Abstract: We study the multiplicity dependence of jet structures in pp collisions using Monte Carlo event generators. We give predictions for multiplicity-differential jet structures and present evidence for a nontrivial jet shape dependence on charged hadron event multiplicity that can be used as a sensitive tool to experimentally differentiate between equally well-preforming simulation tunes. We also propose a way to validate the presence and extent of effects such as multiple-parton interactions (MPI) or color reconnection (CR), based on the detection of nontrivial jet shape modification in high-multiplicity events at high . Using multiplicity-dependent jet structure observables in various windows might also help understanding the interplay between jet particles and the underlying event (UE). We introduce a multiplicity-independent characteristic jet size measure and use a simplistic model to aid its physical interpretation. PubDate: Mon, 18 Mar 2019 08:05:09 +000

Abstract: In this contribution we present an overview of recent results concerning the impact of a possible flavour dependence of the intrinsic quark transverse momentum on electroweak observables. In particular, we focus on the spectrum of electroweak gauge bosons produced in proton-proton collisions at the LHC and on the direct determination of the boson mass. We show that these effects are comparable in size to other nonperturbative effects commonly included in phenomenological analyses and should thus be included in precise theoretical predictions for present and future hadron colliders. PubDate: Sun, 17 Mar 2019 12:05:11 +000

Abstract: Resonant production of excited and quarks at the Future Circular Collider and Super Proton-Proton Collider has been researched. Dominant jet-jet decay mode has been considered. It is shown that FCC and SppC have great potential for discovery of excited () quark: up to 44.1 (36.3) and 58.4 (47.8) TeV masses, respectively. For degenerate case ( = ), these values are 45.9 and 60.9 TeV, respectively. This discovery will also afford an opportunity to determine the compositeness scale up to multi-PeV level. PubDate: Sun, 17 Mar 2019 08:05:10 +000

Abstract: In this review, we describe the status of transverse momentum dependence (TMD) in double parton scattering (DPS). The different regions of TMD DPS are discussed, and expressions are given for the DPS cross section contributions that make use of as much perturbative information as possible. The regions are then combined with each other as well as single parton scattering to obtain a complete expression for the cross section. Particular emphasis is put on the differences and similarities to transverse momentum dependence in single parton scattering. We further discuss the status of the factorisation proof for double colour singlet production in DPS, which is now on a similar footing to the proofs for TMD factorisation in single Drell-Yan, discuss parton correlations, and give an outlook on possible research on DPS in the near future. PubDate: Tue, 12 Mar 2019 09:05:17 +000

Abstract: It is well known that a Rindler observer measures a nontrivial energy flux, resulting in a thermal description in an otherwise Minkowski vacuum. For systems consisting of large number of degrees of freedom, it is natural to isolate a small subset of them and engineer a steady state configuration in which these degrees of freedom act as Rindler observers. In Holography, this idea has been explored in various contexts, specifically in exploring the strongly coupled dynamics of a fundamental matter sector, in the background of adjoint matters. In this article, we briefly review some features of this physics, ranging from the basic description of such configurations in terms of strings and branes, to observable effects of this effective thermal description. PubDate: Wed, 06 Mar 2019 13:30:02 +000

Abstract: In this work, we apply the so-called BPS method in order to obtain topological defects for a complex scalar field Lagrangian introduced by Trullinger and Subbaswamy. The BPS approach led us to compute new analytical solutions for this model. In our investigation, we found analytical configurations which satisfy the BPS first-order differential equations but do not obey the equations of motion of the model. Such defects were named nonphysical ones. In order to recover the physical meaning of these defects, we proposed a procedure which can transform them into BPS states of new scalar field models. The new models here founded were applied in the context of hybrid cosmological scenarios, where we derived cosmological parameters compatible with the observed Universe. Such a methodology opens a new window to connect different two scalar fields systems and can be implemented in several distinct applications such as Bloch Branes, Lorentz and Symmetry Breaking Scenarios, Q-Balls, Oscillons, Cosmological Contexts, and Condensed Matter Systems. PubDate: Tue, 05 Mar 2019 10:05:13 +000

Abstract: By taking the massless limit of linearized massive conformal gravity coupled to a source, we show that the theory is free from the vDVZ discontinuity. This result is confirmed when we take the massless limit of the gravitational potential of the theory, which is shown to be finite at the origin. PubDate: Tue, 05 Mar 2019 07:05:08 +000

Abstract: In this work, we study the molecule in the Bethe-Salpeter (BS) equation approach. With the kernel containing one-particle-exchange diagrams and introducing two different form factors (monopole form factor and dipole form factor) in the vertex, we solve the BS equation numerically in the covariant instantaneous approximation. We investigate the isoscalar and isovector systems, and we find that cannot be a molecule. PubDate: Mon, 04 Mar 2019 12:05:15 +000

Abstract: We calculate the double charmonium production cross-section within the framework of Bethe-Salpeter Equation in the electron-positron annihilation, at center of mass energy GeV, that proceeds through the exchange of a single virtual photon. In this calculation, we make use of the full Dirac structure of 4D BS wave functions of these charmonia, with the incorporation of all the Dirac covariants (both leading and subleading). The calculated cross-sections for the double charmonium productions for final states, (), (), (), and (), are close to experimental data and in broad agreement with results of other theoretical models. PubDate: Sun, 03 Mar 2019 15:05:04 +000

Abstract: We solved Schrödinger equation with Cornell potential (Coulomb-plus-linear potential) by using neural network approach. Four different cases of Cornell potential for different potential parameters were used without a physical relevance. Besides that charmonium, bottomonium and bottom-charmed spin-averaged spectra were also calculated. Obtained results are in good agreement with the reference studies and available experimental data. PubDate: Thu, 28 Feb 2019 08:05:08 +000

Abstract: We present a QCD motivated model that mimics QCD theory. We examine the characteristics of the gauge field coupled with the color dielectric function () in the presence of temperature (). The aim is to achieve confinement at low temperatures , ( is the critical temperature), similar to what occurs among quarks and gluons in hadrons at low energies. Also, we investigate scalar glueballs and QCD string tension and effect of temperature on them. To achieve this, we use the phenomenon of color dielectric function in gauge fields in a slowly varying tachyon medium. This method is suitable for analytically computing the resulting potential, glueball masses, and the string tension associated with the confinement at a finite temperature. We demonstrate that the color dielectric function changes Maxwell’s equation as a function of the tachyon fields and induces the electric field in a way that brings about confinement during the tachyon condensation below the critical temperature. PubDate: Wed, 27 Feb 2019 07:05:18 +000

Abstract: We study the Klein-Gordon and the Dirac equations in the background of the Garfinkle-Horowitz-Strominger black hole in the Einstein frame. Using a gauge covariant approach, as an alternative to the Newman-Penrose formalism for the Dirac equation, it turns out that these solutions can be expressed in terms of Heun confluent functions and we discuss some of their properties. PubDate: Tue, 26 Feb 2019 12:05:19 +000

Abstract: The generalized Dirac oscillator as one of the exact solvable models in quantum mechanics was introduced in 2+1-dimensional world in this paper. What is more, the general expressions of the exact solutions for these models with the inverse cubic, quartic, quintic, and sixth power potentials in radial Dirac equation were further given by means of the Bethe ansatz method. And finally, the corresponding exact solutions in this paper were further discussed. PubDate: Sun, 17 Feb 2019 13:05:28 +000

Abstract: We discuss the collapsing and expanding solutions of anisotropic charged cylinder in the context of theory ( represents the Ricci scalar and denotes the trace of energy-momentum tensor). For this purpose, we take an auxiliary solution of Einstein-Maxwell field equations and evaluate expansion scalar whose negative values lead to collapse and positive values give expansion. For both cases, the behavior of density, pressure, anisotropic parameter, and mass is explored and the effects of charge as well as model parameter on these quantities are examined. The energy conditions are found to be satisfied for both solutions. PubDate: Thu, 14 Feb 2019 10:05:16 +000

Abstract: We propose a novel approach to construction of hadron spectroscopy. The case of light nonstrange mesons is considered. By assumption, all such mesons above 1 GeV appear due to creation of constituent quark-antiquark pairs inside or () mesons. These spin-singlet or triplet pairs dictate the quantum numbers of formed resonance. The resulting classification of light mesons turns out to be in a better agreement with the experimental observations than the standard quark model classification. It is argued that the total energy of quark components should be proportional to the hadron mass squared rather than the linear mass. As a byproduct a certain relation expressing the constituent quark mass via the gluon and quark condensate is put forward. We show that our approach leads to an effective mass counting scheme for meson spectrum and results in the linear Regge and radial Regge trajectories by construction. An experimental observation of these trajectories might thus serve as evidence not for string but for multiquark structure of highly excited hadrons. PubDate: Tue, 12 Feb 2019 07:05:31 +000

Abstract: In a spacetime divided into two regions and by a hypersurface , a perturbation of the field in is coupled to perturbations in by means of the holographic imprint that it leaves on . The linearized gluing field equation constrains perturbations on the two sides of a dividing hypersurface, and this linear operator may have a nontrivial null space. A nontrivial perturbation of the field leaving a holographic imprint on a dividing hypersurface which does not affect perturbations on the other side should be considered physically irrelevant. This consideration, together with a locality requirement, leads to the notion of gauge equivalence in Lagrangian field theory over confined spacetime domains. Physical observables in a spacetime domain can be calculated integrating (possibly nonlocal) gauge invariant conserved currents on hypersurfaces such that . The set of observables of this type is sufficient to distinguish gauge inequivalent solutions. The integral of a conserved current on a hypersurface is sensitive only to its homology class , and if is homeomorphic to a four ball the homology class is determined by its boundary . We will see that a result of Anderson and Torre implies that for a class of theories including vacuum general relativity all local observables are holographic in the sense that they can be written as integrals of over the two-dimensional surface . However, nonholographic observables are needed to distinguish between gauge inequivalent solutions. PubDate: Thu, 07 Feb 2019 10:05:01 +000

Abstract: We construct a noncommutative extension of the Loop Quantum Cosmology effective scheme for the flat FLRW model with a free scalar field via a theta deformation. Firstly, a deformation is implemented in the configuration sector, among the holonomy variable and the matter degree of freedom. We show that this type of noncommutativity retains, to some degree, key features of the Loop Quantum Cosmology paradigm for a free field. Secondly, a deformation is implemented in the momentum sector, among the momentum associated with the holonomy variable and the momentum associated with the matter field. We show that in this latter case the scalar field energy density is the same as the one in standard Loop Quantum Cosmology. PubDate: Thu, 07 Feb 2019 09:05:38 +000

Abstract: Very recently novel implementation of type-II seesaw mechanism for neutrino mass has been proposed in grand unified theory with a number of desirable new physical phenomena beyond the standard model. Introducing heavy right-handed neutrinos and extra fermion singlets, in this work we show how the type-I seesaw cancellation mechanism works in this framework. Besides predicting verifiable LFV decays, we further show that the model predicts dominant double beta decay with normal hierarchy or inverted hierarchy of active light neutrino masses in concordance with cosmological bound. In addition a novel right-handed neutrino mass generation mechanism, independent of type-II seesaw predicted mass hierarchy, is suggested in this work. PubDate: Sun, 03 Feb 2019 00:00:00 +000

Abstract: In this paper, quarkonium dissociation is investigated in an anisotropic plasma in the hot and dense media. For that purpose, the multidimensional Schrödinger equation is solved analytically by Nikiforov-Uvarov (NU) method for the real part of the potential in an anisotropic medium. The binding energy and dissociation temperature are calculated. In comparison with an isotropic medium, the binding energy of quarkonium is enhanced in the presence of an anisotropic medium. The present results show that the dissociation temperature increases with increasing anisotropic parameter for 1S state of the charmonium and bottomonium. We observe that the lower baryonic chemical potential has small effect in both isotropic and anisotropic media. A comparison is presented with other pervious theoretical works. PubDate: Wed, 23 Jan 2019 12:05:06 +000

Abstract: Based on Reissner-Nordstrom-anti-de Sitter(RN-AdS) black hole surrounded by perfect fluid dark matter, we study the thermodynamics and phase transition by extending the phase space defined by the charge square and the conjugate quantity , where is a function of horizon radius. The first law of thermodynamics and the equation of state are derived in the form . By investigating the critical behaviour of perfect fluid dark matter around Reissner-Nordstrom-anti-de Sitter black hole, we find that these thermodynamics system are similar to Van der Waals system and can be explained by mean field theory. We also explore the Ruppeiner thermodynamic geometry feature and their connection with microscopic structure. We find that in extended phase space there are existence singularity points of Ruppeiner curvature and they could explained as phase transitions. PubDate: Wed, 23 Jan 2019 11:05:28 +000

Abstract: This article presents the review of the current understanding on the pion-nucleon Drell-Yan process from the point of view of the TMD factorization. Using the evolution formalism for the unpolarized and polarized TMD distributions developed recently, we provide the theoretical expression of the relevant physical observables, namely, the unpolarized cross section, the Sivers asymmetry, and the asymmetry contributed by the double Boer-Mulders effects. The corresponding phenomenology, particularly at the kinematical configuration of the COMPASS Drell-Yan facility, is displayed numerically. PubDate: Tue, 22 Jan 2019 13:05:09 +000

Abstract: In this work, we analyze an extended supersymmetry with central charge and develop its superspace formulation under two distinct viewpoints. Initially, in the context of classical mechanics, we discuss the introduction of deformed supersymmetric derivatives and their consequence on the deformation of one-dimensional nonlinear sigma model. After that, considering a field-theoretical framework, we present an implementation of this superalgebra in two dimensions, such that one of the coordinates is related to the central charge. As an application, in this two-dimensional scenario, we consider topological (bosonic) configurations of a special self-coupled matter model and present a nontrivial fermionic solution. PubDate: Mon, 21 Jan 2019 12:05:12 +000

Abstract: In this paper we analyze the thermodynamic properties of the Anti-de-Sitter black hole in the Einstein-Maxwell-Yang-Mills-AdS gravity (EMYM) via many approaches and in different thermodynamical ensembles (canonical/grand canonical). First, we give a concise overview of this phase structure in the entropy-thermal diagram for fixed charges and then we investigate this thermodynamical structure in fixed potentials ensemble. The next relevant step is recalling the nonlocal observables such as holographic entanglement entropy and two-point correlation function to show that both observables exhibit a Van der Waals-like behavior in our numerical accuracy and just near the critical line as the case of the thermal entropy for fixed charges by checking Maxwell’s equal area law and the critical exponent. In the light of the grand canonical ensemble, we also find a newly phase structure for such a black hole where the critical behavior disappears in the thermal picture as well as in the holographic one. PubDate: Sun, 20 Jan 2019 09:05:18 +000

Abstract: To take the full advantage of the data set collected at collider at charm energy region, a tag method is developed to directly measure the meson decay branching fractions absolutely. The meson decay can be measured with the sample tagged by the two soft charged pions from the decay . This method is illustrated by comparing the input and output branching fractions of with 106 million inclusive Monte Carlo samples. The consistent result confirms the validity of the tag method. PubDate: Thu, 17 Jan 2019 12:05:18 +000

Abstract: This paper is devoted to study charged fermion particles tunneling through the horizon of Kerr-Newman-AdS black hole surrounded by quintessence by using Hamilton-Jacobi ansatz. In our analysis, we investigate Hawking temperature as well as quantum corrected Hawking temperature on account of generalized uncertainty principle. Moreover, we discuss the effects of correction parameter on the corrected Hawking temperature , graphically. We conclude that the temperature vanishes when , whereas for and , the temperature turns out to be positive and negative, respectively. We observe that the graphs of w.r.t. quintessence parameter exhibit behavior only for the particular ranges, i.e., , charge , and rotation parameter . For smaller and larger values of negative , as horizon increases, the temperature decreases and increases, respectively. PubDate: Mon, 14 Jan 2019 10:05:08 +000

Abstract: In this work we calculate the static limit of the energy for a quark-antiquark pair from the Nambu-Goto action using a holographic approach with a deformed AdS space, with warp factor . From this energy we derive the Cornell potential for the quark-antiquark interaction. We also find a range of values for our parameters which fits exactly the Cornell potential parameters. In particular, setting the zero energy of the Cornell potential at 0.33 fermi, we find that GeV and . PubDate: Sun, 13 Jan 2019 09:05:17 +000

Abstract: Recently, Tsallis, Rényi, and Sharma-Mittal entropies have widely been used to study the gravitational and cosmological setups. We consider a flat FRW universe with linear interaction between dark energy and dark matter. We discuss the dark energy models using Tsallis, Rényi, and Sharma-Mittal entropies in the framework of Chern-Simons modified gravity. We explore various cosmological parameters (equation of state parameter, squared sound of speed ) and cosmological plane (, where is the evolutionary equation of state parameter). It is observed that the equation of state parameter gives quintessence-like nature of the universe in most of the cases. Also, the squared speed of sound shows stability of Tsallis and Rényi dark energy model but unstable behavior for Sharma-Mittal dark energy model. The plane represents the thawing region for all dark energy models. PubDate: Tue, 08 Jan 2019 13:05:03 +000

Abstract: The topological charge of AdS black hole is introduced by Tian et al. in their papers, where a complete thermodynamic first law is obtained. In this paper, we investigate a new phase transition related to the topological charge in Einstein-Maxwell theory. Firstly, we derive the explicit solutions corresponding to the divergence of specific heat and determine the phase transition critical point. Secondly, the curve and curve are investigated and they exhibit an interesting van der Waals system’s behavior. Critical physical quantities are also obtained which are consistent with those derived from the specific heat analysis. Thirdly, a van der Waals system’s swallow tail behavior is observed when in the graph. What is more, the analytic phase transition coexistence lines are obtained by using the Maxwell equal area law and free energy analysis, the results of which are consistent with each other. PubDate: Wed, 02 Jan 2019 13:05:26 +000