for Journals by Title or ISSN
for Articles by Keywords

Publisher: Smart Science and Technology LLC   (Total: 21 journals)   [Sort by number of followers]

Showing 1 - 21 of 21 Journals sorted alphabetically
Abdomen     Open Access  
Cancer Cell & Microenvironment     Open Access   (Followers: 8)
Cardiovascular Regenerative Medicine     Open Access  
Evidence-based Medicine & Public Health     Open Access   (Followers: 4)
Immunoendocrinology     Open Access   (Followers: 1)
Inflammation and Cell Signaling     Open Access   (Followers: 2)
Itch & Pain     Open Access   (Followers: 2)
J. of Advanced Nutrition and Human Metabolism     Open Access   (Followers: 12)
Macrophage     Open Access  
Molecular & Cellular Epilepsy     Open Access   (Followers: 2)
Musculoskeletal Regeneration     Open Access   (Followers: 2)
Neurotransmitter     Open Access  
Precision Medicine     Open Access   (Followers: 1)
Receptors & Clinical Investigation     Open Access   (Followers: 1)
RNA & Disease     Open Access   (Followers: 1)
Science Proceedings     Open Access  
Stem Cell and Translational Investigation     Open Access   (Followers: 2)
Stem Cell Epigenetics     Open Access   (Followers: 3)
Telomere and Telomerase     Open Access  
Therapeutic Targets for Neurological Diseases     Open Access  
Uterus & Ovary     Open Access  
Journal Cover Cancer Cell & Microenvironment
  [8 followers]  Follow
  This is an Open Access Journal Open Access journal
   ISSN (Print) 2331-0928
   Published by Smart Science and Technology LLC Homepage  [21 journals]
  • Emerging role of SHARPIN in hepatocellular carcinoma progression

    • Authors: Yasuo Tanaka, Ryosuke Tateishi, Kazuhiko Koike
      Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and the leading cause of cancer-related death, especially in less economically developed regions. Despite recent progress in the diagnosis and therapy of HCC, the long-term survival rate of HCC patients is unacceptably low, in part due to the frequent development of vascular invasion or distant metastasis. The cellular functions of shank-associated RH domain-interacting protein (SHARPIN, also known as SIPL1) include the regulation of inflammation, apoptosis, immune signaling, and cell motility. SHARPIN is up-regulated in various types of cancers including HCC and has been implicated in the genesis and progression of malignant tumors, but its exact role in tumorigenesis is largely unknown. Here we present evidence supporting a role for SHARPIN in HCC invasion and progression. We also discuss the potential of SHARPIN and related genes as therapeutic targets for this currently incurable cancer.
      PubDate: 2017-05-24
      Issue No: Vol. 4, No. 2 (2017)
  • Inhibition of nucleo-cytoplasmic shuttling through XPO1/CRM1: A unique
           therapeutic approach for treatment of haematological and solid

    • Authors: Sneha S, Nagare R. P, Bindhya Sadhanandhan, Ramesh Shankar, Sidhanth Suresh, Trivadi S Ganesan, Manoj Garg
      Abstract: Cancer is the one of leading cause of morbidity and mortality worldwide. Regulated nucleo-cytoplasmic shuttling is very crucial for maintaining cellular homeostasis. Emerging evidence suggests that deregulation of the nucleo-cytoplasmic transport plays an important role in abnormal cellular growth, cell cycle, apoptosis, tumor progression, drug resistance. Exportin-1/XPO1 (also called as chromosome region maintenance 1/ CRM1) belongs to karyopherin-β superfamily and is the main mediator of nuclear export in several cell types.  The XPO1/CRM1 protein is overexpressed in liposarcoma, Ewing sarcoma, ovarian carcinoma, pancreatic cancer, hepatocellular carcinoma, lung cancer, osteosarcoma, gastric carcinoma, melanoma, glioma, acute myeloid leukemia, acute lymphocytic leukemia, chronic myeloid/lymphoid leukemia as well as multiple myeloma. Hot spot mutations are also observed in many cancers. Higher levels of XPO1/CRM1 are associated with poor prognosis, resistance to chemotherapy and recurrence in a large number of human malignancies. There are growing evidences that provided the foundation that inhibition of nuclear export by inhibiting nuclear export receptor (XPO1) might be a potential targeted therapeutic approach for the treatment of human cancers in the clinic. In the present review, we will discuss the role of XPO1 in cancers and potential of selective inhibitors of nuclear export (XPO1 inhibitors) to restore the normal function of tumor suppressor and growth regulatory proteins by blocking their export. Selinexor (KPT-330) is an orally available, highly potent and is being tested in human phase I/II clinical trials in both haematological and solid malignancies.
      PubDate: 2017-03-13
      Issue No: Vol. 4, No. 1 (2017)
  • Bystander effects of nitric oxide in anti-tumor photodynamic therapy

    • Authors: Albert Girotti, Jerzy Bazak, Jonathan M Fahey, Katarzyna Wawak, Witold Korytowski
      Abstract: Ionizing radiation of specifically targeted cells in a given population is known to elicit pro-death or pro-survival responses in non-targeted bystander cells, which often make no physical contact with the targeted ones. We have recently demonstrated a similar phenomenon for non-ionizing photodynamic therapy (PDT), showing that prostate cancer cells subjected to targeted photodynamic stress stimulated growth and migration of non-stressed, non-contacting bystander cells. Diffusible nitric oxide (NO) generated by stress-upregulated inducible nitric oxide synthase (iNOS) was shown to play a dominant role in these responses. Moreover, target-derived NO stimulated iNOS/NO induction in bystanders, suggesting a NO-mediated feed-forward field effect driven by targeted cells surviving the photodynamic challenge. In this research highlight, we will review these findings and discuss their potential negative implications on clinical PDT outcomes and how these might be mitigated through pharmacologic use of select iNOS inhibitors.
      PubDate: 2017-02-27
      Issue No: Vol. 4, No. 1 (2017)
  • A double-edged sword - the role of human ADAM17 in NK cell activity

    • Authors: Pinchas Tsukerman, Dominik Schmiedel, Ofer Mandelboim
      Abstract: ADAM17 is a pleiotropic sheddase that regulates the activity of diverse membrane-anchored proteins by proteolytic cleavage. Also, many immune functions depend on ADAM17 activity, for instance CD16 and TNFα, two key effector molecules of Natural Killer cells, are cleaved by this enzyme. Whereas CD16 is shed from the surface and therefore its activity is terminated by ADAM17, TNFα requires shedding to be soluble and fulfil its effector functions. Due to these antagonistic effects on immune system activity, clinical benefits of ADAM17 inhibition for the treatment of cancer patients are hard to predict.Recently, we reported of a patient with a very rare genetic deficiency of ADAM17 leading to a complete loss of ADAM17 protein. We characterized the patients’ PBMCs for cytokine secretion in response to LPS stimulation, as well as for antibody-dependent cellular cytotoxicity (ADCC) effector functions and IFNγ release following engagement of CD16.In this short review, we highlight these recent findings and discuss putative consequences for the clinical use of inhibitors for ADAM17.  
      PubDate: 2017-02-06
      Issue No: Vol. 4, No. 1 (2017)
  • Tumor Treating Field Therapy in non-MGMT-Methylated Newly Diagnosed
           Glioblastoma: Is there a Role for Temozolomide?

    • Authors: H. Ian Robins
      Abstract: A Research Highlight of a recently published paper: “The effects of tumor treating fields (and temozolomide in MGMT expressing and non-expressing patient-derived glioblastoma cells” (. J. Clin Neurosci In Press 2016, is presented. Introductory background on alternating tumor treating field (TTFields) therapy, an FDA approved therapy for newly diagnosed glioblastoma, is reviewed in the context of standard temozolomide (TMZ) chemotherapy. The highlighted paper evaluated the potential interactions of TMZ and TTFields in vitro, as this could not be readily accomplished clinically. The authors reported a clinical model using 2 different sets of patient-derived GBM stem-like cells (GSCs) including MGMT-expressing (TMZ resistant) GSC and non-MGMT-expressing (TMZ sensitive) GSC. The results demonstrated no interactions, and the inability of TTFields to overcome TMZ resistance. The significant clinical implications of these results, and the rationale for exploring other innovative treatment strategies in combination with TTFields are discussed. 
      PubDate: 2017-01-30
      Issue No: Vol. 4, No. 1 (2017)

    • Authors: Luís Carlos Lopes Júnior, Denise Sayuri Calheiros da Silveira, Anderson Vulczak, Jéssica Cristina dos Santos, Luciana Chain Veronez, Andressa Fisch, Milena Flória-Santos, Regina Aparecida Garcia Lima, Gabriela Pereira-da-Silva
      Abstract: Osteosarcoma is the most prevalent primary bone cancer. Although it has a global impact of approximately 1 to 3 cases/million a year, its etiopathophysiology is still unknown. Moreover, the immune response to its development is very individual as well as variable. Particular emphasis has been placed on the study of the immunoregulatory role of cytokines in osteosarcoma. In this scenario, newly identified cytokine networks have emerged. A deep understanding on the complex interplay of cytokines in osteosarcoma may have prognostic importance. In this review, we seek to highlight the classic roles of cytokines in osteosarcoma, to describe the role of new players in the emerging cytokine networks, and to discuss the therapeutic targets that encompass the complexity and implications of this network.Key words: Cytokines, Immunology, Osteosarcoma.
      PubDate: 2017-01-24
      Issue No: Vol. 4, No. 1 (2017)
  • Many are better than one - Next Generation Multi-Variate Biomarkers for
           Precision Oncology

    • Authors: Jinyan Du, Daniel C Kirouac, Birgit Schoeberl
      Abstract: Existing companion diagnostics have helped to match drug treatments to patients. However, they are largely restricted to single-molecule, single-time-point measurements, which cannot capture the full dynamic complexity of cancer biology.  The development of multivariate and even dynamic biomarkers for diagnostic assays could allow more patients to benefit from improved drug regimens.  Here we describe our work which provides a case study of multivariate biomarkers where we integrated experimental data generated using multivariate profiling technologies with a variety of computational modeling and simulations methods to identify such biomarkers and make clinical predictions on their therapeutic utility.  We believe this approach of integrating multivariate profiling technologies and computational models, and iterating between experimental discovery and model predictions, will be required to develop the next generation of multivariate diagnostics and realize the promise of precision medicine.
      PubDate: 2017-01-09
      Issue No: Vol. 3, No. 4 (2017)
  • Dendritic Cell Targeting Vaccine for HPV-Associated Cancer

    • Authors: Wenjie Yin, Dorothee Duluc, HyeMee Joo, SangKon Oh
      Abstract: Dendritic cells (DCs) are major antigen presenting cells that can efficiently prime and activate cellular immune responses. Delivering antigens to in vivo DCs has thus been considered as a promising strategy that could allow us to mount T cell-mediated therapeutic immunity against cancers in patients. Successful development of such types of cancer vaccines that can target in vivo DCs, however, requires a series of outstanding questions that need to be addressed. These include the proper selection of which DC surface receptors, specific DC subsets and DC activators that can further enhance the efficacy of vaccines by promoting effector T cell infiltration and retention in tumors and their actions against tumors. Supplementing these areas of research with additional strategies that can counteract tumor immune evasion mechanisms is also expected to enhance the efficacy of such therapeutic vaccines against cancers. After more than a decade of study, we have concluded that antigen targeting to DCs via CD40 to evoke cellular responses is more efficient than targeting antigens to the same types of DCs via eleven other DC surface receptors tested. In recent work, we have further demonstrated that a prototype vaccine (anti-CD40-HPV16.E6/7, a recombinant fusion protein of anti-human CD40 and HPV16.E6/7 protein) for HPV16-associated cancers can efficiently activate HPV16.E6/7-specific T cells, particularly CD8+ T cells, from the blood of HPV16+ head-and-neck cancer patients. Moreover, anti-CD40-HPV16.E6/7 plus poly(I:C) can mount potent therapeutic immunity against TC-1 tumor expressing HPV16.E6/7 protein in human CD40 transgenic mice. In this manuscript, we thus highlight our recent findings for the development of novel CD40 targeting immunotherapeutic vaccines for HPV16-associated malignancies. In addition, we further discuss several of key questions that still remain to be addressed for enhancing therapeutic immunity elicited by our prototype vaccine against HPV16-associated malignancies.
      PubDate: 2017-01-02
      Issue No: Vol. 3, No. 4 (2017)
  • Manuscript Preparation and Proofreading Guidelines

    • Authors: Editorial Office
      Abstract: More information can be found at Author Guidelines.
      Issue No: Vol. 3, No. 1
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016