for Journals by Title or ISSN
for Articles by Keywords

Publisher: Hindawi   (Total: 269 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

        1 2 | Last   [Sort by number of followers]   [Restore default list]

Showing 1 - 200 of 269 Journals sorted alphabetically
Abstract and Applied Analysis     Open Access   (Followers: 3, SJR: 0.512, h-index: 32)
Active and Passive Electronic Components     Open Access   (Followers: 7, SJR: 0.157, h-index: 15)
Advances in Acoustics and Vibration     Open Access   (Followers: 33, SJR: 0.259, h-index: 6)
Advances in Agriculture     Open Access   (Followers: 8)
Advances in Artificial Intelligence     Open Access   (Followers: 16)
Advances in Astronomy     Open Access   (Followers: 40, SJR: 0.351, h-index: 17)
Advances in Bioinformatics     Open Access   (Followers: 20, SJR: 0.421, h-index: 8)
Advances in Chemistry     Open Access   (Followers: 20)
Advances in Civil Engineering     Open Access   (Followers: 39, SJR: 0.338, h-index: 8)
Advances in Condensed Matter Physics     Open Access   (Followers: 9, SJR: 0.248, h-index: 10)
Advances in Decision Sciences     Open Access   (Followers: 5, SJR: 0.231, h-index: 6)
Advances in Fuzzy Systems     Open Access   (Followers: 5, SJR: 0.258, h-index: 7)
Advances in Hematology     Open Access   (Followers: 10, SJR: 0.892, h-index: 18)
Advances in High Energy Physics     Open Access   (Followers: 19, SJR: 0.892, h-index: 19)
Advances in Human-Computer Interaction     Open Access   (Followers: 21, SJR: 0.439, h-index: 9)
Advances in Materials Science and Engineering     Open Access   (Followers: 32, SJR: 0.263, h-index: 11)
Advances in Mathematical Physics     Open Access   (Followers: 5, SJR: 0.332, h-index: 10)
Advances in Medicine     Open Access   (Followers: 2)
Advances in Meteorology     Open Access   (Followers: 20, SJR: 0.498, h-index: 10)
Advances in Multimedia     Open Access   (Followers: 1, SJR: 0.191, h-index: 10)
Advances in Nonlinear Optics     Open Access   (Followers: 6)
Advances in Numerical Analysis     Open Access   (Followers: 4)
Advances in Operations Research     Open Access   (Followers: 12, SJR: 0.343, h-index: 7)
Advances in Optical Technologies     Open Access   (Followers: 3, SJR: 0.283, h-index: 16)
Advances in OptoElectronics     Open Access   (Followers: 5, SJR: 0.973, h-index: 16)
Advances in Orthopedics     Open Access   (Followers: 10)
Advances in Pharmacological Sciences     Open Access   (Followers: 7, SJR: 0.695, h-index: 13)
Advances in Physical Chemistry     Open Access   (Followers: 10, SJR: 0.297, h-index: 7)
Advances in Power Electronics     Open Access   (Followers: 28, SJR: 0.26, h-index: 6)
Advances in Preventive Medicine     Open Access   (Followers: 6)
Advances in Public Health     Open Access   (Followers: 23)
Advances in Tribology     Open Access   (Followers: 12, SJR: 0.267, h-index: 6)
Advances in Urology     Open Access   (Followers: 9, SJR: 0.629, h-index: 16)
Advances in Virology     Open Access   (Followers: 7, SJR: 1.04, h-index: 12)
AIDS Research and Treatment     Open Access   (Followers: 3, SJR: 1.125, h-index: 14)
Analytical Cellular Pathology     Open Access   (Followers: 2, SJR: 0.334, h-index: 12)
Anatomy Research Intl.     Open Access   (Followers: 2)
Anemia     Open Access   (Followers: 5, SJR: 0.991, h-index: 11)
Anesthesiology Research and Practice     Open Access   (Followers: 12, SJR: 0.513, h-index: 12)
Applied and Environmental Soil Science     Open Access   (Followers: 18, SJR: 0.53, h-index: 9)
Applied Bionics and Biomechanics     Open Access   (Followers: 8, SJR: 0.23, h-index: 13)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Archaea     Open Access   (Followers: 3, SJR: 1.248, h-index: 27)
Arthritis     Open Access   (Followers: 5)
Autism Research and Treatment     Open Access   (Followers: 29)
Autoimmune Diseases     Open Access   (Followers: 3, SJR: 0.909, h-index: 17)
Behavioural Neurology     Open Access   (Followers: 9, SJR: 0.696, h-index: 34)
Biochemistry Research Intl.     Open Access   (Followers: 6, SJR: 1.085, h-index: 17)
Bioinorganic Chemistry and Applications     Open Access   (Followers: 9, SJR: 0.286, h-index: 19)
BioMed Research Intl.     Open Access   (Followers: 6, SJR: 0.725, h-index: 59)
Biotechnology Research Intl.     Open Access   (Followers: 2)
Bone Marrow Research     Open Access   (Followers: 2)
Canadian J. of Gastroenterology & Hepatology     Open Access   (Followers: 5, SJR: 0.856, h-index: 53)
Canadian J. of Infectious Diseases and Medical Microbiology     Open Access   (Followers: 5, SJR: 0.409, h-index: 25)
Canadian Respiratory J.     Open Access   (Followers: 1, SJR: 0.503, h-index: 42)
Cardiology Research and Practice     Open Access   (Followers: 8, SJR: 0.941, h-index: 17)
Case Reports in Anesthesiology     Open Access   (Followers: 10)
Case Reports in Cardiology     Open Access   (Followers: 3)
Case Reports in Critical Care     Open Access   (Followers: 9)
Case Reports in Dentistry     Open Access   (Followers: 5)
Case Reports in Dermatological Medicine     Open Access   (Followers: 2)
Case Reports in Emergency Medicine     Open Access   (Followers: 15)
Case Reports in Endocrinology     Open Access   (SJR: 0.326, h-index: 1)
Case Reports in Gastrointestinal Medicine     Open Access   (Followers: 3)
Case Reports in Genetics     Open Access   (Followers: 1)
Case Reports in Hematology     Open Access   (Followers: 5)
Case Reports in Hepatology     Open Access   (Followers: 1)
Case Reports in Immunology     Open Access   (Followers: 4)
Case Reports in Infectious Diseases     Open Access   (Followers: 6)
Case Reports in Medicine     Open Access   (Followers: 3)
Case Reports in Nephrology     Open Access   (Followers: 4)
Case Reports in Neurological Medicine     Open Access   (Followers: 1)
Case Reports in Obstetrics and Gynecology     Open Access   (Followers: 11)
Case Reports in Oncological Medicine     Open Access   (Followers: 2)
Case Reports in Ophthalmological Medicine     Open Access   (Followers: 4)
Case Reports in Orthopedics     Open Access   (Followers: 7)
Case Reports in Otolaryngology     Open Access   (Followers: 6)
Case Reports in Pathology     Open Access   (Followers: 5)
Case Reports in Pediatrics     Open Access   (Followers: 6)
Case Reports in Psychiatry     Open Access   (Followers: 12)
Case Reports in Pulmonology     Open Access   (Followers: 3)
Case Reports in Radiology     Open Access   (Followers: 8)
Case Reports in Rheumatology     Open Access   (Followers: 5)
Case Reports in Surgery     Open Access   (Followers: 11)
Case Reports in Transplantation     Open Access  
Case Reports in Urology     Open Access   (Followers: 8)
Case Reports in Vascular Medicine     Open Access  
Case Reports in Veterinary Medicine     Open Access   (Followers: 7)
Child Development Research     Open Access   (Followers: 17)
Chinese J. of Engineering     Open Access   (Followers: 2)
Chinese J. of Mathematics     Open Access  
Cholesterol     Open Access   (Followers: 1, SJR: 0.906, h-index: 12)
Complexity     Hybrid Journal   (Followers: 6, SJR: 0.526, h-index: 27)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2, SJR: 0.415, h-index: 22)
Computational Intelligence and Neuroscience     Open Access   (Followers: 10, SJR: 0.232, h-index: 30)
Contrast Media & Molecular Imaging     Open Access   (Followers: 3, SJR: 0.932, h-index: 34)
Critical Care Research and Practice     Open Access   (Followers: 10, SJR: 0.916, h-index: 14)
Current Gerontology and Geriatrics Research     Open Access   (Followers: 9, SJR: 0.8, h-index: 12)
Depression Research and Treatment     Open Access   (Followers: 15, SJR: 0.77, h-index: 11)
Dermatology Research and Practice     Open Access   (Followers: 3, SJR: 0.576, h-index: 15)
Diagnostic and Therapeutic Endoscopy     Open Access   (SJR: 0.651, h-index: 18)
Discrete Dynamics in Nature and Society     Open Access   (Followers: 5, SJR: 0.323, h-index: 24)
Disease Markers     Open Access   (Followers: 1, SJR: 0.774, h-index: 49)
Education Research Intl.     Open Access   (Followers: 21)
Emergency Medicine Intl.     Open Access   (Followers: 7)
Enzyme Research     Open Access   (Followers: 4, SJR: 0.457, h-index: 18)
Evidence-based Complementary and Alternative Medicine     Open Access   (Followers: 20, SJR: 0.615, h-index: 50)
Experimental Diabetes Research     Open Access   (Followers: 13, SJR: 1.591, h-index: 30)
Gastroenterology Research and Practice     Open Access   (Followers: 3, SJR: 0.664, h-index: 21)
Genetics Research Intl.     Open Access   (Followers: 1)
Geofluids     Open Access   (Followers: 5, SJR: 0.693, h-index: 38)
HPB Surgery     Open Access   (Followers: 5, SJR: 0.798, h-index: 22)
Infectious Diseases in Obstetrics and Gynecology     Open Access   (Followers: 6, SJR: 0.976, h-index: 34)
Interdisciplinary Perspectives on Infectious Diseases     Open Access   (Followers: 2, SJR: 0.763, h-index: 15)
Intl. J. of Aerospace Engineering     Open Access   (Followers: 72, SJR: 0.241, h-index: 6)
Intl. J. of Agronomy     Open Access   (Followers: 8, SJR: 0.223, h-index: 2)
Intl. J. of Alzheimer's Disease     Open Access   (Followers: 12, SJR: 1.193, h-index: 25)
Intl. J. of Analysis     Open Access  
Intl. J. of Analytical Chemistry     Open Access   (Followers: 22, SJR: 0.157, h-index: 2)
Intl. J. of Antennas and Propagation     Open Access   (Followers: 11, SJR: 0.385, h-index: 15)
Intl. J. of Biodiversity     Open Access   (Followers: 4)
Intl. J. of Biomaterials     Open Access   (Followers: 5, SJR: 0.485, h-index: 10)
Intl. J. of Biomedical Imaging     Open Access   (Followers: 4, SJR: 0.581, h-index: 23)
Intl. J. of Breast Cancer     Open Access   (Followers: 13)
Intl. J. of Cell Biology     Open Access   (Followers: 4, SJR: 2.658, h-index: 25)
Intl. J. of Chemical Engineering     Open Access   (Followers: 7, SJR: 0.361, h-index: 10)
Intl. J. of Chronic Diseases     Open Access   (Followers: 1)
Intl. J. of Computer Games Technology     Open Access   (Followers: 11, SJR: 0.213, h-index: 12)
Intl. J. of Corrosion     Open Access   (Followers: 11, SJR: 0.19, h-index: 7)
Intl. J. of Dentistry     Open Access   (Followers: 6, SJR: 0.558, h-index: 11)
Intl. J. of Differential Equations     Open Access   (Followers: 8, SJR: 0.363, h-index: 11)
Intl. J. of Digital Multimedia Broadcasting     Open Access   (Followers: 5, SJR: 0.144, h-index: 10)
Intl. J. of Electrochemistry     Open Access   (Followers: 8)
Intl. J. of Endocrinology     Open Access   (Followers: 3, SJR: 0.961, h-index: 24)
Intl. J. of Engineering Mathematics     Open Access   (Followers: 5)
Intl. J. of Food Science     Open Access   (Followers: 3)
Intl. J. of Forestry Research     Open Access   (Followers: 4)
Intl. J. of Genomics     Open Access   (Followers: 2, SJR: 0.721, h-index: 7)
Intl. J. of Hepatology     Open Access   (Followers: 4)
Intl. J. of Hypertension     Open Access   (Followers: 7, SJR: 0.823, h-index: 20)
Intl. J. of Inflammation     Open Access   (SJR: 0.876, h-index: 14)
Intl. J. of Mathematics and Mathematical Sciences     Open Access   (Followers: 3, SJR: 0.346, h-index: 27)
Intl. J. of Medicinal Chemistry     Open Access   (Followers: 6)
Intl. J. of Microbiology     Open Access   (Followers: 5, SJR: 1.006, h-index: 18)
Intl. J. of Navigation and Observation     Open Access   (Followers: 20, SJR: 0.411, h-index: 7)
Intl. J. of Nephrology     Open Access   (Followers: 1, SJR: 0.926, h-index: 14)
Intl. J. of Optics     Open Access   (Followers: 7, SJR: 0.262, h-index: 7)
Intl. J. of Otolaryngology     Open Access   (Followers: 3)
Intl. J. of Pediatrics     Open Access   (Followers: 5)
Intl. J. of Peptides     Open Access   (Followers: 4, SJR: 0.73, h-index: 16)
Intl. J. of Photoenergy     Open Access   (Followers: 2, SJR: 0.348, h-index: 28)
Intl. J. of Plant Genomics     Open Access   (Followers: 4, SJR: 1.578, h-index: 20)
Intl. J. of Polymer Science     Open Access   (Followers: 24, SJR: 0.265, h-index: 11)
Intl. J. of Population Research     Open Access   (Followers: 2)
Intl. J. of Reconfigurable Computing     Open Access   (SJR: 0.182, h-index: 8)
Intl. J. of Reproductive Medicine     Open Access   (Followers: 4)
Intl. J. of Rheumatology     Open Access   (Followers: 5, SJR: 1.015, h-index: 18)
Intl. J. of Rotating Machinery     Open Access   (Followers: 2, SJR: 0.402, h-index: 19)
Intl. J. of Spectroscopy     Open Access   (Followers: 8)
Intl. J. of Stochastic Analysis     Open Access   (Followers: 4, SJR: 0.234, h-index: 19)
Intl. J. of Surgical Oncology     Open Access   (Followers: 1, SJR: 0.753, h-index: 11)
Intl. J. of Telemedicine and Applications     Open Access   (Followers: 4, SJR: 0.757, h-index: 14)
Intl. J. of Vascular Medicine     Open Access   (SJR: 0.865, h-index: 16)
Intl. J. of Zoology     Open Access   (Followers: 2, SJR: 0.389, h-index: 8)
Intl. Scholarly Research Notices     Open Access   (Followers: 210)
ISRN Astronomy and Astrophysics     Open Access   (Followers: 7)
J. of Addiction     Open Access   (Followers: 12)
J. of Advanced Transportation     Hybrid Journal   (Followers: 12, SJR: 0.911, h-index: 24)
J. of Aging Research     Open Access   (Followers: 7, SJR: 1.259, h-index: 23)
J. of Analytical Methods in Chemistry     Open Access   (Followers: 1, SJR: 0.296, h-index: 13)
J. of Applied Chemistry     Open Access   (Followers: 4)
J. of Applied Mathematics     Open Access   (Followers: 2, SJR: 0.341, h-index: 22)
J. of Biomedical Education     Open Access   (Followers: 3)
J. of Blood Transfusion     Open Access   (Followers: 1)
J. of Botany     Open Access   (Followers: 3, SJR: 0.101, h-index: 2)
J. of Cancer Epidemiology     Open Access   (Followers: 7, SJR: 1.427, h-index: 12)
J. of Chemistry     Open Access   (Followers: 6, SJR: 0.225, h-index: 11)
J. of Combustion     Open Access   (Followers: 23, SJR: 0.27, h-index: 8)
J. of Complex Analysis     Open Access   (Followers: 3)
J. of Computer Networks and Communications     Open Access   (Followers: 5, SJR: 0.257, h-index: 8)
J. of Construction Engineering     Open Access   (Followers: 8)
J. of Control Science and Engineering     Open Access   (Followers: 1, SJR: 0.299, h-index: 9)
J. of Diabetes Research     Open Access   (Followers: 11, SJR: 1.024, h-index: 13)
J. of Drug Delivery     Open Access   (Followers: 8, SJR: 4.523, h-index: 2)
J. of Electrical and Computer Engineering     Open Access   (Followers: 9, SJR: 0.225, h-index: 10)
J. of Energy     Open Access   (Followers: 2)
J. of Engineering     Open Access  
J. of Environmental and Public Health     Open Access   (Followers: 17, SJR: 1.136, h-index: 16)
J. of Food Quality     Hybrid Journal   (Followers: 7, SJR: 0.497, h-index: 30)
J. of Function Spaces     Open Access   (SJR: 0.414, h-index: 10)
J. of Geological Research     Open Access   (Followers: 2)
J. of Healthcare Engineering     Open Access   (Followers: 3, SJR: 0.345, h-index: 10)
J. of Immunology Research     Open Access   (Followers: 10, SJR: 1.346, h-index: 41)
J. of Lipids     Open Access  
J. of Marine Biology     Open Access   (Followers: 16)
J. of Materials     Open Access  
J. of Mathematics     Open Access  
J. of Nanomaterials     Open Access   (Followers: 2, SJR: 0.383, h-index: 24)
J. of Nanoscience     Open Access  
J. of Nanotechnology     Open Access   (Followers: 7, SJR: 0.283, h-index: 9)

        1 2 | Last   [Sort by number of followers]   [Restore default list]

Journal Cover Computational Intelligence and Neuroscience
  [SJR: 0.232]   [H-I: 30]   [10 followers]  Follow
  This is an Open Access Journal Open Access journal
   ISSN (Print) 1687-5265 - ISSN (Online) 1687-5273
   Published by Hindawi Homepage  [269 journals]
  • GA-Based Membrane Evolutionary Algorithm for Ensemble Clustering

    • Abstract: Ensemble clustering can improve the generalization ability of a single clustering algorithm and generate a more robust clustering result by integrating multiple base clusterings, so it becomes the focus of current clustering research. Ensemble clustering aims at finding a consensus partition which agrees as much as possible with base clusterings. Genetic algorithm is a highly parallel, stochastic, and adaptive search algorithm developed from the natural selection and evolutionary mechanism of biology. In this paper, an improved genetic algorithm is designed by improving the coding of chromosome. A new membrane evolutionary algorithm is constructed by using genetic mechanisms as evolution rules and combines with the communication mechanism of cell-like P system. The proposed algorithm is used to optimize the base clusterings and find the optimal chromosome as the final ensemble clustering result. The global optimization ability of the genetic algorithm and the rapid convergence of the membrane system make membrane evolutionary algorithm perform better than several state-of-the-art techniques on six real-world UCI data sets.
      PubDate: Thu, 16 Nov 2017 09:00:12 +000
  • Ensembling Variable Selectors by Stability Selection for the Cox Model

    • Abstract: As a pivotal tool to build interpretive models, variable selection plays an increasingly important role in high-dimensional data analysis. In recent years, variable selection ensembles (VSEs) have gained much interest due to their many advantages. Stability selection (Meinshausen and Bühlmann, 2010), a VSE technique based on subsampling in combination with a base algorithm like lasso, is an effective method to control false discovery rate (FDR) and to improve selection accuracy in linear regression models. By adopting lasso as a base learner, we attempt to extend stability selection to handle variable selection problems in a Cox model. According to our experience, it is crucial to set the regularization region in lasso and the parameter properly so that stability selection can work well. To the best of our knowledge, however, there is no literature addressing this problem in an explicit way. Therefore, we first provide a detailed procedure to specify and . Then, some simulated and real-world data with various censoring rates are used to examine how well stability selection performs. It is also compared with several other variable selection approaches. Experimental results demonstrate that it achieves better or competitive performance in comparison with several other popular techniques.
      PubDate: Wed, 15 Nov 2017 08:27:37 +000
  • Underwater Inherent Optical Properties Estimation Using a Depth Aided Deep
           Neural Network

    • Abstract: Underwater inherent optical properties (IOPs) are the fundamental clues to many research fields such as marine optics, marine biology, and underwater vision. Currently, beam transmissometers and optical sensors are considered as the ideal IOPs measuring methods. But these methods are inflexible and expensive to be deployed. To overcome this problem, we aim to develop a novel measuring method using only a single underwater image with the help of deep artificial neural network. The power of artificial neural network has been proved in image processing and computer vision fields with deep learning technology. However, image-based IOPs estimation is a quite different and challenging task. Unlike the traditional applications such as image classification or localization, IOP estimation looks at the transparency of the water between the camera and the target objects to estimate multiple optical properties simultaneously. In this paper, we propose a novel Depth Aided (DA) deep neural network structure for IOPs estimation based on a single RGB image that is even noisy. The imaging depth information is considered as an aided input to help our model make better decision.
      PubDate: Wed, 15 Nov 2017 06:50:35 +000
  • A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data

    • Abstract: Anomaly detection, which aims to identify observations that deviate from a nominal sample, is a challenging task for high-dimensional data. Traditional distance-based anomaly detection methods compute the neighborhood distance between each observation and suffer from the curse of dimensionality in high-dimensional space; for example, the distances between any pair of samples are similar and each sample may perform like an outlier. In this paper, we propose a hybrid semi-supervised anomaly detection model for high-dimensional data that consists of two parts: a deep autoencoder (DAE) and an ensemble -nearest neighbor graphs- (-NNG-) based anomaly detector. Benefiting from the ability of nonlinear mapping, the DAE is first trained to learn the intrinsic features of a high-dimensional dataset to represent the high-dimensional data in a more compact subspace. Several nonparametric KNN-based anomaly detectors are then built from different subsets that are randomly sampled from the whole dataset. The final prediction is made by all the anomaly detectors. The performance of the proposed method is evaluated on several real-life datasets, and the results confirm that the proposed hybrid model improves the detection accuracy and reduces the computational complexity.
      PubDate: Wed, 15 Nov 2017 00:00:00 +000
  • Toward Model Building for Visual Aesthetic Perception

    • Abstract: Several models of visual aesthetic perception have been proposed in recent years. Such models have drawn on investigations into the neural underpinnings of visual aesthetics, utilizing neurophysiological techniques and brain imaging techniques including functional magnetic resonance imaging, magnetoencephalography, and electroencephalography. The neural mechanisms underlying the aesthetic perception of the visual arts have been explained from the perspectives of neuropsychology, brain and cognitive science, informatics, and statistics. Although corresponding models have been constructed, the majority of these models contain elements that are difficult to be simulated or quantified using simple mathematical functions. In this review, we discuss the hypotheses, conceptions, and structures of six typical models for human aesthetic appreciation in the visual domain: the neuropsychological, information processing, mirror, quartet, and two hierarchical feed-forward layered models. Additionally, the neural foundation of aesthetic perception, appreciation, or judgement for each model is summarized. The development of a unified framework for the neurobiological mechanisms underlying the aesthetic perception of visual art and the validation of this framework via mathematical simulation is an interesting challenge in neuroaesthetics research. This review aims to provide information regarding the most promising proposals for bridging the gap between visual information processing and brain activity involved in aesthetic appreciation.
      PubDate: Wed, 15 Nov 2017 00:00:00 +000
  • A Time-Series Water Level Forecasting Model Based on Imputation and
           Variable Selection Method

    • Abstract: Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir’s water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir’s water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.
      PubDate: Thu, 09 Nov 2017 08:51:12 +000
  • High Performance Implementation of 3D Convolutional Neural Networks on a

    • Abstract: Convolutional neural networks have proven to be highly successful in applications such as image classification, object tracking, and many other tasks based on 2D inputs. Recently, researchers have started to apply convolutional neural networks to video classification, which constitutes a 3D input and requires far larger amounts of memory and much more computation. FFT based methods can reduce the amount of computation, but this generally comes at the cost of an increased memory requirement. On the other hand, the Winograd Minimal Filtering Algorithm (WMFA) can reduce the number of operations required and thus can speed up the computation, without increasing the required memory. This strategy was shown to be successful for 2D neural networks. We implement the algorithm for 3D convolutional neural networks and apply it to a popular 3D convolutional neural network which is used to classify videos and compare it to cuDNN. For our highly optimized implementation of the algorithm, we observe a twofold speedup for most of the 3D convolution layers of our test network compared to the cuDNN version.
      PubDate: Wed, 08 Nov 2017 00:00:00 +000
  • Convolutional Neural Networks with 3D Input for P300 Identification in
           Auditory Brain-Computer Interfaces

    • Abstract: From allowing basic communication to move through an environment, several attempts are being made in the field of brain-computer interfaces (BCI) to assist people that somehow find it difficult or impossible to perform certain activities. Focusing on these people as potential users of BCI, we obtained electroencephalogram (EEG) readings from nine healthy subjects who were presented with auditory stimuli via earphones from six different virtual directions. We presented the stimuli following the oddball paradigm to elicit P300 waves within the subject’s brain activity for later identification and classification using convolutional neural networks (CNN). The CNN models are given a novel single trial three-dimensional (3D) representation of the EEG data as an input, maintaining temporal and spatial information as close to the experimental setup as possible, a relevant characteristic as eliciting P300 has been shown to cause stronger activity in certain brain regions. Here, we present the results of CNN models using the proposed 3D input for three different stimuli presentation time intervals (500, 400, and 300 ms) and compare them to previous studies and other common classifiers. Our results show >80% accuracy for all the CNN models using the proposed 3D input in single trial P300 classification.
      PubDate: Tue, 07 Nov 2017 06:36:42 +000
  • A Comparison Study on Multidomain EEG Features for Sleep Stage

    • Abstract: Feature extraction from physiological signals of EEG (electroencephalogram) is an essential part for sleep staging. In this study, multidomain feature extraction was investigated based on time domain analysis, nonlinear analysis, and frequency domain analysis. Unlike the traditional feature calculation in time domain, a sequence merging method was developed as a preprocessing procedure. The objective is to eliminate the clutter waveform and highlight the characteristic waveform for further analysis. The numbers of the characteristic activities were extracted as the features from time domain. The contributions of features from different domains to the sleep stages were compared. The effectiveness was further analyzed by automatic sleep stage classification and compared with the visual inspection. The overnight clinical sleep EEG recordings of 3 patients after the treatment of Continuous Positive Airway Pressure (CPAP) were tested. The obtained results showed that the developed method can highlight the characteristic activity which is useful for both automatic sleep staging and visual inspection. Furthermore, it can be a training tool for better understanding the appearance of characteristic waveforms from raw sleep EEG which is mixed and complex in time domain.
      PubDate: Sun, 05 Nov 2017 06:46:38 +000
  • Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals

    • Abstract: This paper presents a patient-specific epileptic seizure predication method relying on the common spatial pattern- (CSP-) based feature extraction of scalp electroencephalogram (sEEG) signals. Multichannel EEG signals are traced and segmented into overlapping segments for both preictal and interictal intervals. The features extracted using CSP are used for training a linear discriminant analysis classifier, which is then employed in the testing phase. A leave-one-out cross-validation strategy is adopted in the experiments. The experimental results for seizure prediction obtained from the records of 24 patients from the CHB-MIT database reveal that the proposed predictor can achieve an average sensitivity of 0.89, an average false prediction rate of 0.39, and an average prediction time of 68.71 minutes using a 120-minute prediction horizon.
      PubDate: Tue, 31 Oct 2017 00:00:00 +000
  • Multimodal Personal Verification Using Likelihood Ratio for the Match
           Score Fusion

    • Abstract: In this paper, the authors present a novel personal verification system based on the likelihood ratio test for fusion of match scores from multiple biometric matchers (face, fingerprint, hand shape, and palm print). In the proposed system, multimodal features are extracted by Zernike Moment (ZM). After matching, the match scores from multiple biometric matchers are fused based on the likelihood ratio test. A finite Gaussian mixture model (GMM) is used for estimating the genuine and impostor densities of match scores for personal verification. Our approach is also compared to some different famous approaches such as the support vector machine and the sum rule with min-max. The experimental results have confirmed that the proposed system can achieve excellent identification performance for its higher level in accuracy than different famous approaches and thus can be utilized for more application related to person verification.
      PubDate: Tue, 31 Oct 2017 00:00:00 +000
  • A New Approach for Mobile Advertising Click-Through Rate Estimation Based
           on Deep Belief Nets

    • Abstract: In recent years, with the rapid development of mobile Internet and its business applications, mobile advertising Click-Through Rate (CTR) estimation has become a hot research direction in the field of computational advertising, which is used to achieve accurate advertisement delivery for the best benefits in the three-side game between media, advertisers, and audiences. Current research on the estimation of CTR mainly uses the methods and models of machine learning, such as linear model or recommendation algorithms. However, most of these methods are insufficient to extract the data features and cannot reflect the nonlinear relationship between different features. In order to solve these problems, we propose a new model based on Deep Belief Nets to predict the CTR of mobile advertising, which combines together the powerful data representation and feature extraction capability of Deep Belief Nets, with the advantage of simplicity of traditional Logistic Regression models. Based on the training dataset with the information of over 40 million mobile advertisements during a period of 10 days, our experiments show that our new model has better estimation accuracy than the classic Logistic Regression (LR) model by 5.57% and Support Vector Regression (SVR) model by 5.80%.
      PubDate: Wed, 25 Oct 2017 08:14:46 +000
  • Genetic Algorithm for Traveling Salesman Problem with Modified Cycle
           Crossover Operator

    • Abstract: Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.
      PubDate: Wed, 25 Oct 2017 06:50:11 +000
  • Search for an Appropriate Behavior within the Emotional Regulation in
           Virtual Creatures Using a Learning Classifier System

    • Abstract: Emotion regulation is a process by which human beings control emotional behaviors. From neuroscientific evidence, this mechanism is the product of conscious or unconscious processes. In particular, the mechanism generated by a conscious process needs a priori components to be computed. The behaviors generated by previous experiences are among these components. These behaviors need to be adapted to fulfill the objectives in a specific situation. The problem we address is how to endow virtual creatures with emotion regulation in order to compute an appropriate behavior in a specific emotional situation. This problem is clearly important and we have not identified ways to solve this problem in the current literature. In our proposal, we show a way to generate the appropriate behavior in an emotional situation using a learning classifier system (LCS). We illustrate the function of our proposal in unknown and known situations by means of two case studies. Our results demonstrate that it is possible to converge to the appropriate behavior even in the first case; that is, when the system does not have previous experiences and in situations where some previous information is available our proposal proves to be a very powerful tool.
      PubDate: Wed, 25 Oct 2017 00:00:00 +000
  • Stacked Autoencoders for Outlier Detection in Over-the-Horizon Radar

    • Abstract: Detection of outliers in radar signals is a considerable challenge in maritime surveillance applications. High-Frequency Surface-Wave (HFSW) radars have attracted significant interest as potential tools for long-range target identification and outlier detection at over-the-horizon (OTH) distances. However, a number of disadvantages, such as their low spatial resolution and presence of clutter, have a negative impact on their accuracy. In this paper, we explore the applicability of deep learning techniques for detecting deviations from the norm in behavioral patterns of vessels (outliers) as they are tracked from an OTH radar. The proposed methodology exploits the nonlinear mapping capabilities of deep stacked autoencoders in combination with density-based clustering. A comparative experimental evaluation of the approach shows promising results in terms of the proposed methodology’s performance.
      PubDate: Mon, 23 Oct 2017 08:52:50 +000
  • Adaptive Compressive Sensing of Images Using Spatial Entropy

    • Abstract: Compressive Sensing (CS) realizes a low-complex image encoding architecture, which is suitable for resource-constrained wireless sensor networks. However, due to the nonstationary statistics of images, images reconstructed by the CS-based codec have many blocking artifacts and blurs. To overcome these negative effects, we propose an Adaptive Block Compressive Sensing (ABCS) system based on spatial entropy. Spatial entropy measures the amount of information, which is used to allocate measuring resources to various regions. The scheme takes spatial entropy into consideration because rich information means more edges and textures. To reduce the computational complexity of decoding, a linear mode is used to reconstruct each block by the matrix-vector product. Experimental results show that our ABCS coding system provides a better reconstruction quality from both subjective and objective points of view, and it also has a low decoding complexity.
      PubDate: Sun, 22 Oct 2017 00:00:00 +000
  • Consensus Kernel -Means Clustering for Incomplete Multiview Data

    • Abstract: Multiview clustering aims to improve clustering performance through optimal integration of information from multiple views. Though demonstrating promising performance in various applications, existing multiview clustering algorithms cannot effectively handle the view’s incompleteness. Recently, one pioneering work was proposed that handled this issue by integrating multiview clustering and imputation into a unified learning framework. While its framework is elegant, we observe that it overlooks the consistency between views, which leads to a reduction in the clustering performance. In order to address this issue, we propose a new unified learning method for incomplete multiview clustering, which simultaneously imputes the incomplete views and learns a consistent clustering result with explicit modeling of between-view consistency. More specifically, the similarity between each view’s clustering result and the consistent clustering result is measured. The consistency between views is then modeled using the sum of these similarities. Incomplete views are imputed to achieve an optimal clustering result in each view, while maintaining between-view consistency. Extensive comparisons with state-of-the-art methods on both synthetic and real-world incomplete multiview datasets validate the superiority of the proposed method.
      PubDate: Sun, 22 Oct 2017 00:00:00 +000
  • Decoding of Human Movements Based on Deep Brain Local Field Potentials
           Using Ensemble Neural Networks

    • Abstract: Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs) for robust movement decoding of Parkinson’s disease (PD) and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value) at about for decoding movement from the resting state and about for decoding left and right visually cued movements.
      PubDate: Thu, 19 Oct 2017 00:00:00 +000
  • Mental Task Evaluation for Hybrid NIRS-EEG Brain-Computer Interfaces

    • Abstract: Based on recent electroencephalography (EEG) and near-infrared spectroscopy (NIRS) studies that showed that tasks such as motor imagery and mental arithmetic induce specific neural response patterns, we propose a hybrid brain-computer interface (hBCI) paradigm in which EEG and NIRS data are fused to improve binary classification performance. We recorded simultaneous NIRS-EEG data from nine participants performing seven mental tasks (word generation, mental rotation, subtraction, singing and navigation, and motor and face imagery). Classifiers were trained for each possible pair of tasks using () EEG features alone, () NIRS features alone, and () EEG and NIRS features combined, to identify the best task pairs and assess the usefulness of a multimodal approach. The NIRS-EEG approach led to an average increase in peak kappa of 0.03 when using features extracted from one-second windows (equivalent to an increase of 1.5% in classification accuracy for balanced classes). The increase was much stronger (0.20, corresponding to an 10% accuracy increase) when focusing on time windows of high NIRS performance. The EEG and NIRS analyses further unveiled relevant brain regions and important feature types. This work provides a basis for future NIRS-EEG hBCI studies aiming to improve classification performance toward more efficient and flexible BCIs.
      PubDate: Wed, 18 Oct 2017 00:00:00 +000
  • Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application
           in the PV MPPT

    • Abstract: Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of “premature convergence,” that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment.
      PubDate: Tue, 17 Oct 2017 00:00:00 +000
  • On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering

    • Abstract: Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions.
      PubDate: Wed, 11 Oct 2017 00:00:00 +000
  • Pathological Brain Detection Using Weiner Filtering, 2D-Discrete Wavelet
           Transform, Probabilistic PCA, and Random Subspace Ensemble Classifier

    • Abstract: Accurate diagnosis of pathological brain images is important for patient care, particularly in the early phase of the disease. Although numerous studies have used machine-learning techniques for the computer-aided diagnosis (CAD) of pathological brain, previous methods encountered challenges in terms of the diagnostic efficiency owing to deficiencies in the choice of proper filtering techniques, neuroimaging biomarkers, and limited learning models. Magnetic resonance imaging (MRI) is capable of providing enhanced information regarding the soft tissues, and therefore MR images are included in the proposed approach. In this study, we propose a new model that includes Wiener filtering for noise reduction, 2D-discrete wavelet transform (2D-DWT) for feature extraction, probabilistic principal component analysis (PPCA) for dimensionality reduction, and a random subspace ensemble (RSE) classifier along with the -nearest neighbors (KNN) algorithm as a base classifier to classify brain images as pathological or normal ones. The proposed methods provide a significant improvement in classification results when compared to other studies. Based on cross-validation (CV), the proposed method outperforms 21 state-of-the-art algorithms in terms of classification accuracy, sensitivity, and specificity for all four datasets used in the study.
      PubDate: Tue, 03 Oct 2017 00:00:00 +000
  • Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel

    • Abstract: Monitoring electricity consumption in the home is an important way to help reduce energy usage. Nonintrusive Load Monitoring (NILM) is existing technique which helps us monitor electricity consumption effectively and costly. NILM is a promising approach to obtain estimates of the electrical power consumption of individual appliances from aggregate measurements of voltage and/or current in the distribution system. Among the previous studies, Hidden Markov Model (HMM) based models have been studied very much. However, increasing appliances, multistate of appliances, and similar power consumption of appliances are three big issues in NILM recently. In this paper, we address these problems through providing our contributions as follows. First, we proposed state-of-the-art energy disaggregation based on Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) model and additional advanced deep learning. Second, we proposed a novel signature to improve classification performance of the proposed model in multistate appliance case. We applied the proposed model on two datasets such as UK-DALE and REDD. Via our experimental results, we have confirmed that our model outperforms the advanced model. Thus, we show that our combination between advanced deep learning and novel signature can be a robust solution to overcome NILM’s issues and improve the performance of load identification.
      PubDate: Mon, 02 Oct 2017 00:00:00 +000
  • A Novel Active Semisupervised Convolutional Neural Network Algorithm for
           SAR Image Recognition

    • Abstract: Convolutional neural network (CNN) can be applied in synthetic aperture radar (SAR) object recognition for achieving good performance. However, it requires a large number of the labelled samples in its training phase, and therefore its performance could decrease dramatically when the labelled samples are insufficient. To solve this problem, in this paper, we present a novel active semisupervised CNN algorithm. First, the active learning is used to query the most informative and reliable samples in the unlabelled samples to extend the initial training dataset. Next, a semisupervised method is developed by adding a new regularization term into the loss function of CNN. As a result, the class probability information contained in the unlabelled samples can be maximally utilized. The experimental results on the MSTAR database demonstrate the effectiveness of the proposed algorithm despite the lack of the initial labelled samples.
      PubDate: Sun, 01 Oct 2017 07:20:09 +000
  • Fast Constrained Spectral Clustering and Cluster Ensemble with Random

    • Abstract: Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted -means clustering and thus gives the theoretical guarantee to this special kind of -means clustering where each point has its corresponding weight.
      PubDate: Mon, 25 Sep 2017 09:51:20 +000
  • Fusion of Facial Expressions and EEG for Multimodal Emotion Recognition

    • Abstract: This paper proposes two multimodal fusion methods between brain and peripheral signals for emotion recognition. The input signals are electroencephalogram and facial expression. The stimuli are based on a subset of movie clips that correspond to four specific areas of valance-arousal emotional space (happiness, neutral, sadness, and fear). For facial expression detection, four basic emotion states (happiness, neutral, sadness, and fear) are detected by a neural network classifier. For EEG detection, four basic emotion states and three emotion intensity levels (strong, ordinary, and weak) are detected by two support vector machines (SVM) classifiers, respectively. Emotion recognition is based on two decision-level fusion methods of both EEG and facial expression detections by using a sum rule or a production rule. Twenty healthy subjects attended two experiments. The results show that the accuracies of two multimodal fusion detections are 81.25% and 82.75%, respectively, which are both higher than that of facial expression (74.38%) or EEG detection (66.88%). The combination of facial expressions and EEG information for emotion recognition compensates for their defects as single information sources.
      PubDate: Tue, 19 Sep 2017 00:00:00 +000
  • The Artificial Neural Networks Based on Scalarization Method for a Class
           of Bilevel Biobjective Programming Problem

    • Abstract: A two-stage artificial neural network (ANN) based on scalarization method is proposed for bilevel biobjective programming problem (BLBOP). The induced set of the BLBOP is firstly expressed as the set of minimal solutions of a biobjective optimization problem by using scalar approach, and then the whole efficient set of the BLBOP is derived by the proposed two-stage ANN for exploring the induced set. In order to illustrate the proposed method, seven numerical examples are tested and compared with results in the classical literature. Finally, a practical problem is solved by the proposed algorithm.
      PubDate: Thu, 14 Sep 2017 00:00:00 +000
  • New Dandelion Algorithm Optimizes Extreme Learning Machine for Biomedical
           Classification Problems

    • Abstract: Inspired by the behavior of dandelion sowing, a new novel swarm intelligence algorithm, namely, dandelion algorithm (DA), is proposed for global optimization of complex functions in this paper. In DA, the dandelion population will be divided into two subpopulations, and different subpopulations will undergo different sowing behaviors. Moreover, another sowing method is designed to jump out of local optimum. In order to demonstrate the validation of DA, we compare the proposed algorithm with other existing algorithms, including bat algorithm, particle swarm optimization, and enhanced fireworks algorithm. Simulations show that the proposed algorithm seems much superior to other algorithms. At the same time, the proposed algorithm can be applied to optimize extreme learning machine (ELM) for biomedical classification problems, and the effect is considerable. At last, we use different fusion methods to form different fusion classifiers, and the fusion classifiers can achieve higher accuracy and better stability to some extent.
      PubDate: Mon, 11 Sep 2017 00:00:00 +000
  • Hyperbolic Modeling of Subthalamic Nucleus Cells to Investigate the Effect
           of Dopamine Depletion

    • Abstract: To investigate how different types of neurons can produce well-known spiking patterns, a new computationally efficient model is proposed in this paper. This model can help realize the neuronal interconnection issues. The model can demonstrate various neuronal behaviors observed in vivo through simple parameter modification. The behaviors include tonic and phasic spiking, tonic and phasic bursting, class 1 and class 2 excitability, rebound spike, rebound burst, subthreshold oscillation, and accommodated spiking along with inhibition neuron responses. Here, we investigate the neuronal spiking patterns in Parkinson’s disease through our proposed model. Abnormal pattern of subthalamic nucleus in Parkinson’s disease can be studied through variations in the shape and frequency of firing patterns. Our proposed model introduces mathematical equations, where these patterns can be derived and clearly differentiated from one another. The irregular and arrhythmic behaviors of subthalamic nucleus firing pattern under normal conditions can easily be transformed to those caused by Parkinson’s disease through simple parameter modifications in the proposed model. This model can explicitly show the change of neuronal activity patterns in Parkinson’s disease, which may eventually lead to effective treatment with deep brain stimulation devices.
      PubDate: Wed, 06 Sep 2017 07:00:54 +000
  • Thai Finger-Spelling Recognition Using a Cascaded Classifier Based on
           Histogram of Orientation Gradient Features

    • Abstract: Hand posture recognition is an essential module in applications such as human-computer interaction (HCI), games, and sign language systems, in which performance and robustness are the primary requirements. In this paper, we proposed automatic classification to recognize 21 hand postures that represent letters in Thai finger-spelling based on Histogram of Orientation Gradient (HOG) feature (which is applied with more focus on the information within certain region of the image rather than each single pixel) and Adaptive Boost (i.e., AdaBoost) learning technique to select the best weak classifier and to construct a strong classifier that consists of several weak classifiers to be cascaded in detection architecture. We collected 21 static hand posture images from 10 subjects for testing and training in Thai letters finger-spelling. The parameters for the training process have been adjusted in three experiments, false positive rates (FPR), true positive rates (TPR), and number of training stages (N), to achieve the most suitable training model for each hand posture. All cascaded classifiers are loaded into the system simultaneously to classify different hand postures. A correlation coefficient is computed to distinguish the hand postures that are similar. The system achieves approximately 78% accuracy on average on all classifier experiments.
      PubDate: Wed, 06 Sep 2017 00:00:00 +000
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-