for Journals by Title or ISSN
for Articles by Keywords
help

Publisher: Elsevier   (Total: 3031 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

        1 2 3 4 5 6 7 8 | Last   [Sort by number of followers]   [Restore default list]

Showing 1 - 200 of 3031 Journals sorted alphabetically
AASRI Procedia     Open Access   (Followers: 15)
Academic Pediatrics     Hybrid Journal   (Followers: 20, SJR: 1.402, h-index: 51)
Academic Radiology     Hybrid Journal   (Followers: 16, SJR: 1.008, h-index: 75)
Accident Analysis & Prevention     Partially Free   (Followers: 79, SJR: 1.109, h-index: 94)
Accounting Forum     Hybrid Journal   (Followers: 22, SJR: 0.612, h-index: 27)
Accounting, Organizations and Society     Hybrid Journal   (Followers: 27, SJR: 2.515, h-index: 90)
Achievements in the Life Sciences     Open Access   (Followers: 4)
Acta Anaesthesiologica Taiwanica     Open Access   (Followers: 5, SJR: 0.338, h-index: 19)
Acta Astronautica     Hybrid Journal   (Followers: 302, SJR: 0.726, h-index: 43)
Acta Automatica Sinica     Full-text available via subscription   (Followers: 3)
Acta Biomaterialia     Hybrid Journal   (Followers: 25, SJR: 2.02, h-index: 104)
Acta Colombiana de Cuidado Intensivo     Full-text available via subscription  
Acta de Investigación Psicológica     Open Access   (Followers: 2)
Acta Ecologica Sinica     Open Access   (Followers: 8, SJR: 0.172, h-index: 29)
Acta Haematologica Polonica     Free   (SJR: 0.123, h-index: 8)
Acta Histochemica     Hybrid Journal   (Followers: 3, SJR: 0.604, h-index: 38)
Acta Materialia     Hybrid Journal   (Followers: 195, SJR: 3.683, h-index: 202)
Acta Mathematica Scientia     Full-text available via subscription   (Followers: 5, SJR: 0.615, h-index: 21)
Acta Mechanica Solida Sinica     Full-text available via subscription   (Followers: 9, SJR: 0.442, h-index: 21)
Acta Oecologica     Hybrid Journal   (Followers: 9, SJR: 0.915, h-index: 53)
Acta Otorrinolaringologica (English Edition)     Full-text available via subscription   (Followers: 1)
Acta Otorrinolaringológica Española     Full-text available via subscription   (Followers: 3, SJR: 0.311, h-index: 16)
Acta Pharmaceutica Sinica B     Open Access   (Followers: 2)
Acta Poética     Open Access   (Followers: 4)
Acta Psychologica     Hybrid Journal   (Followers: 21, SJR: 1.365, h-index: 73)
Acta Sociológica     Open Access  
Acta Tropica     Hybrid Journal   (Followers: 5, SJR: 1.059, h-index: 77)
Acta Urológica Portuguesa     Open Access  
Actas Dermo-Sifiliograficas     Full-text available via subscription   (Followers: 4)
Actas Dermo-Sifiliográficas (English Edition)     Full-text available via subscription   (Followers: 3)
Actas Urológicas Españolas     Full-text available via subscription   (Followers: 3, SJR: 0.383, h-index: 19)
Actas Urológicas Españolas (English Edition)     Full-text available via subscription   (Followers: 2)
Actualites Pharmaceutiques     Full-text available via subscription   (Followers: 5, SJR: 0.141, h-index: 3)
Actualites Pharmaceutiques Hospitalieres     Full-text available via subscription   (Followers: 4, SJR: 0.112, h-index: 2)
Acupuncture and Related Therapies     Hybrid Journal   (Followers: 4)
Ad Hoc Networks     Hybrid Journal   (Followers: 11, SJR: 0.967, h-index: 57)
Addictive Behaviors     Hybrid Journal   (Followers: 15, SJR: 1.514, h-index: 92)
Addictive Behaviors Reports     Open Access   (Followers: 5)
Additive Manufacturing     Hybrid Journal   (Followers: 7, SJR: 1.039, h-index: 5)
Additives for Polymers     Full-text available via subscription   (Followers: 20)
Advanced Drug Delivery Reviews     Hybrid Journal   (Followers: 119, SJR: 5.2, h-index: 222)
Advanced Engineering Informatics     Hybrid Journal   (Followers: 11, SJR: 1.265, h-index: 53)
Advanced Powder Technology     Hybrid Journal   (Followers: 16, SJR: 0.739, h-index: 33)
Advances in Accounting     Hybrid Journal   (Followers: 8, SJR: 0.299, h-index: 15)
Advances in Agronomy     Full-text available via subscription   (Followers: 15, SJR: 2.071, h-index: 82)
Advances in Anesthesia     Full-text available via subscription   (Followers: 24, SJR: 0.169, h-index: 4)
Advances in Antiviral Drug Design     Full-text available via subscription   (Followers: 3)
Advances in Applied Mathematics     Full-text available via subscription   (Followers: 6, SJR: 1.054, h-index: 35)
Advances in Applied Mechanics     Full-text available via subscription   (Followers: 10, SJR: 0.801, h-index: 26)
Advances in Applied Microbiology     Full-text available via subscription   (Followers: 21, SJR: 1.286, h-index: 49)
Advances In Atomic, Molecular, and Optical Physics     Full-text available via subscription   (Followers: 16, SJR: 3.31, h-index: 42)
Advances in Biological Regulation     Hybrid Journal   (Followers: 4, SJR: 2.277, h-index: 43)
Advances in Botanical Research     Full-text available via subscription   (Followers: 3, SJR: 0.619, h-index: 48)
Advances in Cancer Research     Full-text available via subscription   (Followers: 26, SJR: 2.215, h-index: 78)
Advances in Carbohydrate Chemistry and Biochemistry     Full-text available via subscription   (Followers: 9, SJR: 0.9, h-index: 30)
Advances in Catalysis     Full-text available via subscription   (Followers: 5, SJR: 2.139, h-index: 42)
Advances in Cellular and Molecular Biology of Membranes and Organelles     Full-text available via subscription   (Followers: 12)
Advances in Chemical Engineering     Full-text available via subscription   (Followers: 24, SJR: 0.183, h-index: 23)
Advances in Child Development and Behavior     Full-text available via subscription   (Followers: 10, SJR: 0.665, h-index: 29)
Advances in Chronic Kidney Disease     Full-text available via subscription   (Followers: 8, SJR: 1.268, h-index: 45)
Advances in Clinical Chemistry     Full-text available via subscription   (Followers: 28, SJR: 0.938, h-index: 33)
Advances in Colloid and Interface Science     Full-text available via subscription   (Followers: 18, SJR: 2.314, h-index: 130)
Advances in Computers     Full-text available via subscription   (Followers: 16, SJR: 0.223, h-index: 22)
Advances in Developmental Biology     Full-text available via subscription   (Followers: 11)
Advances in Digestive Medicine     Open Access   (Followers: 4)
Advances in DNA Sequence-Specific Agents     Full-text available via subscription   (Followers: 5)
Advances in Drug Research     Full-text available via subscription   (Followers: 22)
Advances in Ecological Research     Full-text available via subscription   (Followers: 39, SJR: 3.25, h-index: 43)
Advances in Engineering Software     Hybrid Journal   (Followers: 25, SJR: 0.486, h-index: 10)
Advances in Experimental Biology     Full-text available via subscription   (Followers: 7)
Advances in Experimental Social Psychology     Full-text available via subscription   (Followers: 38, SJR: 5.465, h-index: 64)
Advances in Exploration Geophysics     Full-text available via subscription   (Followers: 3)
Advances in Fluorine Science     Full-text available via subscription   (Followers: 8)
Advances in Food and Nutrition Research     Full-text available via subscription   (Followers: 41, SJR: 0.674, h-index: 38)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 14)
Advances in Genetics     Full-text available via subscription   (Followers: 15, SJR: 2.558, h-index: 54)
Advances in Genome Biology     Full-text available via subscription   (Followers: 11)
Advances in Geophysics     Full-text available via subscription   (Followers: 6, SJR: 2.325, h-index: 20)
Advances in Heat Transfer     Full-text available via subscription   (Followers: 18, SJR: 0.906, h-index: 24)
Advances in Heterocyclic Chemistry     Full-text available via subscription   (Followers: 8, SJR: 0.497, h-index: 31)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 22)
Advances in Imaging and Electron Physics     Full-text available via subscription   (Followers: 2, SJR: 0.396, h-index: 27)
Advances in Immunology     Full-text available via subscription   (Followers: 33, SJR: 4.152, h-index: 85)
Advances in Inorganic Chemistry     Full-text available via subscription   (Followers: 9, SJR: 1.132, h-index: 42)
Advances in Insect Physiology     Full-text available via subscription   (Followers: 3, SJR: 1.274, h-index: 27)
Advances in Integrative Medicine     Hybrid Journal   (Followers: 4)
Advances in Intl. Accounting     Full-text available via subscription   (Followers: 4)
Advances in Life Course Research     Hybrid Journal   (Followers: 7, SJR: 0.764, h-index: 15)
Advances in Lipobiology     Full-text available via subscription   (Followers: 1)
Advances in Magnetic and Optical Resonance     Full-text available via subscription   (Followers: 8)
Advances in Marine Biology     Full-text available via subscription   (Followers: 16, SJR: 1.645, h-index: 45)
Advances in Mathematics     Full-text available via subscription   (Followers: 10, SJR: 3.261, h-index: 65)
Advances in Medical Sciences     Hybrid Journal   (Followers: 5, SJR: 0.489, h-index: 25)
Advances in Medicinal Chemistry     Full-text available via subscription   (Followers: 5)
Advances in Microbial Physiology     Full-text available via subscription   (Followers: 4, SJR: 1.44, h-index: 51)
Advances in Molecular and Cell Biology     Full-text available via subscription   (Followers: 21)
Advances in Molecular and Cellular Endocrinology     Full-text available via subscription   (Followers: 10)
Advances in Molecular Toxicology     Full-text available via subscription   (Followers: 6, SJR: 0.324, h-index: 8)
Advances in Nanoporous Materials     Full-text available via subscription   (Followers: 3)
Advances in Oncobiology     Full-text available via subscription   (Followers: 3)
Advances in Organometallic Chemistry     Full-text available via subscription   (Followers: 15, SJR: 2.885, h-index: 45)
Advances in Parallel Computing     Full-text available via subscription   (Followers: 7, SJR: 0.148, h-index: 11)
Advances in Parasitology     Full-text available via subscription   (Followers: 7, SJR: 2.37, h-index: 73)
Advances in Pediatrics     Full-text available via subscription   (Followers: 20, SJR: 0.4, h-index: 28)
Advances in Pharmaceutical Sciences     Full-text available via subscription   (Followers: 14)
Advances in Pharmacology     Full-text available via subscription   (Followers: 13, SJR: 1.718, h-index: 58)
Advances in Physical Organic Chemistry     Full-text available via subscription   (Followers: 7, SJR: 0.384, h-index: 26)
Advances in Phytomedicine     Full-text available via subscription  
Advances in Planar Lipid Bilayers and Liposomes     Full-text available via subscription   (Followers: 3, SJR: 0.248, h-index: 11)
Advances in Plant Biochemistry and Molecular Biology     Full-text available via subscription   (Followers: 8)
Advances in Plant Pathology     Full-text available via subscription   (Followers: 5)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Protein Chemistry     Full-text available via subscription   (Followers: 18)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 17, SJR: 1.5, h-index: 62)
Advances in Psychology     Full-text available via subscription   (Followers: 56)
Advances in Quantum Chemistry     Full-text available via subscription   (Followers: 5, SJR: 0.478, h-index: 32)
Advances in Radiation Oncology     Open Access  
Advances in Small Animal Medicine and Surgery     Hybrid Journal   (Followers: 1, SJR: 0.1, h-index: 2)
Advances in Space Research     Full-text available via subscription   (Followers: 332, SJR: 0.606, h-index: 65)
Advances in Structural Biology     Full-text available via subscription   (Followers: 7)
Advances in Surgery     Full-text available via subscription   (Followers: 6, SJR: 0.823, h-index: 27)
Advances in the Study of Behavior     Full-text available via subscription   (Followers: 28, SJR: 1.321, h-index: 56)
Advances in Veterinary Medicine     Full-text available via subscription   (Followers: 14)
Advances in Veterinary Science and Comparative Medicine     Full-text available via subscription   (Followers: 12)
Advances in Virus Research     Full-text available via subscription   (Followers: 5, SJR: 1.878, h-index: 68)
Advances in Water Resources     Hybrid Journal   (Followers: 42, SJR: 2.408, h-index: 94)
Aeolian Research     Hybrid Journal   (Followers: 5, SJR: 0.973, h-index: 22)
Aerospace Science and Technology     Hybrid Journal   (Followers: 303, SJR: 0.816, h-index: 49)
AEU - Intl. J. of Electronics and Communications     Hybrid Journal   (Followers: 8, SJR: 0.318, h-index: 36)
African J. of Emergency Medicine     Open Access   (Followers: 4, SJR: 0.344, h-index: 6)
Ageing Research Reviews     Hybrid Journal   (Followers: 7, SJR: 3.289, h-index: 78)
Aggression and Violent Behavior     Hybrid Journal   (Followers: 389, SJR: 1.385, h-index: 72)
Agri Gene     Hybrid Journal  
Agricultural and Forest Meteorology     Hybrid Journal   (Followers: 15, SJR: 2.18, h-index: 116)
Agricultural Systems     Hybrid Journal   (Followers: 29, SJR: 1.275, h-index: 74)
Agricultural Water Management     Hybrid Journal   (Followers: 36, SJR: 1.546, h-index: 79)
Agriculture and Agricultural Science Procedia     Open Access  
Agriculture and Natural Resources     Open Access   (Followers: 1)
Agriculture, Ecosystems & Environment     Hybrid Journal   (Followers: 48, SJR: 1.879, h-index: 120)
Ain Shams Engineering J.     Open Access   (Followers: 5, SJR: 0.434, h-index: 14)
Air Medical J.     Hybrid Journal   (Followers: 3, SJR: 0.234, h-index: 18)
AKCE Intl. J. of Graphs and Combinatorics     Open Access   (SJR: 0.285, h-index: 3)
Alcohol     Hybrid Journal   (Followers: 9, SJR: 0.922, h-index: 66)
Alcoholism and Drug Addiction     Open Access   (Followers: 5)
Alergologia Polska : Polish J. of Allergology     Full-text available via subscription   (Followers: 1)
Alexandria Engineering J.     Open Access   (Followers: 1, SJR: 0.436, h-index: 12)
Alexandria J. of Medicine     Open Access  
Algal Research     Partially Free   (Followers: 7, SJR: 2.05, h-index: 20)
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 3)
Allergologia et Immunopathologia     Full-text available via subscription   (Followers: 1, SJR: 0.46, h-index: 29)
Allergology Intl.     Open Access   (Followers: 5, SJR: 0.776, h-index: 35)
ALTER - European J. of Disability Research / Revue Européenne de Recherche sur le Handicap     Full-text available via subscription   (Followers: 6, SJR: 0.158, h-index: 9)
Alzheimer's & Dementia     Hybrid Journal   (Followers: 45, SJR: 4.289, h-index: 64)
Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring     Open Access   (Followers: 5)
Alzheimer's & Dementia: Translational Research & Clinical Interventions     Open Access   (Followers: 3)
American Heart J.     Hybrid Journal   (Followers: 45, SJR: 3.157, h-index: 153)
American J. of Cardiology     Hybrid Journal   (Followers: 47, SJR: 2.063, h-index: 186)
American J. of Emergency Medicine     Hybrid Journal   (Followers: 34, SJR: 0.574, h-index: 65)
American J. of Geriatric Pharmacotherapy     Full-text available via subscription   (Followers: 6, SJR: 1.091, h-index: 45)
American J. of Geriatric Psychiatry     Hybrid Journal   (Followers: 14, SJR: 1.653, h-index: 93)
American J. of Human Genetics     Hybrid Journal   (Followers: 32, SJR: 8.769, h-index: 256)
American J. of Infection Control     Hybrid Journal   (Followers: 25, SJR: 1.259, h-index: 81)
American J. of Kidney Diseases     Hybrid Journal   (Followers: 31, SJR: 2.313, h-index: 172)
American J. of Medicine     Hybrid Journal   (Followers: 48, SJR: 2.023, h-index: 189)
American J. of Medicine Supplements     Full-text available via subscription   (Followers: 3)
American J. of Obstetrics and Gynecology     Hybrid Journal   (Followers: 173, SJR: 2.255, h-index: 171)
American J. of Ophthalmology     Hybrid Journal   (Followers: 51, SJR: 2.803, h-index: 148)
American J. of Ophthalmology Case Reports     Open Access   (Followers: 2)
American J. of Orthodontics and Dentofacial Orthopedics     Full-text available via subscription   (Followers: 6, SJR: 1.249, h-index: 88)
American J. of Otolaryngology     Hybrid Journal   (Followers: 22, SJR: 0.59, h-index: 45)
American J. of Pathology     Hybrid Journal   (Followers: 23, SJR: 2.653, h-index: 228)
American J. of Preventive Medicine     Hybrid Journal   (Followers: 21, SJR: 2.764, h-index: 154)
American J. of Surgery     Hybrid Journal   (Followers: 32, SJR: 1.286, h-index: 125)
American J. of the Medical Sciences     Hybrid Journal   (Followers: 13, SJR: 0.653, h-index: 70)
Ampersand : An Intl. J. of General and Applied Linguistics     Open Access   (Followers: 5)
Anaerobe     Hybrid Journal   (Followers: 4, SJR: 1.066, h-index: 51)
Anaesthesia & Intensive Care Medicine     Full-text available via subscription   (Followers: 52, SJR: 0.124, h-index: 9)
Anaesthesia Critical Care & Pain Medicine     Full-text available via subscription   (Followers: 3)
Anales de Cirugia Vascular     Full-text available via subscription  
Anales de Pediatría     Full-text available via subscription   (Followers: 2, SJR: 0.209, h-index: 27)
Anales de Pediatría (English Edition)     Full-text available via subscription  
Anales de Pediatría Continuada     Full-text available via subscription   (SJR: 0.104, h-index: 3)
Analytic Methods in Accident Research     Hybrid Journal   (Followers: 2, SJR: 2.577, h-index: 7)
Analytica Chimica Acta     Hybrid Journal   (Followers: 38, SJR: 1.548, h-index: 152)
Analytical Biochemistry     Hybrid Journal   (Followers: 152, SJR: 0.725, h-index: 154)
Analytical Chemistry Research     Open Access   (Followers: 7, SJR: 0.18, h-index: 2)
Analytical Spectroscopy Library     Full-text available via subscription   (Followers: 10)
Anesthésie & Réanimation     Full-text available via subscription  
Anesthesiology Clinics     Full-text available via subscription   (Followers: 21, SJR: 0.421, h-index: 40)
Angiología     Full-text available via subscription   (SJR: 0.124, h-index: 9)
Angiologia e Cirurgia Vascular     Open Access  
Animal Behaviour     Hybrid Journal   (Followers: 141, SJR: 1.907, h-index: 126)
Animal Feed Science and Technology     Hybrid Journal   (Followers: 5, SJR: 1.151, h-index: 83)
Animal Reproduction Science     Hybrid Journal   (Followers: 5, SJR: 0.711, h-index: 78)
Annales d'Endocrinologie     Full-text available via subscription   (SJR: 0.394, h-index: 30)
Annales d'Urologie     Full-text available via subscription  
Annales de Cardiologie et d'Angéiologie     Full-text available via subscription   (SJR: 0.177, h-index: 13)
Annales de Chirurgie de la Main et du Membre Supérieur     Full-text available via subscription  
Annales de Chirurgie Plastique Esthétique     Full-text available via subscription   (Followers: 2, SJR: 0.354, h-index: 22)
Annales de Chirurgie Vasculaire     Full-text available via subscription   (Followers: 1)

        1 2 3 4 5 6 7 8 | Last   [Sort by number of followers]   [Restore default list]

Journal Cover Advances in Colloid and Interface Science
  [SJR: 2.314]   [H-I: 130]   [18 followers]  Follow
    
   Full-text available via subscription Subscription journal  (Not entitled to full-text)
   ISSN (Print) 0001-8686
   Published by Elsevier Homepage  [3031 journals]
  • Development of the modern theory of polymeric complex coacervation
    • Authors: Charles E. Sing
      Pages: 2 - 16
      Abstract: Publication date: January 2017
      Source:Advances in Colloid and Interface Science, Volume 239
      Author(s): Charles E. Sing
      Oppositely charged polymers can undergo the process of complex coacervation, which refers to a liquid–liquid phase separation driven by electrostatic attraction. These materials have demonstrated considerable promise as the basis for complex, self-assembled materials. In this review, we provide a broad overview of the theoretical tools used to understand the physical properties of polymeric coacervates. In particular, we discuss historic theories (Voorn–Overbeek, Random Phase Approximation), and then describe recent developments in the field (Field Theoretic, Counterion Release, Molecular Simulation, and Polymer Reference Interaction Site Model methods). We provide context for these methods, and map out the patchwork of theoretical models that are used to describe a diverse array of coacervate systems. We use this review of the literature to clarify a number of important theoretical challenges remaining in our physical understanding of complex coacervation.
      Graphical abstract image

      PubDate: 2017-02-23T05:24:23Z
      DOI: 10.1016/j.cis.2016.04.004
      Issue No: Vol. 239 (2017)
       
  • Complex coacervates formed across liquid interfaces: A self-consistent
           field analysis
    • Authors: H. Monteillet; J.M. Kleijn; J. Sprakel; F.A.M. Leermakers
      Pages: 17 - 30
      Abstract: Publication date: January 2017
      Source:Advances in Colloid and Interface Science, Volume 239
      Author(s): H. Monteillet, J.M. Kleijn, J. Sprakel, F.A.M. Leermakers
      The Scheutjens–Fleer self-consistent field (SF-SCF) theory is used to study complexation between two oppositely charged polyelectrolytes across an interface formed by two solvents, here called oil and water. The focus is on the composition and the lateral stability of such interfacial coacervate. One polyelectrolyte is chosen to be oil soluble and the other one prefers water, whereas the counter and salt ions are taken to distribute ideally over all phases. There exists an electrostatic associative driving force for the formation of the coacervate phase which increases with decreasing ionic strength and may be assisted by some specific affinity between the associating units and an effective poor solvency for the coacervate. As with respect to the lateral stability an unusual wetting scenario, called pseudo-partial wetting, presents itself, which results from interactions on two different length scales. On the segmental length the screening of oil–water contacts promotes the wetting by the coacervate: a pre-wetting jump-like transition takes place off-coexistence from a microscopically thin to a mesoscopically thin film. Usually this implies complete wetting. However, the mesoscopically thin film is exposed to long-ranged attractive electrostatic interactions and therefore cannot grow to macroscopic dimensions upon approach towards coexistence. Hence the system remains partial wet. The bulk correlation length controls the thickness of the mesoscopically thin film and as a result the wetting transition occurs extremely close to the bulk critical point. We therefore expect that a thick coacervate film typically is laterally inhomogeneous: there are drops on top of a mesoscopically thin coacervate film. This conclusion qualitatively explains the experimental observation that such a coacervate film scatters visible light.

      PubDate: 2017-02-23T05:24:23Z
      DOI: 10.1016/j.cis.2016.07.001
      Issue No: Vol. 239 (2017)
       
  • Application of Monte Carlo simulation in addressing key issues of complex
           coacervation formed by polyelectrolytes and oppositely charged colloids
    • Authors: Jie Xiao; Yunqi Li; Qingrong Huang
      Pages: 31 - 45
      Abstract: Publication date: January 2017
      Source:Advances in Colloid and Interface Science, Volume 239
      Author(s): Jie Xiao, Yunqi Li, Qingrong Huang
      This paper reviews the recent advance of Monte Carlo (MC) simulation in addressing key issues of complex coacervation between polyelectrolytes and oppositely charged colloids. Readers were first supplied with a brief overview of current knowledge and experimental strategies in the study of complex coacervation. In the next section, the general MC simulation procedures as well as representative strategies applied in complex coacervation were summarized. The unique contributions of MC simulation in either capturing delicate features, easing the experimental trials or proving the concept were then elucidated through the following aspects: i) identify phase boundary and decouple interaction contributions; ii) clarify composition distribution and internal structure; iii) predict the influences of physicochemical conditions on complex coacervation; iv) delineate the mechanisms for “binding on the wrong side of the isoelectric point”. Finally, current challenges as well as prospects of MC simulation in complex coacervation are also discussed. The ultimate goal of this review is to provide readers with basic guideline for synergistic design of experiments in combination with MC simulation, and deliver convincing interpretation and reliable prediction for the structure and behavior in polyelectrolyte–macroion complex coacervation.
      Graphical abstract image

      PubDate: 2017-02-23T05:24:23Z
      DOI: 10.1016/j.cis.2016.05.010
      Issue No: Vol. 239 (2017)
       
  • Milk fat globules and associated membranes: Colloidal properties and
           processing effects
    • Authors: Annamari Jukkola; Orlando J. Rojas
      Abstract: Publication date: Available online 21 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Annamari Jukkola, Orlando J. Rojas
      The composition and physical-chemical properties of the milk fat globule membrane (MFGM) is a subject that has gained increased interest in the field of food colloids, mainly because the nutritional and technological value of the MFGM. In fact, related changes in integrity and structure during milk processing pose a huge challenge as far as efforts directed to isolate the components of the fat globule membrane. MFGM characteristics and potential utilization are areas of contention. Thus, the effects of processing and the colloidal interactions that exist with other milk constituents need to be better understood in order to exploit milk fat and MFGM, their functionality as colloids as well as those of their components. These are the main subjects of this review, which also reports on the results of recent inquiries into MFGM structure and colloidal behavior.
      Graphical abstract image

      PubDate: 2017-04-24T05:21:54Z
      DOI: 10.1016/j.cis.2017.04.010
       
  • Engineering and delivery of nanocolloids of hydrophobic drugs
    • Authors: Luyang Zhao; Guizhi Shen; Guanghui Ma; Xuehai Yan
      Abstract: Publication date: Available online 20 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Luyang Zhao, Guizhi Shen, Guanghui Ma, Xuehai Yan
      A lot of efforts have been devoted to engineering the delivery of hydrophobic drugs due to the high demand of chemotherapy against cancer. While early developed liposomes and polymeric nanoparticles did not meet the requirements of high drug loading efficiency, pure drug nanoparticles appeared to meet these together with high stability. Current drug delivery systems demand an improved performance over the whole aspects of stability, loading capacity, and therapeutic effects. As a result, both new techniques based on traditional methods and totally new procedures are under investigation. In this review, we focus on the evaluation of pure drug nanolloids fabricated by different engineering protocols with emphasis on the size and morphology, delivery and controlled release, and therapeutic effects of these drug nanocolloids.
      Graphical abstract image

      PubDate: 2017-04-24T05:21:54Z
      DOI: 10.1016/j.cis.2017.04.008
       
  • Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of
           active compounds
    • Authors: Eduardo Guzmán; Ana Mateos-Maroto; Marta Ruano; Francisco Ortega; Ramón G. Rubio
      Abstract: Publication date: Available online 20 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Eduardo Guzmán, Ana Mateos-Maroto, Marta Ruano, Francisco Ortega, Ramón G. Rubio
      Soft assemblies obtained following the Layer-by-Layer (LbL) approach are accounted among the most interesting systems for designing biomaterials and drug delivery platforms. This is due to the extraordinary versatility and flexibility offered by the LbL method, allowing for the fabrication of supramolecular multifunctional materials using a wide range of building blocks through different types of interactions (electrostatic, hydrogen bonds, acid-base or coordination interactions, or even covalent bonds). This provides the bases for the building of materials with different sizes, shapes, compositions and morphologies, gathering important possibilities for tuning and controlling the physico-chemical properties of the assembled materials with precision in the nanometer scale, and consequently creating important perspective for the application of these multifunctional materials as cargo systems in many areas of technological interest. This review studies different physico – chemical aspects associated with the assembly of supramolecular materials by the LbL method, paying special attention to the description of these aspects playing a central role in the application of these materials as cargo platforms for encapsulation and release of active compounds.
      Graphical abstract image

      PubDate: 2017-04-24T05:21:54Z
      DOI: 10.1016/j.cis.2017.04.009
       
  • Synthesis of hydroxyapatite for biomedical applications
    • Authors: Aleksandra Szcześ; Lucyna Hołysz; Emil Chibowski
      Abstract: Publication date: Available online 20 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Aleksandra Szcześ, Lucyna Hołysz, Emil Chibowski
      The current need for long lasting implants and bone substitutes characterized by biocompatibility, bioactivity and mechanical properties, without the immune rejection is a great challenge for scientists. These bone substitute structures should be prepared for individual patients with all details controlled on the micrometer level. Similarly, nontoxic, biocompatible targeted drug delivery systems which allow controlling the rate and time period of the drug delivery and simultaneously eliminating toxic and side effects on the healthy tissues, are of great interest. Extensive attempts have been made to develop a simple, efficient, and green method to form biofunctional scaffolds and implant coatings possessing the above mentioned significant biocompatibility, bioactivity and mechanical strength. Moreover, that could also serve as drug delivery systems. Hydroxyapatite (HA) which is a major mineral component of vertebrate bones and teeth is an excellent material for these purposes. In this literature review the biologically inspired scaffolds, bone substitutes, implants characterized by mechanical strength and biocompatibility, as well the drug delivery systems, based on hydroxyapatite are discussed.
      Graphical abstract image

      PubDate: 2017-04-24T05:21:54Z
      DOI: 10.1016/j.cis.2017.04.007
       
  • Silica-based systems for oral delivery of drugs, macromolecules and cells
    • Authors: Roudayna Diab; Nadia Canilho; Ileana A. Pavel; Fernanda B. Haffner; Maxime Girardon; Andreea Pasc
      Abstract: Publication date: Available online 20 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Roudayna Diab, Nadia Canilho, Ileana A. Pavel, Fernanda B. Haffner, Maxime Girardon, Andreea Pasc
      According to the US Food and Drug Administration and the European Food Safety Authority, amorphous forms of silica and silicates are generally recognized to be safe as oral delivery ingredients in amounts up to 1500mg per day. Silica is used in the formulation of solid dosage forms, e.g. tablets, as glidant or lubricant. The synthesis of the silica-based materials depends on the payload nature, drug, macromolecule or cell, and on the target release (active or passive). Most of the examples given in the literature, deal with the encapsulation of drugs into mesoporous silica nanoparticles. Silica diatoms appear as an elegant, cheap and promising alternative to synthetic sol-gel-based materials. Concerning the encapsulation of macromolecules and cells, very little was reported in the field of oral delivery, despite the multiples examples already demonstrating the compatibility of the sol-gel method with biological entities and the interest of silica as oral carrier. This review reports the latest advances in this respect and discusses the potential benefits and drawbacks of using silica in oral delivery of drugs, macromolecules or cells.
      Graphical abstract image

      PubDate: 2017-04-24T05:21:54Z
      DOI: 10.1016/j.cis.2017.04.005
       
  • Advances in structural design of lipid-based nanoparticle carriers for
           delivery of macromolecular drugs, phytochemicals and anti-tumor agents
    • Authors: Angelina Angelova; Vasil M. Garamus; Borislav Angelov; Zhenfen Tian; Yawen Li; Aihua Zou
      Abstract: Publication date: Available online 18 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Angelina Angelova, Vasil M. Garamus, Borislav Angelov, Zhenfen Tian, Yawen Li, Aihua Zou
      The present work highlights recent achievements in development of nanostructured dispersions and biocolloids for drug delivery applications. We emphasize the key role of biological small-angle X-ray scattering (BioSAXS) investigations for the nanomedicine design. A focus is given on controlled encapsulation of small molecular weight phytochemical drugs in lipid-based nanocarriers as well as on encapsulation of macromolecular siRNA, plasmid DNA, peptide and protein pharmaceuticals in nanostructured nanoparticles that may provide efficient intracellular delivery and triggered drug release. Selected examples of utilisation of the BioSAXS method for characterization of various types of liquid crystalline nanoorganizations (liposome, spongosome, cubosome, hexosome, and nanostructured lipid carriers) are discussed in view of the successful encapsulation and protection of phytochemicals and therapeutic biomolecules in the hydrophobic or the hydrophilic compartments of the nanocarriers. We conclude that the structural design of the nanoparticulate carriers is of crucial importance for the therapeutic outcome and the triggered drug release from biocolloids.
      Graphical abstract image

      PubDate: 2017-04-24T05:21:54Z
      DOI: 10.1016/j.cis.2017.04.006
       
  • Entropy of aqueous surfaces. Application to polymeric Langmuir films
    • Authors: Louise Deschênes; Johannes Lyklema; François St-Germain
      Abstract: Publication date: Available online 9 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Louise Deschênes, Johannes Lyklema, François St-Germain
      Measuring surface (excess) entropies provides a bounty of valuable structural information that is hard to obtain otherwise. In the paper these quantities are defined and procedures of measurements discussed. Mostly they involve measurements at different temperatures. A review is given for interfaces with aqueous solutions in the absence of polymers. This review illustrates how, sometimes unanticipated, pieces of information are obtained, for example with cloud seeding and a possible explanation of the Jones-Ray effect. As a novel extension the procedure is applied to deposited, or Langmuir, monolayers of poly(ethylene oxide)-poly(propylene oxide) block copolymers. It will be shown how the various phase transitions and associated configurations of these polymers can be recognized and monitored.
      Graphical abstract image

      PubDate: 2017-04-10T09:10:51Z
      DOI: 10.1016/j.cis.2017.04.004
       
  • Electrostatics of Patchy Surfaces
    • Authors: Ram M. Adar; David Andelman; Haim Diamant
      Abstract: Publication date: Available online 7 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Ram M. Adar, David Andelman, Haim Diamant
      In the study of colloidal, biological and electrochemical systems, it is customary to treat surfaces, macromolecules and electrodes as homogeneously charged. This simplified approach is proven successful in most cases, but fails to describe a wide range of heterogeneously charged surfaces commonly used in experiments. For example, recent experiments have revealed a long-range attraction between overall neutral surfaces, locally charged in a mosaic-like structure of positively and negatively charged domains (“patches”). Here we review experimental and theoretical studies addressing the stability of heterogeneously charged surfaces, their ionic strength in solution, and the interaction between two such surfaces. We focus on electrostatics, and highlight the important new physical parameters appearing in the heterogeneous case, such as the largest patch size and inter-surface charge correlations.
      Graphical abstract image

      PubDate: 2017-04-10T09:10:51Z
      DOI: 10.1016/j.cis.2017.04.002
       
  • Approaches to self-assembly of colloidal monolayers: A guide for
           nanotechnologists
    • Authors: Valeria Lotito; Tomaso Zambelli
      Abstract: Publication date: Available online 7 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Valeria Lotito, Tomaso Zambelli
      Self-assembly of quasi-spherical colloidal particles in two-dimensional (2D) arrangements is essential for a wide range of applications from optoelectronics to surface engineering, from chemical and biological sensing to light harvesting and environmental remediation. Several self-assembly approaches have flourished throughout the years, with specific features in terms of complexity of the implementation, sensitivity to process parameters, characteristics of the final colloidal assembly. Selecting the proper method for a given application amidst the vast literature in this field can be a challenging task. In this review, we present an extensive classification and comparison of the different techniques adopted for 2D self-assembly in order to provide useful guidelines for scientists approaching this field. After an overview of the main applications of 2D colloidal assemblies, we describe the main mechanisms underlying their formation and introduce the mathematical tools commonly used to analyse their final morphology. Subsequently, we examine in detail each class of self-assembly techniques, with an explanation of the physical processes intervening in crystallization and a thorough investigation of the technical peculiarities of the different practical implementations. We point out the specific characteristics of the set-ups and apparatuses developed for self-assembly in terms of complexity, requirements, reproducibility, robustness, sensitivity to process parameters and morphology of the final colloidal pattern. Such an analysis will help the reader to individuate more easily the approach more suitable for a given application and will draw the attention towards the importance of the details of each implementation for the final results.

      PubDate: 2017-04-10T09:10:51Z
      DOI: 10.1016/j.cis.2017.04.003
       
  • Investigations of the Hofmeister series and other specific ion effects
           using lipid model systems
    • Authors: Epameinondas Leontidis
      Abstract: Publication date: Available online 4 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Epameinondas Leontidis
      From the ion point-of-view specific ion effects (SIE) arise as an interplay of ionic size and shape and charge distribution. However in aqueous systems SIE invariably involve water, and at surfaces they involve both interacting surface groups and local fields emanating from the surface. In this review we highlight the fundamental importance of ionic size and hydration on SIE, properties which encompass all types of interacting forces and ion-pairing phenomena and make the Hofmeister or lyotropic series of ions pertinent to a broad range of systems and phenomena. On the other hand ionic hydrophobicity and complexation capacity also determine ionic behavior in a variety of contexts. Over the years we have carried out carefully designed experiments on a few selected soft matter model systems, most involving zwitterionic phospholipids, to assess the importance of fundamental ionic and interfacial properties on ion specific effects. By tuning down direct Coulomb interactions, working with different interfacial geometries, and carefully tuning ion-lipid headgroup interactions it is possible to assess the importance of different parameters contributing to ion specific behavior. We argue that the majority of specific ion effects involving relatively simple soft matter systems can be at least qualitatively understood and demystified.
      Graphical abstract image

      PubDate: 2017-04-10T09:10:51Z
      DOI: 10.1016/j.cis.2017.04.001
       
  • Micro- and nano bio-based delivery systems for food applications: In vitro
           behavior
    • Authors: Lívia de Souza Simões; Daniel A. Madalena; Ana C. Pinheiro; José A. Teixeira; António A. Vicente; Óscar L. Ramos
      Abstract: Publication date: Available online 27 March 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Lívia de Souza Simões, Daniel A. Madalena, Ana C. Pinheiro, José A. Teixeira, António A. Vicente, Óscar L. Ramos
      Micro- and nanoencapsulation is an emerging technology in the food field that potentially allows the improvement of food quality and human health. Bio-based delivery systems of bioactive compounds have a wide variety of morphologies that influence their stability and functional performance. The incorporation of bioactive compounds in food products using micro- and nano-delivery systems may offer extra health benefits, beyond basic nutrition, once their encapsulation may provide protection against undesired environmental conditions (e.g. heat, light and oxygen) along the food chain (including processing and storage), thus improving their bioavailability, while enabling their controlled release and target delivery. This review provides an overview of the bio-based materials currently used for encapsulation of bioactive compounds intended for food applications, as well as the main production techniques employed in the development of micro- and nanosystems. The behavior of such systems and of bioactive compounds entrapped into, throughout in vitro gastrointestinal systems, is also tracked in a critical manner. Comparisons between various in vitro digestion systems (including the main advantages and disadvantages) currently in use, as well as correlations established between the behavior of such systems and studies performed in vivo will be, for the first time, addressed in this review. Finally, examples of bioactive micro- and nanosystems added to food simulants or to real food matrices are provided, together with a revision of the main challenges for their safe commercialization, the regulatory issues involved and the main legislation aspects.
      Graphical abstract image

      PubDate: 2017-04-03T09:00:33Z
      DOI: 10.1016/j.cis.2017.02.010
       
  • Honorary note to celebrate the 80th birthday of professor Sándor
           Bárány
    • Authors: George Kaptay
      Abstract: Publication date: Available online 22 March 2017
      Source:Advances in Colloid and Interface Science
      Author(s): George Kaptay


      PubDate: 2017-03-27T08:56:07Z
      DOI: 10.1016/j.cis.2017.03.005
       
  • Sol-gel processing of bioactive glass nanoparticles: A review
    • Authors: Kai Zheng; Aldo R. Boccaccini
      Abstract: Publication date: Available online 21 March 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Kai Zheng, Aldo R. Boccaccini
      Silicate-based bioactive glass nanoparticles (BGN) are gaining increasing attention in various biomedical applications due to their unique properties. Controlled synthesis of BGN is critical to their effective use in biomedical applications since BGN characteristics, such as morphology and composition, determining the properties of BGN, are highly related to the synthesis process. In the last decade, numerous investigations focusing on BGN synthesis have been reported. BGN can mainly be produced through the conventional melt-quench approach or by sol-gel methods. The latter approaches are drawing widespread attention, considering the convenience and versatility they offer to tune the properties of BGN. In this paper, we review the strategies of sol-gel processing of BGN, including those adopting different catalysts for initiating the hydrolysis and condensation of silicate precursors as well as those combining sol-gel chemistry with other techniques. The processes and mechanism of different synthesis approaches are introduced and discussed in detail. Considering the importance of the BGN morphology and composition to their biomedical applications, strategies put forward to control the size, shape, pore structure and composition of BGN are discussed. BGN are particularly interesting biomaterials for bone-related applications, however, they also have potential for other biomedical applications, e.g. in soft tissue regeneration/repair. Therefore, in the last part of this review, recently reported applications of BGN in soft tissue repair and wound healing are presented.
      Graphical abstract image

      PubDate: 2017-03-27T08:56:07Z
      DOI: 10.1016/j.cis.2017.03.008
       
  • On the cohesion of fluids and their adhesion to solids: Young's equation
           at the atomic scale
    • Authors: J.-C. Fernandez-Toledano; T.D. Blake; P. Lambert; J. De Coninck
      Abstract: Publication date: Available online 21 March 2017
      Source:Advances in Colloid and Interface Science
      Author(s): J.-C. Fernandez-Toledano, T.D. Blake, P. Lambert, J. De Coninck
      Using large-scale molecular dynamics simulations, we model a 9.2nm liquid bridge between two solid plates having a regular hexagonal lattice and analyse the forces acting at the various interfaces for a range of liquid-solid interactions. Our objective is to study the mechanical equilibrium of the system, especially that at the three-phase contact line. We confirm previous MD studies that have shown that the internal pressure inside the liquid is given precisely by the Laplace contribution and that the solid exerts a global force at the contact line in agreement with Young's equation, validating it down to the nanometre scale, which we quantify. In addition, we confirm that the force exerted by the liquid on the solid has the expected normal component equal to γ lv sin θ 0, where γ lv is the surface tension of the liquid and θ 0 is the equilibrium contact angle measured on the scale of the meniscus. Recent thermodynamic arguments predict that the tangential force exerted by the liquid on the solid should be equal to the work of adhesion expressed as Wa 0 = γ lv (1+cos θ 0). However, we find that this is true only when any layering of the liquid molecules close to liquid-solid interface is negligible. The force significantly exceeds this value when strong layering is present.
      Graphical abstract image

      PubDate: 2017-03-27T08:56:07Z
      DOI: 10.1016/j.cis.2017.03.006
       
  • Gas adsorption properties of graphene-based materials
    • Authors: Barbara Szczęśniak; Jerzy Choma; Mietek Jaroniec
      Abstract: Publication date: Available online 20 March 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Barbara Szczęśniak, Jerzy Choma, Mietek Jaroniec
      Clean energy sources and global warming are among the major challenges of the 21st century. One of the possible actions toward finding alternative energy sources and reducing global warming are storage of H2 and CH4, and capture of CO2 by using highly efficient and low-cost adsorbents. Graphene and graphene-based materials attracted a great attention around the world because of their potential for a variety applications ranging from electronics, gas sensing, energy storage and CO2 capture. Large specific surface area of these materials up to ~3000m2/g and versatile modification make them excellent adsorbents for diverse applications. Here, graphene-based adsorbents are reviewed with special emphasis on their adsorption affinity toward CO2, H2 and CH4. This review shows that graphene derivatives obtained mainly via “chemical exfoliation” of graphite and further modification with polymers and/or metal species can be very effective sorbents for CO2 and other gases and can compete with the currently used carbonaceous or non-carbonaceous adsorbents. The high adsorption capacities of graphene-based materials are mainly determined by their unique nanostructures, high specific surface areas and tailorable surface properties, which make them suitable for storage or capture of various molecules relevant for environmental and energy-related applications.
      Graphical abstract image

      PubDate: 2017-03-27T08:56:07Z
      DOI: 10.1016/j.cis.2017.03.007
       
  • Acoustic levitation of liquid drops: Dynamics, manipulation and phase
           transitions
    • Authors: Duyang Zang; Yinkai Yu; Zhen Chen; Xiaoguang Li; Hongjing Wu; Xingguo Geng
      Abstract: Publication date: Available online 18 March 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Duyang Zang, Yinkai Yu, Zhen Chen, Xiaoguang Li, Hongjing Wu, Xingguo Geng
      The technique of acoustic levitation normally produces a standing wave and the potential well of the sound field can be used to trap small objects. Since no solid surface is involved it has been widely applied for the study of fluid physics, nucleation, bio/chemical processes, and various forms of soft matter. In this article, we survey the works on drop dynamics in acoustic levitation, focus on how the dynamic behavior is related to the rheological properties and discuss the possibility to develop a novel rheometer based on this technique. We review the methods and applications of acoustic levitation for the manipulation of both liquid and solid samples and emphasize the important progress made in the study of phase transitions and bio-chemical analysis. We also highlight the possible open areas for future research.
      Graphical abstract image

      PubDate: 2017-03-20T08:52:09Z
      DOI: 10.1016/j.cis.2017.03.003
       
  • How to gather useful and valuable information from protein binding
           measurements using Langmuir lipid monolayers
    • Authors: Élodie Boisselier; Éric Demers; Line Cantin; Christian Salesse
      Abstract: Publication date: Available online 18 March 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Élodie Boisselier, Éric Demers, Line Cantin, Christian Salesse
      This review presents data on the influence of various experimental parameters on the binding of proteins onto Langmuir lipid monolayers. The users of the Langmuir methodology are often unaware of the importance of choosing appropriate experimental conditions to validate the data acquired with this method. The protein Retinitis pigmentosa 2 (RP2) has been used throughout this review to illustrate the influence of these experimental parameters on the data gathered with Langmuir monolayers. The methods detailed in this review include the determination of protein binding parameters from the measurement of adsorption isotherms, infrared spectra of the protein in solution and in monolayers, ellipsometric isotherms and fluorescence micrographs.
      Graphical abstract image

      PubDate: 2017-03-20T08:52:09Z
      DOI: 10.1016/j.cis.2017.03.004
       
  • Aqueous-phase synthesis of iron oxide nanoparticles and composites for
           cancer diagnosis and therapy
    • Authors: Jingchao Li; Shige Wang; Xiangyang Shi; Mingwu Shen
      Abstract: Publication date: Available online 14 March 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Jingchao Li, Shige Wang, Xiangyang Shi, Mingwu Shen
      The design and development of multifunctional nanoplatforms for biomedical applications still remains to be challenging. This review reports the recent advances in aqueous-phase synthesis of iron oxide nanoparticles (Fe3O4 NPs) and their composites for magnetic resonance (MR) imaging and photothermal therapy of cancer. Water dispersible and colloidally stable Fe3O4 NPs synthesized via controlled coprecipitation route, hydrothermal route and mild reduction route are introduced. Some of key strategies to improve the r2 relaxivity of Fe3O4 NPs and to enhance their uptake by cancer cells are discussed in detail. These aqueous-phase synthetic methods can also be applied to prepare Fe3O4 NP-based composites for dual-mode molecular imaging applications. More interestingly, aqueous-phase synthesized Fe3O4 NPs are able to be fabricated as multifunctional theranostic agents for multi-mode imaging and photothermal therapy of cancer. This review will provide some meaningful information for the design and development of various Fe3O4 NP-based multifunctional nanoplatforms for cancer diagnosis and therapy.
      Graphical abstract image

      PubDate: 2017-03-15T05:30:21Z
      DOI: 10.1016/j.cis.2017.02.009
       
  • Emulsion-based synthesis of porous silica
    • Authors: Hanna Gustafsson; Krister Holmberg
      Abstract: Publication date: Available online 11 March 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Hanna Gustafsson, Krister Holmberg
      We review the use of various types of emulsions as media for synthesis of porous silica particles. The use of high internal phase emulsions, i.e. emulsions with a high ratio of dispersed to continuous phase, is an approach that has attracted considerable attention. Polymerization of the continuous phase followed by removal of the dispersed phase leads to a material with an even distribution of pores if the emulsion droplets are uniform in size. Another route is to use particle stabilized emulsions as template. This will lead to either hydrophilic or hydrophobic porous silica particles depending on whether the templating emulsion is oil-in-water or water-in-oil, respectively. Use of double emulsions as templates is a way to obtain porous particles with hierarchical porosity, usually both macropores and mesopores. Templating amphiphiles, which are often polyoxyethylene-polyoxypropylene-polyoxyethylene block copolymers, are needed in order to obtain materials with highly ordered pore structure. Non-ordered mesoporous silica with small particle size and relatively large pores can be obtained by emulsifying a silica precursor together with an inert solvent in water and allowing the silica to gel within the drops. Hollow silica spheres, i.e. spherical particles with a void in the middle, can be prepared by using emulsion drops as templates around which silica polymerizes. The particles have nanometer-sized pores penetrating the shell.
      Graphical abstract image

      PubDate: 2017-03-15T05:30:21Z
      DOI: 10.1016/j.cis.2017.03.002
       
  • Effect of ligand on particle size and morphology of nanostructures
           synthesized by thermal decomposition of coordination compounds
    • Authors: Zeinab Fereshteh; Masoud Salavati-Niasari
      Abstract: Publication date: Available online 8 March 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Zeinab Fereshteh, Masoud Salavati-Niasari
      Thermal decomposition of organometallic and various coordination compounds are known as general method to synthesize a wide range of nanostructures including metals, metal oxides and sulfides. Herein, in order to coordinate metals and prepare suitable precursor - due to the efficient role of precursor on the particle size and morphology of products - appropriate ligands will be introduced.
      Graphical abstract image

      PubDate: 2017-03-15T05:30:21Z
      DOI: 10.1016/j.cis.2017.03.001
       
  • Saponins — Self-assembly and behavior at aqueous interfaces
    • Authors: Sandra Böttcher; Stephan Drusch
      Abstract: Publication date: Available online 1 March 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Sandra Böttcher, Stephan Drusch
      Saponins are interfacially active ingredients in plants consisting of a hydrophobic aglycone structure with hydrophilic sugar residues. Variations in aglycone structure as well as type and amount of sugar residues occur depending on the botanical origin. Saponins are a heterogeneous and broad class of natural substances and therefore the relationship between molecular structure and interfacial properties is complex and, yet, not completely understood. A wide range of research focused either on structural elucidation of saponins or interfacial properties. This review combines recent knowledge on structural features with interfacial properties and draws conclusions on how saponin structure affects interfacial properties. Fundamental understanding on interfacial configuration of individual saponin molecules at the interface distinctly increased. It was shown that interfacial configuration may differ depending on botanical origin and thus structure of the saponins. The formation of strong viscoelastic interfacial films by some saponins was attributed to hydrogen bonds between neighboring sugar residues. Few studies analyzed the relationship between botanical origin and interfacial rheology and derived main conclusions on important structural features. Saponins with a triterpenoid structure are most likely to form viscoelastic films, which result in stable foams and emulsions. The aglycone subtype may also affect interfacial properties as triterpenoid saponins of oleanane type formed most stable interfacial networks. But for more reliable conclusions more saponins from other aglycone subtypes (dammarane, ursolic) have to be analyzed. To-date only extracts from Quillaja saponaria Molina are approved for food products and many studies focused on these extracts. From experiments on interfacial rheology a reasonable model for supramolecular structure of Quillaja saponins was developed. It was further shown that Quillaja saponins may form micelles loaded with hydrophobic substances, nano-emulsions and stable foams. In combination proteins an increase in interfacial film stability may be observed but also negative phenomena like aggregation of oil droplets in emulsions may occur.
      Graphical abstract image

      PubDate: 2017-03-15T05:30:21Z
      DOI: 10.1016/j.cis.2017.02.008
       
  • Non-aqueous foams: Current understanding on the formation and stability
           mechanisms
    • Authors: Anne-Laure Fameau; Arnaud Saint-Jalmes
      Abstract: Publication date: Available online 21 February 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Anne-Laure Fameau, Arnaud Saint-Jalmes
      The most common types of liquid foams are aqueous ones, and correspond to gas bubbles dispersed in an aqueous liquid phase. Non-aqueous foams are also composed of gas bubbles, but dispersed in a non-aqueous solvent. In the literature, articles on such non-aqueous foams are scarce; however, the study of these foams has recently emerged, especially because of their potential use as low calories food products and of their increasing importance in various other industries (such as, for instance, the petroleum industry). Non-aqueous foams can be based on three different foam stabilizers categories: specialty surfactants, solid particles and crystalline particles. In this review, we only focus on recent advances explaining how solid and crystalline particles can lead to the formation of non-aqueous foams, and stabilize them. In fact, as discussed here, the foaming is both driven by the physical properties of the liquid phase and by the interactions between the foam stabilizer and this liquid phase. Therefore, for a given stabilizer, different foaming and stability behavior can be found when the solvent is varied. This is different from aqueous systems for which the foaming properties are only set by the foam stabilizer. We also highlight how these non-aqueous foams systems can easily become responsive to temperature changes or by the application of light.
      Graphical abstract image

      PubDate: 2017-02-23T05:24:23Z
      DOI: 10.1016/j.cis.2017.02.007
       
  • Application of mass transfer theory to biomarker capture by surface
           functionalized magnetic beads in microcentrifuge tubes
    • Authors: Thomas F. Scherr; Christine F. Markwalter; Westley S. Bauer; David Gasperino; David W. Wright; Frederick R. Haselton
      Abstract: Publication date: Available online 17 February 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Thomas F. Scherr, Christine F. Markwalter, Westley S. Bauer, David Gasperino, David W. Wright, Frederick R. Haselton
      In many diagnostic assays, specific biomarker extraction and purification from a patient sample is performed in microcentrifuge tubes using surface-functionalized magnetic beads. Although assay binding times are known to be highly dependent on sample viscosity, sample volume, capture reagent, and fluid mixing, the theoretical mass transport framework that has been developed and validated in engineering has yet to be applied in this context. In this work, we adapt this existing framework for simultaneous mass transfer and surface reaction and apply it to the binding of biomarkers in clinical samples to surface-functionalized magnetic beads. We discuss the fundamental fluid dynamics of vortex mixing within microcentrifuge tubes as well as describe how particles and biomolecules interact with the fluid. The model is solved over a wide range of parameters, and we present scenarios when a simplified analytical expression would be most accurate. Next, we review of some relevant techniques for model parameter estimation. Finally, we apply the mass transfer theory to practical use-case scenarios of immediate use to clinicians and assay developers. Throughout, we highlight where further characterization is necessary to bridge the gap between theory and practical application.

      PubDate: 2017-02-23T05:24:23Z
      DOI: 10.1016/j.cis.2017.02.006
       
  • Recent advances in biomedical applications of fluorescent gold
           nanoclusters
    • Authors: Youkun Zheng; Lanmei Lai; Weiwei Liu; Hui Jiang; Xuemei Wang
      Abstract: Publication date: Available online 16 February 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Youkun Zheng, Lanmei Lai, Weiwei Liu, Hui Jiang, Xuemei Wang
      Fluorescent gold nanoclusters (AuNCs) are emerging as novel fluorescent materials and have attracted more and more attention in the field of biolabeling, biosensing, bioimaging and targeted cancer treatment because of their unusual physicochemical properties, such as long fluorescence lifetime, ultrasmall size, large Stokes shift, strong photoluminescence, as well as excellent biocompatibility and photostability. Recently, significant efforts have been committed to the preparation, functionalization and biomedical application studies of fluorescent AuNCs. In this review, we have summarized the strategies for preparation and surface functionalization of fluorescent AuNCs in the past several years, and highlighted recent advances in the biomedical applications of the relevant fluorescent AuNCs. Based on these observations, we also give a discussion on the current problems and future developments of the fluorescent AuNCs for biomedical applications.
      Graphical abstract image

      PubDate: 2017-02-23T05:24:23Z
      DOI: 10.1016/j.cis.2017.02.005
       
  • special contents
    • Abstract: Publication date: January 2017
      Source:Advances in Colloid and Interface Science, Volume 239


      PubDate: 2017-02-23T05:24:23Z
       
  • Foreword
    • Authors: Paul Dubin; Sarah Perry Yisheng
      Abstract: Publication date: January 2017
      Source:Advances in Colloid and Interface Science, Volume 239
      Author(s): Paul Dubin, Sarah Perry, Yisheng Xu


      PubDate: 2017-02-23T05:24:23Z
       
  • Polymer decorated gold nanoparticles in nanomedicine conjugates
    • Authors: Capek
      Abstract: Publication date: Available online 15 February 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Ignác Capek
      Noble metal, especially gold nanoparticles and their conjugates with biopolymers have immense potential for disease diagnosis and therapy on account of their surface plasmon resonance (SPR) enhanced light scattering and absorption. Conjugation of noble metal nanoparticles to ligands specifically targeted to biomarkers on diseased cells allows molecular-specific imaging and detection of disease. The development of smart gold nanoparticles (AuNPs) that can deliver therapeutics at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating cancer tumors. We highlight some of the promising classes of targeting systems that are under development for the delivery of gold nanoparticles. Nanoparticles designed for biomedical applications are often coated with polymers containing reactive functional groups to conjugate targeting ligands, cell receptors or drugs. Using targeted nanoparticles to deliver chemotherapeutic agents in cancer therapy offers many advantages to improve drug/gene delivery and to overcome many problems associated with conventional radiotherapy and chemotherapy. The targeted nanoparticles were found to be effective in killing cancer cells which were studied using various anticancer assays. Cell morphological analysis shows the changes occurred in cancer cells during the treatment with AuNPs. The results determine the influence of particle size and concentration of AuNPs on their absorption, accumulation, and cytotoxicity in model normal and cancer cells. As the mean particle diameter of the AuNPs decreased, their rate of absorption by the intestinal epithelium cells increased. These results provide important insights into the relationship between the dimensions of AuNPs and their gastrointestinal uptake and potential cytotoxicity. Furthermore gold nanoparticles efficiently convert the absorbed light into localized heat, which can be exploited for the selective laser photothermal therapy of cancer. We also review the emerging technologies for the fabrication of targeted gold colloids as imagining agents.
      Graphical abstract image

      PubDate: 2017-02-16T03:13:47Z
       
  • Capillary dynamics driven by molecular self-layering
    • Authors: Pingkeng Wu; Alex Nikolov; Darsh Wasan
      Abstract: Publication date: Available online 10 February 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Pingkeng Wu, Alex Nikolov, Darsh Wasan
      Capillary dynamics is a ubiquitous everyday phenomenon. It has practical applications in diverse fields, including ink-jet printing, lab-on-a-chip, biotechnology, and coating. Understanding capillary dynamics requires essential knowledge on the molecular level of how fluid molecules interact with a solid substrate (the wall). Recent studies conducted with the surface force apparatus (SFA), atomic force microscope (AFM), and statistical mechanics simulation revealed that molecules/nanoparticles confined into the film/wall surfaces tend to self-layer into 2D layer/s and even 2D in-layer with increased confinement and fluid volume fraction. Here, the capillary rise dynamics of simple molecular fluids in cylindrical capillary is explained by the molecular self-layering model. The proposed model considers the role of the molecular shape on self-layering and its effect on the molecularly thin film viscosity in regards to the advancing (dynamic) contact angle. The model was tested to explain the capillary rise dynamics of fluids of spherical, cylindrical, and disk shape molecules in borosilicate glass capillaries. The good agreement between the capillary rise data and SFA data from the literature for simple fluid self-layering shows the validity of the present model. The present model provides new insights into the design of many applications where dynamic wetting is important because it reveals the significant impact of molecular self-layering close to the wall on dynamic wetting.
      Graphical abstract image

      PubDate: 2017-02-16T03:13:47Z
      DOI: 10.1016/j.cis.2017.02.004
       
  • How irreversible adsorption affects interfacial properties of polymers
    • Authors: Simone Napolitano; Michele Sferrazza
      Abstract: Publication date: Available online 9 February 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Simone Napolitano, Michele Sferrazza
      Graphical abstract image

      PubDate: 2017-02-09T12:16:26Z
      DOI: 10.1016/j.cis.2017.02.003
       
  • On how hydrogen bonds affect foam stability
    • Authors: Cosima Stubenrauch; Martin Hamann; Natalie Preisig; Vinay Chauhan; Romain Bordes
      Abstract: Publication date: Available online 8 February 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Cosima Stubenrauch, Martin Hamann, Natalie Preisig, Vinay Chauhan, Romain Bordes
      Do intermolecular H-bonds between surfactant head groups play a role for foam stability? From the literature on the foam stability of various surfactants with C12 alkyl chains but different head groups a clear picture emerges: stable foams are only generated when hydrogen bonds can form between the head groups, i.e. when the polar head group has a hydrogen bond donor and a proton acceptor. Stable foams can therefore be generated with surfactants having a sugar unit, a glycine, an amine oxide (at pH~5), or a carboxylic acid (at pH~pKa) as polar head group. On the other hand, aqueous foams stabilized with surfactants having oligo(ethylene oxide), phosphine oxide, quaternary ammonium, sulfate, sarcosine, amine oxide (at pH≠5), or carboxylic acid (at pH≠pKa) are not very stable. These observations suggest that hydrogen bonds between neighbouring molecules at the surface enhance foam stability. Formation of hydrogen bonds between surfactant head groups gives rise to a short-range attractive interaction that may restrict the surfactant's mobility while providing a more elastic surfactant layer which can counteract deformations. To support our hypothesis we carried out a systematic foaming study of two types of surfactants, one of them being capable of forming H-bonds and the other one not. Generating foams of all surfactants mentioned above with the same foaming conditions we found that stable foams are obtained when the head group is capable of forming intersurfactant H-bonds. The outcome of this study constitutes a new step towards the implementation of H-bonds in the future design of surfactants.
      Graphical abstract image

      PubDate: 2017-02-09T12:16:26Z
      DOI: 10.1016/j.cis.2017.02.002
       
  • Particles adsorbed at various non-aqueous liquid-liquid interfaces
    • Authors: Miguel Angel Fernandez-Rodriguez; Bernard P. Binks; Miguel Angel Rodriguez-Valverde; Miguel Angel Cabrerizo-Vilchez; Roque Hidalgo-Alvarez
      Abstract: Publication date: Available online 7 February 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Miguel Angel Fernandez-Rodriguez, Bernard P. Binks, Miguel Angel Rodriguez-Valverde, Miguel Angel Cabrerizo-Vilchez, Roque Hidalgo-Alvarez
      Particles adsorbed at liquid interfaces are commonly used to stabilise water-oil Pickering emulsions and water-air foams. The fundamental understanding of the physics of particles adsorbed at water-air and water-oil interfaces is improving significantly due to novel techniques that enable the measurement of the contact angle of individual particles at a given interface. The case of non-aqueous interfaces and emulsions is less studied in the literature. Non-aqueous liquid-liquid interfaces in which water is replaced by other polar solvents have properties similar to those of water-oil interfaces. Nanocomposites of non-aqueous immiscible polymer blends containing inorganic particles at the interface are of great interest industrially and consequently more work has been devoted to them. By contrast, the behaviour of particles adsorbed at oil-oil interfaces in which both oils are immiscible and of low dielectric constant (ε<3) is scarcely studied. Hydrophobic particles are required to stabilise these oil-oil emulsions due to their irreversible adsorption, high interfacial activity and elastic shell behaviour.
      Graphical abstract image

      PubDate: 2017-02-09T12:16:26Z
      DOI: 10.1016/j.cis.2017.02.001
       
  • Withdrawing a solid from a bath: how much liquid is coated?
    • Authors: Emmanuelle Rio; François Boulogne
      Abstract: Publication date: Available online 4 February 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Emmanuelle Rio, François Boulogne
      A solid withdrawn from a liquid bath entrains a film. In this review, after recalling the predictions and results for pure Newtonian liquids coated on simple solids, we analyze the deviations to this ideal case exploring successively three potential sources of complexity: the liquid-air interface, the bulk rheological properties of the liquid and the mechanical or chemical properties of the solid. For these different complexities, we show that significant effects on the film thickness are observed experimentally and we summarize the theoretical analysis presented in the literature, which attempt to rationalize these measurements.
      Graphical abstract image

      PubDate: 2017-02-04T10:52:38Z
      DOI: 10.1016/j.cis.2017.01.006
       
  • Delivery systems for antimicrobial peptides
    • Authors: Randi Nordström; Martin Malmsten
      Abstract: Publication date: Available online 25 January 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Randi Nordström, Martin Malmsten
      Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems are likely to play a key role in the development of potent and safe AMP-based therapeutics, e.g., through reducing chemical or biological degradation of AMPs either in the formulation or after administration, by reducing adverse side-effects, by controlling AMP release rate, by promoting biofilm penetration, or through achieving co-localization with intracellular pathogens. Here, an overview is provided of the current understanding of delivery systems for antimicrobial peptides, with special focus on AMP-carrier interactions, as well as consequences of these interactions for antimicrobial and related biological effects of AMP-containing formulations.
      Graphical abstract image

      PubDate: 2017-01-28T10:41:44Z
      DOI: 10.1016/j.cis.2017.01.005
       
  • Fabrication techniques for bioinspired, mechanically-durable,
           superliquiphobic surfaces for water, oil, and surfactant repellency
    • Authors: Samuel Martin; Philip S. Brown; Bharat Bhushan
      Abstract: Publication date: Available online 23 January 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Samuel Martin, Philip S. Brown, Bharat Bhushan
      Nature provides inspiration for liquid-repellant and low-adhesive surfaces, such as the lotus leaf and pitcher plant. While water-repellency is frequently found in nature, oil-repellency and surfactant-repellency are uncommon to nonexistent. To obtain oil- and surfactant-repellency, hierarchical, re-entrant, bioinspired surface structures along with low surface energy materials are needed. This overview presents wetting literature, common liquids and their composition, and fabrication techniques for superliquiphobic surfaces with repellency toward water, oil, and surfactant-containing liquids. Four techniques for creating such surfaces are explained in detail: nanoparticle/binder, layer-by-layer, nanoparticle-encapsulation, and liquid-impregnation. Static contact and tilt angles with water and hexadecane liquids, morphology, wear, transparency, self-cleaning, anti-smudge, and oil–water separation data are examined to compare the techniques. Data for these techniques are presented showing evidence of re-entrant geometry and the ability for these surfaces to repel surfactant-containing liquids such as shampoo and laundry detergent. The data will provide guidance in implementing superliquiphobic surfaces for self-cleaning, anti-smudge, antifouling, and low-adhesion properties for various applications including plastic packaging and biomedical devices.
      Graphical abstract image

      PubDate: 2017-01-28T10:41:44Z
      DOI: 10.1016/j.cis.2017.01.004
       
  • Recent advances in chemiluminescence based on carbonaceous dots
    • Authors: Syed Niaz Ali Shah; Jin-Ming Lin
      Abstract: Publication date: Available online 19 January 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Syed Niaz Ali Shah, Jin-Ming Lin
      Herein, a broad overview concerning the most recent progress of carbon dots (CDs) in chemiluminescence (CL) as well as the mechanisms and applications are presented. CDs have excellent optical and electronic properties and are very important advancement in the fast growing domain of nanotechnology. CDs enhance the ultraweak CL of different systems. The mechanisms and applications of these enhanced CL reactions are discussed. It is worthy to note that CDs participate in CL reactions as catalysts, energy acceptors or are directly involved in redox reactions with radicals in CL systems. Sometimes, these processes taking place simultaneously to enhance CL intensity. In this report, recent advances in CD based CL are comprehensively summarized and their applications in detection of various reagents and biological molecules are reviewed. The challenges and future prospects of this field are also discussed.
      Graphical abstract image

      PubDate: 2017-01-22T10:37:22Z
      DOI: 10.1016/j.cis.2017.01.003
       
  • Recent advances in the study and design of parahydrophobic surfaces: From
           natural examples to synthetic approaches
    • Authors: Caroline R. Szczepanski; Frédéric Guittard; Thierry Darmanin
      Abstract: Publication date: Available online 19 January 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Caroline R. Szczepanski, Frédéric Guittard, Thierry Darmanin
      Parahydrophobic surfaces are an interesting class of materials that combines both high contact angles and very strong adhesion with wetting fluids, most commonly water. This unique set of properties makes parahydrophobic surfaces attractive for a variety of applications, including water harvesting and collection, guided fluid transport, and membrane development, amongst many others. Taking inspiration from natural surfaces that display this same behavior such as rose petals and gecko feet, synthetic approaches aim to incorporate the nano- and micro-scale topography as well as the low surface energy chemistry found on these interfaces. Here, we discuss the chemical and physical factors that contribute to parahydrophobic behavior and provide a comprehensive overview on the current technologies and procedures used towards constructing surfaces that mimic this behavior already observed in nature. This includes etching processes, colloidal assemblies, deposition methods, and in situ growth of surface features. Furthermore, issues such as ease of scale-up, efficiency of technical procedures, and other current challenges associated with these methods will be discussed to provide insight as to the future directions for this growing area of research.
      Graphical abstract image

      PubDate: 2017-01-22T10:37:22Z
      DOI: 10.1016/j.cis.2017.01.002
       
  • CNT/polymer interface in polymeric composites and its sensitivity study at
           different environments
    • Authors: Rajesh Kumar Prusty; Dinesh Kumar Rathore; Bankim Chandra Ray
      Abstract: Publication date: Available online 28 December 2016
      Source:Advances in Colloid and Interface Science
      Author(s): Rajesh Kumar Prusty, Dinesh Kumar Rathore, Bankim Chandra Ray
      The environmental durability of polymer based composites has always been a critical concern over its short- and long-term performances. The degree of environmental degradation is supposed to have different mechanisms and kinetics at the polymer/reinforcement interfaces in comparison to the bulk polymer matrix. Differential degradation could possibly attribute a stressed state in the material, especially at the interfaces. Present review is focused on the roles of reinforcing CNT on the performance of the polymeric nanocomposites in different in-service environments (the environmental parameters include temperature, moisture, UV light, low earth orbit space environment, electromagnetic waves). It is essential to understand how the addition of CNTs in polymeric material alters the microstructure at micro- and nano-scale, and how these modifications influence the overall macroscopic behaviour, not only in its as fabricated form, but also its continuous alteration with time in the in-service environment. The technological superiority with CNT addition to polymeric materials may be advantageous, but scientific merits are here to be explored critically for a reliable and sustainable interfacial durability and structural integrity in different in-service environmental conditions.
      Graphical abstract image

      PubDate: 2016-12-28T09:15:36Z
      DOI: 10.1016/j.cis.2016.12.008
       
  • Zeta potential of artificial and natural calcite in aqueous solution
    • Authors: Dawoud Al Mahrouqi; Jan Vinogradov; Matthew D. Jackson
      Abstract: Publication date: Available online 26 December 2016
      Source:Advances in Colloid and Interface Science
      Author(s): Dawoud Al Mahrouqi, Jan Vinogradov, Matthew D. Jackson
      Despite the broad range of interest and applications, controls on calcite surface charge in aqueous solution, especially at conditions relevant to natural systems, remain poorly understood. The primary data source to understand calcite surface charge comprises measurements of zeta potential. Here we collate and review previous measurements of zeta potential on natural and artificial calcite and carbonate as a resource for future studies, compare and contrast the results of these studies to determine key controls on zeta potential and where uncertainties remain, and report new measurements of zeta potential relevant to natural subsurface systems. The results show that the potential determining ions (PDIs) for the carbonate mineral surface are the lattice ions Ca2+, Mg2+ and CO3 2−. The zeta potential is controlled by the concentration-dependent adsorption of these ions within the Stern layer, primarily at the Outer Helmholtz Plane (OHP). Given this, the Iso-Electric Point (IEP) at which the zeta potential is zero should be expressed as pCa (or pMg). It should not be reported as pH, similar to most metal oxides. The pH does not directly control the zeta potential. Varying the pH whilst holding pCa constant yields constant zeta potential. The pH affects the zeta potential only by moderating the equilibrium pCa for a given CO2 partial pressure (pCO2). Experimental studies that appear to yield a systematic relationship between pH and zeta potential are most likely observing the relationship between pCa and zeta potential, with pCa responding to the change in pH. New data presented here show a consistent linear relationship between equilibrium pH and equilibrium pCa or pMg irrespective of sample used or solution ionic strength. The surface charge of calcite is weakly dependent on pH, through protonation and deprotonation reactions that occur within a hydrolysis layer immediately adjacent to the mineral surface. The Point of Zero Charge (PZC) at which the surface charge is zero could be expressed as pH, but surface complexation models suggest the surface is negatively charged over the pH range 5.5–11. Several studies have suggested that SO4 2− is also a PDI for the calcite surface, but new data presented here indicate that the value of pSO4 may affect zeta potential only by moderating the equilibrium pCa. Natural carbonate typically yields a more negative zeta potential than synthetic calcite, most likely due to the presence of impurities including clays, organic matter, apatite, anhydrite or quartz, that yield a more negative zeta potential than pure calcite. New data presented here show that apparently identical natural carbonates display differing zeta potential behaviour, most likely due to the presence of small volumes of these impurities. It is important to ensure equilibrium, defined in terms of the concentration of PDIs, has been reached prior to taking measurements. Inconsistent values of zeta potential obtained in some studies may reflect a lack of equilibration. The data collated and reported here have broad application in engineering processes including the manufacture of paper and cement, the geologic storage of nuclear waste and CO2, and the production of oil and gas.
      Graphical abstract image

      PubDate: 2016-12-28T09:15:36Z
      DOI: 10.1016/j.cis.2016.12.006
       
  • Designing biopolymer microgels to encapsulate, protect and deliver
           bioactive components: Physicochemical aspects
    • Authors: David Julian McClements
      Abstract: Publication date: Available online 16 December 2016
      Source:Advances in Colloid and Interface Science
      Author(s): David Julian McClements
      Biopolymer microgels have considerable potential for their ability to encapsulate, protect, and release bioactive components. Biopolymer microgels are small particles (typically 100nm to 1000μm) whose interior consists of a three-dimensional network of cross-linked biopolymer molecules that traps a considerable amount of solvent. This type of particle is also sometimes referred to as a nanogel, hydrogel bead, biopolymer particles, or microsphere. Biopolymer microgels are typically prepared using a two-step process involving particle formation and particle gelation. This article reviews the major constituents and fabrication methods that can be used to prepare microgels, highlighting their advantages and disadvantages. It then provides an overview of the most important characteristics of microgel particles (such as size, shape, structure, composition, and electrical properties), and describes how these parameters can be manipulated to control the physicochemical properties and functional attributes of microgel suspensions (such as appearance, stability, rheology, and release profiles). Finally, recent examples of the utilization of biopolymer microgels to encapsulate, protect, or release bioactive agents, such as pharmaceuticals, nutraceuticals, enzymes, flavors, and probiotics is given.
      Graphical abstract image

      PubDate: 2016-12-21T01:50:05Z
      DOI: 10.1016/j.cis.2016.12.005
       
  • Graphene oxide based nanohybrid proton exchange membranes for fuel cell
           applications: An overview
    • Authors: Ravi P. Pandey; Geetanjali Shukla; Murli Manohar; Vinod K. Shahi
      Abstract: Publication date: Available online 15 December 2016
      Source:Advances in Colloid and Interface Science
      Author(s): Ravi P. Pandey, Geetanjali Shukla, Murli Manohar, Vinod K. Shahi
      In context of many applications, such as polymer composites, energy-related materials, sensors, ‘paper’-like materials, field-effect transistors (FET), and biomedical applications, chemically modified graphene was broadly studied during last decade, due to its excellent electrical, mechanical, and thermal properties. Presence of reactive oxygen functional groups in the grapheme oxide (GO) responsible for chemical functionalization and makes it a good candidate for diversified applications. The main objectives for developing GO based nanohybrid proton exchange membrane (PEM) include: improved self-humidification (water retention ability), reduced fuel crossover (electro-osmotic drag), improved stabilities (mechanical, thermal, and chemical), enhanced proton conductivity, and processability for the preparation of membrane-electrode assembly. Research carried on this topic may be divided into protocols for covalent grafting of functional groups on GO matrix, preparation of free-standing PEM or choice of suitable polymer matrix, covalent or hydrogen bonding between GO and polymer matrix etc. Herein, we present a brief literature survey on GO based nano-hybrid PEM for fuel cell applications. Different protocols were adopted to produce functionalized GO based martials and preparation of their free-standing film or dispersing these materials in various polymer matrices with suitable interactions. This review article critically discussed suitability of these PEMs for fuel cell applications in terms of dependency of intrinsic properties of nanohybrid PEM. Potential applications of these nanohybrid PEMs, and current challenges are also provided along with future guidelines for developing GO based nanohybrid PEM as promising materials for fuel cell applications.

      PubDate: 2016-12-21T01:50:05Z
      DOI: 10.1016/j.cis.2016.12.003
       
  • Valorisation of post-sorption materials: Opportunities, strategies, and
           challenges
    • Authors: D. Harikishore Kumar Reddy; K. Vijayaraghavan; Jeong Ae Kim; Yeoung-Sang Yun
      Abstract: Publication date: Available online 12 December 2016
      Source:Advances in Colloid and Interface Science
      Author(s): D. Harikishore Kumar Reddy, K. Vijayaraghavan, Jeong Ae Kim, Yeoung-Sang Yun
      Adsorption is a facile, economic, eco-friendly and low-energy requiring technology that aims to separate diverse compounds (ions and molecules) from one phase to another phase using a wide variety of adsorbent materials. To date, this technology has been used most often for removal/recovery of pollutants from aqueous solutions; however, emerging post-sorption technologies are now enabling the manufacture of value-added key adsorption products that can subsequently be used for (i) fertilizers, (ii) catalysis, (iii) carbonaceous metal nanoparticle synthesis, (iv) feed additives, and (v) biologically active compounds. These new strategies ensure the sustainable valorisation of post-sorption materials as an economically viable alternative to the engineering of other green chemical products because of the ecological affability, biocompatibility, and widespread accessibility of post-sorption materials. Fertilizers and feed additives manufactured using sorption technology contain elements such as N, P, Cu, Mn, and Zn, which improve soil fertility and provide essential nutrients to animals and humans. This green and effective approach to managing post-sorption materials is an important step in reaching the global goals of sustainability and healthy human nutrition. Post-sorbents have also been utilized for the harvesting of metal nanoparticles via modern catalytic pyrolysis techniques. The resulting materials exhibited a high surface area (>1000m2/g) and are further used as catalysts and adsorbents. Together with the above possibilities, energy production from post-sorbents is under exploration. Many of the vital 3E (energy, environment, and economy) problems can be addressed using post-sorption materials. In this review, we summarize a new generation of applications of post-adsorbents as value-added green chemical products. At the end of each section, scientific challenges, further opportunities, and issues related to toxicity are discussed. We believe this critical evaluation not only delivers essential contextual information to researchers in the field but also stimulates new ideas and applications to further advance post-sorbent applications.
      Graphical abstract image

      PubDate: 2016-12-14T11:04:51Z
      DOI: 10.1016/j.cis.2016.12.002
       
  • Nano-carbohydrates: Synthesis and application in genetics, biotechnology,
           and medicine
    • Authors: Ali Jebali; Elham Khajeh Nayeri; Sima Roohana; Shiva Aghaei; Maede Ghaffari; Karim Daliri; Garcia Fuente
      Abstract: Publication date: Available online 9 November 2016
      Source:Advances in Colloid and Interface Science
      Author(s): Ali Jebali, Elham Khajeh Nayeri, Sima Roohana, Shiva Aghaei, Maede Ghaffari, Karim Daliri, Garcia Fuente
      Combining nanoparticles with carbohydrate has triggered an exponential growth of research activities for the design of novel functional bionanomaterials, nano-carbohydrates. Recent advances in versatile synthesis of glycosylated nanoparticles have paved the way towards diverse biomedical applications. The accessibility of a wide variety of these structured nanosystems, in terms of shape, size, and organization around stable nanoparticles, has readily contributed to their development and application in nanomedicine. Glycosylated gold nanoparticles, glycosylated quantum dots, fullerenes, single-wall nanotubes, and self-assembled glyconanoparticles using amphiphilic glycopolymers or glycodendrimers have received considerable attention for their application in powerful imaging, therapeutic, and biodiagnostic devices. Recently, nano-carbohydrates were used for different types of microarrays to detect proteins and nucleic acids.
      Graphical abstract image

      PubDate: 2016-11-12T19:19:59Z
      DOI: 10.1016/j.cis.2016.11.002
       
  • Linear viscoelasticity of complex coacervates
    • Authors: Yalin Liu; H. Henning Winter; Sarah L. Perry
      Abstract: Publication date: Available online 6 September 2016
      Source:Advances in Colloid and Interface Science
      Author(s): Yalin Liu, H. Henning Winter, Sarah L. Perry
      Rheology is a powerful method for material characterization that can provide detailed information about the self-assembly, structure, and intermolecular interactions present in a material. Here, we review the use of linear viscoelastic measurements for the rheological characterization of complex coacervate-based materials. Complex coacervation is an electrostatically and entropically-driven associative liquid–liquid phase separation phenomenon that can result in the formation of bulk liquid phases, or the self-assembly of hierarchical, microphase separated materials. We discuss the need to link thermodynamic studies of coacervation phase behavior with characterization of material dynamics, and provide parallel examples of how parameters such as charge stoichiometry, ionic strength, and polymer chain length impact self-assembly and material dynamics. We conclude by highlighting key areas of need in the field, and specifically call for the development of a mechanistic understanding of how molecular-level interactions in complex coacervate-based materials affect both self-assembly and material dynamics.
      Graphical abstract image

      PubDate: 2016-10-19T10:04:31Z
      DOI: 10.1016/j.cis.2016.08.010
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.166.186.79
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016