Abstract: Due to the global menace caused by carbon emissions from environmental, anthropogenic, and industrial processes, it has become expedient to consider the use of systems, with high trapping potentials for these carbon-based compounds. Several prior studies have considered the use of amines, activated carbon, and other solid adsorbents. Advances in carbon capture research have led to the use of ionic liquids, enzyme-based systems, microbial filters, membranes, and metal-organic frameworks in capturing CO2. Therefore, it is common knowledge that some of these systems have their lapses, which then informs the need to prioritize and optimize their synthetic routes for optimum efficiency. Some authors have also argued about the need to consider the use of hybrid systems, which offer several characteristics that in turn give synergistic effects/properties that are better compared to those of the individual components that make up the composites. For instance, some membranes are hydrophobic in nature, which makes them unsuitable for carbon capture operations; hence, it is necessary to consider modifying properties such as thermal stability, chemical stability, permeability, nature of the raw/starting material, thickness, durability, and surface area which can enhance the performance of these systems. In this review, previous and recent advances in carbon capture systems and sequestration technologies are discussed, while some recommendations and future prospects in innovative technologies are also highlighted. PubDate: Wed, 13 Jan 2021 14:20:01 +000
Abstract: Ionic liquid (IL) usually possesses high viscosity. In this work, the selected organic solvents, namely, dimethyl sulfoxide, N,N-dimethylacetamide, and N,N-dimethylformamide, were used as the diluents to lower IL viscosity. The thermophysical properties of the densities and viscosities for the binary mixtures of IL (i.e., 1-octyl-3-methylimidazolium acetate) with solvents were studied at normal pressure in the temperature ranges of 303.15 K to 348.15 K. The effects of the organic solvents on lowering IL viscosity were quantitatively evaluated. The excess properties of the mixtures were calculated to analyze the interactions between IL and solvents. The hard-sphere model was employed to reproduce the viscosity behavior of the pure substances and binary mixtures. PubDate: Wed, 09 Dec 2020 15:20:00 +000
Abstract: Plate heat exchangers are widespread type of equipment that suffers from pitting corrosion in chloride containing solutions. Anodic behaviour of AISI 316 stainless steel was tested in 3.5% NaCl solution in conditions of ultrasound vibration (27 kHz, 10 W). The potentiodynamic sweep, potentiostatic technique, and galvanostatic technique were used coupled with surface morphology investigation after polarization. The pitting potential increased from 0.26 ± 0.02 V/SSCE to 0.42 ± 0.05 V/SSCE, and repassivation potential increased from 0.03 ± 0.01 V/SSCE to 0.18 ± 0.04 V/SSCE when vibration was applied. The anodic current at applied potential in pitting region was two orders of magnitude lower in conditions of ultrasound vibration. A possible mechanism of vibration influence on pitting is proposed, which is the elimination of pit covers from the vibrating surface, vibration-induced electrolyte motion in and out of the pits, and repassivation of active metal inside the pits. PubDate: Fri, 04 Dec 2020 13:50:02 +000
Abstract: Neutron diffraction is one of the best methods for structural analysis of a complex, layered perovskite material with low symmetry by accurately detecting the oxygen positions through octahedral tilting. In this research, the crystal structure of NdSrMn2O5+δ was identified through X-ray diffraction (XRD) and neutron powder diffraction (NPD) at room temperature (RT), which indicated the formation of a layered structure in orthorhombic symmetry in the Pmmm (no. 47) space group. Rietveld refinement of the neutron diffraction data has confirmed the orthorhombic symmetry with unit cell parameters (a = 3.8367 (1) Å, b = 3.8643 (2) Å, and c = 7.7126 (1) Å), atomic positions, and oxygen occupancy. Thermogravimetric analysis revealed the total weight loss of about 0.10% for 20–950°C temperature, which occurred mainly to create oxygen vacancies at high temperatures. Rietveld analyses concurred with the XRD and neutron data allowing correlation of occupancy factors of the oxygen sites. PubDate: Sun, 29 Nov 2020 04:35:01 +000
Abstract: Three common lubricant additives, including an antioxidant, detergent, and an antifoamer, were added to diesel fuel to perform a diesel engine bench test. Particulate matter samples underwent thermogravimetric analysis to investigate the effect of lubricant additives on the particulate matter oxidation process, characteristic temperature, and activation energy. The results showed the following. Different lubricant additives result in different variation trends in the thermogravimetric curve of a particulate matter sample by varying the rotating speed and torque. When the rotating speed was stable, as the torque increased, the ignition temperature of the particulate matter of Fuel C declined rapidly during the initial stage and then increased rapidly. When the torque was stable, as the rotating speed increased, the ignition temperature of the particulate matter of Fuel C increased initially and then declined. The particulate matter of Fuel C had the lowest level of activation energy at approximately 57.89 J·mol−1. The particulate matter of Fuel A had the highest level of activation energy at approximately 74.10 J·mol−1. When the fuel has a higher cetane number, the combustion chemical reaction rate is faster and results in a more complete reaction. The active substance contact surface increases, which facilitates particulate matter oxidation. PubDate: Tue, 24 Nov 2020 13:20:00 +000
Abstract: 17β-Estradiol (E2) has a significant health risk to humans, even at the ng/L level, and is discharged to the aqueous environment through wastewater. Advanced oxidation processes were proposed as an efficient process for the removal of E2. In this study, a combination of ultraviolet-C (UV-C) and KMnO4 was applied for the removal of E2. Results have shown that the removal efficiency of E2 in pH 4 (acidic condition) was 93.80 ± 0.42%. But, removal efficiency in neutral (7) and alkaline (10) conditions was 78.3 ± 2.12% and 84 ± 0.71%, respectively. The effect of Fe+2, Ca+2, Mg+2, Mn+2, and Fe+3 ions (1 mg/L) was investigated in optimized pH (4). Mn+2, Fe+2, and Ca+2 ions enhanced the removal efficiency to 94.8 ± 0.84%, 95.55 ± 0.07%, and 94.7 ± 0.14%, respectively , while Mg+2 and Fe+3 ions decreased the removal efficiency significantly to 76.15 ± 1% and 83.91 ± 0.3% . The efficiency of E2 removal in the presence of 5 mg/L of PAC reduced significantly to 85 ± 4.24% . Also, humic substances like humic acid, fulvic acid, and a combination of them could enhance the efficiency to 99.87 ± 0.01%, 99.9 ± 0.06%, and 99.93 ± 0.014%, respectively . The result indicates that the rate of oxidation of E2 is related to the second exponent of the initial concentration of E2 for optimum pH and the presence of all ions. But, in the presence of humic substances, the first-order kinetic reaction was best applicable in describing oxidation of E2. Removal of chemical oxygen demand for E2 after 120 minutes’ of contact time at optimum pH (86 ± 4.2%) demonstrated mineralization of these compounds at acceptable levels. Results presented that the UV-C/KMnO4 process is efficient for the removal of hormones from the aqueous solution. PubDate: Tue, 24 Nov 2020 06:50:02 +000
Abstract: Transesterification kinetics of Croton megalocarpus oil to produce fatty acid methyl esters (FAME) was studied using homogeneous NaOH and heterogeneous alkaline earth Nano MgO, MgO, Nano CaO, CaO, Reoxidized CaO, SrO, and BaO catalysts. Characteristic surface, bulk, and chemical properties of the heterogeneous catalysts were obtained which included surface area, pore properties, scanning electron micrography, X-ray diffraction, basic strength, and basicity. The catalyst porosity varied as Nano MgO > Nano CaO > MgO > CaO > CaO-RO > SrO > BaO and basicity as BaO > SrO > Nano CaO > CaO RO > CaO > Nano MgO > MgO. Catalysts NaOH, BaO, SrO, and Nano CaO gave a good FAME yield (>50%), and reaction order and rate constant have been reported for these catalysts, for both conventional heating and microwave irradiation. The overall reaction for NaOH was of 1st order for microwave irradiation with respect to triglyceride and of 2nd order with respect to triglyceride under conventional heating. For the heterogeneous catalysts, the overall reaction was of 3rd order, 2nd order with respect to triglyceride and 1st order with respect to methanol for both heating methods. Reaction rate constants for microwave irradiation were higher than those for conventional heating due to faster reaction rates under such heating. BaO was the most active heterogeneous catalyst, followed by SrO and Nano CaO, which was in accordance with their basicity. PubDate: Mon, 16 Nov 2020 13:50:01 +000
Abstract: The precipitation kinetics of calcium phosphates, namely, hydroxyapatite (HAP), dicalcium phosphate dihydrate (DCPD), dicalcium phosphate anhydrous (DCPA), and monocalcium phosphate monohydrate (MCPM), were studied at 30°C by mixing calcium hydroxide, water, and phosphoric acid. The studied mixture was selected according to the stability domain of different calcium phosphates by referring to the phase diagram of the ternary system of H3PO4-Ca(OH)2-H2O at 30°C. The precipitation reaction has been monitored by following the changes in the conductivity, pH, and calcium concentration. The solid phases formed at different stages of this precipitation were characterized by X-ray diffraction. PubDate: Tue, 10 Nov 2020 14:35:01 +000
Abstract: 4,4′-Dichlorodiphenylsulfone-3,3′-disulfonic acid (disodium) salt and 4,4′-difluorodiphenylsulfone were used as sulfonated monomer. 4,4′-Fluorophenyl sulfones were used as the nonsulfonated monomer. 4,4′-Dihydroxy diphenyl ether or 4,4′-thiodibenzenethiol was used as the comonomer. The sulfonated poly (aryl ether sulfone) (SPES) and sulfonated poly (arylene thioether sulfone) (SPTES) with sulfonation degree of 30% and 50% were successfully prepared by nucleophilic polycondensation. Two kinds of aromatic polymer proton exchange membranes were prepared by using sulfonated poly phthalazinone ether ketone (SPPEK) material and fluidization method. The performance of the prepared aromatic polymer proton exchange membrane was researched by the micromorphology, ion exchange capacity, water absorption and swelling rate, oxidation stability, tensile properties, and proton conductivity. Experimental results show that there is no agglomeration in the prepared aromatic polymer proton exchange membrane. The ion exchange capacity is 0.76–1.15 mmol/g. The water absorption and swelling rate increase with the increase of sulfonation degree. The sulfonated poly (aryl ether sulfone) membrane shows better oxidation stability than sulfonated poly (aryl sulfide sulfone). They have good mechanical stability. The prepared aromatic polymer proton exchange membrane with low sulfonation degree has good performance, which can be widely used in portable power equipment, electric vehicles, fixed power stations, and other new energy fields. PubDate: Wed, 14 Oct 2020 14:05:01 +000
Abstract: Excessive fluoride in potable groundwater is a serious health problem in rural areas of many developing countries. The presence of a small amount of fluoride in potable water is beneficial to human health, but a high amount (>1.5 mg/L) has adverse effects. The present study is aimed to prepare a new cost-effective adsorbent of kaolin clay that can be used as a valuable defluoridating agent. Characterization of the prepared adsorbent was carried out using DSC, FTIR, TGA, and XRD. Also, the surface area of the adsorbent was measured by BET analysis. The clay was activated with concentrated H2SO4, and the effects of various experimental parameters such as temperature (25, 40, 50, and 60°C), pH (2, 4, 6, and 8), particle size ( PubDate: Wed, 07 Oct 2020 04:35:00 +000
Abstract: This paper carried out the study on removal of ammonium from aqueous solutions by zeolite derived from electrolytic manganese residue (EMR) via a fusion method. The variables of pH, contact time, EMRZ (EMR-based zeolite) dosage, initial ammonium concentration, and competitive cations and anions on the ammonium uptake capacity were systematically investigated in an attempt to illustrate adsorption performance of EMRZ. The results show that these influence factors had a remarkable impact on the ammonium uptake capacity of EMRZ. Maximum ammonium uptake capacity was achieved at pH value 8.0, EMRZ dosage 0.2 g/100 mL, contact time 100 min, initial ammonium concentration 200 mg/L, and temperature 35°C. Under optimized conditions, ammonium uptake capacity onto EMRZ was up to 27.89 mg/g. The competitive degree of cations in ammonium adsorption process follows the sequence of Na+>K+>Ca2+>Mg2+, and the sequence of anion effect on ammonium removal onto EMRZ is CO32− > Cl− > SO42− > PO43−. The adsorption kinetic was explored and best represented by pseudo-second-order kinetic model. And the adsorption isotherm experimental data had best fitness with the Freundlich and Koble–Corrigan model, suggesting that heterogeneous uptake was the principal mechanism adopted in the process of ammonium adsorption. Moreover, calculation of thermodynamic parameters such as change in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) was carried out and it was determined to be −15.77∼−14.03 kJ·mol−1, +37.66 kJ·mol−1, and +173.38 J·mol−1·K−1, respectively. These parameters confirmed that ammonium uptake onto EMRZ was an endothermic and spontaneous process. Moreover, no obvious deterioration tendency was observed for the regenerated EMRZ compared with fresh EMRZ. These results indicate that EMRZ has wide application prospects in removing ammonium from wastewater. PubDate: Mon, 14 Sep 2020 15:35:02 +000
Abstract: High temperature is the main factor responsible for degrading the lubrication and antiwear properties of aero-lubricating oils. Accordingly, this study assessed the effects of thermal treatment of diester aviation lubricating oil and the associated mechanism. Fourier-transform infrared spectroscopy and gas chromatography/mass spectrometry analyses showed that low-molecular-weight compounds, such as monoesters, diesters, alcohols, and olefins, were the primary degradation products. An assessment of the degradation mechanism of bis(2-ethylhexyl)decanedioate showed that pyrolysis, resulting in the cleavage of β-C–H and C–C bonds, was the main process involved. Additional investigation using advanced polymer chromatography showed that the molecular weights of oil samples changed slightly at high temperatures, while the viscosity and viscosity-temperature index values were relatively stable. High-pressure differential scanning calorimetry established that the thermal oxidation stability of these oils decreased above 250°C. Finally, variations in the chemical compositions of the oil samples were found to be highly correlated with changes in physicochemical properties during thermal processing, with the formation of low-molecular-weight polar compounds greatly increasing the acid numbers of the oils. PubDate: Fri, 04 Sep 2020 18:35:01 +000
Abstract: The unstoppable quest for low-cost reinforcing agent gingered the enthusiasm towards developing and utilising the agro-based waste product as reinforcement since they are promptly accessible, sustainable, and inexpensive to purchase. In this study, AA6061/rice husk ash matrix composites were produced through metallurgical stir casting techniques. Different weight percentages of reinforcement in the range of 2%, 4%, 6%, and 8% were used to fabricate the composites. The reinforced composites were characterized by SEM/EDS for microstructural study. The mechanical behaviour was examined for all the produced samples. SEM/EDS analysis revealed the presence of silica, a major constituent of rice husk ash in the produced composites. The results of the mechanical behaviour show that upgrading the weight percentage of reinforcing agent increases the mechanical properties. AA6061/8% rice hush ash generated a consistent rise with filler concentration in comparison with the aluminium alloy in all operating functions. PubDate: Fri, 28 Aug 2020 12:05:14 +000
Abstract: The article addresses the extended Graetz–Nusselt problem in finite-length microchannels for prescribed wall heat flux boundary conditions, including the effects of rarefaction, streamwise conduction, and viscous dissipation. The analytical solution proposed, valid for low-intermediate Peclet values, takes into account the presence of the thermal development region. The influence of all transport parameters (Peclet , Knudsen , and Brinkman ) and geometrical parameters (entry length and microchannel aspect ratio) is investigated. Performances of different wall heat flux functions have been analyzed in terms of the averaged Nusselt number. In the absence of viscous dissipation , the best heating protocol is a decreasing wall heat flux function. In the presence of dissipation , the best heating protocol is a uniform wall heat flux. PubDate: Tue, 25 Aug 2020 12:50:14 +000
Abstract: At present, there are two main standards, ISO 23828 : 2013 and SAE J 2572–2014, which prescribe the hydrogen consumption test using the pressure method, gravimetric method, and flow method. However, these methods do not meet the test requirements for electric energy consumption and the range of plug-in hybrid fuel cell vehicles (FCVs) which are the main technical considerations in China and Europe. In this paper, a new test method for the hydrogen consumption, electric energy consumption, and range of FCVs is proposed without the use of additional hydrogen supply, measurement instruments, or energy consumption correction, which can improve the operability of the test and avoid the conversion between electric energy and hydrogen. One plug-in hybrid FCV and one nonplug-in hybrid FCV were tested using the proposed method. The results show that the new method meets the requirements of fuel economy test for FCVs with hydrogen consumption rate, electric energy consumption rate, the range for plug-in hybrid FCVs, hydrogen consumption rate, and the range for nonplug-in FCVs. PubDate: Tue, 25 Aug 2020 06:35:12 +000
Abstract: 5-Hydroxymethylfurfural as a versatile organic compound is considered as a promising biomass-derived product via hydrolysis followed by dehydration of lignocellulosic biomass using solid catalysts. In this study, lignocellulosic materials (corncob) were utilized to synthesize 5-hydroxymethylfurfural via solid acid catalytic conversion. The precursor of the catalyst material was chemically impregnated with ZnCl2 prior to carbonization. The solid catalyst was prepared with three different acid concentrations of 98%, 96%, and 94% of sulfuric acid. The prepared catalyst was characterized by acid density elemental analysis, FTIR, XRD, and SEM. The maximum result of the total acid density and amount of SO3H group was recorded as 3.5 mmol/g and 0.61 mmol/g, respectively, with high sulfur content of 1.87%. The result from FTIR spectra of BC-SO3H−1 confirms the incorporation of -SO3H groups into the carbon material. BC-SO3H−1 was selected based on the acid density and elemental analysis of the catalyst. The activity of the selected catalyst (BC-SO3H−1) was studied on the transformation of corncob to 5-hydroxymethylfurfural using biphasic solvent (water: ethyl acetate) and NaCl in the reaction medium. The intermediate result in the hydrolysis\dehydration reaction was analyzed using FTIR and the functional groups observed confirm the occurrence of 5-HMF in the intermediate reaction result. PubDate: Wed, 05 Aug 2020 08:35:02 +000
Abstract: In this study, mixed oxides of Mn-Cu and Fe-Cu on OMS-2 support having an octahedral structure were synthesized by the refluxing and impregnation methods. The characteristics of the materials were analyzed by XRD, FTIR, SEM, EDX, and H2-TPR. In the CO oxidation test, CuFeOx/OMS-2 had slightly higher catalytic activity but is significantly more stable than CuMnOx/OMS-2 and CuO/OMS-2. Due to its lower reduction temperature in H2-TPR analysis, the Mars-Van-Krevelen mechanism for CuFeOx/OMS-2 (Cu2+–O–Fe3+ ↔ Cu+–□–Fe2+) could take place more energetically than CuO/OMS-2 and CuMnOx/OMS-2 (Cu2+–O2−–Mn4+ ↔ Cu+–□–Mn3+). In addition, the interaction between Fe and Cu in the catalyst could improve the durability of the surface oxides structure in comparison with that between Mn and Cu. With the high specific rate and TOF of 28.6 mmol/h.g and 0.508, respectively, CuFeOx/OMS-2 has a great potential as an effective catalyst for low-temperature oxidation application in CO and possible VOCs removal. PubDate: Mon, 03 Aug 2020 15:05:03 +000
Abstract: In the petroleum industry, the researchers have developed a new technique called enhanced oil recovery to recover the remaining oil in reservoirs. Some reservoirs are very complex and require advanced enhanced oil recovery (EOR) techniques containing new materials and additives in order to produce maximum oil in economic and environmental friendly manners. In this work, the effects of nanosuspensions (KY-200) and polymer gel HPAM (854) on oil recovery and water cut were studied in the view of EOR techniques and their results were compared. The mechanism of nanosuspensions transportation through the sand pack was also discussed. The adopted methodology involved the preparation of gel, viscosity test, and core flooding experiments. The optimum concentration of nanosuspensions after viscosity tests was used for displacement experiments and 3 wt % concentration of nanosuspensions amplified the oil recovery. In addition, high concentration leads to more agglomeration; thus, high core plugging takes place and diverts the fluid flow towards unswept zones to push more oil to produce and decrease the water cut. Experimental results indicate that nanosuspensions have the ability to plug the thief zones of water channeling and can divert the fluid flow towards unswept zones to recover the remaining oil from the reservoir excessively rather than the normal polymer gel flooding. The injection pressure was observed higher during nanosuspension injection than polymer gel injection. The oil recovery was achieved by about 41.04% from nanosuspensions, that is, 14.09% higher than polymer gel. Further investigations are required in the field of nanoparticles applications in enhanced oil recovery to meet the world's energy demands. PubDate: Thu, 23 Jul 2020 14:50:05 +000
Abstract: The removal of brilliant green (BG) dye from an aqueous solution using activated carbon (AC) derived from guava tree wood is conducted in batch conditions. The influence of different factors such as contact time, pH, adsorbent dosage, initial dye concentration, and temperature on the adsorption of BG onto AC was investigated. FTIR, BET, and SEM analyses were performed to determine the characteristics of the material. The isotherm results were analyzed using the Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherms. Linear regression was used to fit the experimental data. It was found that the equilibrium data are best represented by the Freundlich isotherm, and the adsorption capacity (qe) was 90 mg dye/g AC. The values of the free energy (∆G), enthalpy (∆H), and entropy (∆S) were −86.188 kJ/mol, 43.025 kJ/mol, and 128 J/mol.K, respectively, at pH 7 for the BG dye. The kinetics of BG dye adsorption were analyzed using pseudo-first-order and pseudo-second-order models, and it was found that the pseudo-second-order model was suitable for the behavior of the BG dye at R2 = 0.999. PubDate: Mon, 20 Jul 2020 15:05:03 +000
Abstract: Wax deposition from crude oil that blocks the pipeline and increases the viscosity of the fluid is considered as a serious challenge for petroleum transportation. Employment of chemical additives, the so-called pour point depressants (PPDs), is widely used to solve this problem. Among them are the ethylene-vinyl acetate (EVA) copolymers (EVAc), containing a polyethylene segment along the backbone with vinyl acetate. To improve the performance of EVAc as PPD, the compositions of this polymer with crude gossypol (CG), isolated from the refined cottonseed oil soapstock, were prepared by joint milling in a ball mill. Prepared compositions were characterized by Fourier transform infrared (FTIR), ultraviolet (UV), and nuclear magnetic resonance (NMR) spectroscopy. The pour point and viscosity of the crude oil from the Akshabulak oil field (Kazakhstan) were studied. The compositions with 10, 20, and 25 wt% of CG demonstrate better efficiency as PPD for crude oil than EVAc at the dosage of PPD of 50, 100, 250, and 500 ppm. The improved properties of the obtained PPD in comparison with the commercial EVAc is explained by the appearance of additional nonpolar and polar groups caused by the formation of the EVAc/CG composition. PubDate: Tue, 23 Jun 2020 13:35:03 +000
Abstract: Mn (II)/AC adsorbents were prepared by ultrasonic impregnation. The 2 wt. % Mn/AC showed best adsorptive performance, and the optimal adsorption temperature was 313 K. Benzene, methylbenzene, and naphthalene were used to explore the adsorptive selectivity of Mn/AC, indicating that Mn could enhance the adsorptive capacity but could not improve the adsorptive selectivity. The adsorptive mechanism was mostly like to be π-complex. Adsorptive isotherms and kinetics were investigated, and the parameters were calculated. The R2, RMSE, and AICc were used to assess the optimal model. The results showed that Temkin adsorptive isotherm was more suitable to describe the isothermal data; the MPnO kinetics model was more superior to other kinetic models. The order of reaction was between 1 and 2. The outcome of adsorptive thermodynamics indicated that removal of DBT onto Mn/AC was a spontaneous and exothermic process. PubDate: Tue, 16 Jun 2020 16:05:02 +000
Abstract: Background. This paper investigated the effectiveness of lime treatment and subsequent acid precipitation (using H2SO4) as a pretreatment of partially stabilised leachate. This study obtained high removal efficiencies (>70%) from the lime and acid pretreated partially stabilised leachate. The treatment of this wastewater with 10 g/L dosage of optimum lime (pH 12) at 25°C had led to the 41% COD elimination in the initial stages of pretreatment. Subsequent pH adjustment using 1 N sulfuric acid and granular-activated carbon adsorption in general revealed more than 92% removal of the 4 g/L of carbon dosage. Therefore, the results revealed that the adsorption of COD on the GAC stemmed from the kinetics rate of the pseudo-second-order. PubDate: Fri, 15 May 2020 15:35:02 +000
Abstract: In this paper, green and facile synthesis of sulfur- and nitrogen-codoped carbon nanospheres (CNs) was prepared from the extract of Hibiscus sabdariffa L by a direct hydrothermal method. Finally, sulfur-carbon nanospheres (CNs) were used as the adsorbent to remove Pb+2 ions from aqueous solutions because of the high surface area of S-CNs from CNs and N-CNs. The synthesized nanospheres were examined by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy, transmission electron microscopy (TEM), and nitrogen adsorption-desorption isotherms. The results show spherical shapes have a particle size of up to 65 nm with a high surface area capable of absorbing lead ions efficiently. Additionally, the factors affecting the process of adsorption that include equilibrium time, temperature, pH solution, ionic intensity, and adsorbent dose were studied. The equilibrium removal efficiency was studied employing Langmuir, Freundlich, and Temkin isotherm forms. The kinetic data were analyzed with two different kinetic models, and both apply to the adsorption process depending on the values of correlation coefficients. The thermodynamic parameters including Gibbs free energy (ΔG°), standard enthalpy change (ΔH°), and standard entropy change (ΔS°) were calculated for the adsorption process. PubDate: Mon, 16 Mar 2020 15:21:01 +000
Abstract: Fly ash, a waste product from thermal power plants, is one of the good alternatives for use as a filler in polymers, especially in flame retardants. Fly ash is an environmentally friendly fire retardant additive for composites, used in place of conventional flame retardant additives such as halogenated organic compounds, thus promoting environmental safety. In this study, fly ash was modified with stearic acid to improve adhesion at the polymers interface and increase compatibility. Fly ash was studied at various volumes (5, 10, and 20 wt.% fly ash) used in this study to synthesize fly ash-epoxy composites. The results show that the tensile strength, flexural strength, compressive strength, and impact strength of these synthetic materials increase when fly ash is modified to the surface, compressive strength: 197.87 MPa, flexural strength: 75.20 MPa, impact resistance: 5.77 KJ/m2, and tensile strength: 47.89 MPa. Especially, the fire retardant properties are improved at a high level, with a modified 20% fly ash content: the burning rate of 16.78 mm/min, minimum oxygen index of 23.2%, and meet the fire protection standard according to UL 94HB with a burning rate of 8.09 mm/min. Scanning electron microscopy (SEM) and infrared spectroscopy were used to analyze the morphological structure of fly ash after being modified and chemically bonded with epoxy resin background. PubDate: Sun, 01 Mar 2020 00:20:08 +000
Abstract: Increase in the world energy demand also increases the concentration of CO2 in the atmosphere, which contributes to global warming and ocean acidification. This study proposed the simulation process to utilize CO2 released from the acid gas removal unit in one of gas processing plants in Indonesia to enhance the production of dimethyl ether (DME) through unreacted gas recycle that can be beneficial in reducing CO2 emission to the atmosphere. Simulation was developed in Unisim R390.1 using Peng–Robinson–Stryjek–Vera (PRSV) as a fluid package. Simulation was validated by several studies conducted by many researchers and giving satisfactory results especially in terms of productivity, conversion, and selectivity as a function of reactor temperatures in the indirect and the direct DME synthesis processes. Simulation results show that the DME production was enhanced by around 49.6% and 65.1% for indirect and direct processes, respectively, at a recycling rate of 7 MMSCFD. Compressor is required to increase the unreacted gas pressure to the desired pressure in the methanol reactor or dual methanol-DME reactor in both processes. Specific power consumption (SPC) was used as a tested parameter for the effectiveness of recycling unreacted gas. Based on the simulation, the direct DME synthesis process is superior over the indirect process in terms of DME and methanol productions, SPCs, and system energy efficiencies. PubDate: Sat, 22 Feb 2020 02:20:02 +000
Abstract: In this work, geopolymer synthesized with perlite and an alkaline activator medium was evaluated as a new adsorbent and photocatalyst for degradation of methylene blue (MB) dye from an aqueous medium. The functional group, the structure, and the morphology of the raw and the synthesized materials were characterized using FT-IR, XRD, and SEM analysis. The degradation of MB in the contaminated solution was examined using the spectrophotometric technique. Several analysis methods revealed the formation of the aluminosilicate gel after the geopolymerization reaction. The kinetics data with UV and without UV irradiations were well fitted with the pseudo-second-order equation. The results indicated that the degradation efficiency of cationic dye by perlite-based geopolymer without and with UV was up to 88.94% and 97.87% in 4 hours, respectively. The degradation efficiencies of methylene blue are in the following order: perlite-based geopolymer under UV irradiations is greater than perlite-based geopolymer without UV irradiations that is larger than UV irradiations. The overall experimental results suggested that the new elaborated material with synergetic adsorption and photocatalytic activities has a great potential for the treatment of water contaminated by hazardous substances. PubDate: Fri, 14 Feb 2020 12:50:01 +000
Abstract: This study investigated the potential of the bacterium Stenotrophomonas maltophilia UCP 1601 to produce a new biomolecule with emulsifying properties by determining the hemolytic activity, obtaining a halo of 9 mm in blood agar. Fermentations were carried out in saline mineral medium supplemented with 10% waste soybean oil (WSO) and different concentrations of glucose, peptone, ZnCl2, and MgSO4, according to a 24 full-factorial design. The results showed that the best results were obtained in condition 6 (medium composed of 4% glucose, 1% peptone, 2.72% ZnCl2, and 2.46% MgSO4), with excellent high emulsification index of 82.74%, using burned motor oil. The emulsifying property of the biomolecule produced was confirmed by the emulsification index of 78.57, 54.07, and 58.62%, using soybean, corn, and diesel oils, respectively, and the stability at different values of pH, temperature, and NaCl concentrations. The yield of the produced bioemulsifier was 2.8 g/L, presenting an anionic character and polymeric nature (37.6% lipids, 28.2% proteins, and 14.7% carbohydrates), confirmed by FTIR. The new bioemulsifier demonstrated promising potential for bioremediation of hydrophobic contaminants in the environment, since it had the ability to reduce the viscosity of WSO and burned motor oil, as well as excellent dispersion capacity of the burned motor oil in water (69.94 cm2 of oil displacement area), and removing 71.7% of this petroleum derivative from sandy soil. PubDate: Fri, 31 Jan 2020 13:20:09 +000
Abstract: In this paper, glucosamine was produced by acid hydrolysis of five mushrooms. The glucosamine yields were investigated, and the optimum conditions were obtained as follows: acid type, sulfuric acid; acid concentration, 6 M; ratio of raw material to acid volume, 1 : 10; hydrolysis temperature, 100°C; and time, 6 h. Under these conditions, the glucosamine conversion from chitin content reached up to 92%. The results of hydrolysis kinetics indicated that hydrolysis of five mushrooms to glucosamine followed zero-order kinetics. Moreover, the relatively low activation energy for hydrolysis of straw mushroom (18.31 kJ/mol) and the highest glucosamine yield (56.8132 ± 3.5748 mg/g DM, 0.9824 g/g chitin) indicated that hydrolysis of straw mushroom was energy-saving. Thus, sulfuric acid hydrolysis of straw mushroom for glucosamine production should be considered as an efficient process for the future industrial application. However, further study is needed for glucosamine purification. PubDate: Sat, 11 Jan 2020 04:35:03 +000