Abstract: The treatment of osteochondral defects (OCD) remains a great challenge in orthopaedics. Tissue engineering holds a good promise for regeneration of OCD. In the light of tissue engineering, it is critical to establish an appropriate animal model to evaluate the degradability, biocompatibility, and interaction of implanted biomaterials with host bone/cartilage tissues for OCD repair in vivo. Currently, model animals that are commonly deployed to create osteochondral lesions range from rats, rabbits, dogs, pigs, goats, and sheep horses to nonhuman primates. It is essential to understand the advantages and disadvantages of each animal model in terms of the accuracy and effectiveness of the experiment. Therefore, this review aims to introduce the common animal models of OCD for testing biomaterials and to discuss their applications in translational research. In addition, we have reviewed surgical protocols for establishing OCD models and biomaterials that promote osteochondral regeneration. For small animals, the non-load-bearing region such as the groove of femoral condyle is commonly chosen for testing degradation, biocompatibility, and interaction of implanted biomaterials with host tissues. For large animals, closer to clinical application, the load-bearing region (medial femoral condyle) is chosen for testing the durability and healing outcome of biomaterials. This review provides an important reference for selecting a suitable animal model for the development of new strategies for osteochondral regeneration. PubDate: Tue, 28 Jan 2020 13:50:01 +000
Abstract: Osteoarthritis (OA) is a chronic joint function disorder with characteristics of chondrocytes reduction and extracellular matrix (ECM) components destruction. MicroRNAs (miRNAs) and the SDF-1/CXCR4 axis are essential factors of chondrocyte apoptosis and ECM degeneration. However, very few studies have investigated the correlation between miRNAs and the SDF-1/CXCR4 axis in osteoarthritis so far. Here, through miRNAs microarray and bioinformatics analyses, we identified miR-142-5p as a CXCR4-targeted and dramatically downregulated miRNA in cartilage from OA patients, as well as in SDF-1-induced OA chondrocytes in vitro. In SDF-1-treated primary human OA chondrocytes that were transfected with a miR-142-5p mimic or inhibitor, the expression of CXCR4 was found to be inversely correlated with the expression of miR-142-5p. The dual luciferase reporter assay further verified the target relationship between miR-142-5p and CXCR4. Overexpression of miR-142-5p alleviated OA pathology by suppressing chondrocyte apoptosis, even in CXCR4 overexpressed OA chondrocytes. This was associated with decreased cartilage matrix degradation, reduced cartilage inflammation, and inactivated MAPK signaling pathway. Our study suggests that upregulated expression of CXCR4-targeted miR-142-5p can inhibit apoptosis, inflammation, and matrix catabolism and inactivate the MAPK signaling pathway in OA chondrocytes. Our work provides important insight into targeting miR-142-5p and the SDF-1/CXCR4 axis in OA therapy. PubDate: Sat, 25 Jan 2020 07:20:00 +000
Abstract: Background. Despite a substantial scientific progress over the past two decades, malaria continues to be a worldwide burden. Evergrowing resistance towards the currently available antimalarial drugs is a challenge to combat malaria. Medicinal plants are a promising source of new drugs to tackle this problem. Thus, the present study aimed at evaluating the antiplasmodial activity of Terminalia brownii in Plasmodium berghei infected mice. Methods. A 4-day suppressive test was employed to evaluate the antimalarial effect of 80% methanol and aqueous bark extracts of T. brownii against P. berghei in Swiss albino mice. Results. The in vivo acute toxicity test indicated that both extracts of T. brownii did not cause mortality. The 4-day early infection test revealed that the 80% methanol and aqueous extracts exhibited a significant inhibition of parasitemia compared to negative control. The maximum level of chemosuppression (60.2%) was exhibited at 400 mg/kg dose of 80% methanol extract. Moreover, the 80% methanol extract showed a significant attenuation of anemia associated with infection in a dose-dependent manner. The aqueous extract, on the other hand, exhibited a percent inhibition of 51.1% at the highest dose (400 mg/kg/day). Conclusion. The present study indicated that hydromethanolic and aqueous bark extracts of T. brownii possess a promising antimalarial activity, with higher effect exhibited by the hydromethanolic extract. PubDate: Fri, 24 Jan 2020 02:05:00 +000
Abstract: Label-free detection methods such as the quartz crystal microbalance (QCM) are well suited to the analysis of molecular interactions in complex mixtures such as crude botanical extracts. In the present study, the binding characteristics of epigallocatechin gallate (EGCG) and crude green tea extract solutions to bovine serum albumin (BSA) have been investigated. The adsorbed mass levels onto BSA-functionalized surfaces were measured at various solution concentrations. Langmuir and Freundlich isotherms were used to model the adsorption data. The Langmuir isotherm better described the adsorption behavior with correlations of 0.68 and 0.70 for the EGCG and the crude extract solutions, respectively. The better fit of the Langmuir model indicates that adsorption occurs homogeneously and that aggregation is negligible. The mass saturation is estimated to be 58% higher for the crude green tea solution as compared to the pure EGCG solution (7.9 ng/cm2 for green tea and 5 ng/cm2 for EGCG). The increased adsorption for the crude extract indicates that the additional tea chemical constituents are binding to alternate sites on the protein molecule and that competitive binding is a nondominant effect. However, a reduced adsorption rate for the crude extract was also observed, indicating some presence of competitive mechanisms. The results demonstrate the utility of the QCM for the analysis of protein binding in crude mixtures as well as pure compounds. PubDate: Wed, 30 Oct 2019 08:05:05 +000
Abstract: The use of plant-based medicine is popular amongst individuals and communities in developing countries. Duranta erecta has been used in Africa and Asia to treat a wide range of diseases. This study evaluated the phytochemical profile and antioxidant and antimicrobial activities of D. erecta to ascertain its health benefits in traditional medicine. Phytochemical constituents and antimicrobial effect of the hydroethanolic extract of D. erecta leaves (DRL), unripe fruits (DRU), and ripe fruits (DRR) were investigated by standard methods. Elemental analyses were carried out by atomic absorption spectroscopy (AAS) on the raw sample and extract. FTIR and UV-VIS spectroscopy were used to identify functional groups. Extracts were screened for their possible antioxidant activities by three tests. The total phenolic and total tannin contents were evaluated by using the Folin–Ciocalteu method. Total flavonoid content was determined by the aluminium chloride colorimetric assay method. The antioxidant activities were evaluated using the DPPH scavenging activity. The results of phytochemical screening showed the presence of triterpenoids, sterols, alkaloids, flavonoids, saponins, glycosides, and tannins. FTIR analysis revealed the presence of alcohols, phenols, alkanes, aldehydes, ketones, aromatics, aliphatic amines, aromatic amines, amides, carboxylic acids, esters, nitro compounds, alkynes, primary and secondary amines, and alkyl halides. Iron, zinc, and copper were also detected. Total phenolic and tannin contents ranged from 2.20 ± 0.15 to 14.54 ± 0.29 mg gallic acid equivalent (GAE)/100 g and 3.55 ± 0.07 to 13.82 ± 0.04 mg GAE/100 g, respectively. Total flavonoid content varied from 41.76 ± 0.96 to 343.49 ± 3.45 μg quercetin equivalent (QE)/100 g. The highest DPPH scavenging activity was recorded in the methanolic fraction of the leaves. The antimicrobial assay of the extract or fractions recorded no activity against the test organisms. The outcome of this study affirmed that D. erecta contains phytochemicals and bioactive compounds that could be of health benefit. PubDate: Thu, 24 Oct 2019 09:05:10 +000
Abstract: Yam tyrosinase has become an economically essential enzyme due to its ease of purification and abundant availability of yam tubers. However, an efficient biochemical and biophysical characterization of yam tyrosinase has not been reported. In the present study, the interaction of yam (Amorphophallus paeoniifolius) tyrosinase was studied with molecules such as crocin (Crocus sativus), hydroquinone, and kojic acid. Surface plasmon resonance (SPR), fluorescence spectroscopy, and circular dichroism techniques were employed to determine the binding affinities and the changes in secondary and tertiary structures of yam tyrosinase in the presence of four relevant small molecules. Hydroquinone and crocin exhibited very low binding affinities of 0.24 M and 0.0017 M. Due to their apparent weak interactions, competition experiments were used to determine more precisely the binding affinities. Structure-function interrelationships can be correlated in great detail by this study, and the results can be compared with other available tyrosinases. PubDate: Thu, 10 Oct 2019 09:05:00 +000
Abstract: Annona muricata, also called soursop, is widespread in many tropical countries, and various parts of the plant have been shown to possess very good pharmacological properties. This work evaluated the chemical composition and antioxidant activities of essential oils obtained from the fruit pulp and leaves of soursop. Essential oils were obtained via hydrodistillation and characterized by gas chromatography-mass spectrometry. Antioxidant potential was evaluated via the phosphomolybdenum, hydrogen peroxide scavenging, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assays. In the leaf essential oil, a total of 31 compounds were identified with δ-cadinene (22.58%) and α-muurolene (10.64%) being the most abundant. Thirty-two compounds were identified in the fruit pulp essential oil with Ç-sitosterol (19.82%) and 2-hydroxy-1-(hydroxymethyl) ethyl ester (13.48%) being present in high amounts. Both essential oils showed very good total antioxidant capacities (49.03 gAAE/100 g and 50.88 gAAE/100 g for fruit pulp and leaf essential oils, respectively). The IC50 values from the DPPH assay were 244.8 ± 3.2 μg/mL for leaf essential oil and 512 ± 5.1 μg/mL for the fruit pulp essential oil. At 1 mg/mL, hydrogen peroxide scavenged was below 50% for both leaf and fruit pulp essential oils, indicating moderate activity. These results suggest possible application of the essential oils of Annona muricata in food preservation and processing. PubDate: Mon, 02 Sep 2019 07:05:22 +000
Abstract: The aim of the present study is to synthesize cationic salts from a relatively toxic compound named 2-mercaptobenzimidazole and to evaluate some of their pharmacological properties. The acute toxicity of these salts is evaluated according to OECD 423 Guidelines at the doses of 300 and 2000 mg/kg; their peripheral analgesic effect is studied using the Koster test at the therapeutic dose of 200 mg/kg and their sedative action is evaluated using Traction, Chimney, Hole-board, and Rotarod tests at the doses of 200 and 400 mg/kg. All synthesized molecules show no acute toxicity according to OECD Code 423 guidelines at doses ranging from 300 to 2000 mg/kg and do not cause any obesity or anorexia. Also, the results of the Koster test show that the studied compounds have an average analgesic effect at the dose of 200 mg/kg compared to acetylsalicylic acid. In addition, the elaborated compounds have shown a moderate sedative effect at the dose of 400 mg/kg, in comparison to 2-mercaptobenzimidazole (400 mg/kg) and Bromazepam (20 mg/kg). These compounds have no cataleptic and hypnotic effects on the central nervous system at the doses of 200 and 400 mg/kg. These results argue in favor of a possible integration of the most active salts tested in the pharmaceutical industry owing to their analgesic and sedative effects. PubDate: Tue, 30 Jul 2019 13:05:02 +000
Abstract: Colorectal cancer (CRC) is one of the most common and deadly malignancies in the world. In China, the morbidity rate of CRC has increased during the period 2000 to 2011. Biomarker detection for early CRC diagnosis can effectively reduce the mortality of patients with CRC. To explore the underlying mechanisms of effective biomarkers and identify more of them, we performed weighted correlation network analysis (WGCNA) on a GSE68468 dataset generated from 378 CRC tissue samples. We screened the gene set (module), which was significantly associated with CRC histology, and analyzed the hub genes. The key genes were identified by obtaining six colorectal raw data (i.e., GSE25070, GSE44076, GSE44861, GSE21510, GSE9348, and GSE21815) from the GEO database (https://www.ncbi.nlm.nih.gov/geo). The robust differentially expressed genes (DEGs) in all six datasets were calculated and obtained using the library “RobustRankAggreg” package in R 3.5.1. An integrated analysis of CRC based on the top 50 downregulated DEGs and hub genes in the red module from WGCNA was conducted, and the intersecting genes were screened. The Kaplan–Meier plot was further analyzed, and the genes associated with CRC prognosis based on patients from the TCGA database were determined. Finally, we validated the candidate gene in our clinical CRC specimens. We postulated that the candidate genes screened from the database and verified by our clinical pathological data may contribute to understanding the molecular mechanisms of tumorigenesis and may serve as potential biomarkers for CRC diagnosis and treatment. PubDate: Sun, 28 Jul 2019 08:05:04 +000
Abstract: Background. Previous studies on cryptolepine, the antimalarial and cytotoxic alkaloid of Cryptolepis sanguinolenta, showed that it preferentially accumulates in rapidly proliferating cells and melanin-containing tissues. Subsequently, we demonstrated that cryptolepine was toxic to murine embryos in vivo but no signs of teratogenicity. in vivo developmental studies can be confounded by maternal effects. Here, we hypothesized that cryptolepine-induced embryo toxicity occurs at least partly through direct inhibition of embryogenesis rather than indirectly through the induction of maternal toxicity. Aim. To determine the effects of cryptolepine on developing zebrafish embryos ex vivo. Methods. Healthy synchronized zebrafish eggs were treated with cryptolepine (10−1 − 5 × 102 μM), benzyl penicillin (6 − 6 × 102 μM), or mercury chloride (3.7 × 10−1 − 3.7 × 101 nM) from 6 to 72 hours postfertilization. Developing embryos were assessed at 24, 48, 72, and 96 hours under microscope for lethality, hatching rate, and malformation. Results. LC50 for cryptolepine in the study was found to be 260 ± 0.174 μM. Cryptolepine induced dose- and time-dependent mortality from the 24 to 96 hours postfertilization. Lower cryptolepine concentration ( PubDate: Mon, 08 Jul 2019 10:05:26 +000
Abstract: Objective. To ascertain the essential oil phytochemicals of the leaf and to test for the antibacterial and antioxidant properties of dichloromethane crude extract of Barringtonia asiatica leaf. Methods. The phytochemical screening of essential oils, extraction by hydrodistillation using the Clevenger apparatus, and analysis performed by gas chromatography equipped with a flame ionization detector (GC-FID). Antibacterial activity and the inhibition rate (mm) were determined using the agar disc method against four bacterial strains using tetracycline as positive control. The antioxidant potential of dichloromethane crude extract was investigated spectrophotometrically using 1,1-diphenyl-2-picrylhydrazyl. Results. The essential oil properties were reasonable with major phytochemicals like uncineol 30.9%, eicosane 27.4%, eicosane 21.6%, and 4-propyl-guaiacol 14.05%. The antibacterial activity of the dichloromethane crude extract showed broad-spectrum activity against Salmonella typhi, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae with inhibition value ranges between 2.50 ± 0.10 mm and 5.00 ± 0.06 mm. The dichloromethane crude extract exhibited strong antioxidant activities when compared to the standard. Conclusions. These results suggest that the leaves of Barringtonia asiatica is composed of essential compound as well as antibacterial and antioxidant properties from the crude extract; these are possible due to the presence of some bioactive compounds in the crude extract. The species also showed a reasonable amount of natural products in the essential oils from the hydrodistillation which can as well be used in the cosmetics and food industries. PubDate: Tue, 12 Feb 2019 07:05:32 +000
Abstract: This study explores the use of alkaline pretreatments to improve the hydrolyzation of rice husks to produce volatile fatty acids (VFAs). The study investigated the effects of reagent concentration and pretreatment time on protein, carbohydrates, and dissolved chemical oxygen demand (SCOD) dissolution after the pretreatment. The optimum alkaline pretreatment conditions were 0.30 g NaOH (g VS)−1, with a reaction time of 48 h. The experimental results show that when comparing the total VFA (TVFA) yields from the alkaline-pretreated risk husk with those from the untreated rice husk, over 14 d and 2 d, the maximum value reached 1237.7 and 716.0 mg·L−1 with acetic acid and propionic acid and with acetic acid and butyric acid, respectively. After the alkaline pretreatment, TVFAs increased by 72.9%; VFA accumulation grew over time. The study found that alkaline pretreatment can improve VFA yields from rice husks and transform butyric acid fermentation into propionic acid fermentation. The study results can provide guidelines to support the comprehensive utilization of rice husk and waste treatment. PubDate: Wed, 23 Jan 2019 14:05:06 +000