 0.941, h-index: 17)
Cardiovascular Psychiatry and Neurology     Open Access   (Followers: 4, SJR: 1.091, h-index: 14)
Case Reports in Anesthesiology     Open Access   (Followers: 10)
Case Reports in Cardiology     Open Access   (Followers: 2)
Case Reports in Critical Care     Open Access   (Followers: 9)
Case Reports in Dentistry     Open Access   (Followers: 3)
Case Reports in Dermatological Medicine     Open Access   (Followers: 2)
Case Reports in Emergency Medicine     Open Access   (Followers: 15)
Case Reports in Endocrinology     Open Access   (SJR: 0.326, h-index: 1)
Case Reports in Gastrointestinal Medicine     Open Access   (Followers: 3)
Case Reports in Genetics     Open Access   (Followers: 1)
Case Reports in Hematology     Open Access   (Followers: 3)
Case Reports in Hepatology     Open Access   (Followers: 1)
Case Reports in Immunology     Open Access   (Followers: 4)
Case Reports in Infectious Diseases     Open Access   (Followers: 5)
Case Reports in Medicine     Open Access   (Followers: 3)
Case Reports in Nephrology     Open Access   (Followers: 4)
Case Reports in Neurological Medicine     Open Access   (Followers: 1)
Case Reports in Obstetrics and Gynecology     Open Access   (Followers: 11)
Case Reports in Oncological Medicine     Open Access   (Followers: 2)
Case Reports in Ophthalmological Medicine     Open Access   (Followers: 3)
Case Reports in Orthopedics     Open Access   (Followers: 7)
Case Reports in Otolaryngology     Open Access   (Followers: 5)
Case Reports in Pathology     Open Access   (Followers: 5)
Case Reports in Pediatrics     Open Access   (Followers: 6)
Case Reports in Psychiatry     Open Access   (Followers: 12)
Case Reports in Pulmonology     Open Access   (Followers: 3)
Case Reports in Radiology     Open Access   (Followers: 9)
Case Reports in Rheumatology     Open Access   (Followers: 4)
Case Reports in Surgery     Open Access   (Followers: 9)
Case Reports in Transplantation     Open Access  
Case Reports in Urology     Open Access   (Followers: 9)
Case Reports in Vascular Medicine     Open Access  
Case Reports in Veterinary Medicine     Open Access   (Followers: 5)
Chemotherapy Research and Practice     Open Access   (Followers: 1)
Child Development Research     Open Access   (Followers: 15)
Chinese J. of Engineering     Open Access   (Followers: 2)
Chinese J. of Mathematics     Open Access  
Cholesterol     Open Access   (Followers: 1, SJR: 0.906, h-index: 12)
Complexity     Hybrid Journal   (Followers: 6, SJR: 0.526, h-index: 27)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2, SJR: 0.415, h-index: 22)
Computational Intelligence and Neuroscience     Open Access   (Followers: 10, SJR: 0.232, h-index: 30)
Contrast Media & Molecular Imaging     Open Access   (Followers: 3, SJR: 0.932, h-index: 34)
Critical Care Research and Practice     Open Access   (Followers: 10, SJR: 0.916, h-index: 14)
Current Gerontology and Geriatrics Research     Open Access   (Followers: 9, SJR: 0.8, h-index: 12)
Depression Research and Treatment     Open Access   (Followers: 13, SJR: 0.77, h-index: 11)
Dermatology Research and Practice     Open Access   (Followers: 3, SJR: 0.576, h-index: 15)
Diagnostic and Therapeutic Endoscopy     Open Access   (SJR: 0.651, h-index: 18)
Discrete Dynamics in Nature and Society     Open Access   (Followers: 5, SJR: 0.323, h-index: 24)
Disease Markers     Open Access   (Followers: 1, SJR: 0.774, h-index: 49)
Education Research Intl.     Open Access   (Followers: 18)
Emergency Medicine Intl.     Open Access   (Followers: 7)
Enzyme Research     Open Access   (Followers: 4, SJR: 0.457, h-index: 18)
Epilepsy Research and Treatment     Open Access   (Followers: 3)
Evidence-based Complementary and Alternative Medicine     Open Access   (Followers: 18, SJR: 0.615, h-index: 50)
Experimental Diabetes Research     Open Access   (Followers: 11, SJR: 1.591, h-index: 30)
Gastroenterology Research and Practice     Open Access   (Followers: 3, SJR: 0.664, h-index: 21)
Genetics Research Intl.     Open Access   (Followers: 1)
Geofluids     Open Access   (Followers: 4, SJR: 0.693, h-index: 38)
Hepatitis Research and Treatment     Open Access   (Followers: 6)
HPB Surgery     Open Access   (Followers: 5, SJR: 0.798, h-index: 22)
Indian J. of Materials Science     Open Access  
Infectious Diseases in Obstetrics and Gynecology     Open Access   (Followers: 7, SJR: 0.976, h-index: 34)
Influenza Research and Treatment     Open Access   (Followers: 2)
Interdisciplinary Perspectives on Infectious Diseases     Open Access   (Followers: 2, SJR: 0.763, h-index: 15)
Intl. J. of Aerospace Engineering     Open Access   (Followers: 66, SJR: 0.241, h-index: 6)
Intl. J. of Agronomy     Open Access   (Followers: 8, SJR: 0.223, h-index: 2)
Intl. J. of Alzheimer's Disease     Open Access   (Followers: 11, SJR: 1.193, h-index: 25)
Intl. J. of Analysis     Open Access  
Intl. J. of Analytical Chemistry     Open Access   (Followers: 22, SJR: 0.157, h-index: 2)
Intl. J. of Antennas and Propagation     Open Access   (Followers: 11, SJR: 0.385, h-index: 15)
Intl. J. of Bacteriology     Open Access  
Intl. J. of Biodiversity     Open Access   (Followers: 4)
Intl. J. of Biomaterials     Open Access   (Followers: 5, SJR: 0.485, h-index: 10)
Intl. J. of Biomedical Imaging     Open Access   (Followers: 5, SJR: 0.581, h-index: 23)
Intl. J. of Breast Cancer     Open Access   (Followers: 12)
Intl. J. of Cell Biology     Open Access   (Followers: 4, SJR: 2.658, h-index: 25)
Intl. J. of Chemical Engineering     Open Access   (Followers: 7, SJR: 0.361, h-index: 10)
Intl. J. of Chronic Diseases     Open Access   (Followers: 1)
Intl. J. of Computer Games Technology     Open Access   (Followers: 11, SJR: 0.213, h-index: 12)
Intl. J. of Corrosion     Open Access   (Followers: 11, SJR: 0.19, h-index: 7)
Intl. J. of Dentistry     Open Access   (Followers: 6, SJR: 0.558, h-index: 11)
Intl. J. of Differential Equations     Open Access   (Followers: 7, SJR: 0.363, h-index: 11)
Intl. J. of Digital Multimedia Broadcasting     Open Access   (Followers: 5, SJR: 0.144, h-index: 10)
Intl. J. of Electrochemistry     Open Access   (Followers: 8)
Intl. J. of Endocrinology     Open Access   (Followers: 3, SJR: 0.961, h-index: 24)
Intl. J. of Engineering Mathematics     Open Access   (Followers: 3)
Intl. J. of Evolutionary Biology     Open Access   (Followers: 9)
Intl. J. of Family Medicine     Open Access   (Followers: 2)
Intl. J. of Food Science     Open Access   (Followers: 3)
Intl. J. of Forestry Research     Open Access   (Followers: 4)
Intl. J. of Genomics     Open Access   (Followers: 2, SJR: 0.721, h-index: 7)
Intl. J. of Hepatology     Open Access   (Followers: 3)
Intl. J. of Hypertension     Open Access   (Followers: 6, SJR: 0.823, h-index: 20)
Intl. J. of Inflammation     Open Access   (SJR: 0.876, h-index: 14)
Intl. J. of Mathematics and Mathematical Sciences     Open Access   (Followers: 3, SJR: 0.346, h-index: 27)
Intl. J. of Medicinal Chemistry     Open Access   (Followers: 6)
Intl. J. of Microbiology     Open Access   (Followers: 5, SJR: 1.006, h-index: 18)
Intl. J. of Microwave Science and Technology     Open Access   (Followers: 3, SJR: 0.167, h-index: 5)
Intl. J. of Molecular Imaging     Open Access  
Intl. J. of Navigation and Observation     Open Access   (Followers: 20, SJR: 0.411, h-index: 7)
Intl. J. of Nephrology     Open Access   (Followers: 2, SJR: 0.926, h-index: 14)
Intl. J. of Optics     Open Access   (Followers: 7, SJR: 0.262, h-index: 7)
Intl. J. of Otolaryngology     Open Access   (Followers: 2)
Intl. J. of Pediatrics     Open Access   (Followers: 5)
Intl. J. of Peptides     Open Access   (Followers: 4, SJR: 0.73, h-index: 16)
Intl. J. of Photoenergy     Open Access   (Followers: 2, SJR: 0.348, h-index: 28)
Intl. J. of Plant Genomics     Open Access   (Followers: 4, SJR: 1.578, h-index: 20)
Intl. J. of Polymer Science     Open Access   (Followers: 23, SJR: 0.265, h-index: 11)
Intl. J. of Population Research     Open Access   (Followers: 2)
Intl. J. of Proteomics     Open Access   (Followers: 1)
Intl. J. of Reconfigurable Computing     Open Access   (SJR: 0.182, h-index: 8)
Intl. J. of Reproductive Medicine     Open Access   (Followers: 5)
Intl. J. of Rheumatology     Open Access   (Followers: 4, SJR: 1.015, h-index: 18)
Intl. J. of Rotating Machinery     Open Access   (Followers: 2, SJR: 0.402, h-index: 19)
Intl. J. of Spectroscopy     Open Access   (Followers: 8)
Intl. J. of Stochastic Analysis     Open Access   (Followers: 4, SJR: 0.234, h-index: 19)
Intl. J. of Surgical Oncology     Open Access   (Followers: 1, SJR: 0.753, h-index: 11)
Intl. J. of Telemedicine and Applications     Open Access   (Followers: 4, SJR: 0.757, h-index: 14)
Intl. J. of Vascular Medicine     Open Access   (SJR: 0.865, h-index: 16)
Intl. J. of Vehicular Technology     Open Access   (Followers: 4, SJR: 0.169, h-index: 6)
Intl. J. of Zoology     Open Access   (Followers: 1, SJR: 0.389, h-index: 8)
Intl. Scholarly Research Notices     Open Access   (Followers: 204)
ISRN Astronomy and Astrophysics     Open Access   (Followers: 7)
J. of Addiction     Open Access   (Followers: 12)
J. of Advanced Transportation     Hybrid Journal   (Followers: 11, SJR: 0.911, h-index: 24)
J. of Aging Research     Open Access   (Followers: 7, SJR: 1.259, h-index: 23)
J. of Allergy     Open Access   (Followers: 4)
J. of Amino Acids     Open Access   (Followers: 2)
J. of Analytical Methods in Chemistry     Open Access   (Followers: 1, SJR: 0.296, h-index: 13)
J. of Anthropology     Open Access   (Followers: 24)
J. of Applied Chemistry     Open Access   (Followers: 4)
J. of Applied Mathematics     Open Access   (Followers: 2, SJR: 0.341, h-index: 22)
J. of Biomarkers     Open Access  
J. of Biomedical Education     Open Access   (Followers: 2)
J. of Biophysics     Open Access   (Followers: 5, SJR: 0.22, h-index: 5)
J. of Blood Transfusion     Open Access   (Followers: 1)
J. of Botany     Open Access   (Followers: 3, SJR: 0.101, h-index: 2)
J. of Cancer Epidemiology     Open Access   (Followers: 7, SJR: 1.427, h-index: 12)
J. of Chemistry     Open Access   (Followers: 5, SJR: 0.225, h-index: 11)
J. of Combustion     Open Access   (Followers: 17, SJR: 0.27, h-index: 8)
J. of Complex Analysis     Open Access   (Followers: 3)
J. of Computational Engineering     Open Access   (Followers: 1)

        1 2 | Last   [Sort by number of followers]   [Restore default list]

Journal Cover Computational Intelligence and Neuroscience
  [SJR: 0.232]   [H-I: 30]   [10 followers]  Follow
    
  This is an Open Access Journal Open Access journal
   ISSN (Print) 1687-5265 - ISSN (Online) 1687-5273
   Published by Hindawi Homepage  [298 journals]
  • Fusion of Facial Expressions and EEG for Multimodal Emotion Recognition

    • Abstract: This paper proposes two multimodal fusion methods between brain and peripheral signals for emotion recognition. The input signals are electroencephalogram and facial expression. The stimuli are based on a subset of movie clips that correspond to four specific areas of valance-arousal emotional space (happiness, neutral, sadness, and fear). For facial expression detection, four basic emotion states (happiness, neutral, sadness, and fear) are detected by a neural network classifier. For EEG detection, four basic emotion states and three emotion intensity levels (strong, ordinary, and weak) are detected by two support vector machines (SVM) classifiers, respectively. Emotion recognition is based on two decision-level fusion methods of both EEG and facial expression detections by using a sum rule or a production rule. Twenty healthy subjects attended two experiments. The results show that the accuracies of two multimodal fusion detections are 81.25% and 82.75%, respectively, which are both higher than that of facial expression (74.38%) or EEG detection (66.88%). The combination of facial expressions and EEG information for emotion recognition compensates for their defects as single information sources.
      PubDate: Tue, 19 Sep 2017 00:00:00 +000
       
  • The Artificial Neural Networks Based on Scalarization Method for a Class
           of Bilevel Biobjective Programming Problem

    • Abstract: A two-stage artificial neural network (ANN) based on scalarization method is proposed for bilevel biobjective programming problem (BLBOP). The induced set of the BLBOP is firstly expressed as the set of minimal solutions of a biobjective optimization problem by using scalar approach, and then the whole efficient set of the BLBOP is derived by the proposed two-stage ANN for exploring the induced set. In order to illustrate the proposed method, seven numerical examples are tested and compared with results in the classical literature. Finally, a practical problem is solved by the proposed algorithm.
      PubDate: Thu, 14 Sep 2017 00:00:00 +000
       
  • New Dandelion Algorithm Optimizes Extreme Learning Machine for Biomedical
           Classification Problems

    • Abstract: Inspired by the behavior of dandelion sowing, a new novel swarm intelligence algorithm, namely, dandelion algorithm (DA), is proposed for global optimization of complex functions in this paper. In DA, the dandelion population will be divided into two subpopulations, and different subpopulations will undergo different sowing behaviors. Moreover, another sowing method is designed to jump out of local optimum. In order to demonstrate the validation of DA, we compare the proposed algorithm with other existing algorithms, including bat algorithm, particle swarm optimization, and enhanced fireworks algorithm. Simulations show that the proposed algorithm seems much superior to other algorithms. At the same time, the proposed algorithm can be applied to optimize extreme learning machine (ELM) for biomedical classification problems, and the effect is considerable. At last, we use different fusion methods to form different fusion classifiers, and the fusion classifiers can achieve higher accuracy and better stability to some extent.
      PubDate: Mon, 11 Sep 2017 00:00:00 +000
       
  • Hyperbolic Modeling of Subthalamic Nucleus Cells to Investigate the Effect
           of Dopamine Depletion

    • Abstract: To investigate how different types of neurons can produce well-known spiking patterns, a new computationally efficient model is proposed in this paper. This model can help realize the neuronal interconnection issues. The model can demonstrate various neuronal behaviors observed in vivo through simple parameter modification. The behaviors include tonic and phasic spiking, tonic and phasic bursting, class 1 and class 2 excitability, rebound spike, rebound burst, subthreshold oscillation, and accommodated spiking along with inhibition neuron responses. Here, we investigate the neuronal spiking patterns in Parkinson’s disease through our proposed model. Abnormal pattern of subthalamic nucleus in Parkinson’s disease can be studied through variations in the shape and frequency of firing patterns. Our proposed model introduces mathematical equations, where these patterns can be derived and clearly differentiated from one another. The irregular and arrhythmic behaviors of subthalamic nucleus firing pattern under normal conditions can easily be transformed to those caused by Parkinson’s disease through simple parameter modifications in the proposed model. This model can explicitly show the change of neuronal activity patterns in Parkinson’s disease, which may eventually lead to effective treatment with deep brain stimulation devices.
      PubDate: Wed, 06 Sep 2017 07:00:54 +000
       
  • Thai Finger-Spelling Recognition Using a Cascaded Classifier Based on
           Histogram of Orientation Gradient Features

    • Abstract: Hand posture recognition is an essential module in applications such as human-computer interaction (HCI), games, and sign language systems, in which performance and robustness are the primary requirements. In this paper, we proposed automatic classification to recognize 21 hand postures that represent letters in Thai finger-spelling based on Histogram of Orientation Gradient (HOG) feature (which is applied with more focus on the information within certain region of the image rather than each single pixel) and Adaptive Boost (i.e., AdaBoost) learning technique to select the best weak classifier and to construct a strong classifier that consists of several weak classifiers to be cascaded in detection architecture. We collected 21 static hand posture images from 10 subjects for testing and training in Thai letters finger-spelling. The parameters for the training process have been adjusted in three experiments, false positive rates (FPR), true positive rates (TPR), and number of training stages (N), to achieve the most suitable training model for each hand posture. All cascaded classifiers are loaded into the system simultaneously to classify different hand postures. A correlation coefficient is computed to distinguish the hand postures that are similar. The system achieves approximately 78% accuracy on average on all classifier experiments.
      PubDate: Wed, 06 Sep 2017 00:00:00 +000
       
  • Classification of Hand Grasp Kinetics and Types Using Movement-Related
           Cortical Potentials and EEG Rhythms

    • Abstract: Detection of single-trial movement intentions from EEG is paramount for brain-computer interfacing in neurorehabilitation. These movement intentions contain task-related information and if this is decoded, the neurorehabilitation could potentially be optimized. The aim of this study was to classify single-trial movement intentions associated with two levels of force and speed and three different grasp types using EEG rhythms and components of the movement-related cortical potential (MRCP) as features. The feature importance was used to estimate encoding of discriminative information. Two data sets were used. 29 healthy subjects executed and imagined different hand movements, while EEG was recorded over the contralateral sensorimotor cortex. The following features were extracted: delta, theta, mu/alpha, beta, and gamma rhythms, readiness potential, negative slope, and motor potential of the MRCP. Sequential forward selection was performed, and classification was performed using linear discriminant analysis and support vector machines. Limited classification accuracies were obtained from the EEG rhythms and MRCP-components: (grasp types), (kinetic profiles, motor execution), and (kinetic profiles, motor imagination). Delta activity contributed the most but all features provided discriminative information. These findings suggest that information from the entire EEG spectrum is needed to discriminate between task-related parameters from single-trial movement intentions.
      PubDate: Tue, 29 Aug 2017 00:00:00 +000
       
  • Cognitive-Based EEG BCIs and Human Brain-Robot Interactions

    • PubDate: Mon, 28 Aug 2017 00:00:00 +000
       
  • A New Hybrid Model FPA-SVM Considering Cointegration for Particular Matter
           Concentration Forecasting: A Case Study of Kunming and Yuxi, China

    • Abstract: Air pollution in China is becoming more serious especially for the particular matter (PM) because of rapid economic growth and fast expansion of urbanization. To solve the growing environment problems, daily PM2.5 and PM10 concentration data form January 1, 2015, to August 23, 2016, in Kunming and Yuxi (two important cities in Yunnan Province, China) are used to present a new hybrid model CI-FPA-SVM to forecast air PM2.5 and PM10 concentration in this paper. The proposed model involves two parts. Firstly, due to its deficiency to assess the possible correlation between different variables, the cointegration theory is introduced to get the input-output relationship and then obtain the nonlinear dynamical system with support vector machine (SVM), in which the parameters c and g are optimized by flower pollination algorithm (FPA). Six benchmark models, including FPA-SVM, CI-SVM, CI-GA-SVM, CI-PSO-SVM, CI-FPA-NN, and multiple linear regression model, are considered to verify the superiority of the proposed hybrid model. The empirical study results demonstrate that the proposed model CI-FPA-SVM is remarkably superior to all considered benchmark models for its high prediction accuracy, and the application of the model for forecasting can give effective monitoring and management of further air quality.
      PubDate: Mon, 28 Aug 2017 00:00:00 +000
       
  • Optimal Parameter Selection for Support Vector Machine Based on Artificial
           Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power
           Prediction

    • Abstract: Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.
      PubDate: Tue, 22 Aug 2017 10:25:30 +000
       
  • Efficient Multiple Kernel Learning Algorithms Using Low-Rank
           Representation

    • Abstract: Unlike Support Vector Machine (SVM), Multiple Kernel Learning (MKL) allows datasets to be free to choose the useful kernels based on their distribution characteristics rather than a precise one. It has been shown in the literature that MKL holds superior recognition accuracy compared with SVM, however, at the expense of time consuming computations. This creates analytical and computational difficulties in solving MKL algorithms. To overcome this issue, we first develop a novel kernel approximation approach for MKL and then propose an efficient Low-Rank MKL (LR-MKL) algorithm by using the Low-Rank Representation (LRR). It is well-acknowledged that LRR can reduce dimension while retaining the data features under a global low-rank constraint. Furthermore, we redesign the binary-class MKL as the multiclass MKL based on pairwise strategy. Finally, the recognition effect and efficiency of LR-MKL are verified on the datasets Yale, ORL, LSVT, and Digit. Experimental results show that the proposed LR-MKL algorithm is an efficient kernel weights allocation method in MKL and boosts the performance of MKL largely.
      PubDate: Tue, 22 Aug 2017 07:45:32 +000
       
  • Chaotic Image Encryption Algorithm Based on Bit Permutation and Dynamic
           DNA Encoding

    • Abstract: With the help of the fact that chaos is sensitive to initial conditions and pseudorandomness, combined with the spatial configurations in the DNA molecule’s inherent and unique information processing ability, a novel image encryption algorithm based on bit permutation and dynamic DNA encoding is proposed here. The algorithm first uses Keccak to calculate the hash value for a given DNA sequence as the initial value of a chaotic map; second, it uses a chaotic sequence to scramble the image pixel locations, and the butterfly network is used to implement the bit permutation. Then, the image is coded into a DNA matrix dynamic, and an algebraic operation is performed with the DNA sequence to realize the substitution of the pixels, which further improves the security of the encryption. Finally, the confusion and diffusion properties of the algorithm are further enhanced by the operation of the DNA sequence and the ciphertext feedback. The results of the experiment and security analysis show that the algorithm not only has a large key space and strong sensitivity to the key but can also effectively resist attack operations such as statistical analysis and exhaustive analysis.
      PubDate: Tue, 22 Aug 2017 00:00:00 +000
       
  • Gaze Estimation Method Using Analysis of Electrooculogram Signals and
           Kinect Sensor

    • Abstract: A gaze estimation system is one of the communication methods for severely disabled people who cannot perform gestures and speech. We previously developed an eye tracking method using a compact and light electrooculogram (EOG) signal, but its accuracy is not very high. In the present study, we conducted experiments to investigate the EOG component strongly correlated with the change of eye movements. The experiments in this study are of two types: experiments to see objects only by eye movements and experiments to see objects by face and eye movements. The experimental results show the possibility of an eye tracking method using EOG signals and a Kinect sensor.
      PubDate: Sun, 20 Aug 2017 07:53:19 +000
       
  • A Novel Strategy for Minimum Attribute Reduction Based on Rough Set Theory
           and Fish Swarm Algorithm

    • Abstract: For data mining, reducing the unnecessary redundant attributes which was known as attribute reduction (AR), in particular, reducts with minimal cardinality, is an important preprocessing step. In the paper, by a coding method of combination subset of attributes set, a novel search strategy for minimal attribute reduction based on rough set theory (RST) and fish swarm algorithm (FSA) is proposed. The method identifies the core attributes by discernibility matrix firstly and all the subsets of noncore attribute sets with the same cardinality were encoded into integers as the individuals of FSA. Then, the evolutionary direction of the individual is limited to a certain extent by the coding method. The fitness function of an individual is defined based on the attribute dependency of RST, and FSA was used to find the optimal set of reducts. In each loop, if the maximum attribute dependency and the attribute dependency of condition attribute set are equal, then the algorithm terminates, otherwise adding a single attribute to the next loop. Some well-known datasets from UCI were selected to verify this method. The experimental results show that the proposed method searches the minimal attribute reduction set effectively and it has the excellent global search ability.
      PubDate: Tue, 15 Aug 2017 00:00:00 +000
       
  • Joint Extraction of Entities and Relations Using Reinforcement Learning
           and Deep Learning

    • Abstract: We use both reinforcement learning and deep learning to simultaneously extract entities and relations from unstructured texts. For reinforcement learning, we model the task as a two-step decision process. Deep learning is used to automatically capture the most important information from unstructured texts, which represent the state in the decision process. By designing the reward function per step, our proposed method can pass the information of entity extraction to relation extraction and obtain feedback in order to extract entities and relations simultaneously. Firstly, we use bidirectional LSTM to model the context information, which realizes preliminary entity extraction. On the basis of the extraction results, attention based method can represent the sentences that include target entity pair to generate the initial state in the decision process. Then we use Tree-LSTM to represent relation mentions to generate the transition state in the decision process. Finally, we employ -Learning algorithm to get control policy in the two-step decision process. Experiments on ACE2005 demonstrate that our method attains better performance than the state-of-the-art method and gets a 2.4% increase in recall-score.
      PubDate: Mon, 14 Aug 2017 00:00:00 +000
       
  • A Grey Wolf Optimizer for Modular Granular Neural Networks for Human
           Recognition

    • Abstract: A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.
      PubDate: Mon, 14 Aug 2017 00:00:00 +000
       
  • Application of the Intuitionistic Fuzzy InterCriteria Analysis Method with
           Triples to a Neural Network Preprocessing Procedure

    • Abstract: The approach of InterCriteria Analysis (ICA) was applied for the aim of reducing the set of variables on the input of a neural network, taking into account the fact that their large number increases the number of neurons in the network, thus making them unusable for hardware implementation. Here, for the first time, with the help of the ICA method, correlations between triples of the input parameters for training of the neural networks were obtained. In this case, we use the approach of ICA for data preprocessing, which may yield reduction of the total time for training the neural networks, hence, the time for the network’s processing of data and images.
      PubDate: Thu, 10 Aug 2017 09:21:23 +000
       
  • Identification of Anisomerous Motor Imagery EEG Signals Based on Complex
           Algorithms

    • Abstract: Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the -nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance.
      PubDate: Wed, 09 Aug 2017 00:00:00 +000
       
  • Box Office Forecasting considering Competitive Environment and
           Word-of-Mouth in Social Networks: A Case Study of Korean Film Market

    • Abstract: Accurate box office forecasting models are developed by considering competition and word-of-mouth (WOM) effects in addition to screening-related information. Nationality, genre, ratings, and distributors of motion pictures running concurrently with the target motion picture are used to describe the competition, whereas the numbers of informative, positive, and negative mentions posted on social network services (SNS) are used to gauge the atmosphere spread by WOM. Among these candidate variables, only significant variables are selected by genetic algorithm (GA), based on which machine learning algorithms are trained to build forecasting models. The forecasts are combined to improve forecasting performance. Experimental results on the Korean film market show that the forecasting accuracy in early screening periods can be significantly improved by considering competition. In addition, WOM has a stronger influence on total box office forecasting. Considering both competition and WOM improves forecasting performance to a larger extent than when only one of them is considered.
      PubDate: Thu, 27 Jul 2017 08:51:15 +000
       
  • Adaptive Resource Utilization Prediction System for Infrastructure as a
           Service Cloud

    • Abstract: Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers’ data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA) is applied; otherwise Autoregressive Neural Network (AR-NN) is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC) value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers.
      PubDate: Tue, 25 Jul 2017 08:28:31 +000
       
  • Prototype Generation Using Self-Organizing Maps for Informativeness-Based
           Classifier

    • Abstract: The nearest neighbor is one of the most important and simple procedures for data classification task. The , as it is called, requires only two parameters: the number of and a similarity measure. However, the algorithm has some weaknesses that make it impossible to be used in real problems. Since the algorithm has no model, an exhaustive comparison of the object in classification analysis and all training dataset is necessary. Another weakness is the optimal choice of parameter when the object analyzed is in an overlap region. To mitigate theses negative aspects, in this work, a hybrid algorithm is proposed which uses the Self-Organizing Maps (SOM) artificial neural network and a classifier that uses similarity measure based on information. Since SOM has the properties of vector quantization, it is used as a Prototype Generation approach to select a reduced training dataset for the classification approach based on the nearest neighbor rule with informativeness measure, named NN. The SOMNN combination was exhaustively experimented and the results show that the proposed approach presents important accuracy in databases where the border region does not have the object classes well defined.
      PubDate: Tue, 25 Jul 2017 00:00:00 +000
       
  • Modified Mahalanobis Taguchi System for Imbalance Data Classification

    • Abstract: The Mahalanobis Taguchi System (MTS) is considered one of the most promising binary classification algorithms to handle imbalance data. Unfortunately, MTS lacks a method for determining an efficient threshold for the binary classification. In this paper, a nonlinear optimization model is formulated based on minimizing the distance between MTS Receiver Operating Characteristics (ROC) curve and the theoretical optimal point named Modified Mahalanobis Taguchi System (MMTS). To validate the MMTS classification efficacy, it has been benchmarked with Support Vector Machines (SVMs), Naive Bayes (NB), Probabilistic Mahalanobis Taguchi Systems (PTM), Synthetic Minority Oversampling Technique (SMOTE), Adaptive Conformal Transformation (ACT), Kernel Boundary Alignment (KBA), Hidden Naive Bayes (HNB), and other improved Naive Bayes algorithms. MMTS outperforms the benchmarked algorithms especially when the imbalance ratio is greater than 400. A real life case study on manufacturing sector is used to demonstrate the applicability of the proposed model and to compare its performance with Mahalanobis Genetic Algorithm (MGA).
      PubDate: Mon, 24 Jul 2017 00:00:00 +000
       
  • Firefly Mating Algorithm for Continuous Optimization Problems

    • Abstract: This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.
      PubDate: Thu, 20 Jul 2017 00:00:00 +000
       
  • Shape Completion Using Deep Boltzmann Machine

    • Abstract: Shape completion is an important task in the field of image processing. An alternative method is to capture the shape information and finish the completion by a generative model, such as Deep Boltzmann Machine. With its powerful ability to deal with the distribution of the shapes, it is quite easy to acquire the result by sampling from the model. In this paper, we make use of the hidden activation of the DBM and incorporate it with the convolutional shape features to fit a regression model. We compare the output of the regression model with the incomplete shape feature in order to set a proper and compact mask for sampling from the DBM. The experiment shows that our method can obtain realistic results without any prior information about the incomplete object shape.
      PubDate: Wed, 19 Jul 2017 06:47:41 +000
       
  • Patch-Based Principal Component Analysis for Face Recognition

    • Abstract: We have proposed a patch-based principal component analysis (PCA) method to deal with face recognition. Many PCA-based methods for face recognition utilize the correlation between pixels, columns, or rows. But the local spatial information is not utilized or not fully utilized in these methods. We believe that patches are more meaningful basic units for face recognition than pixels, columns, or rows, since faces are discerned by patches containing eyes and noses. To calculate the correlation between patches, face images are divided into patches and then these patches are converted to column vectors which would be combined into a new “image matrix.” By replacing the images with the new “image matrix” in the two-dimensional PCA framework, we directly calculate the correlation of the divided patches by computing the total scatter. By optimizing the total scatter of the projected samples, we obtain the projection matrix for feature extraction. Finally, we use the nearest neighbor classifier. Extensive experiments on the ORL and FERET face database are reported to illustrate the performance of the patch-based PCA. Our method promotes the accuracy compared to one-dimensional PCA, two-dimensional PCA, and two-directional two-dimensional PCA.
      PubDate: Tue, 11 Jul 2017 09:10:35 +000
       
  • Feature Selection and Parameters Optimization of SVM Using Particle Swarm
           Optimization for Fault Classification in Power Distribution Systems

    • Abstract: Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.
      PubDate: Tue, 11 Jul 2017 06:53:26 +000
       
  • Differential Cloud Particles Evolution Algorithm Based on Data-Driven
           Mechanism for Applications of ANN

    • Abstract: Computational scientists have designed many useful algorithms by exploring a biological process or imitating natural evolution. These algorithms can be used to solve engineering optimization problems. Inspired by the change of matter state, we proposed a novel optimization algorithm called differential cloud particles evolution algorithm based on data-driven mechanism (CPDD). In the proposed algorithm, the optimization process is divided into two stages, namely, fluid stage and solid stage. The algorithm carries out the strategy of integrating global exploration with local exploitation in fluid stage. Furthermore, local exploitation is carried out mainly in solid stage. The quality of the solution and the efficiency of the search are influenced greatly by the control parameters. Therefore, the data-driven mechanism is designed for obtaining better control parameters to ensure good performance on numerical benchmark problems. In order to verify the effectiveness of CPDD, numerical experiments are carried out on all the CEC2014 contest benchmark functions. Finally, two application problems of artificial neural network are examined. The experimental results show that CPDD is competitive with respect to other eight state-of-the-art intelligent optimization algorithms.
      PubDate: Thu, 06 Jul 2017 09:50:26 +000
       
  • Characterization of 2-Path Product Signed Graphs with Its Properties

    • Abstract: A signed graph is a simple graph where each edge receives a sign positive or negative. Such graphs are mainly used in social sciences where individuals represent vertices friendly relation between them as a positive edge and enmity as a negative edge. In signed graphs, we define these relationships (edges) as of friendship (“” edge) or hostility (“” edge). A 2-path product signed graph of a signed graph is defined as follows: the vertex set is the same as and two vertices are adjacent if and only if there exists a path of length two between them in . The sign of an edge is the product of marks of vertices in where the mark of vertex in is the product of signs of all edges incident to the vertex. In this paper, we give a characterization of 2-path product signed graphs. Also, some other properties such as sign-compatibility and canonically-sign-compatibility of 2-path product signed graphs are discussed along with isomorphism and switching equivalence of this signed graph with 2-path signed graph.
      PubDate: Thu, 06 Jul 2017 08:41:50 +000
       
  • Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual
           Attention Features

    • Abstract: In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.
      PubDate: Thu, 06 Jul 2017 08:16:14 +000
       
  • Extracting T–S Fuzzy Models Using the Cuckoo Search Algorithm

    • Abstract: A new method called cuckoo search (CS) is used to extract and learn the Takagi–Sugeno (T–S) fuzzy model. In the proposed method, the particle or cuckoo of CS is formed by the structure of rules in terms of number and selected rules, the antecedent, and consequent parameters of the T–S fuzzy model. These parameters are learned simultaneously. The optimized T–S fuzzy model is validated by using three examples: the first a nonlinear plant modelling problem, the second a Box–Jenkins nonlinear system identification problem, and the third identification of nonlinear system, comparing the obtained results with other existing results of other methods. The proposed CS method gives an optimal T–S fuzzy model with fewer numbers of rules.
      PubDate: Thu, 06 Jul 2017 00:00:00 +000
       
  • Automatic Image-Based Plant Disease Severity Estimation Using Deep
           Learning

    • Abstract: Automatic and accurate estimation of disease severity is essential for food security, disease management, and yield loss prediction. Deep learning, the latest breakthrough in computer vision, is promising for fine-grained disease severity classification, as the method avoids the labor-intensive feature engineering and threshold-based segmentation. Using the apple black rot images in the PlantVillage dataset, which are further annotated by botanists with four severity stages as ground truth, a series of deep convolutional neural networks are trained to diagnose the severity of the disease. The performances of shallow networks trained from scratch and deep models fine-tuned by transfer learning are evaluated systemically in this paper. The best model is the deep VGG16 model trained with transfer learning, which yields an overall accuracy of 90.4% on the hold-out test set. The proposed deep learning model may have great potential in disease control for modern agriculture.
      PubDate: Wed, 05 Jul 2017 06:46:21 +000
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.80.137.187
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016