Abstract: In this paper, we focus on solving the problems of inertia-free attitude tracking control for spacecraft subject to external disturbance, unknown inertial parameters, and actuator faults. The robust control architecture is designed by using the rotation matrix and neural networks. In the presence of external disturbance and parametric uncertainties, a fault-tolerant control (FTC) scheme synthesized with the minimum-learning-parameter (MLP) algorithm is proposed to improve the reliability of the system when unknown actuator faults occur. These methods are developed based on backstepping to ensure that finite-time convergence is achievable for the entire closed-loop system states with low computational complexity. The validity and advantage of the designed controllers are highlighted by using Lyapunov-based analysis. Finally, the simulation results demonstrate the satisfactory performance of the developed controllers. PubDate: Wed, 24 Feb 2021 06:50:01 +000
Abstract: Power generation can be realized in space when current is induced on a bare electrodynamic tether system. The performance of power generation is discussed based on a debris mitigation mission by numerical simulation in the paper. A Li-ion battery subsystem is used to complete the energy conversion—harvest and supply the energy. The battery can provide 10–300 W average electric power continuously during several hundred hour mission time. The energy conversion efficiency ranges from 1% to a maximum value 30%. With constant power consumption on board, the battery operation generally experiences a discharging phase, a charging phase, and a stable phase. The first two phases determine the mission risk coefficient. The heating problem in the stable phase cannot be ignored. The optimization of battery design and tether design should be considered for each debris mitigation mission. An extra control circuit or small battery voltage with large capacity for battery design is suggested to eliminate the stable phase. Wide or long tether designs are more appropriate for mission with high or low power demands on board, respectively. The power generation is affected by the system mass and the mission orbit parameters. PubDate: Tue, 23 Feb 2021 14:20:01 +000
Abstract: The asteroid landing mechanism is necessary to be anchored to avoid flowing away. At present, the study on the anchoring system is mainly focused on the mechanical design, but there are few researches on the penetrating or anchoring mathematical model, and the researches on combining two models with each other are even more lacking. In the paper, based on the characteristics of Mohr-Coulomb material, a penetrating mathematical model of the anchoring system is established. This penetrating mathematical model can be used to calculate the penetrating depth of the anchor body according to the penetrating speed and the medium properties. Secondly, an anchoring mathematical model is established, which shows the relationships among the anchoring force, medium properties, and penetrating depth. Finally, a penetrating-anchoring mathematical model is built with the penetrating depth as the link. The model establishes a relationship between the anchoring force and the initial penetrating conditions. PubDate: Sat, 20 Feb 2021 10:05:01 +000
Abstract: In order to identify the nonlinear characteristics of the magnetorheological (MR) damper applied in multi-DOF vibration reduction platforms in the aerospace field in the modeling process, the least square support vector machine (LS-SVM) method is adopted, because LS-SVM can handle small-sample, high-dimensional characteristic problems. Firstly, the theory of the modeling method based on LS-SVM was illustrated including the genetic algorithm (GA) optimization method. Secondly, the characteristic curve of the MR damper was tested based on different conditions. Then, the current and historical input displacement, velocity, and current and the historical output are taken as the input of the LS-SVM model and the damping force of the current output is taken as the output of the model for model training. Meanwhile, the genetic algorithm is introduced to optimize the parameters of the LS-SVM model which affect the accuracy of the model, the penalty factor , and the kernel parameter after optimization. Finally, in order to verify the method adopted in the paper, the Simulink model was simulated in certain input conditions; by comparing the simulation and experimental values of this model, it is found that the maximum error is within 10 N and the average error is around 0.89 N, which is similar to the accuracy obtained in other works of literature, and the correctness of this model is verified. PubDate: Wed, 17 Feb 2021 15:50:00 +000
Abstract: Combing the advantages of film cooling, impingement cooling, and enhanced cooling by pin fins, laminated cooling is attracting more and more attention. This study investigates the effects of geometric and thermodynamic parameters on overall cooling effectiveness of laminated configuration, and model experiments were carried out to validate the numerical results. It is found that the increases in film cooling hole diameter and pin fin diameter both result in the increase in cooling effectiveness, but the increases in impingement hole diameter, impingement height, and spanwise hole pitch degrade the cooling performance. The increase of the coolant flow rate causes the increase in cooling efficiency, but this effect becomes weaker at a high coolant flow rate. The coolant-to-mainstream density ratio has no obvious effect on cooling effectiveness but affects wall temperature obviously. Moreover, based on the numerical results, an empirical correlation is developed to predict the overall cooling efficiency in a specific range, and a genetic algorithm is applied to determine the empirical parameters. Compared with the numerical results, the mean prediction error (relative value) of the correlation can reach 8.3%. PubDate: Thu, 11 Feb 2021 14:05:01 +000
Abstract: The performance of turbomachinery blade profiles, at low Reynolds numbers, is influenced by laminar separation bubbles (LSBs). Such a bubble is caused by a strong adverse pressure gradient (APG), and it makes the laminar boundary layer to separate from the curved profile surface, before it becomes turbulent. The paper consists on a joint experimental and numerical investigation on a flat plate with adverse pressure gradient. The experiment provides detailed results including distribution of wall pressure coefficient and boundary layer velocity and turbulence profiles for several values of typical influencing parameters on the behavior of the flow phenomena: Reynolds number, free stream turbulence intensity, and end-wall opening angle, which determines the adverse pressure gradient intensity. The numerical work consists on carrying out a systematic analysis, with Reynolds Average Navier-Stokes (RANS) simulations. The results of the numerical simulations are critically investigated and compared with the experimental ones in order to understand the effect of the main physical parameters on the LSB behavior. For RANS simulations, different turbulence and transition models are compared at first to identify the adaptability to the flow phenomena; then, the influence of the three aforementioned parameters on the LSB behavior is investigated under a typical aggressive adverse pressure gradient. Boundary layer integral parameters are discussed for the different cases in order to understand the flow phenomena in terms of flow time-mean properties. PubDate: Thu, 11 Feb 2021 12:20:01 +000
Abstract: In the past two decades, dozens to more than a hundred people have died each year in water-related accidents, most of which general aviation has accounted for. To identify the distribution and risk factors of fatal water-related accidents for general aviation aircraft, a total of 594 water-related accidents according to 14 CFR Part 91 from 2009 to 2019 were chosen from the National Transportation Safety Board’s online database. A two-step approach, consisting of a univariable logistic regression and a multivariable logistic regression, was performed to estimate the effects of 28 parameters. Results show that aircraft with a rated power of more than 100 horsepower (), instrument conditions (), flying night operations (), and cruise phase () possessed an elevated risk for a fatal outcome. This research is the first to identify the distribution and risk factors of fatal water-related accidents under 14 CFR Part 91. The necessity and importance of survival equipment for water-related accidents are also highlighted in this paper. PubDate: Wed, 10 Feb 2021 15:35:01 +000
Abstract: Aiming at the uncertainty and external disturbance sensitivity of the near space vehicles (NSV), a novel sliding mode controller based on the high-order linear extended state observer (LESO) is designed in this paper. In the proposed sliding mode controller, the double power reaching law is adopted to enhance the state convergence rate, and the high-order LESO is designed to improve the antidisturbance ability. Moreover, the appropriate observer bandwidth and extended order are selected to further reduce or even eliminate the disturbance by analyzing their influences on the observer performance. Finally, the simulation demonstrations are given for the NSV control system with uncertain parameters and external disturbances. The theoretical analyses and simulation results consistently indicate that the proposed high-order LESO with carefully selected extended order and observer bandwidth has better performance than the traditional ones for the nonlinear NSV system with parametric uncertainty and external disturbance. PubDate: Wed, 10 Feb 2021 14:50:01 +000
Abstract: In order to study the effect of negative valve overlap on combustion and emission characteristics of a homogeneous charge compression ignition engine fueled with natural gas and hydrogen, the test and the simulation were conducted using an engine cycle model coupling the chemical kinetic reaction mechanism under different valve timing conditions. Results show that the internal EGR formed by using negative valve overlap could heat the inlet mixtures and improve the spontaneous ignition characteristic of the engine. The residual exhaust gas could slow down the heat release rate, decrease the pressure rise rate and the maximum combustion temperature, and reduce the NOx emission simultaneously. Among the three NVO schemes, the strategy of changing the intake valve opening timing individually can create the least power loss, and the symmetric NVO strategy which changes both the exhaust valve closing timing and the intake valve opening timing simultaneously can achieve the best heating effect of inlet mixtures and the satisfactory decrease of combustion temperature, as well as the largest reduction of NOx emission. PubDate: Wed, 10 Feb 2021 14:20:01 +000
Abstract: This study develops a novel neural-approximation-based prescribed performance controller for flexible hypersonic flight vehicles (HFVs). Firstly, a new prescribed performance mechanism is exploited, which develops new performance functions guaranteeing velocity and altitude tracking errors with small overshoots. Compared with the existing prescribed performance mechanism, it has better preselected transient and steady-state performance. Then, the nonaffine model of HFV is decomposed into a velocity subsystem and an altitude subsystem. A prescribed performance-based proportional-integral controller is designed in the velocity subsystem. In the altitude subsystem, the model is expressed as a nonaffine pure feedback form, and control inputs are derived from neural approximations. In order to reduce the amount of computation, only one neural network approximator is used to approximate the subsystem uncertainties, and an advanced regulation algorithm is applied to the devise adaptive law for neural estimation. At the same time, the complex design process of back-stepping can be avoided. Finally, numerical simulation results are presented to verify the efficiency of the design. PubDate: Wed, 10 Feb 2021 13:20:01 +000
Abstract: Based on the aeroengine lubricating oil system test bench, this paper used a dimensional analysis method to establish a mathematical model for predicting the separation efficiency and resistance of a dynamic pressure oil-air separator suitable for engineering. The analysis of the multivariate nonlinear fitting error and the experimental data showed that the established separation efficiency and resistance model could accurately predict the separation and resistance performance of the dynamic pressure oil-air separator within a certain range; the average error of the four separation characteristic prediction models was 3.5%, and the maximum error was less than 16%. The model that was established by the least square method had the highest accuracy; the average error of the multivariate nonlinear fitting of the four resistance characteristic prediction models was less than 4%, and the maximum error was less than 15%, which could be used to predict the resistance performance of the separator. The applicable working condition of the model is lubricating oil flow rate 4.3~8.5 L/min and oil-air ratio 0.5~3. PubDate: Wed, 10 Feb 2021 12:20:02 +000
Abstract: Reusable spacecraft is increasingly attracting researchers’ attention. However, the experimental investigations on the turbine blade of the rocket engine are rarely published. Thus, the fatigue of a small impulse rocket turbine blade is explored in the current work. First, the specimen and the electrode of electrical discharge machining are carefully designed. Then, the electrical discharge machining is used to machine the specimen. To study the fatigue properties, the finite element analyses are separately performed on the blade model and the specimen. Based on the numerical results, a fatigue test is carried out to reproduce the most vulnerable position. Finally, the microstructural structures of the specimen are detected using the scanning electron microscope (SEM). Results show that (1) different from the aviation field, the specimen is unable to be machined with the welding method because it destroys the crucial details and the mechanical properties; (2) the maximum plastic strain is present at the leading edge close to the hub, at which a 760 μm corner crack appears at the 10113th fatigue cycle. This work provides a feasible method of using the EDM process to machine specimen for the small impulse turbine blade. PubDate: Wed, 10 Feb 2021 12:20:02 +000
Abstract: This paper presents an evaluation of the influence of aircraft configuration on the boarding and deboarding times using a simplified model and computer simulation. Boarding and deboarding times are important to airlines since both procedures are part of the critical path of the turnaround time (TAT) of aircraft in airports. During the TAT, a series of activities are performed in the aircraft in order to prepare it for the next flight. A reduction in boarding and deboarding times may represent a reduction in TAT for airlines. For the comparisons, three aircraft configurations are used: single aisle (“six abreast”), single aisle (“five abreast”), and single aisle (“four abreast”), all with the same number of passengers. For the boarding analyses, two boarding procedures are used: random and random outside-in. The aircraft interior configuration holds the shortest boarding times; deboarding times are similar for the three configurations. Also, a sensitivity analysis is carried out, and the results show that the higher the aircraft occupancy and the number of passengers with carry-on baggage, the higher are boarding and deboarding times, with the having the lowest times in comparison with the other two configurations. PubDate: Tue, 09 Feb 2021 11:50:01 +000
Abstract: The stowing and deployment processes of a self-deployable sunshield are investigated numerically in this paper. The composition of the self-deployable sunshield is described. Deployed moment theoretical models for lenticular booms are formulated based on the bending theory of curved shell. The numerical analysis method of deployed moment is proposed. Two types of control methods for a fold crease are presented, and a dynamic analysis model considering geometry and nonlinear contact is built. The analysis results indicate that the press flattening method can be used effectively for controlling the fold crease, and the analytical results of the deployed moment are very close to the theoretical results. A stowing and deployment process analysis of the self-deployable sunshield is conducted. Thus, the deployment configurations and the time history curves of the dynamic behaviors are obtained. The results verify the feasibility of the analysis model, and this study can provide technical support for the engineering application of the self-deployable sunshield. PubDate: Mon, 08 Feb 2021 16:50:01 +000
Abstract: The development of launch vehicles has led to higher slenderness ratios and higher structural efficiencies, and the traditional control methods have difficulty in meeting high-quality control requirements. In this paper, an incremental dynamic inversion control method based on deformation reconstruction is proposed to achieve high-precision attitude control of slender launch vehicles. First, the deformation parameters of a flexible rocket are obtained via fiber Bragg grating (FBG) sensors. The deformation and attitude information is introduced into the incremental dynamic inverse control loop, and an attitude control framework that can alleviate bending vibration and deformation is established. The simulation results showed that the proposed method could accurately reconstruct the shapes of flexible launch vehicles with severe vibration and deformation, which could improve the accuracy and stability of attitude control. PubDate: Mon, 08 Feb 2021 16:35:00 +000
Abstract: This paper focuses on the potential actuator failures of spacecraft in practical engineering applications. Aiming at the shortcomings and deficiencies in the existing attitude fault-tolerant control system design, combined with the current research status of attitude fault-tolerant control technology, we carry out high-precision, fast-convergent attitude tracking algorithms. Based on the adaptive nonsingular terminal sliding mode control theory, we design a kind of fixed-time convergence control method. This method solves the problems of actuator faults, actuator saturation, external disturbances, and inertia uncertainties. The control method includes control law design and controller design. The designed fixed-time adaptive nonsingular terminal sliding mode control law is applicable to the development of fixed-time fault-tolerant attitude tracking controller with multiple constraints. The designed controller considers the saturation of the actuator output torque so that the spacecraft can operate within the saturation magnitude without on-line fault estimation. Lyapunov stability analysis shows that under multiple constraints such as actuator saturation, external disturbances, and inertia uncertainties, the controller has fast convergence and has good fault tolerance to actuator fault. The numerical simulation shows that the controller has good performance and low-energy consumption in attitude tracking control. PubDate: Mon, 08 Feb 2021 07:20:00 +000
Abstract: In order to study the mechanical properties and failure mechanism of the axial braided C/C composites, the microscopic and macroscopic mechanical properties of the composite were investigated. In view of the size effect of the samples, the properties of the samples with different thickness were tested. The strain during loading was measured by optical method, and the failure morphology was observed by SEM. The changing characteristics of stress-strain curve were analyzed, and the failure characteristics of materials and failure mechanism under various loads were obtained. It was found that brittle fracture was observed during the tensile process of axial braided C/C composites, and the main failure forms were fiber rod pulling and partial fiber rod breaking in the axial direction. Radial failure was mainly in the form of fiber bundle fracture and crack stratification propagation. When compressed, the material exhibited pseudoplastic characteristics. The radial compression sample was cut along a 45-degree bevel. The axial compression curve was in the form of double fold, the axial fiber rod was unstable, and the transverse fiber bundle was cut. During in-plane shearing, the axial fracture was brittle and the fiber rod was cut. The radial direction showed the fracture and pulling of the fiber bundle, and the material had the characteristics of pseudoplasticity. The research methods and results in this paper could provide important references for the optimization and rational application of C/C composite materials. PubDate: Thu, 04 Feb 2021 00:00:00 +000
Abstract: The reconfiguration technology, which is the significant feature of the newly designed Integrated Modular Avionics (IMA) system, enables the transfer of avionics functions from the failed module to the residual normal module, thereby enhancing the robustness of the whole system. The basic target of the IMA reconfiguration is to ensure the safe flight and correct execution of the mission. To solve the problem of lack of effective management mechanism for the IMA system development and safety assessment, a safety analysis method based on STAMP/STPA and UPPAAL for IMA reconfiguration is proposed. The method focuses mainly on system characteristics and multiparty interactions. On the basis of this approach, some studies and analyses have been carried out. Firstly, the STAMP/STPA principle is studied and used to identify unsafe control actions in the reconfiguration process. Secondly, a formal model of IMA reconfiguration is developed using UPPAAL. Finally, the accessibility analysis of the formal model is used to analyze UCAs and the corresponding loss scenarios. The method enables a detailed description of the interactions between the components and a rigorous mathematical analysis of the system, thereby diluting the effect of human factors while ensuring the accuracy and reliability of the safety constraints. PubDate: Wed, 27 Jan 2021 12:50:01 +000
Abstract: In order to investigate the distribution characteristics of gas-particle two-phase flow in the diesel particulate filter in the capture process, a mathematical model of gas-particle two-phase flow for inside-and-outside filter had been established in the capture process according to the mass conservation equation, momentum conservation equation, and k-ε turbulence equation. The model verification was carried out with the experimental and simulated of flow distribution characteristics of gas-particle two-phase. The obtained results showed that the static pressure gradient along the radial distribution was greater at the inlet of the filter in capture process in the diesel particulate filter, which could easily lead to causing eventual fatigue damage due to stress concentration in the front-end of filter; moreover, the weaker the vortex strength of gas-particle formed in expansion pipe was, the better uniformity of flow velocity and soot concentration distribution were. Therefore, the established mathematical model can be used for predicting gas-particle flow velocity distribution in the diesel particulate filter. PubDate: Wed, 27 Jan 2021 12:50:01 +000
Abstract: The commercially available unmanned aerial vehicles are not good enough for search and rescue flight at high altitudes. This is because as the altitude increases, the density of air decreases which affects the thrust generation of the UAV. The objective of this research work is to design thrust optimized blade for an altitude range of 3,000–5,000 m with a density of air 0.7364 kg/m3, respectively, and perform thrust analysis. The property of aluminum alloy 1,060 being lightweight is chosen for designing and testing of blade. The blade element theory-based design and analysis code was developed, and user-friendly aerodynamic inputs were used to obtain the desired outputs. The geometry designed for an altitude range of 3,000-5,000 m faced the total stress of 6.0 MPa which was at 70% of the blade span. This stress is within the limit of yield strength of the aluminum alloy, 28 MPa. The modal analysis shows the first natural frequency occurs at around 12,000 RPM which is safe for operating the blade at 0-5,000 RPM. Experimental analysis of the blade gave a thrust of 0.92 N at 2,697 RPM at 1,400 m. The analytical solution for thrust with the same conditions was 1.7 N with 85.6% efficiency. The validation of experimental results has been done by the CFD analysis. The CFD analysis was performed in ANSYS CFX which gave a thrust value of 2.27 N for the same boundary conditions. Thus, the blade designed for high altitude SAR UAV is structurally safe to operate in 0-5,000 RPM range, and its use in search missions could save many lives in the Himalayas. PubDate: Sat, 23 Jan 2021 13:50:01 +000
Abstract: An online estimation algorithm of landing footprints based on the drag acceleration-energy profile is proposed for an entry hypersonic vehicle. Firstly, based on the Evolved Acceleration Guidance Logic for Entry (EAGLE), drag acceleration-energy profiles are designed. To track the drag acceleration-energy profile obtained by the interpolation, a drag acceleration tracking law is designed. Secondly, based on the constraint model of the no-fly zone, flying around strategies are proposed for different conditions, and a reachable area algorithm is designed for no-fly zones. Additionally, by interpolating the minimum and maximum drag acceleration profiles, the terminal heading angle constraint is designed to realize the accurate calculation of the minimum and maximum downrange ranges by adjusting the sign of the bank angle. In this way, the distribution of landing footprints is more reasonable, and the boundary of a reachable area is more accurate. The simulation results under typical conditions indicate that the proposed method can calculate landing footprints for different situations rapidly and with the good adaptability. PubDate: Thu, 21 Jan 2021 14:05:00 +000
Abstract: Timely and effective fault diagnosis of sensors is crucial to enhance the working efficiency and reliability of the aeroengine. A new intelligent fault diagnosis scheme combining improved pattern gradient spectrum entropy (IPGSE) and convolutional neural network (CNN) is proposed in this paper, aiming at the problem of poor fault diagnosis effect and real-time performance when CNN directly processes one-dimensional time series signals of aeroengine. Firstly, raw fault signals are converted into spectral entropy images by introducing pattern gradient spectral entropy (PGSE), which is used as the input of CNN, because of the great advantage of CNN in processing images and the simple and rapid calculation of the modal gradient spectral entropy. The simulation results prove that IPGSE has more stable distinguishing characteristics. Then, we improved PGSE to use particle swarm optimization algorithm to adaptively optimize the influencing parameters (scale factor ), so that the obtained spectral entropy graph can better match the CNN. Finally, CNN mode is proposed to classify the spectral entropy diagram. The method is validated with datasets containing different fault types. The experimental results show that this method can be easily applied to the online automatic fault diagnosis of aeroengine control system sensors. PubDate: Thu, 21 Jan 2021 13:05:00 +000
Abstract: Drag reduction technology plays a significant role in extending the flight range for a high-speed vehicle. A wave drag reduction strategy via heat addition to a blunt body with a spike was proposed and numerically validated. The heat addition is simulated with continuous heating in a confined area upstream of the blunt body. The effects of heat addition on drag reduction in three flow conditions () were compared, and the influence of power density (,, and ) of heating was evaluated. Results show that the heat addition has a positive way to reduce the drag of the body with a spike alone, and more satisfactory drag reduction effectiveness can be achieved at a higher Mach number. The drag reduction coefficient increases with in the same flow condition, with a maximum of 38.9% () as . The wave drag reduction principle was discussed by a transient calculation, which indicates that the separation region has entrainment of the heated air and expanded with its sonic line away from the blunt cone, which results in an alleviation of the pressure load caused by shock/shock interaction. PubDate: Sat, 16 Jan 2021 14:05:01 +000
Abstract: In this work, 2D numerical RANS (Reynolds Average Navier-Stokes) simulations were carried out to investigate the thermodynamic performance of a solid fuel ramjet (SFRJ) with different inlet conditions. This is achieved by using an in-house FORTRAN code to simulate a 2D turbulent, reacting, unsteady flow in the ramjet engine. The inlet conditions are characterized by three key parameters: (1) swirl number (), (2) mass flow rate (), and (3) inlet temperature (). With the code numerically validated by benchmarking with a number of computed cases, it is applied to perform systematic studies on the turbulent flow recirculation, combustion, and heat transfer characteristics. It is found that increasing ,, or can dramatically enhance the combustion heat release rate, regression rate, and combustor average temperature. Furthermore, the analysis on the chemical reaction intermediate (CO) reveals that the chemical reaction is more sufficient with increased , but . In addition, a secondary vortex is generated at the corner of the backward facing step in the presence of a swirl flow resulting from the instability of the shear layer. Finally, the nonlinear correlations between the heat transfer, combustion characteristics, and flow field characteristics and the corresponding inlet thermodynamic parameters are identified. PubDate: Fri, 15 Jan 2021 14:05:01 +000
Abstract: We propose a new DRR (Disturbance Rejection Rate) compensation method of a roll-pitch seeker based on ESO (extended state observer). The characteristics of a roll-pitch seeker and the DRR definition of two frames of a roll-pitch seeker are analyzed. The influence of different interference torques and different frequency bandwidths on the compensation effect is analyzed. Modeling and simulation of the guidance system of a roll-pitch seeker with the parasitic loop of DRR are carried out. Influence of the new DRR compensation method on dimensionless miss distance is analyzed. Mathematical simulation is established to compare the new ESO-based DRR compensation method with the existing methods such as the feedforward method and Kalman filter method. The analysis and simulation results show that the new ESO-based DRR compensation method has the advantages of high precision, good applicability, and easy adjustment, and the new method can effectively reduce the dimensionless miss distance with different types of input errors. The research of this proposed new method can provide a reference for the latest generation air-to-air missile operations in a high-altitude and high-speed environment and the high-precision research of a roll-pitch seeker. PubDate: Fri, 15 Jan 2021 13:05:00 +000
Abstract: The mechanical characteristics of the unlocking force of the landing gear finger lock were studied in this paper, the influence of its diameter, fingertip angle, wear, and other factors on the unlocking force in one complete working cycle was analyzed, and the sensitive parameters that affect the unlocking force were obtained. Firstly, the unlocking force and wear of finger lock were calculated theoretically, and the changing rule of the unlocking force and wear with each parameter was obtained. Then, the validity of the correlation coefficient and model was verified by experiment. Finally, combined with the effective coefficient obtained from the experiment, the Archard wear model was used to simulate the change rule of lock force. The results show that in one complete working cycle, the inner surface diameter is negatively related to the unlocking force, fingertip diameter has little effect on the unlocking force, fingertip angle is negatively related to the unlocking force, and wear is positively related to the unlocking force; friction coefficient and fingertip angle are high sensitive parameters that affect the unlocking force, which have obvious effect on the unlocking force. The inner surface diameter, fingertip diameter of finger lock, and wear are the low sensitive parameters that affect the unlocking force, and the influence on the unlocking force is weak. PubDate: Wed, 13 Jan 2021 14:50:01 +000
Abstract: Magnetohydrodynamic (MHD) control of hypersonic laminar separation flows is investigated in this paper. A series of numerical simulations over various geometry configurations, namely, a compression corner and a double wedge ramp hypersonic inlet, have been conducted by application of an external electromagnetic field. Results show that the performance of MHD separation flow control is mainly determined by flow acceleration of the Lorentz force directed in the streamwise direction. The Joule heating term always brings negative effects on the MHD separation flow control and increased the static pressure locally, where the electromagnetic field is applied. With an external electromagnetic field applied, the low velocity fluid in the boundary layer can be accelerated. Moreover, there exists a best location for the MHD zone to be applied and completely eliminate the separation of the flow from the surface. PubDate: Wed, 13 Jan 2021 14:35:00 +000
Abstract: Tracking a target is an essential function of a seeker for missiles. The target tracking mechanism of a seeker consists of gimbals, mounted with gyroscopes, and an antenna or some other energy receiving devices such as radar, infrared (IR), or laser. Stabilization of such a gimbal is necessary for any guided missile to maintain the tracking device always pointing towards the target. For the stabilization of the gimbal system, several control methods have been employed for making the gimbal to follow an input rate command by eliminating all the gimbal disturbances. Here, a new self-tuning fuzzy logic-based proportional, integral, derivative (PID) controller is introduced for the stabilization of a two-axis gimbal for a manoeuvring guided missile. The proposed control method involves tuning the gains of the PID controller based on the fuzzy logic rule bases considering the missile body rotation. The performance of the stabilization loops has been verified through MATLAB simulations for fuzzy logic-based PID controller compared with the conventional PID controller. The simulation results show the response of the gimbal system with stabilization loops met the control requirements with fuzzy PID controllers but not with conventional PID controllers. PubDate: Wed, 13 Jan 2021 14:05:01 +000
Abstract: Lunar exploration architecture can be made more flexible and reliable with the support of a low-Earth orbit (LEO) space station. This study therefore evaluated a proposed hybrid optimization scheme to design the entire trajectory of a reusable spacecraft starting from trans-Earth injection (EI) at the perilune and ending at an LEO space station. As such a trajectory has multiple constraints and multiple dynamical models, it is divided into the trans-Earth phase, aerocapture phase, and postatmospheric phase. The optimization scheme is performed at two levels: sublevel and top level. At the sublevel, two novel pseudo rules are proposed to optimize the trans-Earth trajectory so that it satisfies the coplanar constraints of the space station. Then, in the aerocapture phase, the bank angle is optimized to satisfy the mission constraints, and in the atmospheric phase, the one-impulsive maneuver is performed and optimized to insert the spacecraft into the target space station orbit. The multiple phases are connected to each other by boundary conditions where the terminal state of the previous phase is transformed into the initial state of the following phase. At the top level, the vacuum perigee height is selected as the mission design variable based on problem characteristics analysis and a hybrid optimization scheme is conducted to minimize the total velocity increment. The simulation results demonstrate that the proposed hybrid optimization method is effective for the design of an entire trajectory with acceptable velocity cost which is less than that in the previous study. The coplanar constraints of the space station and other mission constraints in each phase are also satisfied. Furthermore, the proposed trajectory design method is shown to be applicable to a reusable spacecraft returning to an LEO space station parked in any arbitrary orbital plane. PubDate: Sat, 09 Jan 2021 13:50:01 +000
Abstract: This study presents a stereophotogrammetry approach to achieve full-field displacement measurements of helicopter rotor blades. The method is demonstrated in the wind tunnel test of a 2 m diameter rotor, conducted at the Aeroacoustic Wind Tunnel of China Aerodynamics Research and Development Center (CARDC). By arranging the retroreflective targets on the special hat installed directly above the rotor hub, the dynamic motion of the rotor shaft was tracked accurately, and a unified coordinate system was established on the rotor. Therefore, three-dimensional coordinates of instantaneously measured targets attached on the blade could be transformed to the unified rotor coordinate system, thereby providing a basis for consistently calculating the blade displacements at different test conditions. Moreover, location deviations of the blade caused by the vibration of the measuring system or the rotor due to freestream and rotor rotation were also effectively corrected through coordinate transformation. Comparisons of experimental and simulation results for a range of hover and forward flight conditions show good magnitude and trend agreements. PubDate: Fri, 08 Jan 2021 16:50:01 +000