Abstract: In this paper, free vibrations of Porous Functionally Graded Beams (P-FGBs), resting on two-parameter elastic foundations, and exposed to three forms of thermal field, uniform, linear, and sinusoidal, are studied using a Refined Higher-order shear Deformation Theory. The present theory accounts for shear deformation by considering a constant transverse displacement and a higher-order variation of the axial displacement through the thickness of the beam. The stress-free boundary conditions are satisfied on the upper and lower surfaces of the beam without using any shear correction factor. The material properties are temperature-dependent and vary continuously through the depth direction of the beam, based on a modified power-law rule, in which two kinds of porosity distributions, uniform, and nonuniform, through the cross-section area of the beam, are considered. Hamilton’s principle is applied to obtain governing equations of motion, which are solved using a Navier-type analytical solution for simply supported P-FGB. Numerical examples are proposed and discussed in detail, to prove the effect of the thermal environment, the porosity distribution, and the influence of several parameters such as the power-law index, porosity volume fraction, slenderness ratio, and elastic foundation parameters on the critical buckling temperatures and the natural frequencies of the P-FGB. PubDate: Wed, 04 Dec 2019 15:05:01 +000
Abstract: In this work, we present a method of measurement of nonstationary acoustic impulse responses identified by the fast version of the Recursive Least Squares algorithm (FRLS), using professional acoustic equipment. This measurement bench realized in a deaf room presents several tests of capability of adaptive algorithm to tracking the nonstationarities of true system to be identified. The tests of tracking capability obtained are stronger compared to what is encountered in real life and can be used in several applications. PubDate: Tue, 16 Jul 2019 10:05:08 +000
Abstract: In this paper, the dynamic behavior of a one-stage bevel gear used in vertical axis wind turbine in transient regime is investigated. Linear dynamic model is simulated by fourteen degrees of freedom. Gear excitation is induced by external and internal sources which are, respectively, the aerodynamic torque caused by the fluctuation of input wind speed in transient regime and the variation of gear mesh stiffness. In this study, the differential equations governing the system motion are solved using an implicit Newmark algorithm. In fact, there are some design parameters, which influence the performance of vertical axis wind turbine. In order to get the appropriate aerodynamic torque, the effect of each parameter is studied in this work. It was found that the rotational speed of the rotor shaft has a significant effect on the aerodynamic torque performance. PubDate: Wed, 10 Apr 2019 09:05:19 +000
Abstract: Nondestructive testing methods are used to inspect and test materials and components for discontinuities or differences in mechanical characteristics. Phased array signal processing techniques have been widely used in different applications, but less research has been conducted on contactless nondestructive testing with passive arrays. This paper presents an application of beamforming techniques analysis using a passive synthetic microphone array to calculate the origin and intensity of sound waves in the ultrasonic frequency range. Acoustic cameras operating in the audible frequency range are well known. In order to conduct measurements in higher frequencies, the arrangement of microphones in an array has to be taken into consideration. This arrangement has a strong influence on the array properties, such as its beam pattern, its dynamics, and its susceptibility to spatial aliasing. Based on simulations, optimized configurations with 16, 32, and 48 microphones and 20 cm diameter were implemented in real experiments to investigate the array resolution and localize ultrasonic sources at 75 kHz signal frequency. The results show that development of an ultrasonic camera to localize ultrasonic sound sources is beneficial. PubDate: Mon, 11 Feb 2019 13:05:05 +000