Publisher: Hindawi   (Total: 343 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

        1 2 | Last   [Sort by number of followers]   [Restore default list]

Showing 1 - 200 of 343 Journals sorted alphabetically
Abstract and Applied Analysis     Open Access   (Followers: 3, SJR: 0.343, CiteScore: 1)
Active and Passive Electronic Components     Open Access   (Followers: 8, SJR: 0.136, CiteScore: 0)
Advances in Acoustics and Vibration     Open Access   (Followers: 52, SJR: 0.147, CiteScore: 0)
Advances in Aerospace Engineering     Open Access   (Followers: 63)
Advances in Agriculture     Open Access   (Followers: 12)
Advances in Artificial Intelligence     Open Access   (Followers: 19)
Advances in Astronomy     Open Access   (Followers: 44, SJR: 0.257, CiteScore: 1)
Advances in Bioinformatics     Open Access   (Followers: 20, SJR: 0.565, CiteScore: 2)
Advances in Biology     Open Access   (Followers: 12)
Advances in Chemistry     Open Access   (Followers: 33)
Advances in Civil Engineering     Open Access   (Followers: 47, SJR: 0.539, CiteScore: 1)
Advances in Computer Engineering     Open Access   (Followers: 8)
Advances in Condensed Matter Physics     Open Access   (Followers: 11, SJR: 0.315, CiteScore: 1)
Advances in Decision Sciences     Open Access   (Followers: 4, SJR: 0.303, CiteScore: 1)
Advances in Electrical Engineering     Open Access   (Followers: 51)
Advances in Electronics     Open Access   (Followers: 100)
Advances in Emergency Medicine     Open Access   (Followers: 15)
Advances in Endocrinology     Open Access   (Followers: 6)
Advances in Environmental Chemistry     Open Access   (Followers: 10)
Advances in Epidemiology     Open Access   (Followers: 8)
Advances in Fuzzy Systems     Open Access   (Followers: 5, SJR: 0.161, CiteScore: 1)
Advances in Geology     Open Access   (Followers: 19)
Advances in Geriatrics     Open Access   (Followers: 6)
Advances in Hematology     Open Access   (Followers: 12, SJR: 0.661, CiteScore: 2)
Advances in Hepatology     Open Access   (Followers: 3)
Advances in High Energy Physics     Open Access   (Followers: 24, SJR: 0.866, CiteScore: 2)
Advances in Human-Computer Interaction     Open Access   (Followers: 21, SJR: 0.186, CiteScore: 1)
Advances in Materials Science and Engineering     Open Access   (Followers: 30, SJR: 0.315, CiteScore: 1)
Advances in Mathematical Physics     Open Access   (Followers: 8, SJR: 0.218, CiteScore: 1)
Advances in Medicine     Open Access   (Followers: 3)
Advances in Meteorology     Open Access   (Followers: 23, SJR: 0.48, CiteScore: 1)
Advances in Multimedia     Open Access   (Followers: 1, SJR: 0.173, CiteScore: 1)
Advances in Nonlinear Optics     Open Access   (Followers: 6)
Advances in Numerical Analysis     Open Access   (Followers: 9)
Advances in Nursing     Open Access   (Followers: 37)
Advances in Operations Research     Open Access   (Followers: 13, SJR: 0.205, CiteScore: 1)
Advances in Optical Technologies     Open Access   (Followers: 4, SJR: 0.214, CiteScore: 1)
Advances in Optics     Open Access   (Followers: 6)
Advances in OptoElectronics     Open Access   (Followers: 6, SJR: 0.141, CiteScore: 0)
Advances in Orthopedics     Open Access   (Followers: 9, SJR: 0.922, CiteScore: 2)
Advances in Pharmacological and Pharmaceutical Sciences     Open Access   (Followers: 8, SJR: 0.591, CiteScore: 2)
Advances in Physical Chemistry     Open Access   (Followers: 12, SJR: 0.179, CiteScore: 1)
Advances in Polymer Technology     Open Access   (Followers: 14, SJR: 0.299, CiteScore: 1)
Advances in Power Electronics     Open Access   (Followers: 41, SJR: 0.184, CiteScore: 0)
Advances in Preventive Medicine     Open Access   (Followers: 6)
Advances in Public Health     Open Access   (Followers: 27)
Advances in Regenerative Medicine     Open Access   (Followers: 4)
Advances in Software Engineering     Open Access   (Followers: 11)
Advances in Statistics     Open Access   (Followers: 9)
Advances in Toxicology     Open Access   (Followers: 4)
Advances in Tribology     Open Access   (Followers: 15, SJR: 0.265, CiteScore: 1)
Advances in Urology     Open Access   (Followers: 13, SJR: 0.51, CiteScore: 1)
Advances in Virology     Open Access   (Followers: 7, SJR: 0.838, CiteScore: 2)
AIDS Research and Treatment     Open Access   (Followers: 2, SJR: 0.758, CiteScore: 2)
Analytical Cellular Pathology     Open Access   (Followers: 3, SJR: 0.886, CiteScore: 2)
Anatomy Research Intl.     Open Access   (Followers: 4)
Anemia     Open Access   (Followers: 6, SJR: 0.669, CiteScore: 2)
Anesthesiology Research and Practice     Open Access   (Followers: 15, SJR: 0.501, CiteScore: 1)
Applied and Environmental Soil Science     Open Access   (Followers: 18, SJR: 0.451, CiteScore: 1)
Applied Bionics and Biomechanics     Open Access   (Followers: 7, SJR: 0.288, CiteScore: 1)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 14)
Archaea     Open Access   (Followers: 4, SJR: 0.852, CiteScore: 2)
Autism Research and Treatment     Open Access   (Followers: 34)
Autoimmune Diseases     Open Access   (Followers: 3, SJR: 0.805, CiteScore: 2)
Behavioural Neurology     Open Access   (Followers: 9, SJR: 0.786, CiteScore: 2)
Biochemistry Research Intl.     Open Access   (Followers: 6, SJR: 0.437, CiteScore: 2)
Bioinorganic Chemistry and Applications     Open Access   (Followers: 10, SJR: 0.419, CiteScore: 2)
BioMed Research Intl.     Open Access   (Followers: 5, SJR: 0.935, CiteScore: 3)
Biotechnology Research Intl.     Open Access   (Followers: 1)
Bone Marrow Research     Open Access   (Followers: 2, SJR: 0.531, CiteScore: 1)
Canadian J. of Gastroenterology & Hepatology     Open Access   (Followers: 4, SJR: 0.867, CiteScore: 1)
Canadian J. of Infectious Diseases and Medical Microbiology     Open Access   (Followers: 8, SJR: 0.548, CiteScore: 1)
Canadian Respiratory J.     Open Access   (Followers: 3, SJR: 0.474, CiteScore: 1)
Cardiology Research and Practice     Open Access   (Followers: 11, SJR: 1.237, CiteScore: 4)
Cardiovascular Therapeutics     Open Access   (Followers: 1, SJR: 1.075, CiteScore: 2)
Case Reports in Anesthesiology     Open Access   (Followers: 11)
Case Reports in Cardiology     Open Access   (Followers: 7, SJR: 0.219, CiteScore: 0)
Case Reports in Critical Care     Open Access   (Followers: 12)
Case Reports in Dentistry     Open Access   (Followers: 7, SJR: 0.229, CiteScore: 0)
Case Reports in Dermatological Medicine     Open Access   (Followers: 2)
Case Reports in Emergency Medicine     Open Access   (Followers: 17)
Case Reports in Endocrinology     Open Access   (Followers: 2, SJR: 0.209, CiteScore: 1)
Case Reports in Gastrointestinal Medicine     Open Access   (Followers: 3)
Case Reports in Genetics     Open Access   (Followers: 2)
Case Reports in Hematology     Open Access   (Followers: 8)
Case Reports in Hepatology     Open Access   (Followers: 2)
Case Reports in Immunology     Open Access   (Followers: 6)
Case Reports in Infectious Diseases     Open Access   (Followers: 6)
Case Reports in Medicine     Open Access   (Followers: 3)
Case Reports in Nephrology     Open Access   (Followers: 5)
Case Reports in Neurological Medicine     Open Access   (Followers: 1)
Case Reports in Obstetrics and Gynecology     Open Access   (Followers: 11)
Case Reports in Oncological Medicine     Open Access   (Followers: 2, SJR: 0.204, CiteScore: 1)
Case Reports in Ophthalmological Medicine     Open Access   (Followers: 3)
Case Reports in Orthopedics     Open Access   (Followers: 6)
Case Reports in Otolaryngology     Open Access   (Followers: 7)
Case Reports in Pathology     Open Access   (Followers: 7)
Case Reports in Pediatrics     Open Access   (Followers: 7)
Case Reports in Psychiatry     Open Access   (Followers: 17)
Case Reports in Pulmonology     Open Access   (Followers: 3)
Case Reports in Radiology     Open Access   (Followers: 12)
Case Reports in Rheumatology     Open Access   (Followers: 10)
Case Reports in Surgery     Open Access   (Followers: 12)
Case Reports in Transplantation     Open Access  
Case Reports in Urology     Open Access   (Followers: 12)
Case Reports in Vascular Medicine     Open Access  
Case Reports in Veterinary Medicine     Open Access   (Followers: 5)
Child Development Research     Open Access   (Followers: 20, SJR: 0.144, CiteScore: 0)
Chinese J. of Engineering     Open Access   (Followers: 2, SJR: 0.114, CiteScore: 0)
Chinese J. of Mathematics     Open Access  
Chromatography Research Intl.     Open Access   (Followers: 5)
Complexity     Hybrid Journal   (Followers: 7, SJR: 0.531, CiteScore: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2, SJR: 0.403, CiteScore: 1)
Computational Biology J.     Open Access   (Followers: 7)
Computational Intelligence and Neuroscience     Open Access   (Followers: 13, SJR: 0.326, CiteScore: 1)
Concepts in Magnetic Resonance Part A     Open Access   (Followers: 1, SJR: 0.354, CiteScore: 1)
Concepts in Magnetic Resonance Part B, Magnetic Resonance Engineering     Open Access   (Followers: 1, SJR: 0.26, CiteScore: 1)
Conference Papers in Science     Open Access   (Followers: 2)
Contrast Media & Molecular Imaging     Open Access   (Followers: 2, SJR: 0.842, CiteScore: 3)
Critical Care Research and Practice     Open Access   (Followers: 13, SJR: 0.499, CiteScore: 1)
Current Gerontology and Geriatrics Research     Open Access   (Followers: 9, SJR: 0.512, CiteScore: 2)
Depression Research and Treatment     Open Access   (Followers: 19, SJR: 0.816, CiteScore: 2)
Dermatology Research and Practice     Open Access   (Followers: 4, SJR: 0.806, CiteScore: 2)
Diagnostic and Therapeutic Endoscopy     Open Access   (SJR: 0.201, CiteScore: 1)
Discrete Dynamics in Nature and Society     Open Access   (Followers: 6, SJR: 0.279, CiteScore: 1)
Disease Markers     Open Access   (Followers: 1, SJR: 0.9, CiteScore: 2)
Economics Research Intl.     Open Access   (Followers: 1)
Education Research Intl.     Open Access   (Followers: 19)
Emergency Medicine Intl.     Open Access   (Followers: 10, SJR: 0.298, CiteScore: 1)
Enzyme Research     Open Access   (Followers: 5, SJR: 0.653, CiteScore: 3)
Evidence-based Complementary and Alternative Medicine     Open Access   (Followers: 28, SJR: 0.683, CiteScore: 2)
Game Theory     Open Access   (Followers: 1)
Gastroenterology Research and Practice     Open Access   (Followers: 1, SJR: 0.768, CiteScore: 2)
Genetics Research Intl.     Open Access   (Followers: 1, SJR: 0.61, CiteScore: 2)
Geofluids     Open Access   (Followers: 5, SJR: 0.952, CiteScore: 2)
Hepatitis Research and Treatment     Open Access   (Followers: 6, SJR: 0.389, CiteScore: 2)
Heteroatom Chemistry     Open Access   (Followers: 3, SJR: 0.333, CiteScore: 1)
HPB Surgery     Open Access   (Followers: 7, SJR: 0.824, CiteScore: 2)
Infectious Diseases in Obstetrics and Gynecology     Open Access   (Followers: 5, SJR: 1.27, CiteScore: 2)
Interdisciplinary Perspectives on Infectious Diseases     Open Access   (Followers: 1, SJR: 0.627, CiteScore: 2)
Intl. J. of Aerospace Engineering     Open Access   (Followers: 78, SJR: 0.232, CiteScore: 1)
Intl. J. of Agronomy     Open Access   (Followers: 6, SJR: 0.311, CiteScore: 1)
Intl. J. of Alzheimer's Disease     Open Access   (Followers: 12, SJR: 0.787, CiteScore: 3)
Intl. J. of Analytical Chemistry     Open Access   (Followers: 22, SJR: 0.285, CiteScore: 1)
Intl. J. of Antennas and Propagation     Open Access   (Followers: 11, SJR: 0.233, CiteScore: 1)
Intl. J. of Atmospheric Sciences     Open Access   (Followers: 21)
Intl. J. of Biodiversity     Open Access   (Followers: 3)
Intl. J. of Biomaterials     Open Access   (Followers: 5, SJR: 0.511, CiteScore: 2)
Intl. J. of Biomedical Imaging     Open Access   (Followers: 3, SJR: 0.501, CiteScore: 2)
Intl. J. of Breast Cancer     Open Access   (Followers: 14, SJR: 1.025, CiteScore: 2)
Intl. J. of Cell Biology     Open Access   (Followers: 4, SJR: 1.887, CiteScore: 4)
Intl. J. of Chemical Engineering     Open Access   (Followers: 8, SJR: 0.327, CiteScore: 1)
Intl. J. of Chronic Diseases     Open Access   (Followers: 1)
Intl. J. of Combinatorics     Open Access   (Followers: 1)
Intl. J. of Computer Games Technology     Open Access   (Followers: 10, SJR: 0.287, CiteScore: 2)
Intl. J. of Corrosion     Open Access   (Followers: 11, SJR: 0.194, CiteScore: 1)
Intl. J. of Dentistry     Open Access   (Followers: 8, SJR: 0.649, CiteScore: 2)
Intl. J. of Differential Equations     Open Access   (Followers: 8, SJR: 0.191, CiteScore: 0)
Intl. J. of Digital Multimedia Broadcasting     Open Access   (Followers: 5, SJR: 0.296, CiteScore: 2)
Intl. J. of Electrochemistry     Open Access   (Followers: 9)
Intl. J. of Endocrinology     Open Access   (Followers: 4, SJR: 1.012, CiteScore: 3)
Intl. J. of Engineering Mathematics     Open Access   (Followers: 7)
Intl. J. of Food Science     Open Access   (Followers: 5, SJR: 0.44, CiteScore: 2)
Intl. J. of Forestry Research     Open Access   (Followers: 3, SJR: 0.373, CiteScore: 1)
Intl. J. of Genomics     Open Access   (Followers: 2, SJR: 0.868, CiteScore: 3)
Intl. J. of Geophysics     Open Access   (Followers: 5, SJR: 0.182, CiteScore: 1)
Intl. J. of Hepatology     Open Access   (Followers: 4, SJR: 0.874, CiteScore: 2)
Intl. J. of Hypertension     Open Access   (Followers: 8, SJR: 0.578, CiteScore: 1)
Intl. J. of Inflammation     Open Access   (SJR: 1.264, CiteScore: 3)
Intl. J. of Inorganic Chemistry     Open Access   (Followers: 4)
Intl. J. of Manufacturing Engineering     Open Access   (Followers: 2)
Intl. J. of Mathematics and Mathematical Sciences     Open Access   (Followers: 3, SJR: 0.177, CiteScore: 0)
Intl. J. of Medicinal Chemistry     Open Access   (Followers: 6, SJR: 0.31, CiteScore: 1)
Intl. J. of Metals     Open Access   (Followers: 7)
Intl. J. of Microbiology     Open Access   (Followers: 8, SJR: 0.662, CiteScore: 2)
Intl. J. of Microwave Science and Technology     Open Access   (Followers: 3, SJR: 0.136, CiteScore: 1)
Intl. J. of Navigation and Observation     Open Access   (Followers: 20, SJR: 0.267, CiteScore: 2)
Intl. J. of Nephrology     Open Access   (Followers: 2, SJR: 0.697, CiteScore: 1)
Intl. J. of Oceanography     Open Access   (Followers: 8)
Intl. J. of Optics     Open Access   (Followers: 8, SJR: 0.231, CiteScore: 1)
Intl. J. of Otolaryngology     Open Access   (Followers: 3)
Intl. J. of Partial Differential Equations     Open Access   (Followers: 2)
Intl. J. of Pediatrics     Open Access   (Followers: 6)
Intl. J. of Peptides     Open Access   (Followers: 2, SJR: 0.46, CiteScore: 1)
Intl. J. of Photoenergy     Open Access   (Followers: 3, SJR: 0.341, CiteScore: 1)
Intl. J. of Plant Genomics     Open Access   (Followers: 4, SJR: 0.583, CiteScore: 1)
Intl. J. of Polymer Science     Open Access   (Followers: 28, SJR: 0.298, CiteScore: 1)
Intl. J. of Population Research     Open Access   (Followers: 4)
Intl. J. of Quality, Statistics, and Reliability     Open Access   (Followers: 17)
Intl. J. of Reconfigurable Computing     Open Access   (SJR: 0.123, CiteScore: 1)
Intl. J. of Reproductive Medicine     Open Access   (Followers: 5)
Intl. J. of Rheumatology     Open Access   (Followers: 4, SJR: 0.645, CiteScore: 2)
Intl. J. of Rotating Machinery     Open Access   (Followers: 2, SJR: 0.193, CiteScore: 1)
Intl. J. of Spectroscopy     Open Access   (Followers: 8)
Intl. J. of Stochastic Analysis     Open Access   (Followers: 3, SJR: 0.279, CiteScore: 1)
Intl. J. of Surgical Oncology     Open Access   (Followers: 1, SJR: 0.573, CiteScore: 2)
Intl. J. of Telemedicine and Applications     Open Access   (Followers: 5, SJR: 0.403, CiteScore: 2)
Intl. J. of Vascular Medicine     Open Access   (SJR: 0.782, CiteScore: 2)
Intl. J. of Zoology     Open Access   (Followers: 2, SJR: 0.209, CiteScore: 1)
Intl. Scholarly Research Notices     Open Access   (Followers: 228)

        1 2 | Last   [Sort by number of followers]   [Restore default list]

Similar Journals
Journal Cover
Journal of Advanced Transportation
Journal Prestige (SJR): 0.581
Citation Impact (citeScore): 1
Number of Followers: 14  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0197-6729 - ISSN (Online) 2042-3195
Published by Hindawi Homepage  [343 journals]
  • Research on HOV Lane Priority Dynamic Control under Connected Vehicle
           Environment
    • Abstract: The optimization of high-occupancy vehicle (HOV) lane management can better improve the efficiency of road resources. This paper first summarized the current research on HOV lane implementation and analyzed and identifies the threshold of setting road HOV lane dynamic control under the connected vehicle environment. Then, the HOV lane priority dynamic control process was determined, and the operating efficiency and energy consumption evaluation method was proposed. Moreover, a case study in Wuxi City, China, was carried out. The results showed that, after implementing the HOV lane priority dynamic control, the total mileage of road network vehicles was saved by 4.93%, the average travel time per capita was reduced by 4.27%, and the total energy-saving rate of road network travel was 21.96%.
      PubDate: Sat, 08 Aug 2020 10:50:01 +000
       
  • A Proportional-Switch Adjustment Model towards Mixed Equilibrium with
           Multiroute Choice Behaviour Criterion
    • Abstract: Based on the price-quantity adjustment behaviour principle of the non-Walrasian equilibrium theory, this paper adopted a new QUE (quantity adjustment user equilibrium) criterion to formulate the route comfort choice behaviour. The purpose of the present paper is to establish a proportional-switch adjustment model which aims to reflect the route adjustment behaviour interaction between the traditional UE (user equilibrium) travellers and the QUE travellers and converge to a mixed equilibrium state. It is assumed that a group of road network travellers follow the UE criteria by choosing the travel route with the purpose of minimizing their route travel time (travel cost). In addition, the other group of travellers follow the QUE criteria by selecting the route with the largest residual capacity to achieve a more comfortable travel experience. The travel route adjustment behaviour of the two group travellers generates the dynamic traffic flow evolution towards the mixed equilibrium, and the route adjusting flow is proportional to the difference of traveller decision-making variable among the alternative routes. Simple illustrative examples are used to evaluate the performance of the proposed model, and the uniqueness and stability of the solution are demonstrated by applying the variational inequality and Lyapunov stability theorem.
      PubDate: Fri, 07 Aug 2020 10:50:01 +000
       
  • Travel Time Prediction Model of Freeway Corridor Based on Real-Time Safety
           Reliability
    • Abstract: By considering the feature of vehicle driving on the event management unit of the freeway corridor, according to the system target, a method to divide the management unit of the road network was put forward. The relative safety braking deceleration was taken as the evaluation index of single-vehicle driving risk. The reliability graph relationship and structure-function between the management unit and subunit were analyzed. Then, dynamic safety reliability and real-time safety reliability were determined on the basis of driving risk. In addition, the queuing and dissipating characteristics of the management unit under traffic incidents were analyzed based on the wave theory. The incident duration and dissipation time were also calculated. At the same time, the travel time prediction model of the incident management unit was set up when the real-time safety reliability was taken as a road resistance function. Finally, an improved travel time prediction model established in this paper is of great significance to improve traffic safety and efficiency, and the research results will provide an important theoretical foundation in the freeway corridor route decision.
      PubDate: Thu, 06 Aug 2020 12:35:02 +000
       
  • Discovering the Graph-Based Flow Patterns of Car Tourists Using License
           Plate Data: A Case Study in Shenzhen, China
    • Abstract: Identifying flow patterns from massive trajectories of car tourists is considered a promising way to improve the management of tourism traffic. Previous researches have mainly focused on tourist movements at the macro-scale, such as inbound, domestic, and urban tourism using flow maps. Compared with modeling the flow patterns of tourists at the macro-scale, modeling tourist flow at the microscale is more complicated. This paper takes Dapeng Island located in Shenzhen as the study area and uses the car recognition devices to collect traffic flow. Firstly, car tourists are separated from the mixed traffic flow after analyzing the spatial-temporal characteristics of tourists and residents. Next, daily graphs of tourist movements between road segments and tourist attractions are constructed. Finally, a frequent subgraph mining algorithm is used to extract the flow patterns of car tourists. The experimental results show that (1) car tourists have obvious preferences in the selection of trip time and tourist attractions; (2) the intercity tourists tend to take multidestination trips rather than a single destination trip in the same type of attractions; (3) car tourists are inclined to park their cars in an easy-to-access place, even if the attractions visited are changed. The main contribution of this paper is to present a new method for discovering the flow patterns of car tourists hidden in massive amounts of license plate data.
      PubDate: Thu, 06 Aug 2020 12:05:01 +000
       
  • Analysis of Driver Decisions at the Onset of Yellow at Signalized
           Intersections
    • Abstract: Drivers’ decisions to either slow and stop or go at the onset of yellow signal impact on intersection safety. This novel study contributes to the new classification scheme for drivers. Two driving style indexes (i.e., the driving reliability index and dangerous driving index) are adopted, along with other known factors to analyze stop/go decision-making. Initially, the driving reliability index is extracted using a Hidden Markov Model (HMM). The dangerous driving index is calculated based on statistics extracted from dangerous driving records. A latent class logit model is then proposed to explore the factors which influence drivers’ decisions. Drivers are classified for analytical purposes into “low-risk” and “high-risk” categories according to driving styles and age. Results indicate that those considering “low-risk” tend to stop, while drivers considering “high-risk” are inclined to pass intersections. Furthermore, distractions from cell phones have different influences on each group of drivers. These findings help to determine driver preferences and may be used to formulate strategies to reduce unsafe driving occurring at signalized intersections.
      PubDate: Wed, 05 Aug 2020 09:20:04 +000
       
  • Research on the Utilization of Metro Regenerative Braking Energy Based on
           an Improved Differential Evolution Algorithm
    • Abstract: Urban metro trains have the characteristics of short running distance between stations and frequent starting and braking. A large amount of regenerative braking energy is generated during the braking process. The effective utilization of the regenerative braking energy can substantially reduce the total energy consumption of train operation. In this paper, we establish two integer programming models of train operation that maximize the overlap time between train traction and braking in peak hours and nonpeak hours. On this basis, an improved differential evolution (IDE) algorithm is developed for solving the two integer programming models. The results demonstrate that the overlap time increases by 51.44% after optimization using the IDE algorithm when the headway is set to 154 s in peak hours. The overlap time is further increased by 14.87% by optimizing the headway. In nonpeak hours, the overlap time of traction and braking of the trains in opposite directions at the same station is increased by optimizing the bidirectional departure interval, thereby reducing the total energy consumption of the system.
      PubDate: Mon, 03 Aug 2020 13:05:01 +000
       
  • Research on the Simulation Application of Data Mining in Urban Spatial
           Structure
    • Abstract: Data mining and simulation of the Internet of things (IOT) have been applied more and more widely in the rapidly developing urban research discipline. Urban spatial structure is an important field that needs to be explored in the sustainable urban development, while data mining is relatively rare in the research of urban spatial structure. In this study, 705,747 POI (Point of Interest) were used to conduct simulation analysis of western cities in China by mining the data of online maps. Through kernel density analysis and spatial correlation index, the distribution and aggregation characteristics of different types of POI data in urban space were analyzed and the spatial analysis and correlation characteristics among different functional centers of the city were obtained. The spatial structure of the city is characterized by “multicenters and multigroups”, and the distribution of multicenters is also shown in cities with different functional types. The development degree of different urban centers varies significantly, but most of them are still in their infancy. Data mining of Internet of things (IOT) has good adaptability in city simulation and will play an important role in urban research in the future.
      PubDate: Mon, 03 Aug 2020 13:05:01 +000
       
  • Data-Driven Modeling of Systemic Air Traffic Delay Propagation: An
           Epidemic Model Approach
    • Abstract: To better understand the mechanism of air traffic delay propagation at the system level, an efficient modeling approach based on the epidemic model for delay propagation in airport networks is developed. The normal release rate (NRR) and average flight delay (AFD) are considered to measure airport delay. Through fluctuation analysis of the average flight delay based on complex network theory, we find that the long-term dynamic of airport delay is dominated by the propagation factor (PF), which reveals that the long-term dynamic of airport delay should be studied from the perspective of propagation. An integrated airport-based Susceptible-Infected-Recovered-Susceptible (ASIRS) epidemic model for air traffic delay propagation is developed from the network-level perspective, to create a simulator for reproducing the delay propagation in airport networks. The evolution of airport delay propagation is obtained by analyzing the phase trajectory of the model. The simulator is run using the empirical data of China. The simulation results show that the model can reproduce the evolution of the delay propagation in the long term and its accuracy for predicting the number of delayed airports in the short term is much higher than the probabilistic prediction method. The model can thus help managers as a tool to effectively predict the temporal and spatial evolution of air traffic delay.
      PubDate: Mon, 03 Aug 2020 09:50:02 +000
       
  • Developing Eco-Driving Strategies considering City Characteristics
    • Abstract: CO2 emissions reduction is a top element of transport policy agenda. Among other mitigation policy measures, eco-driving techniques have proven to be effective in reducing fuel consumption and CO2 emissions. The aim of this paper is to compare the impacts of adopting eco-driving in different cities, road segments, traffic, and driver features. It intends to gain an insight into how city size and driving characteristics can reduce fuel consumption and CO2 emissions in order to develop specific eco-driving strategies. Field trials were conducted in two Spanish cities (Madrid and Caceres). 24 drivers, with different driving experiences, drove two different vehicles (petrol and diesel) along roads with different characteristics. The experiment was divided into two periods of 2 weeks; after the first one, drivers received an eco-driving training course. The impacts of eco-driving were measured comparing before and after results. They showed that eco-driving is highly effective in reducing fuel consumption and CO2 emissions in both, large-congested and small, cities. Savings between 5% and 12% were achieved. The efficiency increases with road capacity and decreased with city size. Eco-driving appears to be more effective in small, uncongested cities. In addition, limiting speeds on high capacity roads has proven to be a good energy saving measure.
      PubDate: Mon, 03 Aug 2020 09:50:02 +000
       
  • A Simultaneous Safety Analysis of Crash Frequency and Severity for
           Highway-Rail Grade Crossings: The Competing Risks Method
    • Abstract: This paper proposes a mathematical model, the competing risks method, to investigate highway-rail grade crossing (HRGC) crash frequency and crash severity simultaneously over a 30-year period. The proposed competing risks model is a special type of survival analysis to accommodate the competing nature of multiple outcomes from the same event of interest; in this case, the competing multiple outcomes are crash severities, while event of interest is crash occurrence. Knowledge-gain-based benefits to be discovered through the application of this model and 30-year dataset are as follows: (1) a straightforward and integrated one-step estimation process that considers both crash frequency and severity likelihood in the same model, so direct hazard ranking considering both crash frequency and severity likelihood is possible; (2) interpretative effects of identified covariates from both the direction and magnitude perspectives; and (3) the long-term cumulative effect of contributors with the cumulative incidence function.
      PubDate: Mon, 03 Aug 2020 09:50:02 +000
       
  • Adaptive Traffic Signal Control Model on Intersections Based on Deep
           Reinforcement Learning
    • Abstract: Controlling traffic signals to alleviate increasing traffic pressure is a concept that has received public attention for a long time. However, existing systems and methodologies for controlling traffic signals are insufficient for addressing the problem. To this end, we build a truly adaptive traffic signal control model in a traffic microsimulator, i.e., “Simulation of Urban Mobility” (SUMO), using the technology of modern deep reinforcement learning. The model is proposed based on a deep Q-network algorithm that precisely represents the elements associated with the problem: agents, environments, and actions. The real-time state of traffic, including the number of vehicles and the average speed, at one or more intersections is used as an input to the model. To reduce the average waiting time, the agents provide an optimal traffic signal phase and duration that should be implemented in both single-intersection cases and multi-intersection cases. The co-operation between agents enables the model to achieve an improvement in overall performance in a large road network. By testing with data sets pertaining to three different traffic conditions, we prove that the proposed model is better than other methods (e.g., Q-learning method, longest queue first method, and Webster fixed timing control method) for all cases. The proposed model reduces both the average waiting time and travel time, and it becomes more advantageous as the traffic environment becomes more complex.
      PubDate: Mon, 03 Aug 2020 09:20:00 +000
       
  • Estimation of Disease Transmission in Multimodal Transportation Networks
    • Abstract: Mathematical models are important methods in estimating epidemiological patterns of diseases and predicting the consequences of the spread of diseases. Investigation of risk factors of transportation modes and control of transportation exposures will help prevent disease transmission in the transportation system and protect people’s health. In this paper, a multimodal traffic distribution model is established to estimate the spreading of virus. The analysis is based on the empirical evidence learned from the real transportation network which connects Wuhan with other cities. We consider five mainstream travel modes, namely, auto mode, high-speed railway mode, common railway mode, coach mode, and flight mode. Logit model of economics is used to predict the distribution of trips and the corresponding diseases. The effectiveness of the model is verified with big data of the distribution of COVID-19 virus. We also conduct model-based tests to analyze the role of lockdown on different travel modes. Furthermore, sensitivity analysis is implemented, the results of which assist in policy-making for containing infection transmission through traffic.
      PubDate: Sat, 01 Aug 2020 14:35:01 +000
       
  • Did Attitudes Interpret and Predict “Better” Choice Behaviour towards
           Innovative and Greener Automotive Technologies' A Hybrid Choice
           Modelling Approach
    • Abstract: It is common opinion that traditional approaches used to interpret and model users’ choice behaviour in innovative contexts may lead to neglecting numerous nonquantitative factors that may affect users’ perceptions and behaviours. Indeed, psychological factors, such as attitudes, concerns, and perceptions may play a significant role which should be explicitly modelled. By contrast, collecting psychological factors could be a time and cost consuming activity, and furthermore, real-world applications must rely on theoretical paradigms which are able to easily predict choice/market fractions. The present paper aims to investigate the above-mentioned issues with respect to an innovative automotive technology based on the after-market hybridization of internal combustion engine vehicles. In particular, three main research questions are addressed: (i) whether and how users’ characteristics and attitudes may affect users’ behaviour with respect to new technological (automotive) scenarios (e.g., after-market hybridization kit); (ii) how to better “grasp” users’ attitudes/concerns/perceptions and, in particular, which is the most effective surveying approach to observe users’ attitudes; (iii) to what extent the probability of choosing a new automotive technology is sensitive to attitudes/concerns changes. The choice to install/not install the innovative technology was modelled through a hybrid choice model with latent variables (HCMs), starting from a stated preferences survey in which attitudes were investigated using different types of questioning approaches: direct questioning, indirect questioning, or both approaches. Finally, a comparison with a traditional binomial logit model and a sensitivity analysis was carried out with respect to the instrumental attributes and the attitudes. Obtained results indicate that attitudes are significant in interpreting and predicting users’ behaviour towards the investigated technology and the HCM makes it possible to easily embed psychological factors into a random utility model/framework. Moreover, the explicit simulation of the attitudes allows for a better prediction of users’ choice with respect to the Logit formulation and points out that users’ behaviour may be significantly affected by acting on users’ attitudes.
      PubDate: Sat, 01 Aug 2020 10:35:01 +000
       
  • Application of Modified NSGA-II to the Transit Network Design Problem
    • Abstract: The transit network design problem involves determining a certain number of routes to operate in an urban area to balance the costs of the passengers and the operator. In this paper, we simultaneously determine the route structure of each route and the number of routes in the final solution. A novel initial route set generation algorithm and a route set size alternating heuristic are embedded into a nondominated sorting genetic algorithm-II- (NSGA-II-) based solution framework to produce the approximate Pareto front. The initial route set generation algorithm aims to generate high-quality initial solutions for succeeding optimization procedures. To explore the solution space and to have solutions with a different number of routes, a route set size alternating heuristic is developed to change the number of routes in a solution by adding or deleting one route. Experiments were performed on Mandl’s network and four larger Mumford’s networks. Compared with a fixed route set size approach, the proposed NSGA-II-based solution method can produce an approximate Pareto front with much higher solution quality as well as improved computation efficiency.
      PubDate: Sat, 01 Aug 2020 04:20:00 +000
       
  • Deployment Optimization of Connected and Automated Vehicle Lanes with the
           Safety Benefits on Roadway Networks
    • Abstract: Reasonable deployment of connected and automated vehicle (CAV) lanes which separating the heterogeneous traffic flow consisting of both CAVs and human-driven vehicles (HVs) can not only improve traffic safety but also greatly improve the overall roadway efficiency. This paper simplified CAV lane deployment plan into the problem of traffic network design and proposed a comprehensive decision-making method for CAV lane deployment plan. Based on the traffic equilibrium theory, this method aims to reduce the travel cost of the traffic network and the management cost of CAV lanes using a bilevel primary-secondary programming model. In addition, the upper level is the decision-making scheme of the lane deployment, while the lower level is the traffic assignment model including CAV and HV modes based on the decision-making scheme of the upper level. After that, a genetic algorithm was designed to solve the model. Finally, a medium-scaled traffic network was selected to verify the effectiveness of the proposed model and algorithm. The case study shows that the proposed method obtained a feasible scheme for lane deployment considering from both the system travel cost and management cost of CAV lanes. In addition, a sensitivity analysis of the market penetration rate of CAVs, traffic demand, and the capacity of CAVLs further proves the applicability of this model, which can achieve better allocation of system resources and also improve the traffic efficiency.
      PubDate: Sat, 01 Aug 2020 03:35:01 +000
       
  • Capacity Model of Exclusive Right-Turn Lane at Signalized Intersection
           considering Pedestrian-Vehicle Interaction
    • Abstract: In high density urban areas, pedestrians have a great influence on the capacity of intersections. This paper studies the influence of pedestrians on road capacity and proposes an exclusive right-turn lane capacity model considering pedestrian-vehicle interaction (PV-RTC). Firstly, a pedestrian-vehicle interaction (PVI) model is proposed based on the logit model and static games theory of incomplete information. Through this model, the probability of 6 kinds of pedestrian-vehicle interaction situations (vehicles yield to pedestrians, pedestrians yield to vehicles, etc.) in the crosswalk can be obtained. Then, based on the basic idea of the stop line method and the probabilities of above situations, the PV-RTC model is established, and the sensitivity analysis of the important factors (pedestrian arrival rate, yielding rate, and green time ratio) affecting the model is carried out to clarify the mechanism of the proposed model. Finally, a pedestrian-vehicle interaction model of cellular automata for the exclusive right-turn lane is established and its simulation results are compared with the results of the PV-RTC model. The results show that the relative error between the microscopic simulation model and PV-RTC model is less than 15% overall, which verifies the validity of the PV-RTC model. This study provides references for a more precise estimation method of pedestrian impact on road capacity.
      PubDate: Sat, 01 Aug 2020 03:20:00 +000
       
  • Estimating Wait Time and Passenger Load in a Saturated Metro Network: A
           Data-Driven Approach
    • Abstract: The service quality of public transit, such as comfort and convenience, is an important factor influencing ridership and fare revenue, which also reflects the passengers’ perception to the transit performance. Passengers are frustrated while waiting to board a crowded train especially during the peak hours, while the fail-to-board (FtB) situation commonly exists. The service performance measures determined by deterministic passenger demand and service frequency cannot reflect the perceived service of passengers. With the automatic fare collection system data provided by Chengdu Metro, we develop a data-driven approach considering the joint probability of spatiotemporal passenger demand at stations based on posted train schedule to approximate passenger travel time (e.g., in-vehicle and out-of-vehicle times). It was found that the estimated wait time can reflect the actual situation as passengers FtB. The proposed modeling approach and analysis results would be useful and beneficial for transit providers to improve system performance and service planning.
      PubDate: Sat, 01 Aug 2020 03:05:01 +000
       
  • Examining the Impact of Different Periodic Functions on Short-Term Freeway
           Travel Time Prediction Approaches
    • Abstract: Freeway travel time prediction is a key technology of Intelligent Transportation Systems (ITS). Many scholars have found that periodic function plays a positive role in improving the prediction accuracy of travel time prediction models. However, very few studies have comprehensively evaluated the impacts of different periodic functions on statistical and machine learning models. In this paper, our primary objective is to evaluate the performance of the six commonly used multistep ahead travel time prediction models (three statistical models and three machine learning models). In addition, we compared the impacts of three periodic functions on multistep ahead travel time prediction for different temporal scales (5-minute, 10-minute, and 15-minute). The results indicate that the periodic functions can improve the prediction performance of machine learning models for more than 60 minutes ahead prediction and improve the over 30 minutes ahead prediction accuracy for statistical models. Three periodic functions show a slight difference in improving the prediction accuracy of the six prediction models. For the same prediction step, the effect of the periodic function is more obvious at a higher level of aggregation.
      PubDate: Sat, 01 Aug 2020 02:50:02 +000
       
  • Modified Maintenance Network Model for Urban Rail Transit Systems Based on
           the Variable Coverage Radius: Evidence from Changchun City in China
    • Abstract: Network-wide maintenance lacks strong theoretical support and practical cases. However, research on this topic has entered an extensive exploratory stage; for example, new network design methods are being sought, and successful practices from traditional maintenance by line and by profession are being incorporated. This paper proposes a novel set-covering model with the variable coverage radius for the maintenance network of urban rail transit systems in the context of network-wide maintenance. The concepts of network-wide maintenance follow principles that are similar to those of bio-geography-based optimization (BBO), i.e., patterns of migration, variation, and extinction of different populations in different habitats. Therefore, a BBO algorithm is implemented with combinatorial optimization programming. Experiments from Changchun city in China show that the proposed model and algorithm are effective in fulfilling network-wide requirements through a direct tradeoff between the coverage radius and maintenance response time. In addition, the maintenance capacity and variable coverage radius of each maintenance point influence both the maintenance timeliness and resource utilization of maintenance units.
      PubDate: Sat, 01 Aug 2020 01:35:01 +000
       
  • A Fissile Ripple Spreading Algorithm to Solve Time-Dependent Vehicle
           Routing Problem via Coevolutionary Path Optimization
    • Abstract: The time-dependent vehicle routing problems have lately received great attention for logistics companies due to their crucial roles in reducing the time and economic costs, as well as fuel consumption and carbon emissions. However, the dynamic routing environment and traffic congestions have made it challenging to make the actual travelling trajectory optimal during the delivery process. To overcome this challenge, this study proposed an unconventional path optimization approach, fissile ripple spreading algorithm (FRSA), which is based on the advanced structure of coevolutionary path optimization (CEPO). The objective of the proposed model is to minimize the travelling time and path length of the vehicle, which are the popular indicators in path optimization. Some significant factors usually ignored in other research are considered in this study, such as congestion evolution, routing environment dynamics, signal control, and the complicated correlation between delivery sequence and the shortest path. The effectiveness of the proposed approach was demonstrated well in two sets of simulated experiments. The results prove that the proposed FRSA can scientifically find out the optimal delivery trajectory in a single run via global research, effectively avoid traffic congestion, and decrease the total delivery costs. This finding paves a new way to explore a promising methodology for addressing the delivery sequence and the shortest path problems at the same time. This study can provide theoretical support for the practical application in logistics delivery.
      PubDate: Sat, 01 Aug 2020 01:20:01 +000
       
  • Simulating Crowd Evacuation in a Social Force Model with Iterative
           Extended State Observer
    • Abstract: Due to the interaction and external interference, the crowds will constantly and dynamically adjust their evacuation path in the evacuation process to achieve the purpose of rapid evacuation. The information from previous process can be used to modify the current evacuation control information to achieve a better evacuation effect, and iterative learning control can achieve an effective prediction of the expected path within a limited running time. In order to depict this process, the social force model is improved based on an iterative extended state observer so that the crowds can move along the optimal evacuation path. First, the objective function of the optimal evacuation path is established in the improved model, and an iterative extended state observer is designed to get the estimated value. Second, the above model is verified through simulation experiments. The results show that, as the number of iterations increases, the evacuation time shows a trend of first decreasing and then increasing.
      PubDate: Sat, 01 Aug 2020 01:20:01 +000
       
  • Study on a Right-Turning Intelligent Vehicle Collision Warning and
           Avoidance Algorithm Based on Monte Carlo Simulation
    • Abstract: With the development of intelligent vehicle technology, the demand for advanced driver assistant systems kept increasing. To improve the performance of the active safety systems, we focused on right-turning vehicle’s collision warning and avoidance. We put forward an algorithm based on Monte Carlo simulation to calculate the collision probability between the right-turning vehicle and another vehicle (or pedestrian) in intersections. We drew collision probability curves which used time-to-collision as the horizontal axis and collision probability as the vertical axis. We established a three-level collision warning system and used software to calculate and simulate the collision probability and warning process. To avoid the collision actively when turning right, a two-stage braking strategy is applied. Taking four right-turning collision conditions as examples, the two-stage braking strategy was applied, analysing and comparing the anteroposterior curve diagram simultaneously to avoid collision actively and reduce collision probability. By comparison, the collision probability 2 s before active collision avoidance was more than 80% and the collision probability may even reach 100% in certain conditions. To improve the active safety performance, the two-stage braking strategy can reduce the collision probability from exceeding 50% to approaching 0% in 2 s and reduce collision probability to less than 5% in 3 s. By changing four initial positions, the collision probability curve calculation algorithm and the two-stage braking strategy are validated and analysed. The results verified the rationality of the collision probability curve calculation algorithm and the two-stage braking strategy.
      PubDate: Sat, 01 Aug 2020 01:05:01 +000
       
  • UB-LSTM: A Trajectory Prediction Method Combined with Vehicle Behavior
           Recognition
    • Abstract: In order to make an accurate prediction of vehicle trajectory in a dynamic environment, a Unidirectional and Bidirectional LSTM (UB-LSTM) vehicle trajectory prediction model combined with behavior recognition is proposed, and then an acceleration trajectory optimization algorithm is proposed. Firstly, the interactive information with the surrounding vehicles is obtained by calculation, then the vehicle behavior recognition model is established by using LSTM, and the vehicle information is input into the behavior recognition model to identify vehicle behavior. Then, the trajectory prediction model is established based on Unidirectional and Bidirectional LSTM, and the identified vehicle behavior and the input information of the behavior recognition model are input into the trajectory prediction model to predict the horizontal and vertical speed and coordinates of the vehicle in the next 3 seconds. Experiments are carried out with NGSIM data sets, and the experimental results show that the mean square error (MSE) between the predicted trajectory and the actual trajectory obtained by this method is 0.124, which is 97.2% lower than that of the method that does not consider vehicle behavior and directly predicts the trajectory. The test loss is 0.000497, which is 95.68% lower than that without considering vehicle behavior. The predicted trajectory is obviously optimized, closer to the actual trajectory, and the performance is more stable.
      PubDate: Sat, 01 Aug 2020 00:50:01 +000
       
  • Designing High-Freedom Responsive Feeder Transit System with Multitype
           Vehicles
    • Abstract: The last mile travelling problem is the most challenging part when using public transit. This study designs a high-freedom responsive feeder transit (HFRFT) system to serve at the transfer station, given vehicle routes, departure time, and service area based on demand. The proposed feeder transit system employs a travelling mode with multitype vehicles. In order to improve the operation of the HFRFT system, the optimization design methods are suggested for vehicle routes, scheduling, and service area. A mixed integer programming model and its hybrid of a metaheuristic algorithm are proposed to efficiently and integrally solve the vehicle routes and scheduling parameters according to the reservation requirements. A heuristic method is proposed to optimize the service area based on the equilibrium of system supply and demand. Case studies show that the mixed running mode of multiple models can significantly improve the seat utilization, which can also significantly reduce the number of departures and the average travel distance per passenger. The proposed service area optimization method is proved to be feasible to improve the last mile travel.
      PubDate: Sat, 25 Jul 2020 15:35:01 +000
       
  • A Generalized Dynamic Potential Energy Model for Multiagent Path Planning
    • Abstract: Path planning for the multiagent, which is generally based on the artificial potential energy field, reflects the decision-making process of pedestrian walking and has great importance on the field multiagent system. In this paper, after setting the spatial-temporal simulation environment with large cells and small time segments based on the disaggregation decision theory of the multiagent, we establish a generalized dynamic potential energy model (DPEM) for the multiagent through four steps: (1) construct the space energy field with the improved Dijkstra algorithm, and obtain the fitting functions to reflect the relationship between speed decline rate and space occupancy of the agent through empirical cross experiments. (2) Construct the delay potential energy field based on the judgement and psychological changes of the multiagent in the situations where the other pedestrians have occupied the bottleneck cell. (3) Construct the waiting potential energy field based on the characteristics of the multiagent, such as dissipation and enhancement. (4) Obtain the generalized dynamic potential energy field by superposing the space potential energy field, delay potential energy field, and waiting potential energy field all together. Moreover, a case study is conducted to verify the feasibility and effectiveness of the dynamic potential energy model. The results also indicate that each agent’s path planning decision such as forward, waiting, and detour in the multiagent system is related to their individual characters and environmental factors. Overall, this study could help improve the efficiency of pedestrian traffic, optimize the walking space, and improve the performance of pedestrians in the multiagent system.
      PubDate: Fri, 24 Jul 2020 09:50:01 +000
       
  • Location Design of Electrification Road in Transportation Networks for
           On-Way Charging
    • Abstract: Electric vehicles tend to be a great mobility option for the potential benefits in energy consumption and emission reduction. On-way charging (OWC) has been recognized to be a promising solution to extend driving range for electric vehicles. Location of the electrification road (ER) is a critical issue for future urban traffic management to accommodate the new mobility option. This paper proposes a mathematical program with equilibrium constraint (MPEC) approach to solve this problem, which minimizes the total travel time with a limited construction budget. To describe the drivers’ routing choice, a path-constrained network equilibrium model is proposed to minimize their travel time and prevent running out of charge. We develop a modified active set algorithm to solve the MPEC model. Numerical experiments are presented to demonstrate the performance of the model and the solution algorithm and analyze the impact of charging efficiency, battery size, and comfortable range.
      PubDate: Thu, 23 Jul 2020 14:35:01 +000
       
  • Research on Mandatory Lane-Changing Behavior in Highway Weaving Sections
    • Abstract: As the accident-prone sections and bottlenecks, highway weaving sections will become more complicated when it comes to the mixed-traffic environments with connected and automated vehicles (CAVs) and human-driven vehicles (HVs). In order to make CAVs accurately identify the driving behavior of manual-human vehicles to avoid traffic accidents caused by lane changing, it is necessary to analyze the characteristics of the mandatory lane-changing (MCL) process in the weaving area. An analytical MCL method based on the driver’s psychological characteristics is proposed in this study. Firstly, the driver’s MLC pressure concept was proposed by leading in the distance of the off-ramp. Then, the lane-changing intention was quantified by considering the driver’s MLC pressure and tendentiousness. Finally, based on the lane-changing intention and the headway distribution of the target lane, an MLC positions probability density model was proposed to describe the distribution characteristics of the lane-changing position. Through the NGSIM data verification, the lane-changing analysis models can objectively describe the vehicle lane-changing characteristics in the actual scenarios. Compared with the traditional lane-changing model, the proposed models are more interpretable and in line with the driving intention. The results show significant improvements in the lane-changing safe recognition of CAVs in heterogeneous traffic flow (both CAVs and HVs) in the future.
      PubDate: Thu, 23 Jul 2020 14:20:03 +000
       
  • Accelerated Failure Time Model to Explore the Perception Response Times of
           Drivers in Simulated Car-Following Scenarios
    • Abstract: In the development of effective rear-end collision alarm systems, understanding the factors that influence the perception response times (PRT) of drivers is important for the design of a reasonable lead time for the warning (or intervention) of likely collisions. Previous studies have proposed different approaches for examining the impact of situational or individual factors on the PRT of drivers. However, unobserved heterogeneity has not been considered and neither has a duration-modeling approach been used, resulting in a lack of accurate estimation. The purpose of the present study was to explore the effect of the driving situation and individual differences on the PRT of drivers while also considering unobserved heterogeneity. A total of 101 participants were exposed to different levels of secondarily cognitive load and situational urgency in simulated d scenarios. Several accelerated failure time (AFT) duration models, both with and without heterogeneity, were developed to model the PRT of drivers, while factors related to driving situation and individual differences were incorporated. The results indicate that influential factors include age, working memory capacity (WMC), cognitive load, and initial time headway exerted significant effects on the PRT of drivers. The hazard rate changed by 14.4%, 22.6%, and 7.5% when age, cognitive load, and initial time headway changed by one unit, respectively. Furthermore, the hazard rate decreases by more than 20% for individuals with higher WMC compared with baseline individuals. These results suggest that the AFT model that considers unobserved heterogeneity can provide a more accurate estimation of the PRT compared to other duration models. These findings can be expected to provide a further understanding of drivers’ braking behaviors, which will contribute to the development of advanced driving assistant systems as well as safety assessments of in-vehicle information and communication technologies.
      PubDate: Thu, 23 Jul 2020 12:20:00 +000
       
  • What Motivates Drivers to Comply with Speed Guidance Information at
           Signalized Intersections'
    • Abstract: This study explored the intrinsic motivation of drivers most likely to accept guidance information at signalized intersections by using a mixed model approach. The proposed approach contains a multiple-indicator multiple-cause model (MIMIC) with a latent class analysis (LCA). The MIMIC model was used to quantify intrinsic motivations according to individual heterogeneity. From a group similarity perspective, the LCA was employed for the latent classification of drivers. The features and possibility of accepting guidance information of each class were also analyzed according to the intrinsic motivation of drivers. Data were collected from the stated preference online surveys, in which the questionnaire was designed according to the diffusion of innovation, in 2015 and 2019 in China. Four subjective perceptions of drivers were identified: the perception of innovating guidance information, the perception of convenience regarding guidance information transmission, the perception of surrounding complexity, and the individual innovation. The estimation results show that age, driving experience, education levels, and familiarity with road network are significant factors of compliance behavior. The proportion of conservatives gradually decreased from 2015 to 2019, while the proportion of early followers and late followers increased through market penetration, familiarity with the Internet of vehicles, and social networks in the same period. This prevalence demonstrates that guidance information at signalized intersections is gradually becoming acceptable in China.
      PubDate: Thu, 23 Jul 2020 09:05:03 +000
       
  • Taxi Demand Prediction Based on a Combination Forecasting Model in
           Hotspots
    • Abstract: Accurate taxi demand prediction can solve the congestion problem caused by the supply-demand imbalance. However, most taxi demand studies are based on historical taxi trajectory data. In this study, we detected hotspots and proposed three methods to predict the taxi demand in hotspots. Next, we compared the predictive effect of the random forest model (RFM), ridge regression model (RRM), and combination forecasting model (CFM). Thereafter, we considered environmental and meteorological factors to predict the taxi demand in hotspots. Finally, the importance of indicators was analyzed, and the essential elements were the time, temperature, and weather factors. The results indicate that the prediction effect of CFM is better than those of RFM and RRM. The experiment obtains the relationship between taxi demand and environment and is helpful for taxi dispatching by considering additional factors, such as temperature and weather.
      PubDate: Tue, 21 Jul 2020 15:35:00 +000
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.228.11.9
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-