for Journals by Title or ISSN
for Articles by Keywords
help

Publisher: Emerald   (Total: 356 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

        1 2 | Last   [Sort by number of followers]   [Restore default list]

Showing 1 - 200 of 356 Journals sorted alphabetically
A Life in the Day     Hybrid Journal   (Followers: 12)
Academia Revista Latinoamericana de Administración     Open Access   (Followers: 2, SJR: 0.178, CiteScore: 1)
Accounting Auditing & Accountability J.     Hybrid Journal   (Followers: 32, SJR: 1.71, CiteScore: 3)
Accounting Research J.     Hybrid Journal   (Followers: 25, SJR: 0.144, CiteScore: 0)
Accounting, Auditing and Accountability J.     Hybrid Journal   (Followers: 25, SJR: 2.187, CiteScore: 4)
Advances in Accounting Education     Hybrid Journal   (Followers: 17, SJR: 0.279, CiteScore: 0)
Advances in Appreciative Inquiry     Hybrid Journal   (Followers: 1, SJR: 0.451, CiteScore: 1)
Advances in Autism     Hybrid Journal   (Followers: 32, SJR: 0.222, CiteScore: 1)
Advances in Dual Diagnosis     Hybrid Journal   (Followers: 47, SJR: 0.21, CiteScore: 1)
Advances in Gender Research     Full-text available via subscription   (Followers: 5, SJR: 0.16, CiteScore: 0)
Advances in Intl. Marketing     Full-text available via subscription   (Followers: 6)
Advances in Mental Health and Intellectual Disabilities     Hybrid Journal   (Followers: 83, SJR: 0.296, CiteScore: 0)
Advances in Mental Health and Learning Disabilities     Hybrid Journal   (Followers: 30)
African J. of Economic and Management Studies     Hybrid Journal   (Followers: 10, SJR: 0.216, CiteScore: 1)
Agricultural Finance Review     Hybrid Journal   (SJR: 0.406, CiteScore: 1)
Aircraft Engineering and Aerospace Technology     Hybrid Journal   (Followers: 211, SJR: 0.354, CiteScore: 1)
American J. of Business     Hybrid Journal   (Followers: 18)
Annals in Social Responsibility     Full-text available via subscription  
Anti-Corrosion Methods and Materials     Hybrid Journal   (Followers: 11, SJR: 0.235, CiteScore: 1)
Arts and the Market     Hybrid Journal   (Followers: 9)
Asia Pacific J. of Innovation and Entrepreneurship     Open Access   (Followers: 1)
Asia Pacific J. of Marketing and Logistics     Hybrid Journal   (Followers: 8, SJR: 0.425, CiteScore: 1)
Asia-Pacific J. of Business Administration     Hybrid Journal   (Followers: 6, SJR: 0.234, CiteScore: 1)
Asian Association of Open Universities J.     Open Access   (Followers: 1)
Asian Education and Development Studies     Hybrid Journal   (Followers: 5, SJR: 0.233, CiteScore: 1)
Asian J. on Quality     Hybrid Journal   (Followers: 3)
Asian Review of Accounting     Hybrid Journal   (Followers: 2, SJR: 0.222, CiteScore: 1)
Aslib J. of Information Management     Hybrid Journal   (Followers: 30, SJR: 0.725, CiteScore: 2)
Aslib Proceedings     Hybrid Journal   (Followers: 308)
Assembly Automation     Hybrid Journal   (Followers: 2, SJR: 0.603, CiteScore: 2)
Baltic J. of Management     Hybrid Journal   (Followers: 3, SJR: 0.309, CiteScore: 1)
Benchmarking : An Intl. J.     Hybrid Journal   (Followers: 10, SJR: 0.559, CiteScore: 2)
British Food J.     Hybrid Journal   (Followers: 17, SJR: 0.5, CiteScore: 2)
Built Environment Project and Asset Management     Hybrid Journal   (Followers: 15, SJR: 0.46, CiteScore: 1)
Business Process Re-engineering & Management J.     Hybrid Journal   (Followers: 8)
Business Strategy Series     Hybrid Journal   (Followers: 6)
Career Development Intl.     Hybrid Journal   (Followers: 17, SJR: 0.527, CiteScore: 2)
China Agricultural Economic Review     Hybrid Journal   (Followers: 2, SJR: 0.31, CiteScore: 1)
China Finance Review Intl.     Hybrid Journal   (Followers: 5, SJR: 0.245, CiteScore: 0)
Chinese Management Studies     Hybrid Journal   (Followers: 4, SJR: 0.278, CiteScore: 1)
Circuit World     Hybrid Journal   (Followers: 16, SJR: 0.246, CiteScore: 1)
Collection and Curation     Hybrid Journal   (Followers: 11, SJR: 0.296, CiteScore: 1)
COMPEL: The Intl. J. for Computation and Mathematics in Electrical and Electronic Engineering     Hybrid Journal   (Followers: 3, SJR: 0.22, CiteScore: 1)
Competitiveness Review : An Intl. Business J. incorporating J. of Global Competitiveness     Hybrid Journal   (Followers: 5, SJR: 0.274, CiteScore: 1)
Construction Innovation: Information, Process, Management     Hybrid Journal   (Followers: 14, SJR: 0.731, CiteScore: 2)
Corporate Communications An Intl. J.     Hybrid Journal   (Followers: 7, SJR: 0.453, CiteScore: 1)
Corporate Governance Intl. J. of Business in Society     Hybrid Journal   (Followers: 6, SJR: 0.336, CiteScore: 1)
Critical Perspectives on Intl. Business     Hybrid Journal   (SJR: 0.378, CiteScore: 1)
Cross Cultural & Strategic Management     Hybrid Journal   (Followers: 8, SJR: 0.504, CiteScore: 2)
Data Technologies and Applications     Hybrid Journal   (Followers: 323, SJR: 0.355, CiteScore: 1)
Development and Learning in Organizations     Hybrid Journal   (Followers: 8, SJR: 0.138, CiteScore: 0)
Digital Library Perspectives     Hybrid Journal   (Followers: 28, SJR: 0.341, CiteScore: 1)
Direct Marketing An Intl. J.     Hybrid Journal   (Followers: 6)
Disaster Prevention and Management     Hybrid Journal   (Followers: 21, SJR: 0.47, CiteScore: 1)
Drugs and Alcohol Today     Hybrid Journal   (Followers: 143, SJR: 0.245, CiteScore: 1)
Education + Training     Hybrid Journal   (Followers: 24)
Education, Business and Society : Contemporary Middle Eastern Issues     Hybrid Journal   (Followers: 1, SJR: 1.707, CiteScore: 3)
Emerald Emerging Markets Case Studies     Hybrid Journal   (Followers: 1)
Employee Relations     Hybrid Journal   (Followers: 8, SJR: 0.551, CiteScore: 2)
Engineering Computations     Hybrid Journal   (Followers: 3, SJR: 0.444, CiteScore: 1)
Engineering, Construction and Architectural Management     Hybrid Journal   (Followers: 10, SJR: 0.653, CiteScore: 2)
English Teaching: Practice & Critique     Hybrid Journal   (SJR: 0.417, CiteScore: 1)
Equal Opportunities Intl.     Hybrid Journal   (Followers: 3)
Equality, Diversity and Inclusion : An Intl. J.     Hybrid Journal   (Followers: 17, SJR: 0.5, CiteScore: 1)
EuroMed J. of Business     Hybrid Journal   (Followers: 1, SJR: 0.26, CiteScore: 1)
European Business Review     Hybrid Journal   (Followers: 9, SJR: 0.585, CiteScore: 3)
European J. of Innovation Management     Hybrid Journal   (Followers: 25, SJR: 0.454, CiteScore: 2)
European J. of Management and Business Economics     Open Access   (Followers: 1, SJR: 0.239, CiteScore: 1)
European J. of Marketing     Hybrid Journal   (Followers: 21, SJR: 0.971, CiteScore: 2)
European J. of Training and Development     Hybrid Journal   (Followers: 13, SJR: 0.477, CiteScore: 1)
Evidence-based HRM     Hybrid Journal   (Followers: 5, SJR: 0.537, CiteScore: 1)
Facilities     Hybrid Journal   (Followers: 3, SJR: 0.503, CiteScore: 2)
Foresight     Hybrid Journal   (Followers: 7, SJR: 0.34, CiteScore: 1)
Gender in Management : An Intl. J.     Hybrid Journal   (Followers: 20, SJR: 0.412, CiteScore: 1)
Global Knowledge, Memory and Communication     Hybrid Journal   (Followers: 977, SJR: 0.261, CiteScore: 1)
Grey Systems : Theory and Application     Hybrid Journal   (Followers: 1)
Health Education     Hybrid Journal   (Followers: 2, SJR: 0.421, CiteScore: 1)
Higher Education Evaluation and Development     Open Access  
Higher Education, Skills and Work-based Learning     Hybrid Journal   (Followers: 46, SJR: 0.426, CiteScore: 1)
History of Education Review     Hybrid Journal   (Followers: 12, SJR: 0.26, CiteScore: 0)
Housing, Care and Support     Hybrid Journal   (Followers: 8, SJR: 0.171, CiteScore: 0)
Human Resource Management Intl. Digest     Hybrid Journal   (Followers: 18, SJR: 0.129, CiteScore: 0)
IMP J.     Hybrid Journal  
Indian Growth and Development Review     Hybrid Journal   (SJR: 0.174, CiteScore: 0)
Industrial and Commercial Training     Hybrid Journal   (Followers: 5, SJR: 0.301, CiteScore: 1)
Industrial Lubrication and Tribology     Hybrid Journal   (Followers: 7, SJR: 0.334, CiteScore: 1)
Industrial Management & Data Systems     Hybrid Journal   (Followers: 7, SJR: 0.904, CiteScore: 3)
Industrial Robot An Intl. J.     Hybrid Journal   (Followers: 2, SJR: 0.318, CiteScore: 1)
Info     Hybrid Journal   (Followers: 1)
Information and Computer Security     Hybrid Journal   (Followers: 22, SJR: 0.307, CiteScore: 1)
Information Technology & People     Hybrid Journal   (Followers: 45, SJR: 0.671, CiteScore: 2)
Innovation & Management Review     Open Access  
Interactive Technology and Smart Education     Hybrid Journal   (Followers: 12, SJR: 0.191, CiteScore: 1)
Interlending & Document Supply     Hybrid Journal   (Followers: 61)
Internet Research     Hybrid Journal   (Followers: 37, SJR: 1.645, CiteScore: 5)
Intl. J. for Lesson and Learning Studies     Hybrid Journal   (Followers: 4, SJR: 0.324, CiteScore: 1)
Intl. J. for Researcher Development     Hybrid Journal   (Followers: 10)
Intl. J. of Accounting and Information Management     Hybrid Journal   (Followers: 9, SJR: 0.275, CiteScore: 1)
Intl. J. of Bank Marketing     Hybrid Journal   (Followers: 9, SJR: 0.654, CiteScore: 3)
Intl. J. of Climate Change Strategies and Management     Hybrid Journal   (Followers: 17, SJR: 0.353, CiteScore: 1)
Intl. J. of Clothing Science and Technology     Hybrid Journal   (Followers: 8, SJR: 0.318, CiteScore: 1)
Intl. J. of Commerce and Management     Hybrid Journal   (Followers: 1)
Intl. J. of Conflict Management     Hybrid Journal   (Followers: 15, SJR: 0.362, CiteScore: 1)
Intl. J. of Contemporary Hospitality Management     Hybrid Journal   (Followers: 14, SJR: 1.452, CiteScore: 4)
Intl. J. of Culture Tourism and Hospitality Research     Hybrid Journal   (Followers: 20, SJR: 0.339, CiteScore: 1)
Intl. J. of Development Issues     Hybrid Journal   (Followers: 9, SJR: 0.139, CiteScore: 0)
Intl. J. of Disaster Resilience in the Built Environment     Hybrid Journal   (Followers: 6, SJR: 0.387, CiteScore: 1)
Intl. J. of Educational Management     Hybrid Journal   (Followers: 5, SJR: 0.559, CiteScore: 1)
Intl. J. of Emergency Services     Hybrid Journal   (Followers: 9, SJR: 0.201, CiteScore: 1)
Intl. J. of Emerging Markets     Hybrid Journal   (Followers: 3, SJR: 0.474, CiteScore: 2)
Intl. J. of Energy Sector Management     Hybrid Journal   (Followers: 2, SJR: 0.349, CiteScore: 1)
Intl. J. of Entrepreneurial Behaviour & Research     Hybrid Journal   (Followers: 5, SJR: 0.629, CiteScore: 2)
Intl. J. of Ethics and Systems     Hybrid Journal   (Followers: 3, SJR: 0.333, CiteScore: 1)
Intl. J. of Event and Festival Management     Hybrid Journal   (Followers: 7, SJR: 0.388, CiteScore: 1)
Intl. J. of Gender and Entrepreneurship     Hybrid Journal   (Followers: 6, SJR: 0.445, CiteScore: 1)
Intl. J. of Health Care Quality Assurance     Hybrid Journal   (Followers: 12, SJR: 0.358, CiteScore: 1)
Intl. J. of Health Governance     Hybrid Journal   (Followers: 26, SJR: 0.247, CiteScore: 1)
Intl. J. of Housing Markets and Analysis     Hybrid Journal   (Followers: 9, SJR: 0.211, CiteScore: 1)
Intl. J. of Human Rights in Healthcare     Hybrid Journal   (Followers: 6, SJR: 0.205, CiteScore: 0)
Intl. J. of Information and Learning Technology     Hybrid Journal   (Followers: 8, SJR: 0.226, CiteScore: 1)
Intl. J. of Innovation Science     Hybrid Journal   (Followers: 11, SJR: 0.197, CiteScore: 1)
Intl. J. of Intelligent Computing and Cybernetics     Hybrid Journal   (Followers: 3, SJR: 0.214, CiteScore: 1)
Intl. J. of Intelligent Unmanned Systems     Hybrid Journal   (Followers: 4)
Intl. J. of Islamic and Middle Eastern Finance and Management     Hybrid Journal   (Followers: 9, SJR: 0.375, CiteScore: 1)
Intl. J. of Law and Management     Hybrid Journal   (Followers: 2, SJR: 0.217, CiteScore: 1)
Intl. J. of Leadership in Public Services     Hybrid Journal   (Followers: 27)
Intl. J. of Lean Six Sigma     Hybrid Journal   (Followers: 8, SJR: 0.802, CiteScore: 3)
Intl. J. of Logistics Management     Hybrid Journal   (Followers: 10, SJR: 0.71, CiteScore: 2)
Intl. J. of Managerial Finance     Hybrid Journal   (Followers: 5, SJR: 0.203, CiteScore: 1)
Intl. J. of Managing Projects in Business     Hybrid Journal   (Followers: 2, SJR: 0.36, CiteScore: 2)
Intl. J. of Manpower     Hybrid Journal   (Followers: 2, SJR: 0.365, CiteScore: 1)
Intl. J. of Mentoring and Coaching in Education     Hybrid Journal   (Followers: 27, SJR: 0.426, CiteScore: 1)
Intl. J. of Migration, Health and Social Care     Hybrid Journal   (Followers: 12, SJR: 0.307, CiteScore: 1)
Intl. J. of Numerical Methods for Heat & Fluid Flow     Hybrid Journal   (Followers: 11, SJR: 0.697, CiteScore: 3)
Intl. J. of Operations & Production Management     Hybrid Journal   (Followers: 19, SJR: 2.052, CiteScore: 4)
Intl. J. of Organization Theory and Behavior     Hybrid Journal  
Intl. J. of Organizational Analysis     Hybrid Journal   (Followers: 3, SJR: 0.268, CiteScore: 1)
Intl. J. of Pervasive Computing and Communications     Hybrid Journal   (Followers: 3, SJR: 0.138, CiteScore: 1)
Intl. J. of Pharmaceutical and Healthcare Marketing     Hybrid Journal   (Followers: 4, SJR: 0.25, CiteScore: 1)
Intl. J. of Physical Distribution & Logistics Management     Hybrid Journal   (Followers: 11, SJR: 1.821, CiteScore: 4)
Intl. J. of Prisoner Health     Hybrid Journal   (Followers: 8, SJR: 0.303, CiteScore: 1)
Intl. J. of Productivity and Performance Management     Hybrid Journal   (Followers: 8, SJR: 0.578, CiteScore: 2)
Intl. J. of Public Sector Management     Hybrid Journal   (Followers: 32, SJR: 0.438, CiteScore: 1)
Intl. J. of Quality & Reliability Management     Hybrid Journal   (Followers: 8, SJR: 0.492, CiteScore: 2)
Intl. J. of Quality and Service Sciences     Hybrid Journal   (Followers: 2, SJR: 0.309, CiteScore: 1)
Intl. J. of Retail & Distribution Management     Hybrid Journal   (Followers: 6, SJR: 0.742, CiteScore: 3)
Intl. J. of Service Industry Management     Hybrid Journal   (Followers: 3)
Intl. J. of Social Economics     Hybrid Journal   (Followers: 5, SJR: 0.225, CiteScore: 1)
Intl. J. of Sociology and Social Policy     Hybrid Journal   (Followers: 54, SJR: 0.3, CiteScore: 1)
Intl. J. of Sports Marketing and Sponsorship     Hybrid Journal   (Followers: 1, SJR: 0.269, CiteScore: 1)
Intl. J. of Structural Integrity     Hybrid Journal   (Followers: 2, SJR: 0.228, CiteScore: 0)
Intl. J. of Sustainability in Higher Education     Hybrid Journal   (Followers: 14, SJR: 0.502, CiteScore: 2)
Intl. J. of Tourism Cities     Hybrid Journal   (Followers: 2, SJR: 0.502, CiteScore: 0)
Intl. J. of Web Information Systems     Hybrid Journal   (Followers: 4, SJR: 0.186, CiteScore: 1)
Intl. J. of Wine Business Research     Hybrid Journal   (Followers: 8, SJR: 0.562, CiteScore: 2)
Intl. J. of Workplace Health Management     Hybrid Journal   (Followers: 10, SJR: 0.303, CiteScore: 1)
Intl. Marketing Review     Hybrid Journal   (Followers: 15, SJR: 0.895, CiteScore: 3)
Irish J. of Occupational Therapy     Open Access   (Followers: 7)
ISRA Intl. J. of Islamic Finance     Open Access  
J. for Multicultural Education     Hybrid Journal   (Followers: 1, SJR: 0.237, CiteScore: 1)
J. of Accounting & Organizational Change     Hybrid Journal   (Followers: 6, SJR: 0.301, CiteScore: 1)
J. of Accounting in Emerging Economies     Hybrid Journal   (Followers: 9)
J. of Adult Protection, The     Hybrid Journal   (Followers: 16, SJR: 0.314, CiteScore: 1)
J. of Advances in Management Research     Hybrid Journal   (Followers: 2)
J. of Aggression, Conflict and Peace Research     Hybrid Journal   (Followers: 45, SJR: 0.222, CiteScore: 1)
J. of Agribusiness in Developing and Emerging Economies     Hybrid Journal   (SJR: 0.108, CiteScore: 0)
J. of Applied Accounting Research     Hybrid Journal   (Followers: 17, SJR: 0.227, CiteScore: 1)
J. of Applied Research in Higher Education     Hybrid Journal   (Followers: 49, SJR: 0.2, CiteScore: 0)
J. of Asia Business Studies     Hybrid Journal   (Followers: 2, SJR: 0.245, CiteScore: 1)
J. of Assistive Technologies     Hybrid Journal   (Followers: 20)
J. of Business & Industrial Marketing     Hybrid Journal   (Followers: 10, SJR: 0.652, CiteScore: 2)
J. of Business Strategy     Hybrid Journal   (Followers: 12, SJR: 0.333, CiteScore: 1)
J. of Capital Markets Studies     Open Access  
J. of Centrum Cathedra     Open Access  
J. of Children's Services     Hybrid Journal   (Followers: 5, SJR: 0.243, CiteScore: 1)
J. of Chinese Economic and Foreign Trade Studies     Hybrid Journal   (Followers: 1, SJR: 0.2, CiteScore: 0)
J. of Chinese Entrepreneurship     Hybrid Journal   (Followers: 4)
J. of Chinese Human Resource Management     Hybrid Journal   (Followers: 6, SJR: 0.173, CiteScore: 1)
J. of Communication Management     Hybrid Journal   (Followers: 6, SJR: 0.625, CiteScore: 1)
J. of Consumer Marketing     Hybrid Journal   (Followers: 19, SJR: 0.664, CiteScore: 2)
J. of Corporate Real Estate     Hybrid Journal   (Followers: 3, SJR: 0.368, CiteScore: 1)
J. of Criminal Psychology     Hybrid Journal   (Followers: 134, SJR: 0.268, CiteScore: 1)
J. of Criminological Research, Policy and Practice     Hybrid Journal   (Followers: 48, SJR: 0.254, CiteScore: 1)
J. of Cultural Heritage Management and Sustainable Development     Hybrid Journal   (Followers: 10, SJR: 0.257, CiteScore: 1)
J. of Defense Analytics and Logistics     Open Access  
J. of Documentation     Hybrid Journal   (Followers: 189, SJR: 0.613, CiteScore: 1)
J. of Economic and Administrative Sciences     Hybrid Journal   (Followers: 2)
J. of Economic Studies     Hybrid Journal   (Followers: 5, SJR: 0.733, CiteScore: 1)
J. of Economics, Finance and Administrative Science     Open Access   (Followers: 1, SJR: 0.217, CiteScore: 1)
J. of Educational Administration     Hybrid Journal   (Followers: 6, SJR: 1.252, CiteScore: 2)
J. of Enabling Technologies     Hybrid Journal   (Followers: 11, SJR: 0.369, CiteScore: 1)
J. of Engineering, Design and Technology     Hybrid Journal   (Followers: 16, SJR: 0.212, CiteScore: 1)
J. of Enterprise Information Management     Hybrid Journal   (Followers: 4, SJR: 0.827, CiteScore: 4)
J. of Enterprising Communities People and Places in the Global Economy     Hybrid Journal   (Followers: 1, SJR: 0.281, CiteScore: 1)
J. of Entrepreneurship and Public Policy     Hybrid Journal   (Followers: 8, SJR: 0.262, CiteScore: 1)
J. of European Industrial Training     Hybrid Journal   (Followers: 2)
J. of European Real Estate Research     Hybrid Journal   (Followers: 3, SJR: 0.268, CiteScore: 1)
J. of Facilities Management     Hybrid Journal   (Followers: 5, SJR: 0.33, CiteScore: 1)
J. of Family Business Management     Hybrid Journal   (Followers: 7)
J. of Fashion Marketing and Management     Hybrid Journal   (Followers: 12, SJR: 0.608, CiteScore: 2)

        1 2 | Last   [Sort by number of followers]   [Restore default list]

Journal Cover
Anti-Corrosion Methods and Materials
Journal Prestige (SJR): 0.235
Citation Impact (citeScore): 1
Number of Followers: 11  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0003-5599
Published by Emerald Homepage  [356 journals]
  • Sulfide stress cracking assessment of low-alloy L80 casing steel in H2S
           environment
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose This paper aims to evaluate the sulfide stress cracking (SSC) resistance of L80 casing steels with different alloying chemistries (e.g. Ti-B and Mn-Cr-Mo) by correlating the reduction in area ratio with the mechanical property, inclusion and carbide. Design/methodology/approach SSC tests were conducted in 5.0 Wt.% sodium chloride and 0.5 Wt.% acetic acid solution saturated with H2S using constant load tensile method. The microstructure and fracture morphology of the steel were observed using scanning electron microscope. The inclusion and carbide were identified by energy dispersive spectroscopy and auger electron microscope. Findings Among all the testing steels, electric resistance welding (ERW) L80-0.5Mo steel demonstrates the highest SSC resistance because of its appropriate mechanical properties, uniform microstructure and low inclusion content. The SSC resistance of L80 steels generally decreases with the rising yield strength. The fracture mode of steel with low SSC resistance is jointly dominated by transgranular and intergranular cracking, whereas that with high SSC resistance is mainly transgranular cracking. SSC is more sensitive to inclusions than carbides because the cracks are easier to be initiated from the elongated inclusions and oversized oxide inclusions, especially the inclusion clusters. Unlike the elongated carbide, globular carbide in the steel can reduce the negative effect on the SSC resistance. Especially, a uniform microstructure with fine globular carbides favors a significant improvement in SSC resistance through precluding the cracking propagation. Originality/value The paper provides the new insights into the improvement in SSC resistance of L80 casing steel for its application in H2S environment through optimizing its alloying compositions and microstructure.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2019-02-14T09:45:45Z
      DOI: 10.1108/ACMM-08-2018-1984
       
  • Effects of mass ratios on salt spray corrosion and electrochemical
           corrosion behaviors of laser cladded Cr–Ni coatings
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The purpose of this paper is to improve the salt spray corrosion and electrochemical corrosion performances of H13 hot work mould steel, Cr–Ni coatings with the different Cr and Ni mass ratios are fabricated using a laser cladding (LC), which provides an experimental basis for the surface modification treatment of H13 steel. Design/methodology/approach Cr–Ni coatings with the different Cr and Ni mass ratios were firstly fabricated on H13 hot work mould steel using a laser cladding (LC). The salt spray corrosion (SSC) and electrochemical corrosion performances of Cr–Ni coatings in 3.5 Wt.% NaCl solution were investigated to analyze the corrosion mechanism, and the effect of mass ratios of Cr and Ni on their corrosion mechanism was discussed. Findings The laser cladded Cr–Ni coatings with the different Cr and Ni mass ratios are composed of Cr–Ni compounds, which are metallurgically combined with the substrate. The SSC resistance of Cr–Ni coating with the Cr and Ni mass ratios of 24:76 is the highest. The electrochemical corrosion resistance of Cr–Ni coating with the Cr and Ni mass ratio of 24:76 is the best among the three kinds of coatings. Originality/value In this study, the corrosion resistance of laser cladded Cr–Ni coatings with the Cr and Ni mass ratios of 17: 83, 20: 80 and 24: 76 was first evaluated using salt spray corrosion (SSC) and electrochemical tests, and the effect of mass ratios of Cr and Ni on their corrosion mechanism was discussed.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2019-02-14T09:45:22Z
      DOI: 10.1108/ACMM-10-2018-2015
       
  • Preparation and corrosion resistance of titanium-zirconium/nickel-coated
           carbon nanotubes chemical nano-composite conversion coatings
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose This study aims to expand the reliability and special functions of lightweight materials for high-end equipment and green manufacturing, so that it is the first such research to carry out nano-composite technology of nickel-coated carbon nanotubes (Ni-CNTs)-based titanium-zirconium chemical conversion on aluminum alloy substrate. Design/methodology/approach Corrosion behavior of various coatings was investigated using dropping corrosion test, linear polarization and electrochemical impedance spectroscopy. The results showed that the corrosion resistance of the nano-composite conversion coatings was significantly improved to compare with the conventional titanium-zirconium conversion coating. The morphology and microdomain characteristics of the nano-composite conversion coatings were characterized by SEM/eds/EPMA, which indicated that the CNT or Ni-CNTs addition promoting the integrity coverage of coatings in a short time. Findings Surface morphology of titanium-zirconium (Ti-Zr)/Ni-CNT specimens exhibited smooth, compact and little pores. The nano-composite conversion coatings are mainly composed of Al, O, C and Ti elements and contain a small amount of F and Zr elements, which illuminated that CNT or Ni-CNT addition could co-deposit with aluminum and titanium metal oxides. Originality/value The study of corrosion resistance of nano-composite conversion coatings and the micro-zone film-formation characteristics would be provided theoretical support for the development of basic research on surface treatment of aluminum alloys.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2019-02-14T09:41:40Z
      DOI: 10.1108/ACMM-10-2018-2011
       
  • Corrosion inhibition of stainless steel in sulfuric acid solution
           containing sulfide ions
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose Although stainless steel (SS) has good corrosion resistance in most aqueous solutions, it suffers corrosion in some solutions which contain aggressive ions such as sulfide ions. This study aims to use some cephalosporins (cefotaxime, cephapirin and cefazolin) as corrosion inhibitors of commercial SS in 0.5 M H2SO4 solution containing sulfide ions at 30°C. Design/methodology/approach The study was carried out using weight loss method, potential-time, linear polarization, potentiodynamic polarization, electrochemical impedance measurements, scanning electron microscopy, Fourier transform infrared and energy dispersive X-ray analysis. Findings The presence of the cephalosporin compound in the corrosive medium shifted the corrosion potential of SS to much positive side, which enhances self-passivation of SS, and the shifting increased with increasing inhibitor concentration. The cephalosporin compounds worked as effective inhibitors with mainly anodic and the efficiency increase as cefotaxime < cephapirin < cefazolin. The inhibitors form a protective adsorbed layer, which enriches the surface content of Ni and Cr and thus assists the SS to be passive. Originality/value The antibiotics cephalosporins could be used as effective corrosion inhibitors for SS in acidic solutions containing sulfide ions. The inhibitors enhances the the passive oxide film of SS even in presence of aggressive ions such as sulfide ions.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2019-02-12T09:36:22Z
      DOI: 10.1108/ACMM-10-2018-2016
       
  • Electrochemical studies on pitting corrosion of tin in sodium borate
           solutions containing nitrate ions
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The purpose of this paper is to study the electrochemical behavior of Sn electrode in Na2B2O7 solutions in the absence and presence of NaNO3 as a pitting corrosion agent. Design/methodology/approach The electrochemical behavior of Sn electrode was studied by using cyclic voltammetry and potentiodynamic polarization measurements and complemented with scanning electron microscopy examinations. Findings This paper shows that in the absence of NO3 − ions, the anodic polarization of Sn electrode exhibits active/passive transition. Addition of various concentrations of NO3 − anions to the borate solution enhances active anodic dissolution and tends to break down the passive oxide film at a certain pitting potential. The pitting potential, and hence the pitting corrosion resistance, decreases with increasing NO3-ion concentration and temperature but increases with scan rate and repetitive cycling. Addition of CrO42−, WO42− or MoO42− oxyanions to the borate nitrate solution inhibits the pitting corrosion of Sn. Originality/value This is the first study that shows the effect of NO3 − ion as a pitting corrosion agent.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2019-02-11T03:37:09Z
      DOI: 10.1108/ACMM-07-2018-1972
       
  • Effects of reduced sulfur on passive film properties of steam generator
           (SG) tubing: an overview
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose Corrosion is considered as one of the issues that threaten the safe operation of steam generator (SG) tubing. Some sulfur-related specie can cause corrosion degradation of SG tubing. Sulfur-induced corrosion of SG alloys in high temperature and high-pressure water is one of the most complicated processes. The purpose of this study is to study the effect of reduced sulphur on passive film properties of steam generator (SG) tubing. Design/methodology/approach In this paper, the effects of reduced sulfur on passive film properties of SG tubing were reviewed from the aspects of thermodynamic calculations and experimental. Findings Thermodynamic calculations are mainly presented by E-pH diagrams, volt equivalent diagrams and species distribution curves. The stability of sulphur species highly depends on temperature, solution pH, and electrochemical potential. Experimental data indicated that reduced sulfur species can interact with the passive film, which led to changes in film thickness, film structure, semiconductivity and pitting growth rate. Originality/value The state-of-the-art discussed in this paper gives basis for resolving engineering problems regarding with sulfur-induced corrosion.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2019-02-06T11:58:31Z
      DOI: 10.1108/ACMM-09-2018-1996
       
  • Corrosion behaviors of X70 steel under direct current interference
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The purpose of this paper is to study the corrosion behaviors of X70 steel under direct current (DC) interference at 0-1,200 A/m2 in simulated soil solution. Design/methodology/approach The Tafel polarization curves of X70 steel under DC interference were tested using electrochemical method, the corrosion rate was calculated using weight-loss method and the change in steel surface was analyzed by optical microscopy. Findings The results showed that E-I polarization curves under 200-1,200 A/m2 interference were linear; with an increase in the DC density, the corrosion potential of X70 steel shifted positively, solution pH after the weight-loss tests increased and corrosion rate increased linearly. A mathematical relationship between polarization resistance Rp and current density was established. Corrosion morphology indicated that pitting corrosion and crevice corrosion occurred on the X70 steel under DC interference in simulated soil solution. Originality/value All tests were conducted at a relative higher DC density (200-1,200 A/m2). The linear fitting method is proposed to fit data of Tafel polarization curves under DC interference. This study provides guidelines for safe operation of X70 steel pipelines.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2019-01-15T11:03:47Z
      DOI: 10.1108/ACMM-08-2018-1992
       
  • Corrosion resistance and mechanism of micro-nano structure
           super-hydrophobic surface prepared by laser etching combined with coating
           process
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The purpose of this paper is to evaluate the effect of micro-nano mixed super-hydrophobic structure on corrosion resistance and mechanism of magnesium alloys. Design/methodology/approach A super-hydrophobic surface was fabricated on AZ91 and WE43 magnesium alloys by laser etching and micro-arc oxidation (MAO) with SiO2 nanoparticles coating and low surface energy material modification. The corrosion resistance properties of the prepared super-hydrophobic surfaces were studied based on polarization curves and immersion tests. Findings Compared with bare substrates, the corrosion resistance of super-hydrophobic surfaces was improved significantly. The corrosion resistance of super-hydrophobic surface is related to micro-nano composite structure, static contact angle and pretreatment method. The more uniform the microstructure and the larger the static contact angle, the better the corrosion resistance of the super-hydrophobic surface. The corrosion resistance of super-hydrophobic by MAO is better than that of laser machining. Corrosion of super-hydrophobic surface can be divided into air valley action, physical shielding, pretreatment layer action and substrate corrosion. Originality/value The super-hydrophobic coatings can reduce the contact of matrix with water so that a super-hydrophobic coating would be an effective way for magnesium alloy anti-corrosion. Therefore, the corrosion resistance properties and mechanism of the prepared super-hydrophobic magnesium alloys were investigated in detail.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2019-01-11T11:16:01Z
      DOI: 10.1108/ACMM-07-2018-1964
       
  • On the hot-rolled recycled carbon steels: their oxide formation, pickling
           ability and scale adhesion
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The purpose of this study is to investigate the formation, pickling ability and adhesion of thermal oxide scales on the hot-rolled recycled steels produced from the medium and thin slabs. Because the scale on the steel produced from the medium slab was relatively thick of about 11 µm, it contained cracks after hot-rolling. Thus during pickling, the scale was uniformly attacked with the simultaneous dissolution of the inner scale because of the penetration of acid through cracks. However, the scale on the steel produced from the thin slab was thinner of about 6 µm and thus, nearly crack-free. The pickling solution thus attacked the scale surface uniformly. At longer pickling periods, pits were also nucleated and propagated. Concurrently, the tensile testing machine with a CCD camera has been applied to observe scale adhesion. Design/methodology/approach The formation, pickling ability and adhesion of thermal oxide scales on the hot-rolled recycled steels produced from the recycled slab, e.g. medium slab and thin slab, were investigated. The morphology and phase identification were examined by using scanning electron microscopy, X-ray diffraction and Raman spectroscopy. Furthermore, the adhesion behaviour of oxide scale was investigated by immersion test and tensile test with a CCD camera. Findings For the scale formation, it was found that the hematite and magnetite were formed on the hot-rolled recycled steels produced from the medium and thin slabs. For the immersion test, it was found that the scale on hot-rolled recycled steels produced from the medium slab was more difficult to be pickled as represented by the longer time for the complete pickling. This was consistent with the result of tensile test; the steel produced from the medium slab had better scale adhesion as represented by the higher strain initiating the first spallation of scale. Originality/value The effects of slab types and its alloying element were investigated to understand the scale adhesion behaviour. The empirical pickling mechanisms and the mechanical adhesion energy were proposed. It led to the understanding in the control of alloying element in the hot-rolled steel.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2019-01-11T02:40:29Z
      DOI: 10.1108/ACMM-07-2018-1974
       
  • Effect of non-conventional heat treatment of API X60 pipeline steel on
           corrosion resistance and stress corrosion cracking susceptibility
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The purpose of this paper is to study the effect of heat treatment (HT) applied to an API X60 steel in corrosion resistance and stress corrosion cracking (SCC) susceptibility through slow strain rate tests (SSRT) in NS4 solution and congenital water (CW) to assess external and internal SCC, respectively. Design/methodology/approach API X60 steel was heat treated at a temperature of 1,200°C for 30 min followed by water quenching. Specimens from this steel were machined according to NACE TM 198. SSRT were performed in a constant extension rate tests (CERT) machine at room temperature at a strain rate of 1 × 10–6 s–1. For this purpose, a glass cell was used. Corrosion behavior was evaluated through polarization curves (PCs). Findings The SCC index obtained from SSRT indicates that the steel heat treated could be susceptible to SCC in CW and NS4 solution; the mechanism of SCC was hydrogen embrittlement. Thus, CW may promote the SCC phenomenon in pipelines. HT improves the steel corrosion resistance. Higher corrosion rate (CR) was observed when the steel is exposed to CW. The corrosion process in X60 steel shows that the oxidation reaction in the anodic branch corresponds to an activation process, and the cathode branches reveal a diffusion process. Originality/value The purpose of the heat treatment applied to X60 steel was to generate a microstructure of acicular ferrite to improve the corrosion resistance and SCC behavior.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2019-01-08T03:44:13Z
      DOI: 10.1108/ACMM-08-2018-1981
       
  • The corrosion behavior of compositional modified AISI type 304L stainless
           steel for nitric acid application
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose High corrosion resistance in different concentrations of nitric acid is essential for structural steels to be used for the aqueous reprocessing of spent nuclear fuels with high plutonium content. Design/methodology/approach In the present study, the corrosion resistance of type 304L stainless steel (SS) with modified composition was evaluated in different concentrations of nitric acid using surface analytical techniques, weight loss method and electrochemical measurements. Findings Weight loss measurement in boiling 65 per cent nitric acid showed a low corrosion rate value of about 0.2 mm/y (8 mpy) after 240 h exposure. Electrochemical measurements revealed the shift in open circuit potentials as well as corrosion potential toward more noble direction, and the results of electrochemical impedance spectroscopy studies indicated the reduction in the thickness and stability of the passive film with increasing concentration from 6 to 11.5 M nitric acid. Research limitations/implications The low corrosion rate observed for this steel is attributed to the higher content of Cr (19 per cent), Ni (10 per cent) and Si (0.3 per cent) and controlled minor alloying elements (S, P, B, C, etc.) in the alloy that contributed to improving the transpassive corrosion resistance and minimizing the intergranular corrosion attack. The X-ray photoelectron spectroscopic analysis revealed the composition of the passive films to be mainly of iron and chromium oxides. Practical implications Materials with lower corrosion rates are desirable for applications in nitric acid. Social implications The used of nitric acid creates a severe corrosive environment in chemical or aqueous nuclear reprocessing plants, and hence with a modified composition of type 304L SS resulting in minimizing failure of components are desirable for reducing cost and maintenance. Originality/value The present paper is an original work carried out by the authors on the corrosion resistance behaviors of composition modified AISI type 304L SS for nitric acid application. The effects of different nitric acid concentrations were compared to provide understanding on in applicability in boiling and high nitric acid concentrations.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2019-01-07T10:17:38Z
      DOI: 10.1108/ACMM-02-2018-1906
       
  • The technical support of nanoart: anodization process
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The novel structures and properties of nanostructure and nanomaterials give people perfect artistic expression of feeling and sense, then the nanoart discipline is developed and is closely related on the nanotechniques. The many achieved novel nanostructures with strong anti-corrosion prepared by the anodization have been reviewed. The paper would raise public awareness of nanotechnology, nanomaterial and their impact on our lives. Design/methodology/approach Anodization is a very effective and simple technique to form various nanostructures of metal oxide. It includes hard anodization, mild anodization and pulse anodization. Many measures have been introduced anodization process to improve the quality of formed nanostructure and enhance its properties, such as anti-corrosion. Findings The formation mechanism of anodic aluminum oxide (AAO) by using the mild, hard and pulse anodization has been discussed. The pretexture process and many other measures have been taken in mild and hard anodization to improve the regularity of pore array and greatly accelerate the formation rate of AAO. The pulse anodization has been used to prepare the multilayer Y-branched AAO film, which exhibits steady rich and vivid structure colors and gives a very good artistic expression. Furthermore, many other metal oxide nanostructures such as TiO2 and CuO have also been fabricated using the anodization techniques. Originality/value Various nanostructures of metal oxide prepared by anodization have been reviewed and are itself a perfect artwork in mesoscale. Also, many nanostructures have exhibited steady, rich and vivid structure colors and give people a very good artistic expression.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2019-01-04T11:15:00Z
      DOI: 10.1108/ACMM-08-2017-1826
       
  • Influence of nitrite on chemical composition of passivation film of steel
           bars under the coupling effects of carbonization and chloride
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose This paper aims to study the influence of NaNO2 on the chemical composition of passivation film. Design/methodology/approach X-ray photoelectron spectroscopy and X-ray diffraction were selected to determine the composition of passivation film of steel bars in mortar. The specimens were exposed to the chloride solution, carbonation environment and the coupling effects of chloride solution and carbonation. The chemical composition and micro structures at 0 and 5 nm from the outer surface of the passivation film of steel bars were analyzed. Findings Results showed that the nitrite inhibitor improved the forming rate of the passivation film and increased the mass ratio of Fe3O4 to FeOOH on the surface of steel bars. The component of Fe3O4 at 5 nm of the steel passivation film was more than that at 0 nm. Sodium ferrite in the pore solution was easily hydrolyzed and then FeOOH was formed. Therefore, due to the nitrite inhibitor, a “double layer structure” of the passivation film was formed to prevent steels bars from corrosion. Originality/value This is original work and may help the researchers further understand the mechanism of rust resistance by nitrite inhibitor.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-28T08:45:39Z
      DOI: 10.1108/ACMM-09-2018-1999
       
  • High temperature corrosion behaviour of aluminised FC 25 cast iron using
           pack cementation
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose This study aims to apply the pack cementation to develop the Fe-Al layers on the surface of FC 25 cast iron in order to increase the high-temperature corrosion resistance of the alloy. Design/methodology/approach Pack cementation was applied on the surface of FC 25 cast iron at 1,050°C. The bare and aluminised alloys were subjected to the oxidation test in 20 per cent O2-N2 at 850 °C. Scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD) were used for characterisation. Findings The layers of pack cementation consisted of Fe2Al5, FeAl2 and FeAl, and solid solution alloyed with Al. The oxidation kinetics of the bare cast iron was parabolic. Mass gain of the aluminised cast iron was significantly decreased compared with that of the bare cast iron. This was because of the protective alumina formation on the aluminised alloy surface. Al in the Fe–Al layer also tended to be homogenised during oxidation. Originality/value Even though the aluminising of alloys was extensively studied, the application of that process to the FC 25 cast iron grade was originally developed in this work. The significantly reduced mass gain of the aluminised FC 25 cast iron makes the studied alloy be promising for the use as a valve seat insert in an agricultural single-cylinder four-stroke engine, which might be run by using a relatively cheaper fuel, i.e. LPG, but as a consequence requires the higher oxidation resistance of the engine parts.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-19T08:19:34Z
      DOI: 10.1108/ACMM-12-2017-1876
       
  • Study on the interference between parallel pipelines and optimized
           operation for the cathodic protection systems
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose In recent years, the demand for oil and gas pipelines has increased rapidly. Due to the restrictions of the pipeline routing, pipelines are generally laid in parallel or in the same trench, which results in stray-current interference between the independent cathodic protection (CP) systems. The purpose of this paper is to study the interference between the long-distance parallel pipelines and to obtain the optimized operation for the CP systems. Design/methodology/approach In this study, first, the numerical model of parallel pipelines was established using the boundary element analysis software (BEASY). Second, the effects of horizontal distance between parallel pipelines, coating damage rate, soil conductivity and anode output current on the interference of parallel pipelines were studied. Finally, by varying the layout or the output currents of CP stations, an optimized operation scheme osf long-distance parallel pipelines was put forward. Findings Simulation results showed that with a decrease in soil conductivity or coating damage rate, the interference increased. Moreover, the interference decreased with an increase in horizontal distance between two parallel pipelines or a decrease in anode output current. It was found that there are three methods to reduce the interference between long-distance parallel pipelines: to reduce the output currents of CP stations, combined protection and to close part of the CP stations. Among them, to close part of CP stations was the optimized scheme because of the lowest operating and maintenance cost. Originality/value The optimized operation scheme proposed in this study can not only solve the interference between parallel pipelines but also provide guidance for the parallel pipelines to be built in the future. Reasonably arranging the cathodic protection stations using numerical simulation can avoid the interference in the cathodic protection systems, and reduce the construction cost.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-17T09:00:44Z
      DOI: 10.1108/ACMM-07-2018-1977
       
  • Effect of pH and NaCl concentration on the hydrogen evolution reaction of
           X60 steel
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose When hydrogen evolution reaction occurs on a metal surface, on the one hand, the generated hydrogen atom may penetrate into the metal that causes the hydrogen embrittlement failure of materials; on the other hand, the hydrogen generation may increase the local pressure in the coating and cause coating blistering. The purpose of this study is to study the effect of NaCl concentration and pH on hydrogen evolution reaction of X60 steel. Design/methodology/approach A cathodic polarization curve 257E-2V vs OCP and EIS was obtained by conventional three-electrode system in different NaCl concentrations, 257E3.5 and pH. Second, various parameters such as hydrogen evolution, over-potential current–density polarization resistance and capacitance of double electric layer were obtained based on fitting of the experimental data. Finally, the reaction mechanism was determined by Tafel curves. Findings It was concluded that in different NaCl concentrations, diffusion layer induced by concentration polarization affects the diffusion process of H+ ions, which makes over-potential increase. Under great effect of concentration polarization, the reaction is different in acid and alkaline environments, and the dielectric layer shows the characteristic of meta-alkaline adsorption, which makes difference in mechanism. Originality/value This research not only has theoretical significance but also gains utilization prospect. Ultimately, this research could be applied to clear hydrogen evolution process and protect long-distance pipeline against delamination.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-12T02:47:55Z
      DOI: 10.1108/ACMM-08-2018-1978
       
  • Hybrid sol-gel coating incorporated with TiO2 nanosheets and
           anti-corrosive effects on AA2024-T3
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose This paper aims to improve the anti-corrosive properties of aluminum alloy AA2024-T3 by coating of hybrid sol-gel coating incorporated with TiO2 nanosheets and to investigate the effect of nanosheets’ size on the improvement of corrosion-resistant performance. Design/methodology/approach A series of hybrid sol-gel films incorporated with varying amounts of TiO2 nanosheets were developed to enhance the corrosion protection performance of the bare metal. Scanning electron microscopy, transmission electron microscopy and atomic force microscopy were used to investigate the structure and morphology of the coatings obtained. In addition, the corrosion-resistant properties of the coatings were evaluated using salt spray test and electrochemical impedance spectroscopy. Findings The corrosion current was as low as 9.55 × 10-4 µA/cm2 and optimal positive corrosion potential reached −0.6 V when the size and loading amount of TiO2 nanosheet were optimized, resulting in a remarkable improvement in anti-corrosive properties. Originality/value This work first investigates the effect of incorporation of TiO2 nanoparticles on hybrid sol-gel coating on the improvement of anti-corrosive performance of aluminum alloy AA2024-T3.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-11T10:51:25Z
      DOI: 10.1108/ACMM-08-2018-1980
       
  • High-temperature oxidation of the dissimilar weld between AISI 304L and
           Fe-15.6Cr-8.5Mn using Ar and Ar-4%N2 shielding gas
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The dissimilar welds between AISI 304L and Fe-15.6Cr-8.5Mn were investigated on oxidation at 700°C with the effects of dissolved nitrogen in the welds. This paper aims to clarify the oxidation behaviors to expand the range of application for Fe-Cr-Mn stainless steel. Design/methodology/approach Dissimilar welds between AISI 304L and Fe-15.6Cr-8.5Mn were fabricated using gas tungsten arc welding to investigate the oxidation behavior of the welds at 700°C. Pure Ar and Ar-4%N2 shielding gases were used to evaluate the effects of nitrogen gas. The welds were introduced to the cyclic oxidation test. In each cycle, the furnace was heated up to 700°C, and the temperature was kept at 700°C for 8 h, then the mass gain because of oxidation was examined. The scales after oxidation test were investigated by using scanning electron microscopy with EDX and X-ray diffraction analysis. Findings Addition of 4 per cent nitrogen to Ar shielding gas reduced delta-ferrite content in the weld. Ar-4%N2 shielding gas resulted in dissolved nitrogen which helped increase the diffusivities of chromium or oxygen vacancies in the oxide to facilitate the chromia formation at the inner part near the steel substrate. This protective layer can help reduce the Fe outward diffusion, thus reducing mass gain because of iron oxide formation. Originality/value The oxidation behavior of dissimilar welds between AISI 304L and Fe-15.6Cr-8.5Mn were investigated at 700°C. The evaluation is beneficial for expanding the range of application of Fe-Cr-Mn stainless steel at high temperature.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-11T10:47:07Z
      DOI: 10.1108/ACMM-07-2018-1975
       
  • The corrosion behavior of X65 steel in CO2/oil/water environment of
           gathering pipeline
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The purpose of this paper was to investigate the corrosion behavior of X65 steel in the CO2/oil/water environment using mass loss method, potentiodynamic polarization technique and characterization of the corroded surface techniques. Design/methodology/approach The weight loss analysis, electrochemical study and surface investigation were carried out on X65 steel that had been immersed in the CO2/oil/water corrosive medium to understand the corrosion behavior of gathering pipeline steel. The weight loss tests were carried out in a 3L autoclave, and effects of flow velocity, CO2 partial pressure and water cut on the CO2 corrosion rate of X65 steel were studied. Electrochemical studies were carried out in a three-electrode electrochemical cell with the test temperature of 60°C and CO2 partial pressure of 1 atm by recording open circuit potential/time and potentiodynamic polarization characteristics. The surface and cross-sectional morphologies of corrosion product scales were characterized using scanning electron microscopy. The phases of corrosion product scales were investigated using X-ray diffraction. Findings The results showed that corrosion rates of X65 steel both increased at first and then decreased with the increase of flow velocity and CO2 partial pressure, and there were critical velocity and critical pressure in the simulated corrosive environment, below the critical value, the corrosion products formed on the steel surface were loose, porous and unstable, higher than the critical value, the corrosion product 'lms were dense, strong adhesion, and had a certain protective effect. Meanwhile, when the flow velocity exceeded the critical value, oil film could be adsorbed on the steel surface more evenly, corrosion reaction active points were reduced and the steel matrix was protected from being corroded and crude oil played a role of inhibitor, thus it influenced the corrosion rate. Above the critical CO2 partial pressure, the solubility of CO2 in crude oil increased, the viscosity of crude oil decreased and its fluidity became better, so that the probability of oil film adsorption increased, these factors led to the corrosion inhibition of X65 steel reinforced. The corrosion characteristics of gathering pipeline steel in the corrosive environment containing CO2 would change due to the presence of crude oil. Originality/value The results can be helpful in selecting the suitable corrosion inhibitors and targeted anti-corrosion measures for CO2/oil/water corrosive environment.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-06T11:35:26Z
      DOI: 10.1108/ACMM-07-2018-1969
       
  • Study on the preparation and corrosion inhibition of Schiff-base
           self-assembled membranes
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose This paper aims to evaluate the inhibitive effect and adsorption behavior of the 2-amino-5-thiol-1,3,4-thiadiazole vanillin (A) on copper in 3 per cent NaCl solution. Design/methodology/approach A thiazole Schiff bases were synthesized, named, 2-amino-5-thiol-1,3,4-thiadiazole vanillin (A), which was fabricated respectively on copper surface by the molecular self-assembled. Evaluation was carried out by electrochemical measurement and surface analysis techniques. Measurement of static friction coefficient scanning electron microscopy and Contact angle analysis were applied, and it is finally confirmed the existence of the adsorbed film. The inhibitive mechanism of A was evaluated by means of quantitative calculation and molecular dynamics simulation. Findings The electrochemical measurement indicated that the self-assembled molecular film can effectively inhibit the corrosion of copper sheet, when the concentration was 15 mmol⋅L−1 and the assembly time was 6 h, the corrosion inhibition effect was the best, reaching as high as 97.5 per cent. Scanning electron microscopy results showed that the Schiff base compound forms a protective film on the surface of the copper, which effectively blocks the transfer of corrosion particles to the metal substrate, thereby inhibiting the occurrence of corrosion. Adsorption behavior of A followed the Langmuir’s adsorption isotherm and attributed to mixed-type adsorption. The results of Quantitative calculation and molecular dynamics simulation showed that A was adsorbed on Cu (111) surface in parallel. Research limitations/implications In this study, the corrosion inhibition properties of Schiff base film were investigated by combining theory with experiment. Theoretical calculation is helpful to guide the synthesis of efficient and environmentally friendly corrosion inhibitors. Practical implications The damage caused by metal corrosion is great. The self-assembled Schiff base membrane synthesized in this paper is simple and compact, and the corrosion inhibition efficiency of copper in 3 per cent NaCl solution is 97.5 per cent. Social implications Inhibition of metal corrosion can better save energy and reduce economic losses. Originality/value The synthesized Schiff base was prepared on the copper surface by the molecular self-assembled. The Schiff base membrane has a good corrosion inhibition effect on copper in 3 per cent NaCl solution, and the corrosion inhibition efficiency is up to 97.5 per cent.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-05T01:38:14Z
      DOI: 10.1108/ACMM-05-2018-1932
       
  • Role of phytic acid in the corrosion protection of epoxy-coated rusty
           steel
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose This paper aims to prepare a residual rust epoxy coating by adding different quantities of phytic acid (PA) on the surface of the rusty steel and investigate the corrosion protection of PA and its action mechanisms. Design/methodology/approach A residual rust epoxy coating by adding different quantities of PA was prepared on the surface of the rusty steel. The influence of PA on the corrosion resistance of epoxy-coated rusty steel was investigated by means of electrochemical impedance spectroscopy and adhesion testing. Findings Results indicated that PA can substantially improve the corrosion resistance of epoxy-coated rusty steel. This improvement is due to the reaction of PA with residual rust and generation of new compounds with protection properties and increased adhesive strength effects on the coating/metal interface. The coating showed better protection performance when 2 per cent PA was added. Originality/value Considering the structure of the active groups, PA has strong chelating capability with many metal ions and can form stable complex compounds on the surface of a metal substrate, thereby improving corrosion resistance. In recent years, PA has been reported to be useful in the conversion of coatings or as green corrosion inhibitor. To the best of the authors’ knowledge, few studies have reported the use of PA as a rust converter or residual rust coating. The present work aims to improve the corrosion resistance of residual rust epoxy coating by adding PA.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-11-29T01:58:15Z
      DOI: 10.1108/ACMM-07-2018-1973
       
  • Eccentric compression behavior of TRC-strengthened concrete columns under
           chloride environment
    • Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The purpose of this paper is to investigate the mechanical behavior of textile-reinforced concrete (TRC)-strengthened concrete columns with small eccentricity under chloride-wet-dry cycles. Design/methodology/approach A total of ten reinforced concrete (RC) columns were constructed and subjected to eccentric compression, and the effects of the slenderness ratio, a variable number of wet-dry cycles and the coupled effect of loading and a chloride environment were analyzed. One of the columns tested was unreinforced, whereas the remaining columns were strengthened laterally with TRC. Findings The results showed that a reduction in the slenderness ratio was conducive to the improvement of the bearing capacity of the reinforced column; however, the reinforcement effect of TRC tended to decrease with an increasing number of wet-dry cycles, and the coupled effect of loading and a chloride environment significantly degraded the compression performance of TRC-strengthened columns, with the damage becoming more serious with increase in the sustained load ratio. Research limitations/implications In the next test, the duration of chloride-wet-dry cycles will be extended. In the same time, to obtain a clearer trend, the authors will also increase the number of specimens to obtain more data for drawing general conclusions. Originality/value The originality is to explore the feasibility of using cement-based materials (TRC) as a confinement technique in chloride environment. The investigations demonstrate that TRC has a good reinforcement effect on the concrete columns under chloride-wet-dry cycles. Finally, influence of each parameter is analyzed, which can be used as reference and foundation in actual application.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-11-29T01:53:37Z
      DOI: 10.1108/ACMM-06-2018-1949
       
  • Corrosion inhibition of N80 steel in 10% HCl + 8% HBF4 solution
    • First page: 1
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose This paper aims to analyze the corrosion and corrosion inhibition of N80 in 10 per cent HCl + 8 per cent fluoroboric acid (HBF4) solution for acidizing operation. Design/methodology/approach The corrosion rate, kinetic parameters (Ea, A) and thermodynamic parameters (ΔH, ΔS) of N80 steel in fresh acid and spent acid, 10 per cent HCl + 8 per cent HBF4, 10 per cent HCl and 8 per cent HBF4 solutions were calculated through immersion tests. The corrosion and inhibition properties were studied through X-ray diffraction and electrochemical measurements. The corrosion morphology of the corrosion product was examined by scanning electron microscopy (SEM). Findings The results demonstrated that the spent acid was the main cause of acidification corrosion, and the HBF4 would cause serious corrosion to N80 steel. The results showed that the N80 steel was more seriously corroded in the spent acid than in fresh acid, and the hydrolysis of HBF4 accelerates the dissolution process of N80 steel anode to control the corrosion reaction. The results showed that the acidification will definitely cause serious corrosion to the oil tube; therefore, necessary anti-corrosion measures must be taken in the acidification process. Originality/value The results showed that acidizing the formation with 10 per cent HCl + 8 per cent HBF4 will definitely cause serious corrosion to the oil tube, especially when the spent acid flows back. Therefore, necessary anti-corrosion measures must be taken in the acidification process, especially in the spent acid flowback stage.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-11-02T03:29:33Z
      DOI: 10.1108/ACMM-01-2018-1883
       
  • Corrosion behavior of 20# steel in aqueous CO2 solution under stratified
           gas-liquid two-phase flow condition
    • First page: 11
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      PurposeThis paper aims to investigate the corrosion rate, surface morphology and composition of corrosion products of 20# seamless steel in aqueous CO2 solution under stratified gas-liquid two-phase flow condition. The development of a corrosion products layer has also been discussed. Design/methodology/approachThe following methods were used: weight loss method, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. FindingsThe corrosion rate curve presents an irregular zigzag change trend with a gradual increase in time. The peak value of the corrosion rate appears when the corrosion time is 4 h and 8 h. The corrosion products layer is composed of two sub-layers: the inner dense layer that is about 6 µm thick and the outer loose layer that is about 9 µm thick when the corrosion time is 8 h. The main corrosion product are FeCO3 and Fe2O3. Originality/valueThe atomic ratio of Fe/C/O is relatively stable for the inner dense layer, but changes in thickness for the outer loose layer. There is a densification stage after a loose corrosion products layer forms, and it is periodic.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-10-11T08:15:54Z
      DOI: 10.1108/ACMM-06-2018-1950
       
  • Corrosion of steel due to iron oxidizing bacteria
    • First page: 19
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The purpose of this study is to investigate microbial influenced corrosion of steel because of iron oxidizing bacteria (IOB). Design/methodology/approach Carbon steel was selected for this study. Winogradsky media was used for isolation of IOB and as test solution for corrosion measurements. Electrochemical tests and immersion test were conducted to estimate the corrosion rate and extent of pitting. The corroded surface was analysed by SEM and corrosion products formed over the metal surface were identified by XRD and Fourier transformed infrared. Biofilm formed over the corroded metal was analysed by UV-visible spectroscopy for its extracellular polymeric substances (EPS) constituents. Findings Presence of IOB in Winogradsky medium enhances corrosion. Uniform and localized corrosion increases with increased bacterial concentration and EPS constituents of the biofilm. Iron sulphite formation as one of the corrosion products has been suggested to be responsible for increased corrosion attack in the inoculated media in comparison to control media where corrosion product observed is iron hydrogen phosphate which is protective in nature. Originality/value This work correlates increased corrosion of steel in the presence of bacteria with the nature of corrosion products formed over it in case of IOB. Formation of corrosion products is governed by various electrochemical reactions; hence, inhibition of such reactions may lead to reduce or stop the formation of such products which enhances corrosion and thereby may reduce the extent of microbial induced corrosion.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-10-11T08:30:19Z
      DOI: 10.1108/ACMM-05-2018-1928
       
  • Electro chemical impedance spectroscopy (EIS) study of modified SS316L
           using radio frequency sputtering Ti6Al4V coating in Ringer solution
    • First page: 27
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose SS316L alloy used in biomedical application and the alloy have Fe, Cr and Ni elements and release this ion into the human body causing dangerous effects for the human body, and make the SS316L, which is used as surgical implant failure in short time in biomedical application. This study aims to use Ti6Al4V as coating for SS316L alloy to make it have bio inert surface, and modified the surface alloy for biomedical application from another part in this study, we want to decrease the corrosion rate for SS316L in simulated body surface Ringer solution. Design/methodology/approach The morphology, roughness, XRD of the coating, potential polarization and electrochemical impedance spectra investigation to study the effect of Ti6Al4V coating on corrosion behaviors of SS316L in the Ringer solution. Findings This study discusses the modification of SS316L surfaces by using Ti6Al4V radio magnetron frequency sputtering techniques, the results of the EIS and polarization of SS316L in Ringer’s solution at 37°C shows that improved resistance against corrosive ions for all the samples coating with Ti6Al4V and especially with a coating have a thickness of 850 nm at a sputtering power of 150 W. Research limitations/implications Polarization and electro chemical impedance spectra were assessed to investigate the effect of Ti6Al4V coating on corrosion behaviors of SS316L alloy in the Ringer solution. Practical implications This study discussed the modification SS316L surfaces by using Ti6Al4V radio magnetron frequency sputtering techniques. The results of the EIS and polarization of SS316L in Ringer’s solution at 37°C improved resistance against corrosive ions for all the samples coating with a Ti6Al4V and specificity with the coating sample have a thickness 850 nm at a sputtering power of 150 W. Social implications The goal of this study to modification SS316L alloy surface by using Ti6al4V RF Sputtering to give the SS316L alloy more resistance for biocorrosion. Originality/value In this research, Ti6Al4V RF sputtering as a coating for SS316L, study the bio corrosion behaviors in Simulated body fluid Ringer solution and investigation the corrosion by using EIS analysis.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-11-09T01:04:32Z
      DOI: 10.1108/ACMM-05-2018-1929
       
  • Corrosion fatigue behavior of Al-5Mg coated AISI 316L stainless steel in
           sodium chloride environments under bending load
    • First page: 34
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The purpose of this study is to describe the environmentally assisted cracking (EAC) of AISI 316L stainless steel as bare and coated cases in several corrosion environments. The main purpose of this study is to extend the lifespan of 316L material under corrosive fatigue in sodium chloride environments. Design/methodology/approach Fatigue tests carried out by using a Schenk type plane bending fatigue machine made by Tokyokoki Co. A scanning electron microscope (SEM) was used to observe the fracture surfaces and tested specimen surfaces. The micro-Vickers hardness of specimens was measured by using a PC-controlled Buehler–Omnimet tester. Findings Under reciprocating bending condition (R = −1) the behavior of 316L SS bare samples and 316L SS coated with Al-5%Mg samples were investigated comparatively at room temperature in ambient air and in several corrosion solutions. The results obtained from the data showed that Al-5Mg coating procedure significantly stabilized the 316L SS even in the most aggressive environment 5 per cent NaCl solution as compared with bare samples. Originality/value Al-5Mg coating showed a stable structure under the corrosion liquids used in the experiments. The coating material served as a stable barrier between the base material and the corrosion fluid, thus ensuring a tightness even in long-term tests below the endurance limit.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-04T01:07:29Z
      DOI: 10.1108/ACMM-04-2018-1924
       
  • Frost resistance of roller compacted concrete in airport runway subjected
           to ethylene glycol solution
    • First page: 40
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose Ethylene glycol (EG) solution is a common deicing fluid of the aircrafts. Roller compacted concrete (RCC) used in the runway and the parking apron will be subjected to freeze-thaw cycles in EG solution. The purpose of this study is to find whether RCC can be damaged by the action of freeze-thaw cycles or long-term immersion in EG solution. Design/methodology/approach Freeze-thaw cycles test and immersion test in EG solution by weight were used to accelerate the degradation of RCC. A compression test and a three-point bending test were carried out in the laboratory to evaluate mechanical properties of RCC. The changes of microstructure were monitored by using scanning electron microscopy and energy-dispersive X-ray analysis. Findings The results show that RCC specimens have little weight change in both freeze-thaw cycles test and immersion test. The dynamic modulus of elasticity, the compressive strength and the flexural strength of RCC with 250 freeze-thaw cycles in EG solution are decreased by 4.2, 15 and 39 per cent, respectively. The compressive strength is decreased by 35 per cent after 12 months of immersion in EG solution. Micro-cracks occur and increase with the increase in freeze-thaw cycles and immersion test. Originality/value The mass ratio of the elements in the crystal is very close to the proportion of elements in CaC2O4 (C:O:Ca = 1:1.26:1.6). More attention should be paid to using EG in practical engineering because both the freeze-thaw cycles and the complete immersion in EG solution damage the mechanical properties of RCC.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-12T02:39:09Z
      DOI: 10.1108/ACMM-03-2018-1916
       
  • Recent work on electrochemical deposition of Zn-Ni (-X) alloys for
           corrosion protection of steel
    • First page: 45
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose Thin coatings are of great importance to minimize corrosion attack of steel in different environments. A review of recent work on electrodeposition and corrosion performance of Zn-Ni-based alloys for sacrificial corrosion protection of ferrous substrates is presented. The review contains key and outstanding comparisons of references for the period from 2007 to 2017. Binary and ternary Zn-Ni-based alloys were compared and contrasted to provide a good knowledge basis for selection of best coating system to steel substrates. Design/methodology/approach This article is a review article. Findings Zn-Ni-(X) alloys show great potential for replacing Cd metal in corrosion protection of steel substrates. Practical implications The research on plating of binary Zn-Ni alloys from aqueous electrolytes is now well advanced and these alloys show improved corrosion resistance compared to pure Zn. Pulse plated and compositionally modulated multilayer Zn-Ni alloy coatings showed enhanced corrosion properties compared to direct plated Zn-Ni coatings of similar composition. Originality/value The work on electrodeposition of Zn-Ni based alloys from ionic liquids is still scarce, yet these liquids show great promise in improving corrosion resistance and reducing coating thickness when compared to aqueous electrolytes. Advanced plating techniques in ionic liquids such as electromagnetic, CMM, pulse plating, ternary alloys and composites should be considered as these electrolytes avoid water chemistry and associated defects.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-11-29T01:56:31Z
      DOI: 10.1108/ACMM-06-2018-1957
       
  • Precipitation condition and effect of volume fraction on corrosion
           properties of secondary phase on casted super-duplex stainless steel UNS
           S32750
    • First page: 61
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The secondary phase decreased the corrosion resistance because of the segregation of Cr and Mo. Therefore, this paper aims to study the precipitation condition and the effect of secondary phase with volume fraction on corrosion behavior. Design/methodology/approach Secondary phase precipitated approximately from 375°C to 975°C because of saturated Cr and Mo at grain boundary by growth of austenite. Therefore, heat treatment from 800°C to 1,300°C was applied to start the precipitation of the secondary phase. Findings The secondary phase is precipitated at 1,020°C because of segregation by heterogeneous austenite. The growth of austenite at 1,000°C needs the time to saturate the Cr and Mo at grain boundary. When the volume fraction of austenite is 56 per cent (14 min at 1,000°C), the secondary phase is precipitated with grain boundary of austenite. The secondary phase increased the current density (corrosion rate) and decreased the passivation. That is checked to the critical pitting temperature (CPT) curves. The 1 per cent volume fraction of secondary phase decreased CPT to 60°C from 71°C. Research limitations/implications The precipitation of secondary phase not wants anyone. Casted super-duplex stainless steel (SDSS) of big size precipitates the secondary phase. This study worked the precipitation condition and the suppression conditions of secondary phase. Social implications Manufacturers need precipitation condition to make high-performance SDSS. Originality/value The corrosion resistance of SDSS is hard the optimization because SDSS is dual-phase stainless steel. The precipitation of the secondary phase must be controlled to optimize of the corrosion resistance of SDSS. Anyone not studied the precipitation condition of secondary phase and the effect of secondary phase with volume fraction on corrosion behavior of SDSS.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-04T01:03:42Z
      DOI: 10.1108/ACMM-06-2018-1958
       
  • Wellbore anti-corrosion technique research in B block on the right bank of
           Amu Darya river sour gas field
    • First page: 67
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The purpose of this paper is to solve the tubing corrosion problem of B Block on the Right Bank of Amu Darya river sour gas field. Design/methodology/approach By using four-point-bending method, the tubing’s ability to resist sulfide-stress cracking was tested. Simulating the wellbore corrosive environment, the corrosion inhibitor which was suitable for gas filed had been screened. According to the characteristic of Amu Darya river gas field, the corrosion monitor system had been designed. Findings From the feedback of wellbore corrosion monitor result, the corrosion rate was lower than 0.076 mm/a. Originality/value This anti-corrosion technique provides security for the development of gas field.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-11-27T02:57:36Z
      DOI: 10.1108/ACMM-02-2018-1905
       
  • Investigations of thermal sprayed HAP and HAP-TiO2 composite coatings for
           biomedical applications
    • First page: 74
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The biomaterials are natural or synthetic materials used to improve quality of life either by replacing tissue/organ or assisting their function in medical field. The purpose of the study is to analyze the hydroxyapatite (HAP), HAP-TiO2 (25 percent) composite coatings deposited on 316 LSS by High Velocity Flame Spray (HVFS) technique. Design/methodology/approach The coatings exhibit almost uniform and dense microstructure with porosity (HAP = 0.153 and HAP-TiO2 composite = 0.138). Electrochemical corrosion testing was done on the uncoated and coated specimens in Ringer solution (SBF). As-sprayed coatings were characterized by XRD, SEM/EDS and cross-sectional X-ray mapping techniques before and after dipping in Ringer solution. Microhardness of composite coating (568.8 MPa) was found to be higher than HAP coating (353 MPa). Findings During investigations, it was observed that the corrosion resistance of steel was found to have increased after the deposition of HAP and HAP-TiO2 composite coatings. Thus, coatings serve as an effective diffusion barrier to prohibit the diffusion of ions from the SBF into the substrate. Composite coatings have been found to be more corrosion resistant as compared to HAP coating in the simulated body fluid. Research limitations/implications It has been concluded that corrosion resistance of HAP as well as composite coating is because of the desirable microstructural changes such as low porosity high microhardness and flat splat structures in coatings as compared to bare specimen. Practical implications This study is useful in the selection of biomedical implants. Social implications This study is useful in the field of biomaterials. Originality/value No reported literature on corrosion behavior of HAP+ 25%- TiO2 has been noted till now using flame spray technique. The main focus of the study is to investigate the HAP as well as composite coatings for biomedical applications.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-11-27T03:00:38Z
      DOI: 10.1108/ACMM-03-2018-1917
       
  • Corrosion resistance of carbon steel under an aerobic acidic condition in
           the presence of borate as corrosion inhibitor
    • First page: 88
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose A high-boron concentration solution is commonly used as a buffer system in the study of metal corrosion. However, it is impossible to apply such a high-boron concentration solution in the practical use because of the high-cost and environment problem. Design/methodology/approach In this study, the authors examined the effect of a low dosage of boric acid and borax mixture as inhibitor to suppress carbon steel corrosion in 1 M HCl solution by weight loss experiment and various electrochemistry methods (potentiodynamic polarization curves, electrochemical impedance spectra and electrochemical noise). Findings Results showed that the borate mixture exhibited an anodic-type inhibitor characteristic, when the total boron concentration was in the range of 100∼150 mg L−1. The passivation performance derived from the formation of a passive film with and FeBO3-FeOOH structure, whose integrity and thickness gradually increased with the increasing boron concentration. Originality/value Low boron solution could protect carbon steel from the attraction of corrosive ions by forming a passive film with Fe-O-B structure. The findings broaden the application range of borate solution in the industry.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-04T03:07:15Z
      DOI: 10.1108/ACMM-04-2018-1918
       
  • The effect of the hydrodynamic and temperature on corrosion rate of API
           steels exposed to oilfield produced water
    • First page: 101
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The purpose of this paper is to study the corrosion rate for X52, X60, X65, X70 and X80 steel immersed in Mexican oilfield produced water. For the electrochemical characterization of the five steels rotating disk electrodes, 20°C, 30°C and 45°C of experimental temperature and 0, 500, 1,000 and 2,000 rpm of rotation speed were taken into account. The temperature dependence was analyzed using Arrhenius law. Thus, Rct values obtained from EIS data in comparison with the corrosion rate obtained from polarization curves data were taken into account. Hydrodynamic effects were analyzed by Rct and corrosion rate data. Design/methodology/approach Electrochemical impedance spectroscopy and potentiodynamic polarization techniques were used to assess the electrochemical behavior for five pipe steels steel immersed in a natural solution. Findings The resistance and corrosion rate taken from electrochemical tests decreased as temperature and hydrodynamic condition also decreased. In addition, the Arrhenius parameter revealed that the natural solution increased the corrosion rate as the activation energy decreased. Typical branches related to reduction-oxidation reaction (dissolution-activation process or corrosion products dissolution) on steel surface were discussed. Optical images analysis shows that corrosion products for X65 steel exposed to oilfield produced water can be attributed to more susceptibility to corrosion damage for this steel grade (Quej-Ake et al., 2018), which is increased with the temperature and rotation speed of the working electrode. Originality/value Corrosion process of the five steels exposed to oilfield produced water could be perceptive when Arrhenius analysis is taken into account. This is because oilfield produced water is the most aggressive condition (brine reservoir and sour water) for internal pipelines walls and storage tanks (brine tanks). Thus, stagnant condition was considered as a more extreme corrosive condition because produced water is stored in atmospheric stationary tanks as well as it is transported under laminar condition in zones where oilfield produced water is maintaining in the bottom of the pipe during the production, transporting and storing of the crude oil. In addition, a brief operational process for Reynolds number and the flowrate of the stock tank barrel per day (Q in STBD) using field and Reynolds number data is discussed.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-11-29T01:56:44Z
      DOI: 10.1108/ACMM-06-2018-1959
       
  • Proposed methodology for coating defect and location in buried pipelines
           from frequency signal data applied in field conditions
    • First page: 115
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose The purpose of this paper is to develop a real-time methodology to detect damages in coating and metallic structure in buried pipelines by using DC bias added to AC signal under field operation conditions, including cathodic protection. Design/methodology/approach Impedance measurements were performed on buried pipeline for different field conditions, to develop a methodology to detect and locate damages by impedance distribution along the metallic structure. Findings Field condition measurements were conducted as a pilot test on a buried steel pipeline segment with a diameter of 16 inches and length of 20 km. The frequency-based technology shows some differences but overall good behavior between impedance magnitudes vs localization of the interface changes at the soil-coating-steel interface at different frequencies using DC bias added to AC signal under field operation conditions, including cathodic protection. Research limitations/implications The methodology is not applicable to highly resistive soil or high degradation coatings. Practical implications In this work, we depict a methodology that describes real time monitoring technology for buried metallic structures using AC signal. This monitoring is capable to detect and locate real time damage occurrences on the pipe surface (coating break). Field measurements include different conditions, such as temperature, soil resistivity and soil physical structure and chemical composition. Social implications In consideration of the satisfied application in the field of the methodology, it is believed that it can be used for the monitoring of damages in pipes in areas with high consequences and hence pipe integrity can be increased. Originality/value This real-time methodology is based on the impedance distribution signal and the differential changes along the pipeline under operating conditions. The results showed good agreement with the proposed methodology, which is able to discriminate some situations inherent of field conditions by using different impedance measurements performed along ±10 km of buried steel pipeline and assuming the reference location as the cathodic protection set up.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-11-27T03:02:18Z
      DOI: 10.1108/ACMM-12-2017-1875
       
  • Investigation of corrosion inhibition of C38 steel in 5.5 M H3PO4 solution
           using Ziziphus lotus oil extract: an application model
    • First page: 121
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose This study aims to investigate the corrosion inhibition effect of extracted oil from Ziziphus lotus fruit on corrosion of C38 carbon steel in 5.5 M H3PO4 solution using potentiodynamic polarization and impedance techniques. Design/methodology/approach Oil composition was determined using gas chromatography, and the results showed that oleic and palmitic acids present approximately 84.0 per cent of its total chemical content. Electrochemical impedance spectroscopy (EIS) data were analyzed by adapting it to a well-developed electric circuit model. The inhibition efficiency of Z. lotus oil was calculated and compared using Tafel polarization and EIS. Findings Accordingly, the oil extract was found to act as an anodic type inhibitor. Furthermore, inhibition efficiency of Z. lotus oil extract increase with oil concentrations and achieve approximately 70.5 per cent at 3 g/L solution of Z. lotus oil. Originality/value The results obtained from different tested methods were in line, and the oil was able to reduce significantly the kinetics of the corrosion process of C38 carbon steel.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-11T10:57:06Z
      DOI: 10.1108/ACMM-02-2018-1901
       
  • Theoretical and experimental investigations on corrosion control of mild
           steel in hydrochloric acid solution by 4-aminothiophenol
    • First page: 127
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose This paper aims to study inhibitory effect of 4-aminothiophenol on the corrosion of mild steel (MS) in 0.5 M HCl. Design/methodology/approach In this study, electrochemical experiments, quantum chemical calculations, potentiodynamic measurements, linear polarization resistance and scanning electron microscopy were used. Findings The experimental results suggest that this compound is efficient corrosion inhibitor and the inhibition efficiencies increase with increasing their (from 0.5 to 10.0 mM.) concentrations. This reveals that inhibitive actions of inhibitors were mainly due to adsorption on mild steel surface. The adsorption of these inhibitors was found to obey Langmuir adsorption model. The computed quantum chemical features show good correlation with empirical inhibition efficiencies. Originality/value The 4-aminothiophenol is suitable inhibitor for application in closed-circuit systems against corrosion. The study is original and has great impact in industrial area. The obtained theoretical results have been adapted with the experimental data.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-12T02:42:38Z
      DOI: 10.1108/ACMM-04-2018-1920
       
  • Corrosion behavior and adhesion strength of PEO/Epoxy duplex coating
           applied on aluminum alloy
    • First page: 138
      Abstract: Anti-Corrosion Methods and Materials, Ahead of Print.
      Purpose This paper aims to increase protection behavior of epoxy coating on aluminum alloys with plasma electrolitic oxidation (PEO) process as pretreatment and to investigate the corrosion properties of duplex coating system on aluminum alloy. Design/methodology/approach The study used micro structure study, electrochemical impedance spectroscopy (EIS) investigation, water uptake investigation and pull-off test. Findings This study was done to investigate the effect of urea as an additive, which alters the current density and time of process parameters in the protective performance of epoxy coating on the aluminum substrate. The protective behavior of double-layer coatings was examined using EIS in 3.5 per cent NaCl solution. In addition, the adhesion strength of double-layer coatings was evaluated using pull-off test, and the results demonstrated that the adhesion strength of sample with higher content of urea and current density is about two times that of sample without PEO preparation. Originality/value The protective properties and adhesion strength of epoxy coating can be increased with PEO pretreatment.
      Citation: Anti-Corrosion Methods and Materials
      PubDate: 2018-12-04T01:08:42Z
      DOI: 10.1108/ACMM-01-2018-1890
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 18.212.206.217
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-